

EPA/630/R-14/101 April 2014 www.epa.gov/iris

Draft Development Materials for the Integrated Risk Information System (IRIS) Toxicological Review of Inorganic Arsenic

[CASRN 7440-38-2]

Bimonthly Public Meeting: June 2014

NOTICE:

This is a draft comprised of **development materials**. This information is distributed solely for the purpose of pre-dissemination review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy.

April 2014

U. S. Environmental Protection Agency Office of Research and Development National Center for Environmental Assessment Washington, D.C.

Disclaimer

.

This information is distributed solely for the purpose of pre-dissemination review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

TABLE OF CONTENTS

Pł	REFA	ACE		viii
1	ASS	ESSM	ENT DEVELOPMENT PLAN	
-			TIVE SUMMARY	
	1.1		pints - Executive Summary	
	1.2		ROUND	
			pints - Background	
		1.2.1	Previous EPA Assessments on Inorganic Arsenic	
		1.2.2	Congressional Directive for EPA Toxicological Review of Inorganic Arsenic	
		1.2.3	Overview of NRC Interim Report "Critical Aspects of EPA's IRIS Assessment of Ino Arsenic"	rganic 1-4
	1.3	DEVELO	DPING THE TOXICOLOGICAL REVIEW	1-11
		Key Pe	pints - Development	
		1.3.1	Goals of the Assessment Development Plan	
		1.3.2	Agency Partner and Public Stakeholder Engagement	
		1.3.3	Transparency	
		1.3.4	Timeline for Completion	
	1.4		PTUAL MODEL FOR THE TOXICOLOGICAL REVIEW	
		Key P	pints - Conceptual Model	
		1.4.1	Scope of the Toxicological Review	
		1.4.2	Sources	
		1.4.3	Stressors	
		1.4.4	Exposure Pathways	
		1.4.5	Receptors	
		1.4.6	Endpoints	
		1.4.7	Risk Metrics	
		1.4.8	Overall Conceptual Model	
	1.5		SIS PLAN FOR THE TOXICOLOGICAL REVIEW	
		•	pints - Analysis Plan	
		1.5.1	Approaches to Source Considerations	1-40
		1.5.2	Approaches to Stressor Considerations	1-41
		1.5.3	Approaches to Exposure Pathway Considerations	
		1.5.4	Approaches to Receptor Considerations	
		1.5.5	Approaches to Endpoint Considerations	
		1.5.6	Approaches to Risk Metric Considerations	
	1.6		DIX OF MATERIALS FOR EVALUATING LITERATURE	
	1.7	REFERE	ENCES FOR ASSESSMENT DEVELOPMENT PLAN	1-99
2			JRE SEARCH STRATEGY AND SYSTEMATIC REVIEW FOR	
			MENT OF THE TOXICOLOGICAL REVIEW OF INORGANIC ARSE	
	2.1		IEW OF LITERATURE SEARCH STRATEGY	
			TERIZED KEYWORD SEARCH	
			H EFFECTS CLUSTER DETERMINATION	
	2.4		ORIZATION OF REFERENCES	
		2.4.1	Categorization of Health Effects Literature Based on Title and Abstract	
	2.5	-	Further Categorization of Epidemiologic and Animal Hazard Identification Studies CTERIZATION OF STUDIES AND DEVELOPMENT OF "SUMMARY OF	
			MIOLOGICAL/TOXICOLOGICAL STUDIES FOR HAZARD IDENTIFICATION" TABLES	
	2.6	EVALU	ATION OF POTENTIAL RISK OF BIAS	2-9

		2.6.1	General Approach for Risk of Bias Evaluation	2-10
		2.6.2	Assessing Risk of Bias for Arsenic Studies	
	2.7	DEVELO	OPMENT OF EVIDENCE TABLES FOR HAZARD IDENTIFICATION	
		2.7.1	Epidemiology Data	
		2.7.2	Animal Data	2-15
	2.8		OHAT GUIDANCE FOR RISK OF BIAS EVALUATION AND ASSESSMENT-SPECIFIC	
		CLARI	FICATIONS	2-16
3			Y OF LITERATURE IDENTIFIED TO SUPPORT HAZARD IDENTIFICA	
			GANIC ARSENIC	
	3.1		EW OF EPIDEMIOLOGY STUDIES IDENTIFIED	
		3.1.1	Summary of Epidemiology Studies for Hazard Identification for Bladder Effects	
		3.1.2	Summary of Epidemiology Studies for Hazard Identification for Cardiovascular Disease .	3-5
		3.1.3	Summary of Epidemiology Studies for Hazard Identification for Clinical Chemistry and	a 10
		214	Urinalysis	
		3.1.4	Summary of Epidemiology Studies for Hazard Identification for Developmental Effects in	
		215	Neurodevelopmental	
		3.1.5	Summary of Epidemiology Studies for Hazard Identification for Digestive System Effects	
		3.1.6	Summary of Epidemiology Studies for Hazard Identification for Endocrine System Effect	
		3.1.7	including Diabetes Summary of Epidemiology Studies for Hazard Identification for Hematology, Hematopoi	
		5.1.7	System	
		3.1.8	Summary of Epidemiology Studies for Hazard Identification for Liver Effects	
		3.1.9	Summary of Epidemiology Studies for Hazard Identification for Immune System and Lyr	
		5.1.7	Effects	3-25
		3.1.10	Summary of Epidemiology Studies for Hazard Identification for Renal Effects	
			Summary of Epidemiology Studies for Hazard Identification for Mortality	
			Summary of Epidemiology Studies for Hazard Identification for Nervous System Effects	
			Summary of Epidemiology Studies for Hazard Identification for Other Effects	
		3.1.14		fects
		3.1.15	Summary of Epidemiology Studies for Hazard Identification for Respiratory Effects	
			Summary of Epidemiology Studies for Hazard Identification for Skin Diseases	
	3.2		RY OF TOXICOLOGY LITERATURE IDENTIFIED TO SUPPORT HAZARD IDENTIFICATION FOR	
			ANIC ARSENIC	3-51
		3.2.1	Overview of Toxicology Studies Identified	
		3.2.2	Summary of Toxicology Studies for Hazard Identification for Bladder Effects	
		3.2.3	Summary of Toxicology Studies for Hazard Identification for Cardiovascular Disease	
		3.2.4	Summary of Toxicology Studies for Hazard Identification for Clinical Chemistry and Urin	nalysis
		3.2.5	Summary of Toxicology Studies for Hazard Identification for Developmental Effects incl	
			Neurodevelopmental	
		3.2.6	Summary of Toxicology Studies for Hazard Identification for Digestive System Effects	
		3.2.7	Summary of Toxicology Studies for Hazard Identification for Endocrine System Effects in Diabetes	
		3.2.8	Summary of Toxicology Studies for Hazard Identification for Hematology, Hematopoietic System	
		3.2.9	Summary of Toxicology Studies for Hazard Identification for Immune System and Lympl	hatic
			Effects	
		3.2.10	Summary of Toxicology Studies for Hazard Identification for Liver Effects	
		3.2.11	Summary of Toxicology Studies for Hazard Identification for Mortality	
		3.2.12		
		3.2.13	Summary of Toxicology Studies for Hazard Identification for Other	3-71

			Summary of Toxicology Studies for Hazard Identification for Renal Effects	
		3.2.15	Summary of Toxicology Studies for Hazard Identification for Reproductive System Eff	fects
			including Pregnancy Outcomes	
		3.2.16	Summary of Toxicology Studies for Hazard Identification for Respiratory Effects	3-78
			Summary of Toxicology Studies for Hazard Identification for Skin Diseases	
1	CUN		V OF DISK OF DIAS EVALUATIONS FOR INODCANIC ADSENIC	
4			Y OF RISK OF BIAS EVALUATIONS FOR INORGANIC ARSENIC	
			LOGIC STUDIES	
			BIAS OVERVIEW - CLINICAL CHEMISTRY AND URINALYSIS	
			BIAS OVERVIEW - ENDOCRINE SYSTEM EFFECTS INCLUDING DIABETES	
			BIAS OVERVIEW - HEMATOLOGY, HEMATOPOIETIC SYSTEM	
			BIAS OVERVIEW - LIVER EFFECTS	
			BIAS OVERVIEW - IMMUNE SYSTEM AND LYMPHATIC EFFECTS	
			BIAS OVERVIEW - RENAL EFFECTS	
			BIAS OVERVIEW - MORTALITY	
			BIAS OVERVIEW - DIGESTIVE SYSTEM EFFECTS	
			BIAS OVERVIEW - CARDIOVASCULAR DISEASE	
			⁷ Bias Overview - Other ⁷ Bias Overview - Reproductive System Effects including Pregnancy Outcomes	
			BIAS OVERVIEW - REPRODUCTIVE SYSTEM EFFECTS INCLUDING PREGNANCY OUTCOMES	
			BIAS OVERVIEW - SKIN DISEASES	
			BIAS OVERVIEW - RESPIRATORY EFFECTS	
			NCES FOR RISK OF BIAS EVALUATIONS FOR EPIDEMIOLOGIC STUDIES	
5	EVI		E TABLES FOR INORGANIC ARSENIC EPIDEMIOLOGIC STUDIES	5-1
	5.1		RY OF OBSERVATIONAL EPIDEMIOLOGY STUDIES FOR HEALTH EFFECT CATEGORY:	
			DER EFFECTS	
		5.1.1	References for Summary of Observational Epidemiology Studies for Health Effect Cate Bladder Effects	
	5.2		RY OF OBSERVATIONAL EPIDEMIOLOGY STUDIES FOR HEALTH EFFECT CATEGORY:	
			IOVASCULAR DISEASE	
		5.2.1	References for Summary of Observational Epidemiology Studies for Health Effect Cate	
		_	Cardiovascular Disease	5-62
	5.3		RY OF OBSERVATIONAL EPIDEMIOLOGY STUDIES FOR HEALTH EFFECT CATEGORY:	
			CAL CHEMISTRY AND URINALYSIS	
		5.3.1	References for Summary of Observational Epidemiology Studies for Health Effect Cate	
	5.4	SIDOM	Clinical Chemistry and Urinalysis RY OF OBSERVATIONAL EPIDEMIOLOGY STUDIES FOR HEALTH EFFECT CATEGORY:	3-07
	3.4		LOPMENTAL EFFECTS INCLUDING NEURODEVELOPMENTAL	5 60
			References Summary of Observational Epidemiology Studies for Health Effect Categor	
		5.4.1	Developmental Effects including Neurodevelopmental	5_11/
	5.5	SUMMA	RY OF OBSERVATIONAL EPIDEMIOLOGY STUDIES FOR HEALTH EFFECT CATEGORY:	
	0.0		TIVE SYSTEM EFFECTS	5-117
		5.5.1	References for Summary of Observational Epidemiology Studies for Health Effect Cate	
			Digestive System Effects	
	5.6	SUMMA	RY OF OBSERVATIONAL EPIDEMIOLOGY STUDIES FOR HEALTH EFFECT CATEGORY:	
		Endo	CRINE SYSTEM EFFECTS INCLUDING DIABETES	5-124
		5.6.1	References for Summary of Observational Epidemiology Studies for Health Effect Cate	egory:
			Endocrine System Effects Including Diabetes	
	5.7		RY OF OBSERVATIONAL EPIDEMIOLOGY STUDIES FOR HEALTH EFFECT CATEGORY:	
			TOLOGY, HEMATOPOIETIC SYSTEM	
		5.7.1	References for Summary of Observational Epidemiology Studies for Health Effect Cate	egory:
			Hematology, Hematopoietic System	5-148

These draft development materials are for review purposes only and do not constitute Agency policy.April 2014vDraft: Do Not Cite or Quote

5.8		RY OF OBSERVATIONAL EPIDEMIOLOGY STUDIES FOR HEALTH EFFECT CATEGORY: NE SYSTEM AND LYMPHATIC EFFECTS	
		Immune System and Lymphatic Effects	y: -161
5.9		RY OF OBSERVATIONAL EPIDEMIOLOGY STUDIES FOR HEALTH EFFECT CATEGORY: LIVER	
		TS	
	5.9.1	References for Summary of Observational Epidemiology Studies for Health Effect Categor Liver Effects	y:
5 10	SUMMA	RY OF OBSERVATIONAL EPIDEMIOLOGY STUDIES FOR HEALTH EFFECT CATEGORY:	-107
5.10		ALITY	-169
		References for Summary of Observational Epidemiology Studies for Health Effect Categor Mortality	y:
5.11		RY OF OBSERVATIONAL EPIDEMIOLOGY STUDIES FOR HEALTH EFFECT CATEGORY:	
		DUS SYSTEM EFFECTS	
	5.11.1	References for Summary of Observational Epidemiology Studies for Health Effect Categor	
5 1 2	SIMMA	Nervous System Effects	
5.12		References for Summary of Observational Epidemiology Studies for Health Effect Categor	
	5.12.1	Other	
5.13	SUMMA	RY OF OBSERVATIONAL EPIDEMIOLOGY STUDIES FOR HEALTH EFFECT CATEGORY: RENAL	
		TS5	
	5.13.1	References for Summary of Observational Epidemiology Studies for Health Effect Categor	
	a	Renal Effects	-209
5.14		RY OF OBSERVATIONAL EPIDEMIOLOGY STUDIES FOR HEALTH EFFECT CATEGORY:	210
		DUCTIVE SYSTEM EFFECTS INCLUDING PREGNANCY OUTCOMES	
	5.17.1	Reproductive System Effects including Pregnancy Outcomes	
5.15	SUMMA	RY OF OBSERVATIONAL EPIDEMIOLOGY STUDIES FOR HEALTH EFFECT CATEGORY:	210
		RATORY EFFECTS	-217
	5.15.1	References for Summary of Observational Epidemiology Studies for Health Effect Categor Respiratory Effects	y:
		Respiratory Effects	-241
5.16		RY OF OBSERVATIONAL EPIDEMIOLOGY STUDIES FOR HEALTH EFFECT CATEGORY: SKIN	
		SES	
	5.16.1	References for Summary of Observational Epidemiology Studies for Health Effect Categor Skin Diseases	
~ ~ ~ ~			
		Y OF RISK OF BIAS EVALUATIONS FOR INORGANIC ARSENIC ANIN	
		BIAS OVERVIEW - DEVELOPMENTAL EFFECTS INCLUDING NEURODEVELOPMENTAL	
		BIAS OVERVIEW - IMMUNE SYSTEM AND LYMPHATIC EFFECTS	
6.3 6.4		⁷ BIAS OVERVIEW - LIVER EFFECTS NCES FOR RISK OF BIAS EVALUATIONS FOR ANNIMAL TOXICOLOGY STUDIES	
0.4	NEFERE	INCES FOR KISK OF DIAS EVALUATIONS FOR ANNIMAL TOXICOLOGY STUDIES	0-5
EVII		E TABLES FOR INORGANIC ARSENIC ANIMAL STUDIES	7-1
7.1		RY OF OBSERVATIONAL ANIMAL STUDIES FOR HEALTH EFFECT CATEGORY:	
		LOPMENTAL EFFECTS INCLUDING NEURODEVELOPMENTAL	
	7.1.1	References for Summary of Observational Epidemiology Studies for Health Effect Categor	
7.2	SIMMAN	Developmental Effects including Neurodevelopmental RY OF OBSERVATIONAL ANIMAL STUDIES FOR HEALTH EFFECT CATEGORY: IMMUNE	/-11
1.2		M AND LYMPHATIC EFFECTS	7-12
	7.2.1	References for Summary of Observational Epidemiology Studies for Health Effect Categor	
		Immune System and Lymphatic Effects	
7.3	SUMMA	RY OF OBSERVATIONAL ANIMAL STUDIES FOR HEALTH EFFECT CATEGORY: LIVER	
	EFFEC	TS	7-16
	T		.

6

7

These draft development materials are for review purposes only and do not constitute Agency policy.April 2014viDraft: Do Not Cite or Quote

7.3.1 References for Summary of Observational Epidemiology Studies for Health Effect Category:					
Liver Effects					
8 MODE OF ACTION (MOA) LITERATURE SEARCH STRATEGY FOR THE					
TOXICOLOGICAL REVIEW OF INORGANIC ARSENIC					
8.1 OVERVIEW OF LITERATURE SEARCH STRATEGY					
9 INORGANIC ARSENIC MODE OF ACTION (MOA) HYPOTHESIS SUMMARIES 9-1					
9.1 PREAMBLE					
9.1.1 Background					
9.1.2 Considerations relevant across all hypothesized MOAs					
9.2 HYPOTHESIZED MOA: CYTOTOXICITY AND REGENERATIVE PROLIFERATION9-5					
9.3 HYPOTHESIZED MOA: EFFECTS MEDIATED BY ENDOCRINE SIGNALING9-10					
9.4 HYPOTHESIZED MOA: EFFECTS MEDIATED BY EPIGENETIC MECHANISMS9-14					
9.5 HYPOTHESIZED MOA: IMMUNE MEDIATED EFFECTS9-21					
9.6 HYPOTHESIZED MOA: OXIDATIVE STRESS					
10 PRELIMINARY MECHANISTIC AND SUSCEPTIBILITY DATA TABLES 10-1					
10.1 PRELIMINARY DATA ON EFFECTS MEDIATED BY CYTOTOXICITY AND REGENERATIVE					
PROLIFERATION10-1					
10.2 PRELIMINARY DATA ON EFFECTS MEDIATED BY ENDOCRINE SIGNALING10-8					
10.3 PRELIMINARY DATA ON EFFECTS MEDIATED BY EPIGENETIC MECHANISMS					
10.4 PRELIMINARY DATA ON EFFECTS MEDIATED BY THE IMMUNE SYSTEM					
10.5 PRELIMINARY DATA ON EFFECTS MEDIATED BY OXIDATIVE STRESS					
10.6 PRELIMINARY DATA ON POTENTIAL INTERACTIONS BETWEEN INORGANIC ARSENIC EXPOSURE AND					
OTHER CHEMICALS OR STRESSORS10-62					
10.7 REFERENCES FOR MODE OF ACTION HYPOTHESIS SUMMARIES AND PRELIMINARY ADVERSE					
OUTCOME PATHWAY TABLES					
11 ALL REFERENCES					

PREFACE

1	EPA has released information pertinent to the development of the Toxicological Review
2	of Inorganic arsenic. The information in this document provides an overview of EPA's
3	assessment approaches and scientific information that EPA will consider during the
4	development of the draft Toxicological Review of Inorganic arsenic. The approaches and
5	scientific information were informed by the National Research Council's (NRC, 2013)
6	Interim Report entitled, Critical Aspects of EPA's IRIS Assessment of Inorganic arsenic.
7	Over the next several months, EPA will continue to release to the public scientific
8	information and examples of how the approaches described below are implemented. Due
9	to the large scientific database associated with health effects related to inorganic arsenic
10	exposure, the scientific information contained in this package is extensive. EPA is
11	currently developing approaches to efficiently represent the scientific information into an
12	assessment that is both complete and concise.
13	EPA has identified several topics for discussion regarding the development of EPA's
14	draft Toxicological Review of Inorganic Arsenic (cancer and noncancer effects). These
15	general topics are described in greater detail below. Key science issues to be discussed
16	can be found on the IRIS Public Meetings website
17	(http://www.epa.gov/ncea/iris/publicmeeting/).
18	This information includes the following:
19	1. Assessment Development Plan (ADP) for the Toxicological Review of
20	Inorganic Arsenic – The ADP contains a conceptual model and an analysis plan.
21	Generally, the ADP provides scoping information, assumptions, and EPA's
22	approach for developing the Toxicological Review of Inorganic Arsenic. The
23	ADP utilized information and needs identified during scoping meetings held for
24	Agency partners and public stakeholders
25	(http://www.epa.gov/iris/irisworkshops/arsenic/meetings.htm). In 2013, NRC
26	(<u>http://www.nap.edu/catalog.php?record_id=18594</u>) reviewed EPA's draft ADP.
27	The NRC provided support for many of EPA's approaches contained in the
28	document and recommendations as to how EPA should revise the ADP. EPA has
29	incorporated NRC's recommendations in the current draft ADP.
30	2. Literature Search Strategy and Systematic Review for Development of the
31	Toxicological rReview of Inorganic Arsenic – A computerized keyword search
32	of PubMed, Web of Science, and Toxline using search terms is presented with

1		search updates conducted through April 2014. Health effects cluster
2		determination was conducted using natural language processing to group studies
3		based on the similarity of their titles and abstracts and then clustering references
4		around known relevant "seed" studies to identify a subset for further review. The
5		literature search for arsenic will be periodically updated. A cut-off date for the
6		draft assessment submitted for public comment will be July 2014. The references
7		identified in the updated literature search will bypass the natural language
8		processing step and enter into primary screening. Similarly, references
9		recommended by Agency partners, public stakeholders, or reviewers will
10		undergo secondary screening, bypassing both natural language processing and
11		primary screening. All of the screening process results and studies identified
12		through this literature search will be available on EPA's HERO database
13		(<u>http://hero.epa.gov</u>).
14	3.	Summary of Literature Identified to Support Hazard Identification for
15		Inorganic Arsenic – Following categorization by title and abstract, studies were
16		further evaluated through full text review. The purpose of the full text review was
17		to identify studies that would be relevant to hazard identification for inorganic
18		arsenic; this review was not an exclusion step. All epidemiology and toxicology
19		studies identified as likely to contain information supporting hazard identification
20		based on title and abstract review were further characterized to identify
21		characteristics of the study design and the health effects reported in the study.
22		Based upon the full text review, epidemiology and animal toxicology studies
23		considered relevant to hazard identification were selected for risk of bias
24		evaluations. References were categorized by subject based on manual review of
25		the title and abstract of each, thereby identifying the toxicology and
26		epidemiology studies that support the identification of a human hazard for
27		inorganic arsenic. Characterization of studies and development of endpoint
28		identification tables was conducted using the previously identified toxicology
29		and epidemiology studies, resulting in an overview of the available literature for
30		hazard identification.
31	4.	Summary of Risk of Bias Evaluations for Inorganic Arsenic Epidemiologic
32		Studies – Risk of bias evaluations are not exclusion criteria, rather, they
33		represent evaluations that will determine the primary literature considered for
34		hazard identification. Studies with a high risk of bias may provide supporting
35		evidence, but will not be presented in evidence tables. Risk of bias has been
36		evaluated using a modified draft Office of Health Assessment and Translation

1		(OHAT) approach (NTP, 2013). The OHAT approach identifies studies and
2		extracts data from all of the available studies, regardless of potential risk of bias.
3		The risk of bias evaluations are a series of questions addressing selection bias,
4		performance bias, attrition/exclusion bias, detection bias, and selective reporting
5		bias applied to each study. For each of the risk of bias elements, individual
6		studies are assessed using a 4-point scale from high to low risk of bias. Risk of
7		bias ratings for the individual questions will be used to tier the studies as high to
8		low risk of bias. Studies identified as low risk of bias will subsequently have data
9		extracted and considered principal evidence for developing hazard identification
10		conclusions; and high risk of bias studies may provide supporting evidence.
11		Examples of potential health hazards include: lung, skin, and bladder cancer;
12		ischemic heart disease; skin lesions; prostate and renal cancer; diabetes;
13		nonmalignant respiratory diseases; pregnancy outcomes; neurodevelopmental
14		toxicity; immune effects; liver and pancreatic cancer; renal disease; hypertension;
15		and stroke.
16	5.	Evidence tables for Inorganic Arsenic Epidemiologic Studies – Data from low
17		risk of bias studies have been extracted and presented in evidence tables.
18		Evidence tables present data from studies related to a specific outcome or
19		endpoint of toxicity. At a minimum, these evidence tables include the relevant
20		information for comparing key features such as study design, exposure metrics,
21		and dose-response information. Evidence tables will serve as an additional
22		method for presenting and evaluating the suitability of the data to inform hazard
23		identification for inorganic arsenic. For each health effect domain, a series of
24		specific questions or criteria will be developed to help inform the suitability of
25		the data for hazard identification and potential utility for dose-response
26		assessment. Criteria specific for each health effect domain are needed because
27		experimental design considerations or data analysis techniques may have a
28		greater impact on particular health effect data.
29	6.	Summary of Risk of Bias Evaluations for Inorganic Arsenic Animal Studies
30		- Animal studies for hazard identification have been identified by screening the
31		health effect cluster from the comprehensive literature search product, as well as
32		by primary screening of the literature search updates. Toxicological data has been
33		evaluated using a modified approach for risk of bias based upon the OHAT
34		approach (<u>NTP, 2013</u>). Similar to the epidemiology studies, risk of bias
35		evaluations will not be used to exclude studies, rather, these evaluations will be
36		used to determine potential bias in the data. For each of the risk of bias elements,

1	individual studies are assessed using a 4-point scale from high to low risk of bias.
2	Risk of bias ratings for the individual questions will be used to tier the studies as
3	high to low risk of bias. Low risk of bias studies will be considered the principal
4	data, subsequently will have data extracted and will be presented for comparison
5	with epidemiologic data in evidence tables. High risk of bias studies may provide
6	supporting evidence. To date, EPA has conducted risk of bias evaluations for
7	immune, liver and developmental effects based upon the recommendation from
8	NRC (2013) that animal studies for these health effects may provide critical
9	information. EPA will evaluate health effects data from animal studies for
10	additional endpoints in the near future.
11	7. Evidence tables for Inorganic Arsenic Animal Studies – Data from low risk of
12	bias studies have been extracted and presented in evidence tables. Evidence
13	tables present data from studies related to a specific outcome or endpoint of
14	toxicity. At a minimum, these evidence tables will include the relevant
15	information for comparing key features such as study design, exposure metrics,
16	and dose-response information. Evidence tables will serve as an additional
17	method for presenting and evaluating the suitability of the data to inform hazard
18	identification for inorganic arsenic. For each health effect domain, a series of
19	specific questions or criteria will be developed to help inform the suitability of
20	the data for hazard identification and potential utility for dose-response
21	assessment. Criteria specific for each health effect domain are needed because
22	experimental design considerations or data analysis techniques may have a
23	greater impact on particular health effect data.
24	8. Mode of Action (MOA) Literature Search Strategy for the Toxicological
25	Review of Inorganic Arsenic – Mechanistic data will be identified through
26	natural language processing based on previous human health assessments of
27	inorganic arsenic, as well as focused literature searches. For hazard
28	identification, human relevance will be informed by mechanistic data. Studies
29	identified through this literature search will be available on EPA's HERO
30	database (<u>http://hero.epa.gov</u>).
31	9. Inorganic Arsenic Mode of Action (MOA) Hypothesis Summaries – To
32	facilitate discussions at the bimonthly meeting, EPA has developed qualitative
33	hypothesis summaries for several potential MOAs associated with health effects
34	of inorganic arsenic. The hypothesized MOAs were selected based on available
35	information from authoritative reports and reviews on inorganic arsenic MOA
36	(Cohen et al., 2013; NRC, 2013; Jomova et al., 2011; Kitchin and Conolly, 2010;

1	Prins, 2008). Potential MOAs may include, but are not limited to, cytotoxicity
2	and regenerative proliferation, oxidative stress following generation of reactive
3	oxygen species and depletion of antioxidant enzymes, and alteration of
4	epigenetic mechanisms (e.g., DNA methylation). These qualitative MOA
5	hypothesis summaries briefly summarize the available mechanistic data for
6	several potential modes of action relevant to cancer and non-cancer health effects
7	associated with inorganic arsenic. Five examples of MOA hypothesis summaries
8	are included in this package to facilitate discussion on MOA-relevant topics
9	detailed in Section 1. The information presented in these example summaries is
10	not comprehensive, but intended to organize useful discussions with Agency
11	partners and public stakeholders. Based on information provided by reviewers of
12	these materials and the results of EPA's MOA literature search (outlined in
13	Section 10), these MOAs will be refined and additional documentation will be
14	added. Additional MOAs may also be identified through discussion in the
15	bimonthly meeting. Information on MOAs associated with health effects that are
16	causal or likely causal related to inorganic arsenic exposures will support the
17	development of an adverse outcome pathways (AOP). AOPs characterize
18	existing scientific information between a molecular initiating event and an
19	adverse outcome for individual and population level responses. The AOP
20	framework will not displace the mode of action framework defined by the Cancer
21	Guidelines (U.S. EPA, 2005), but be inclusive of mode of action analysis. More
22	information on the use of MOA analyses and AOP framework in the inorganic
23	arsenic IRIS assessment is available in the ADP (Section 1).
24	10. Preliminary Mechanistic and Susceptibility Data Tables – Mechanistic data
25	will be considered during hazard identification and dose-response analysis. For
26	hazard identification, qualitative MOA analyses informed by the MOA
27	hypothesis summaries (Section 9) will be developed for each health endpoint.
28	Qualitative MOA analyses will be organized using tables that may support AOP
29	development. Examples of this organization are provided in summary tables. The
30	summary tables currently contain data relevant to a particular MOA, which may
31	relate to multiple health effects. The data used to create these summary tables is
32	available in the EPA HERO database (<u>http://hero.epa.gov</u>). These qualitative
33	MOA analyses will be used to inform causal determinations for individual health
34	effects.
35	For causal or likely causal health effects, mechanistic and susceptibility data will be
36	organized into an AOP. These AOP analyses will be used to inform the dose-response

1	analyses, including potential impact of susceptibility factors on the dose-response.
2	Preliminary data on some potential susceptibility factors are provided to facilitate further
3	discussion.
4	The extent to which an AOP can inform dose-response analyses is dependent upon the
5	available mechanistic data. Data may be insufficient to support an AOP for particular
6	health effects. If the mode of action is unknown, the adverse outcome will be considered
7	relevant to humans. Data gaps preventing a complete AOP will be considered sources of
8	uncertainty. Mechanistic data or AOPs will not be a requirement for evaluating observed
9	health effects due to exposure to inorganic arsenic.

1 ASSESSMENT DEVELOPMENT PLAN

1.1 Executive Summary

1	The U.S. Environmental Protection Agency (EPA) National Center for Environmental
2	Assessment (NCEA) is developing a state-of-the-science toxicological review on
3	inorganic arsenic for the Integrated Risk Information System (IRIS) Program. During
4	development of the toxicological review, IRIS is committed to engaging Agency partners
5	and public stakeholders. Agency partners and public stakeholders have been active
6	participants in the scoping and planning process. On the basis of their recommendations,
7	as well as Congressional mandate, the toxicological review will examine the cancer and
8	noncancer effects from oral, inhalation, and dermal inorganic arsenic exposure. The IRIS
9	toxicological review will consist of hazard identification and dose-response assessment.
10	Exposure assessment and risk characterization are outside the scope of an IRIS
11	toxicological review.

Key Points - Executive Summary

- State-of-the science toxicological review on inorganic arsenic to be developed by EPA
- Congressional mandate directs EPA to contract with NRC to conduct a review of inorganic arsenic toxicological review
- Toxicological review consists of hazard identification and dose-response
- Cancer and noncancer effects of inorganic arsenic exposure will be considered
- Oral, inhalation, and dermal routes of inorganic arsenic exposure will be examined
- Assessment development plan serves as the problem formulation for the toxicological review
- Assessment development plan consists of conceptual model and analysis plan
- Assessment development plan revised to incorporate <u>NRC (2013)</u> recommendations
- Multiple opportunities to engage Agency partners and public stakeholders

12	This assessment development plan serves as the problem formulation for the
13	toxicological review and consists of two components: a conceptual model and an analysis
14	plan. The conceptual model identifies specific relationships examined in the toxicological
15	review, as well as those relationships which are beyond the scope of the toxicological
16	review. Relationships outlined in the conceptual model will be analyzed and interpreted
17	using approaches described in the analysis plan. The analysis plan has been substantially
18	revised to incorporate NRC recommendations in the interim report "Critical Aspects of
19	EPA's IRIS Assessment of Inorganic arsenic" (NRC, 2013). Both the conceptual model
20	and analysis plan may be revised as new data, methods, or risk management needs arise.

These draft development materials are for review purposes only and do not constitute Agency policy.April 20141-1Draft: Do Not Cite or Quote

1 2 Accordingly, the assessment development process includes multiple opportunities for Agency partners and public stakeholders to provide input.

1.2 Background

3	Inorganic arsenic is a naturally occurring element widely distributed throughout the
4	Earth's crust. In addition to natural sources, industrial activities such as coal combustion
5	and smelting operations can release inorganic arsenic. Low concentrations of inorganic
6	arsenic are found in water, food, soil, and air. This prevalence increases the potential for
7	human exposure; therefore, characterization of the human health impacts of inorganic
8	arsenic exposure is important to Agency partners and public stakeholders.

Key Points - Background

- 1988: EPA published an IRIS assessment of inorganic arsenic
- 2003: EPA began updating IRIS assessment of inorganic arsenic
- 2005: EPA released draft IRIS assessment of inorganic arsenic (cancer health effects of oral exposure) for public comment and peer review
- 2010: EPA released a revised draft IRIS assessment of inorganic arsenic (cancer health effects of oral exposure) for public comment and peer review
- 2011: Congress directed EPA to contract with the NRC to conduct a review of EPA's draft inorganic arsenic assessment
- 2013: NRC released interim report "Critical Aspects of EPA's IRIS Assessment of Inorganic arsenic" providing recommendations for developing draft inorganic arsenic assessment

1.2.1 Previous EPA Assessments on Inorganic Arsenic

9	EPA completed a health assessment of inorganic arsenic in 1988. In 1996, EPA requested
10	that the National Research Council (NRC) evaluate the inorganic arsenic database and
11	recommend revisions to the 1988 assessment. In response, the NRC published the 1999
12	report "Arsenic in Drinking Water" (NRC, 1999).
13	In 2000, EPA requested NRC update their 1999 report as well as review the Primary
14	Drinking Water Standard for Arsenic. In response, NRC published "Arsenic in Drinking
15	Water - 2001 Update" (NRC, 2001), which concluded that (1) the database on the human
16	carcinogenic effects of inorganic arsenic was adequate for risk assessment, (2) lung and
17	bladder cancer should be the focus of inorganic arsenic risk assessment, and (3)
18	epidemiology studies from southwestern Taiwan are the most appropriate dataset. Also,

1	in 2001, EPA established the Primary Drinking Water Standard which set a maximum
2	contaminant level of 10 µg/L in drinking water. In 2003, the EPA Office of Research and
3	Development and Office of Water decided to jointly revise the 1988 IRIS inorganic
4	arsenic assessment to incorporate recommendations from the 1999 and 2001 NRC
5	reports.
6	In 2005, the assessment was divided into two parts - one focused on noncancer outcomes
7	and the other focused on cancer outcomes. In 2005, IRIS released a draft assessment
8	focused on cancer health effects following oral exposure to inorganic arsenic for public
9	comment and review by EPA's Science Advisory Board (SAB). The SAB provided
10	recommendations in 2007 (SAB, 2007) and EPA revised the draft inorganic arsenic
11	assessment to incorporate the SAB recommendations. The revised draft IRIS assessment
12	focused on cancer health effects following oral exposure to inorganic arsenic and was
13	released for public comment and review by the SAB in 2010 (U.S. EPA, 2010). The SAB
14	provided comments and recommendations on the revised draft IRIS assessment in 2011
15	(<u>SAB, 2011</u>).

1.2.2 Congressional Directive for EPA Toxicological Review of Inorganic Arsenic

16	EPA received additional direction from Congress in December 2011, through The
17	Consolidated Appropriations Act (U.S. Congress, 2011), to contract with the NRC to
18	conduct a review of EPA's draft inorganic arsenic assessment considering both cancer
19	and noncancer hazards from oral exposure to inorganic arsenic. In accordance with this
20	Congressional mandate, the draft inorganic arsenic assessment will be reviewed by the
21	NRC. The NRC review consists of two phases. The first phase consists of NRC meetings
22	discussing the scope and key science issues for the draft assessment. Upon completion of
23	this phase, the NRC will provide recommendations for developing the draft assessment.
24	EPA will incorporate, where possible, the NRC recommendations and draft an inorganic
25	arsenic assessment of cancer and noncancer hazards. The draft assessment will be
26	provided to the NRC for the second phase of their review. In this second phase, NRC will
27	provide critical scientific peer review of the draft assessment, according to their review
28	criteria.

1.2.3 Overview of NRC Interim Report "Critical Aspects of EPA's IRIS Assessment of Inorganic Arsenic"

1	The first phase of the NRC review began in July 2012 and was completed in November
2	2013. As part of first phase of the NRC review, EPA provided the NRC draft materials
3	for comment. These draft materials included planning and scoping documents as well as a
4	draft ADP outlining proposed approaches for literature searches, literature evaluation,
5	hazard identification, and dose-response analyses. In November 2013, the NRC delivered
6	the interim report "Critical Aspects of EPA's IRIS Assessment of Inorganic arsenic"
7	(NRC, 2013). The interim report provided recommendations for the toxicological review
8	of inorganic arsenic on key science issues. These scientific recommendations are
9	summarized in Table 1-1 and discussed further in the revised conceptual model (Section
10	1.4) and analysis plan (Section 1.5).

Table 1-1Summary of NRC Recommendations on IRIS Assessment of
Inorganic arsenic

NRC Recommendation	ADP Section
Exposure considerations - consider contribution of inorganic arsenic intake from rice in South Asian and Taiwanese population	1.5.1 Approaches to Source Considerations
Exposure Considerations - consider probabilistic approach to estimate daily intake from rice to account for variability in rice consumption and concentration of inorganic arsenic in rice	1.5.1 Approaches to Source Considerations
Exposure Considerations - IRIS assessment can benefit from examining studies which provide estimates of both external exposure and biomarker of exposure data are provided	1.5.3 Approaches to Exposure Pathway Considerations
Exposure Considerations - Hazard identification should take into account that some people are more susceptible because of relative inability to metabolize inorganic arsenic	1.5.4 Approaches to Receptor Considerations
IRIS Assessment Development Plans - EPA should design mode of action tables	1.5.5 Approaches to Endpoint Considerations
IRIS Assessment Development Plans - for microarray/NextGen sequence data – for conclusions based solely on expression, need detailed analysis of data supporting conclusion, including pre-processing and statistical analysis, which will require raw data	1.5.5 Approaches to Endpoint Considerations
IRIS Assessment Development Plans - Meta-analyses for hazard identification if \leq 3 peer-reviewed studies; meta-analyses for dose-response if \leq 3 doses tested	1.5.5 Approaches to Endpoint Considerations
IRIS Assessment Development Plans - As part of systematic review process, risk of bias should be evaluated using established guidelines	1.5.5 Approaches to Endpoint Considerations

These draft development materials are for review purposes only and do not constitute Agency policy.April 20141-4Draft: Do Not Cite or Quote

NRC Recommendation	ADP Section
IRIS Assessment Development Plans - Conducting meta-analyses of aggregated data from published studies is an appropriate alternative to analyzing raw data for individual level meta-analyses	1.5.5 Approaches to Endpoint Considerations
Hazard identification - For non-cancer effects, consider diseases with high prevalence in U.S. population to determine if inorganic arsenic contributes to disease burden [e.g. cardiovascular disease (CVD), respiratory disease, kidney disease, diabetes]	1.5.5 Approaches to Endpoint Considerations
Hazard identification - Observation epidemiologic studies preferred for determining association between inorganic arsenic exposure and skin lesions	1.5.5 Approaches to Endpoint Considerations
Hazard identification - EPA consider skin studies that have histologic specificity	1.5.5 Approaches to Endpoint Considerations
Hazard identification - Focus on human studies that investigate coronary arterial disease, myocardial infarctions, CVD, and overall CVD mortalitycan exclude peripheral arterial disease based on dose- response and associations in populations with poor nutritioncerebrovascular disease can be includedhypertension is less of a priority	1.5.5 Approaches to Endpoint Considerations
Hazard identification - Critical synthesis of human population studies with mode of action underlying different non-malignant respiratory outcomes/phenotypes should be focus	1.5.5 Approaches to Endpoint Considerations
Hazard identification - US data on drinking-water arsenic (inorganic) and bladder cancer in US should be evaluated by EPA, particularly with respect to smoking	1.5.5 Approaches to Endpoint Considerations
Hazard identification - Studies of incidence, rather than mortality, may better reflect the impact of inorganic arsenic on kidneys	1.5.5 Approaches to Endpoint Considerations
Hazard identification - Essential to evaluate potential adverse effects on fetal and postnatal exposure to inorganic arsenic	1.5.5 Approaches to Endpoint Considerations
Hazard identification - Effects of inorganic arsenic in elderly populations is a particular research need	1.5.5 Approaches to Endpoint Considerations
Hazard identification - Recent epidemiologic studies supporting association between inorganic arsenic and diabetes at low to moderate concentrations should be carefully reviewed and included quantitatively	1.5.5 Approaches to Endpoint Considerations
Hazard identification - Given evidence and burden of prostate disease in US men, should at least consider prostate cancer	1.5.5 Approaches to Endpoint Considerations
Hazard identification - Hazard assessment should include epidemiologic and experimental evidence and integrate mode of action where possible	1.5.5 Approaches to Endpoint Considerations

NRC Recommendation	ADP Section
Hazard identification - Strength of evidence judgments characterized using modified <u>Hill (1965)</u> criteria	1.5.5 Approaches to Endpoint Considerations
Mode of action - Rigorously examine epidemiologic studies using <u>Hill</u> (<u>1965)</u> criteria to examine appropriateness for risk assessment	1.5.5 Approaches to Endpoint Considerations
Dose-response Analysis - Evaluate data on multiple outcomes to assess whether they are appropriate for estimating health outcomes in range of epidemiologic observations	1.5.5 Approaches to Endpoint Considerations
Dose-response Analysis - Update selected health outcomes as new data becomes available	1.5.5 Approaches to Endpoint Considerations
Dose-response Analysis - Consider evidence of life-stage sensitivity when considering less-than-lifetime exposure	1.5.5 Approaches to Endpoint Considerations
Exposure Considerations - Dose-response relationship from epidemiologic studies concerning health effects of inorganic arsenic in drinking water should include likelihood that doses derived from drinking water alone does not represent the total inorganic arsenic dose	1.5.6 Approaches to Risk Metric Considerations
IRIS Assessment Development Plans - Meta-analyses for hazard identification if \leq 3 peer-reviewed studies; meta-analyses for dose-response if \leq 3 doses tested	1.5.6 Approaches to Risk Metric Considerations
IRIS Assessment Development Plans - Conducting meta-analyses of aggregated data from published studies is appropriate alternative to analyzing raw data for individual level meta-analyses	1.5.6 Approaches to Risk Metric Considerations
Hazard identification - May be possible to model dose-response relationships from estimated relative risk associated with categories of exposuremay necessitate assessment of confounding by cigarette smokingassociations could be specific to histological type requires biomarker concentration	1.5.6 Approaches to Risk Metric Considerations
Hazard identification - Major consideration for respiratory mode of action should be epidemiologic and animal studies that identify potential pathogenic mechanisms in response to low/moderate inorganic arsenic exposures	1.5.6 Approaches to Risk Metric Considerations
Hazard identification - Important respiratory mode of action consideration is whether in utero/perinatal exposure poses significant risk of lung disfunction/disease	1.5.6 Approaches to Risk Metric Considerations
Hazard identification - Consider evidence that chronic inflammation and reactive oxygen species are central to pathogenesis of inorganic arsenic-induced CVD	1.5.6 Approaches to Risk Metric Considerations
Hazard identification - For CVD, address potential uncertainties from differences between study population and general population	1.5.6 Approaches to Risk Metric Considerations

NRC Recommendation	ADP Section
Hazard identification – Mode of action analysis will need to consider that there may be multiple mechanisms by which inorganic arsenic can cause bladder cancercrucial to assess exposure on an individual level and include biomarkers/relevant co-factors where possibleexamine incidence rather than mortality and examine susceptible groups of the population	1.5.6 Approaches to Risk Metric Considerations
Hazard identification - Consider whether inorganic arsenic/diabetes have interaction effects on renal function and chronic kidney disease	1.5.6 Approaches to Risk Metric Considerations
Hazard identification - Data that can be used for dose-response concerning birth size and infant growth, possibly infant mortality	1.5.6 Approaches to Risk Metric Considerations
Hazard identification - MAPK/extracellular signal-related kinase pathway should be considered as to whether it might be an underlying cause of learning deficits	1.5.6 Approaches to Risk Metric Considerations
Hazard identification - Recent epidemiologic studies supporting association between inorganic arsenic and diabetes at low to moderate concentration should be carefully reviewed and included quantitatively	1.5.6 Approaches to Risk Metric Considerations
Hazard identification - Both innate and adaptive immune responses should be considered	1.5.5 Approaches to Endpoint Considerations1.5.6 Approaches to Risk Metric Considerations
Hazard identification - Hazard assessment should include epidemiologic and experimental evidence and integrate mode of action where possible	1.5.6 Approaches to Risk Metric Considerations
Hazard identification - With respect to mode of action, important to consider dose and time-dependence of exposure to key immunological events	1.5.6 Approaches to Risk Metric Considerations
Hazard identification - Important to consider timing with respect to life- stage, duration of exposure, and latent period for the health outcome	1.5.6 Approaches to Risk Metric Considerations
Susceptibility Factors - Evaluate whether early life exposure may affect the risk of inorganic arsenic-related effects in adults	1.5.6 Approaches to Risk Metric Considerations
Susceptibility Factors - Timing of exposure should be considered in evaluating epidemiologic studies for dose-response assessment	1.5.6 Approaches to Risk Metric Considerations
Susceptibility Factors - It is essential to evaluate sex differences in inorganic arsenic metabolism and toxicity to protect the most susceptible population	1.5.6 Approaches to Risk Metric Considerations
Susceptibility Factors - Assessment should consider nutritional status of study populations when examining dose-response relationships reported in the epidemiologic literature	1.5.6 Approaches to Risk Metric Considerations

NRC Recommendation	ADP Section
Susceptibility Factors - Factors important to evaluating potential for inorganic arsenic to interact with background disease processes on a population level: overall mode of action and disease mechanism; prevalence of disease, prevalence of pre-clinical disease	1.5.6 Approaches to Risk Metric Considerations
Susceptibility Factors - Consideration should be given to whether people may be vulnerable to effects because disease processes impair defense mechanisms or act in concert with inorganic arsenic mode of action	1.5.6 Approaches to Risk Metric Considerations
Susceptibility Factors - May be possible for non-cancer assessment to describe increased disease risk associated with any particular dose – if RfD derived, can be described as dose associated with particular increase in risk	1.5.6 Approaches to Risk Metric Considerations
Susceptibility Factors - Consider whether dose-response will focus on population as a whole or involve separate assessments for general population and susceptible subgroups	1.5.6 Approaches to Risk Metric Considerations
Susceptibility Factors - Plausible quantitative approach is sensitivity analysis to determine how smoking-interaction synergism changes potency calculation of dose-response	1.5.6 Approaches to Risk Metric Considerations
Susceptibility Factors - Evaluation of size/nature of vulnerable populations will help determine if epidemiologic studies adequately capture these groups	1.5.6 Approaches to Risk Metric Considerations
Susceptibility Factors - Co-exposure may be worth mentioning as additional mechanistic explanation to explain some endpoints associated with inorganic arsenic exposure; consider co-exposure to metals and PAH	1.5.6 Approaches to Risk Metric Considerations
Susceptibility Factors - Helpful to assess how interacting metals/PAHs might co-occur in the epidemiologic study populations in comparison with target populations of risk assessment	1.5.6 Approaches to Risk Metric Considerations
Susceptibility Factors - Potency adjustment for susceptible populations is feasible if appropriate dose-response data are available in comparison with the general population	1.5.6 Approaches to Risk Metric Considerations
Susceptibility Factors - When sizeable population is vulnerable, it's reasonable to extend dose-response below range of observation by modest extrapolation	1.5.6 Approaches to Risk Metric Considerations
Mode of action - Identifying mode of action data gaps and their potential effects on ability to extrapolate to low exposures is important	1.5.6 Approaches to Risk Metric Considerations
Mode of action - Committee recommends following TCE and chloroform when beginning mode of action analysis	1.5.6 Approaches to Risk Metric Considerations

NRC Recommendation	ADP Section
Mode of action - Important aspect will be Mode of action for each observed health outcome, including supporting and contradictory evidence	1.5.6 Approaches to Risk Metric Considerations
Dose-response Analysis - 1-5 $\mu g/L$ is reasonable estimate for US background	1.5.6 Approaches to Risk Metric Considerations
Dose-response Analysis - Derive risk estimates for health effects then derive risk-specific doses to address needs of analyses that would typically use a RfDprovide guidance on how RfD might be selected among risk-specific doses	1.5.6 Approaches to Risk Metric Considerations
Dose-response Analysis - Consider study-selection options to facilitate dose-response options, with preference to studies in low-moderate exposure ranges and using biomarkers of exposure	1.5.6 Approaches to Risk Metric Considerations
Dose-response Analysis - Common exposure metric is needed to integrate across studies	1.5.6 Approaches to Risk Metric Considerations
Dose-response Analysis - Use limited extrapolation by using modeled shape of the dose-response relationship to provide data-informed estimate of potential dose-response relationships below range of observation	1.5.6 Approaches to Risk Metric Considerations

1The NRC also provided recommendations on the approaches proposed in the draft2assessment development plan. The NRC recommendations on the proposed approaches3are summarized below.

- 4 In the draft materials submitted to NRC for review, the EPA provided the NRC with a 5 draft planning and scoping summary outlining the needs of EPA partners and public 6 stakeholders for a toxicological review of inorganic arsenic. In addition, these materials 7 highlighted EPA's commitment to communicate with Agency partners and public 8 stakeholders throughout development of the draft toxicological review. The NRC 9 commented that these materials clearly demonstrated that EPA is incorporating 10 recommendations from previous NRC committees (NRC, 2011, 2009) to involve risk 11 managers, risk assessors, and stakeholders early in the development process.
- EPA also submitted draft materials to the NRC outlining approaches for (1) literature search and evaluation, (2) scope of hazard identification, (3) mode-of-action analyses, and (4) scope of the dose-response analyses. The NRC found that the draft plans for literature search and evaluations captured the salient information from epidemiologic studies, but indicated that similar approaches to animal and in vitro data could be important for mode-of-action analyses. The NRC further commented that the outlined approaches to incorporate systematic review further demonstrated that EPA is

These draft development materials are for review purposes only and do not constitute Agency policy.April 20141-9Draft: Do Not Cite or Quote

1 incorporating recommendations from previous NRC committees (NRC, 2011, 2009). The 2 NRC committee on inorganic arsenic recommended searching for studies on specific 3 outcomes, with specific criteria including individual measures of inorganic arsenic 4 exposure, inorganic arsenic measurement preceding outcome, and low-to-moderate 5 exposure ($<100 \mu g/L$ in water). 6 For hazard identification, EPA proposed evaluating the relationship between inorganic 7 arsenic exposure and human health effects using a causal determination framework (U.S. 8 EPA, 2013). The NRC supported this approach for hazard identification, recommending 9 consideration of animal and mechanistic data as supporting the causal determination. The 10 NRC also highlighted particular health end points of concern that should be evaluated for 11 hazard identification. The NRC also supported EPA's use of evidence tables to present 12 information. The NRC stressed the importance of explaining causal determination 13 judgments in the synthesis text. 14 The NRC supported EPA's proposal to perform mode-of-action analyses on health 15 endpoints considered "causal" or "likely causal." The NRC recommended possible 16 consideration of "suggestive" endpoints to determine if mechanistic data supported a 17 stronger causal association. The NRC agreed with EPA's proposal that even if a mode-of-18 action cannot be determined, health endpoints with "causal" or "likely causal" 19 relationships with inorganic arsenic should undergo dose-response analysis. 20 Several dose-response analysis recommendations were provided by the NRC. The NRC 21 recommended developing risk estimates across the array of health effects for which there 22 is adequate epidemiologic evidence. The NRC also stated that dose-response analyses 23 should be performed in the range of epidemiologic observations. When those data are 24 unavailable, the NRC recommended using mechanistic data for extrapolation; however, 25 the NRC cautioned that extrapolations become increasingly uncertain as they go further 26 below the observed range. The NRC commented that the needs of assessing health risks 27 can be facilitated by characterizing dose-response relationships down to background 28 concentrations. The NRC recommended that EPA derive risk-specific doses, which 29 would facilitate efforts to evaluate cumulative risk, conduct risk-benefit assessments, or 30 comparative analyses. 31 The NRC agreed with EPA's proposal to use probabilistic approaches to consider 32 uncertainty and variability associated with susceptibility factors. Susceptibility due to 33 pre-existing disease, early-life exposure, and sex differences in metabolism were among 34 several factors recommended for consideration by the NRC. On the basis of available 35 evidence, the NRC suggested considering whether dose-response assessment should 36 focus on the population as a whole or involve separate approaches for the general 37 population and susceptible groups.

1	EPA is developing an IRIS assessment of inorganic arsenic that incorporates the
2	recommendations from the NRC. This new IRIS assessment of inorganic arsenic will
3	examine the available scientific database on cancer and noncancer health effects from
4	inorganic arsenic exposure.

1.3 Developing the Toxicological Review

Key Points - Development

- Collaborative approach to developing the toxicological review
- An iterative process informed through engaging Agency partners and public stakeholders
- Assessment development plan informed by planning and scoping phase
- Two products: conceptual model and analysis plan
- Posting to the IRIS database in 2016

1.3.1 Goals of the Assessment Development Plan

5	This assessment development plan describes the problem formulation for the
6	toxicological review of inorganic arsenic. Problem formulation is an iterative process that
7	identifies factors for consideration in the toxicological review. Goals of problem
8	formulation include explaining the purpose of the toxicological review, defining
9	problems for consideration, and outlining a plan for characterizing risk. The assessment
10	development plan for inorganic arsenic consists of two products: a conceptual model
11	(Section 1.4) and an analysis plan (Section 1.5).
12	A conceptual model considers the sources, stressors, exposure pathways, receptors,
13	endpoints, and risk metrics that may be evaluated in the toxicological review. The
14	conceptual model provides a starting point to integrate the available data and outline
15	relationships between these features. On the basis of scientific judgement and the needs
16	of Agency partners and public stakeholders, the conceptual model identifies specific
17	relationships to be considered in the toxicological review, as well as those relationships
18	beyond the scope of the toxicological review. The decisions outlined in the conceptual
19	model inform the analysis plan. The analysis plan outlines the analytic and interpretive
20	approaches for evaluating the relationships identified in the conceptual model. As new
21	data or risk management needs arise, it is anticipated that both the conceptual model and
22	analysis plan will be revised.

1 In addition to the assessment development plan, EPA will develop several other 2 documents supporting key elements of the toxicological review. These supplementary 3 documents will provide additional information considered during development of the 4 toxicological review. For instance, these supplementary materials may outline 5 considerations used to make underlying conclusions or decisions presented in the 6 toxicological review of inorganic arsenic. These supporting documents will be an 7 opportunity to transparently document supplementary approaches and analyses used to 8 develop the toxicological review of inorganic arsenic.

1.3.2 Agency Partner and Public Stakeholder Engagement

9	EPA is committed to engaging partners within the EPA and public stakeholders
10	throughout the development of the toxicological review of inorganic arsenic. Agency
11	partners (including other federal agencies) and public stakeholders (e.g., non-
12	governmental organizations, industry groups, citizens, academia, etc.) have been active
13	participants in planning and scoping meetings, identifying their needs for the
14	toxicological review of inorganic arsenic, and making scientific recommendations for
15	consideration. Multiple opportunities to provide feedback on the toxicological review,
16	including public comment periods, webinars, and public reviews, have been, and will
17	continue to be, important components of the development process. The participation of
18	Agency partners and public stakeholders will ensure the toxicological review meets the
19	needs of the risk management community and the public.

1.3.3 Transparency

20	EPA is committed to developing the toxicological review of inorganic arsenic in a
21	transparent process. For the toxicological review, transparency means sufficient
22	information will be available to understand the scientific rationale behind decisions, as
23	well as reproduce methods used to identify and evaluate data. To ensure transparency to
24	Agency partners and public stakeholders, materials used to develop the toxicological
25	review (e.g., literature search products, evidence tables, exposure response arrays) will be
26	made available for public review. In addition, future materials will provide links to
27	EPA's HERO database (http://hero.epa.gov) to assist in transparency and public access to
28	the peer reviewed literature citations. When possible, the toxicological review will
29	present options for key decision points and provide rationale for choosing a particular
30	option.

1.3.4 Timeline for Completion

The critical importance of inorganic arsenic to Agency partners and public stakeholders
for the toxicological review is reflected in the unique approach NCEA has adopted for the
toxicological review. The NRC recommendations outline a scientifically defensible
approach for identifying, evaluating, and quantifying data on the health effects of
inorganic arsenic. These recommendations will inform development of the toxicological
review, as well as decisions on key science issues such as low-dose extrapolation and
mode of action.
EPA will release an assessment development plan, literature search product, risk of bias
evaluations, evidence tables, and qualitative mode of action hypothesis summaries for
public input and discussion. These public discussions will inform draft development of
the toxicological review of inorganic arsenic.
The draft toxicological review will undergo internal EPA review and review by other
federal agencies and the public before being released for external peer review. External
peer review of the toxicological review will be managed by the NRC. Following
revisions and additional review by EPA and other federal agencies , the toxicological
review is anticipated to post to the IRIS database in 2016. The current timeline for
developing the toxicological review of inorganic arsenic is shown in Table 1-2.

Table 1-2	Draft Timeline for Development of the Toxicological Review of
	Inorganic Arsenic

PROPOSED PROCESS	TIMELINE
Internal EPA Partner Scoping and Problem Formulation Workshop	Completed September 2012 <u>http://www.epa.gov/iris/irisworkshops/arsenic/index.htm</u>
Public Stakeholder Workshop – Planning and Scoping	Completed January 2013 http://www.epa.gov/iris/irisworkshops/arsenic/index.htm
NRC Phase 1 Review	Completed January – November 2013 <u>http://www.epa.gov/iris/irisworkshops/arsenic/index.htm</u>
IRIS Bimonthly Public Meeting	June 2014
Completed draft Inorganic arsenic Toxicological Review	Summer 2014
Complete Internal Agency Review	Summer 2014
Complete Interagency Science Consultation	Fall 2014
Release draft for Public Comment	Winter 2014
NRC Phase 2 review	Spring 2015
Complete NRC Phase 2 review	Winter 2015
Complete Internal Agency/Interagency Science Discussion	Spring 2016
Post to IRIS website	Summer 2016

1.4 Conceptual Model for the Toxicological Review

1

2

3

4

5

This conceptual model describes the rationale for developing the toxicological review of inorganic arsenic. The conceptual model consists of a written description and visual representation of the predicted relationships between inorganic arsenic exposure and human health effects. It is based upon the general conceptual model framework shown in Figure 1-1.

Key Points - Conceptual Model

- Scope of the toxicological review
- Identifies factors and endpoints to be evaluated in the toxicological review
- Written and visual representation of predicted relationships between exposure and human health effects
- Iterative process that can be refined during development of the toxicological review
- Revised in response to NRC recommendations in the interim report "Critical Aspects of EPA's IRIS Assessment of Inorganic arsenic"

1	A conceptual model identifies the sources, stressors, receptors, exposure pathways, and
2	health effects considered in the toxicological review. Predicted relationships between
3	these factors are indicated in the visual diagram and described in the written portion of
4	the conceptual model. Predicted relationships between inorganic arsenic exposure and
5	human health effects may be revised as data become available; therefore, this conceptual
6	model is considered a flexible framework that can be adapted as necessary during
7	development of the toxicological review of inorganic arsenic.

1.4.1 Scope of the Toxicological Review

1.4.1.1 Summary

8	This section describes the scope of the toxicological review. Agency partner and public
9	stakeholder input provided context for the development of the conceptual model. In
10	addition, the conceptual model has been revised in response to NRC recommendations in
11	the interim report "Critical Aspects of EPA's IRIS Assessment of Inorganic arsenic"
12	(<u>NRC, 2013</u>).

1.4.1.2 Components of an IRIS Toxicological Review

13	When considering scope, it is important to distinguish a risk assessment from an IRIS
14	toxicological review. A risk assessment consists of four components: hazard
15	identification, dose-response analysis, exposure assessment, and risk characterization.
16	Comparatively, an IRIS toxicological review considers hazard identification and
17	dose-response analysis. Although exposure assessment and risk characterization are
18	beyond the scope of an IRIS toxicological review, information in the toxicological review
19	of inorganic arsenic is anticipated to serve as part of the scientific basis for complete risk
20	assessments of inorganic arsenic.

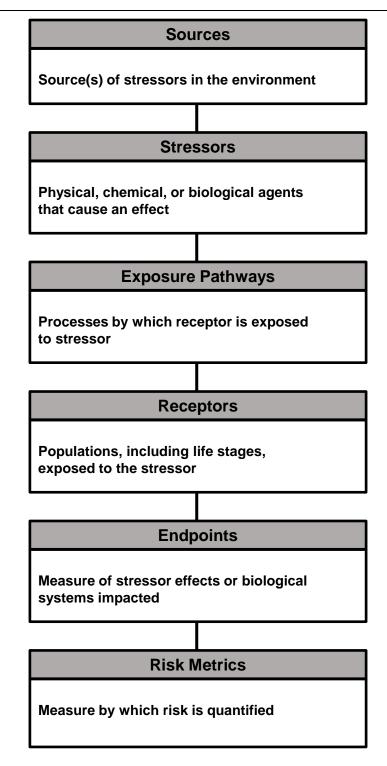


Figure 1-1General Framework for the Conceptual Model

1.4.1.3 Agency Partner and Public Stakeholder Needs

1	The conceptual model for the toxicological review of inorganic arsenic was informed by
2	Agency partners and public stakeholders. Agency partners and public stakeholders
3	discussed their needs for the toxicological review of inorganic with the IRIS program in
4	an internal meeting with Agency partners (September 2012) and a public stakeholder
5	meeting (January 2013). Meeting reports are available online
6	(http://www.epa.gov/iris/irisworkshops/arsenic/meetings.htm), and needs identified in
7	those meetings are summarized here. Agency partners and public stakeholders have
8	requested consideration of both naturally occurring and anthropogenic sources of
9	inorganic arsenic. Stressors of interest to Agency partners and public stakeholders
10	included inorganic arsenic as well as arsenic metabolites. Agency partners and public
11	stakeholders requested consideration of oral, inhalation, and dermal exposure pathways.
12	Humans were the principal receptor of interest, and Agency partners and public
13	stakeholders recommended considering susceptible populations and life stages. When
14	evaluating health endpoints, Agency partners and public stakeholders have requested
15	consideration of both cancer and noncancer health effects, emerging health effects, and
16	the need for mode of action and adverse outcome pathway analyses. With respect to the
17	dose-response analyses, Agency partners and public stakeholders have indicated the need
18	to estimate excess risk (i.e., risk above naturally occurring levels) at potential exposure
19	levels for cancer and noncancer endpoints, including any potential risk at naturally
20	occurring levels of inorganic arsenic. Agency partners and public stakeholders have
21	recommended harmonization of cancer and noncancer dose-response analyses and
22	multiple approaches to low-dose extrapolation (e.g., linear, nonlinear, probabilistic, etc.).

1.4.1.4 NRC Recommendations

23	The NRC interim report "Critical Aspects of EPA's IRIS Assessment of Inorganic
24	arsenic" (NRC, 2013) provided recommendations for developing the toxicological
25	review. Specific recommendations are addressed in the analysis plan (Section 1.5).
26	General recommendations on the conceptual model are summarized here.
27	The NRC indicated that there are numerous potential natural and anthropogenic sources
28	of inorganic arsenic. The NRC indicated that the toxicological review would focus on
29	inorganic arsenic as the stressor; however, the NRC recommended considering the
30	contribution of metabolites of inorganic arsenic to health endpoints. The NRC
31	recommended considering dietary sources of inorganic arsenic, particularly rice, as a
32	potential exposure pathway. The NRC recognized that a major goal of the toxicological
33	review is to identify hazards associated with chronic inorganic arsenic exposure in

1	humans and supported humans as the receptors of interest. When considering health
2	effect endpoints, NRC recommended considering diseases with high prevalence in the
3	United States. In addition, the NRC recommended that susceptibility factors to inorganic
4	arsenic (e.g., life stages, impaired metabolism, sex, nutrition, or underlying disease state)
5	should be considered. The NRC recommended that animal and in vitro data should be
6	considered for mode-of-action analyses. The NRC also recommended that mode-of-
7	action analyses should be conducted to inform confidence in the assessment of risk of
8	inorganic arsenic at low doses. The NRC indicated that animal and in vitro studies are not
9	the focus of dose-response analyses for inorganic arsenic. Rather, the NRC recommended
10	that multiple human health outcomes should be evaluated for dose-response analyses.
11	These evaluations should determine if data are appropriate for direct estimation of risk in
12	the range of epidemiologic observation. The NRC recommended minimizing dose-
13	response extrapolations beyond the observed evidence.

1.4.2 Sources

1.4.2.1 Summary

14	This section discusses natural and anthropogenic sources of inorganic arsenic. An
15	assessment parameter that environmental exposure is widespread owing to both natural
16	and man-made sources of inorganic arsenic is reached. The potential impact of this
17	assessment parameter is that data limitations on inorganic arsenic sources may increase
18	uncertainty in estimating exposure dose.

1.4.2.2 Naturally Occurring Sources of Inorganic Arsenic

19	Inorgnic arsenic is widely distributed throughout the Earth's crust and is present in more
20	than 200 mineral species (IARC, 2009; ATSDR, 2007; Health Canada, 2006). Natural
21	sources of inorganic arsenic result in naturally occurring, or "background," levels of
22	inorganic arsenic in soil. Natural sources can also contribute to inorganic arsenic in
23	water, particularly groundwater from wells in arsenic-rich geological formations.
24	Volcanic activity releases, volatilization, and dusts are some natural sources of inorganic
25	arsenic released in the atmosphere. It is estimated that approximately one-third of
26	atmospheric inorganic arsenic comes from natural sources.

1.4.2.3 Anthropogenic Sources of Arsenic

1 Inorganic arsenic, primarily as arsenic trioxide, is released to	the environment through
2 mining, smelting, and burning fossil fuels (<u>IARC, 2009</u> ; <u>ATS</u>	DR, 2007). In addition,
3 inorganic arsenicals are used in the manufacturing and proces	ssing of several products,
4 including semi-conductors, textiles, ceramics, and pressure tre	eated wood. To a lesser
5 extent, organic arsenicals have been used as pesticides and ve	eterinary drugs (<u>Health</u>
6 <u>Canada, 2006</u>). Industrial, agricultural, and mining activities a	all contribute to
7 anthropogenic sources of arsenic in the environment. Soil con	ntaminated from mining
8 activities, smelter waste, or agricultural pesticides can have an	rsenic concentrations higher
9 than naturally occurring levels. Water levels of inorganic arse	enic may be elevated
10 through industrial effluents, mining, and smelting. Emissions	from mining, smelting,
11 burning fossil fuels, and use of organic arsenic pesticides con	tribute to elevated levels of
12 arsenic in the air.	

1.4.2.4 Considerations of Sources in the Toxicological Review

13	An exposure assessment is beyond the scope of this toxicological review. For the
14	toxicological review, inorganic arsenic is considered to be widespread in the
15	environment, with both natural and anthropogenic sources contributing to total arsenic
16	exposure. Effects of environmental inorganic arsenic exposure will be considered
17	independent from source considerations, such that endpoints will not be attributed to
18	particular natural or anthropogenic sources.

1.4.2.5 Summary of Assessment Parameters for Sources

19

20

- The assessment parameters for sources of inorganic arsenic exposure are summarized below. The rationale for the assessment parameter is described, as is the potential
- 21 qualitative impact of this decision on the hazard identification.

Assessment Parameters for Sources	Rationale	Potential Impact on Toxicological Review
Inorganic arsenic exposure is widespread.	Natural and anthropogenic sources contribute to inorganic arsenic exposure.	Underestimation of exposure dose due to data limitations on inorganic arsenic sources in the environment.
Effects of inorganic arsenic exposure will be considered independent of source.	An exposure assessment is beyond the scope of the toxicological review.	Potential impact on the utility of the toxicological review for complete risk assessments.

1.4.3 Stressors

1.4.3.1 **Summary**

 section, the chemical properties of arsenic are summarized and candidate stressors for the toxicological review are considered. Based upon several considerations, inorganic arsenic is selected as the principal stressor in the toxicological review for the determination of risk metrics. Arsenic speciation was considered, resulting in an assessment parameter that valence state of inorganic arsenic in the environment is unlikely to impact health effects from exposure. The potential impacts of these assessment parameters are no estimation of health effects from environmental exposure to organic arsenic compounds, including metabolites of inorganic arsenic, and underestimating the potential impact of speciation on inorganic arsenic toxicity. 	1	A stressor is a chemical, physical, or biological agent that causes an effect. In this
 is selected as the principal stressor in the toxicological review for the determination of risk metrics. Arsenic speciation was considered, resulting in an assessment parameter that valence state of inorganic arsenic in the environment is unlikely to impact health effects from exposure. The potential impacts of these assessment parameters are no estimation of health effects from environmental exposure to organic arsenic compounds, including metabolites of inorganic arsenic, and underestimating the potential impact of speciation 	2	section, the chemical properties of arsenic are summarized and candidate stressors for the
 risk metrics. Arsenic speciation was considered, resulting in an assessment parameter that valence state of inorganic arsenic in the environment is unlikely to impact health effects from exposure. The potential impacts of these assessment parameters are no estimation of health effects from environmental exposure to organic arsenic compounds, including metabolites of inorganic arsenic, and underestimating the potential impact of speciation 	3	toxicological review are considered. Based upon several considerations, inorganic arsenic
 6 valence state of inorganic arsenic in the environment is unlikely to impact health effects 7 from exposure. The potential impacts of these assessment parameters are no estimation of 8 health effects from environmental exposure to organic arsenic compounds, including 9 metabolites of inorganic arsenic, and underestimating the potential impact of speciation 	4	is selected as the principal stressor in the toxicological review for the determination of
 from exposure. The potential impacts of these assessment parameters are no estimation of health effects from environmental exposure to organic arsenic compounds, including metabolites of inorganic arsenic, and underestimating the potential impact of speciation 	5	risk metrics. Arsenic speciation was considered, resulting in an assessment parameter that
 8 health effects from environmental exposure to organic arsenic compounds, including 9 metabolites of inorganic arsenic, and underestimating the potential impact of speciation 	6	valence state of inorganic arsenic in the environment is unlikely to impact health effects
9 metabolites of inorganic arsenic, and underestimating the potential impact of speciation	7	from exposure. The potential impacts of these assessment parameters are no estimation of
	8	health effects from environmental exposure to organic arsenic compounds, including
10 on inorganic arsenic toxicity.	9	metabolites of inorganic arsenic, and underestimating the potential impact of speciation
	10	on inorganic arsenic toxicity.

1.4.3.2 Chemical Properties

11	Elemental arsenic, or metallic arsenic, is a steel grey solid with chemical and physical
12	properties intermediate between a metal and non-metal (IARC, 2009). Arsenic can exist
13	in 4 oxidation states: -3, 0, +3, or +5. Because of its reactivity, elemental arsenic
14	(oxidation state 0) is rarely found in the environment (ATSDR, 2007; U.S. EPA, 2006).
15	Instead, arsenic is often found combined with other elements. These arsenic compounds,
16	for the purposes of the toxicological review of inorganic arsenic, are organized into three

1	groups: organic arsenic compounds, arsine gas, and inorganic arsenic compounds (IARC,
2	<u>2009</u>).
3	Organic arsenic compounds have arsenic combined with carbon or hydrogen (ATSDR,
4	<u>2007</u>). Arsine gas specifically refers to AsH_3 ; however, the term arsine is often used to
5	describe organic arsenic compounds where arsine is combined with aryl or alkyl groups.
6	Inorganic arsenic compounds are those in which arsenic is combined with other elements
7	such as oxygen, chlorine, or sulfur (ATSDR, 2007). Some arsenic compounds are shown
8	in Table 1-3.

Table 1-3 Some Arsenic Compounds in the Environment

Chemical Name	Formula	CAS Number
Arsenic	As	7440-38-2
Arsenite	As(OH) ₃	13464-58-9
Arsenate	AsO(OH)₃	7778-39-4
Arsenic trioxide	AS ₂ O ₃	1327-53-3
Arsenic pentoxide	AS ₂ O ₅	1303-28-2
Sodium arsenite	NaAsO ₂	7784-46-5
Sodium arsenate	NA ₂ HAsO ₄	7778-43-0
Arsine	AsH ₃	7784-42-1
Arsenobetaine	(CH ₃) ₃ As ⁺ CH ₂ CO ₂ [−]	64436-13-1
Dimethylarsine acid	(Ch ₃) ₂ HAsO ₂	75-60-5
Methanearsonic acid	$Ch_3H_2AsO_3$	124-58-3
Sodium dimethyl arsinate	(CH ₃) ₂ NaAsO ₂	124-65-2
Sodium methane arsonate	CH₃NaHAsO₃	2163-80-6
Trimethylarsine	(CH ₃) ₃ As	593-88-4

These draft development materials are for review purposes only and do not constitute Agency policy.April 20141-21Draft: Do Not Cite or Quote

1.4.3.3 Stressor Consideration – Organic and Inorganic Arsenic Compounds

1	All three groups of arsenic compounds were considered as candidate stressors for the
2	toxicological review. Based upon toxicological and exposure considerations, as well as
3	Agency partner and public stakeholder needs, inorganic arsenic was selected as the
4	stressor for the toxicological review.
5	Total environmental arsenic consists of both organic and inorganic forms (WHO, 2011;
6	ATSDR, 2007), although toxicity varies between organic and inorganic arsenic
7	compounds. In general, direct exposure to organic arsenic compounds is considered less
8	toxic than inorganic arsenic compounds (<u>WHO, 2011; ATSDR, 2007</u>). Inorganic arsenic
9	is metabolized to organic arsenic in the human body, and some of these organic
10	metabolites may play a role in exacerbating the effects of exposure to inorganic arsenic
11	(WHO, 2011). While some of these organic arsenic metabolites are found in the
12	environment, it can be hypothesized that effects of environmental arsenic exposure are
13	largely attributable to the inorganic arsenic component of total arsenic.
14	Exposure considerations also support selecting inorganic arsenic as the stressor for the
15	toxicological review. For instance, arsine is a highly toxic gaseous organic arsenical, but
16	this volatile compound is unlikely to be found at levels of concern in the environment.
17	Similarly, methylated arsenic compounds are assumed to be a minor component of
18	atmospheric arsenic (WHO, 2000) and inorganic arsenic is the primary form found in
19	drinking water and soil (<u>IARC, 2009; Health Canada, 2006</u>). Dietary exposure to organic
20	arsenic can occur through consumption of fish and shellfish; however, the arsenobetaine
21	or arsenocholine found in fish and shellfish are considered mostly non-toxic (Health
22	Canada, 2006). These factors influenced the decision to consider inorganic arsenic the
23	stressor for the toxicological review.
24	Agency partners and public stakeholders also influenced the consideration of stressors for
25	the toxicological review. Some Agency partners and public stakeholders have indicated
26	that total environmental arsenic is the stressor of concern, while others indicated that
27	certain environmental organic arsenicals (e.g., pesticides or pressure treated wood
28	compounds) influence their risk management decisions. The majority, however,
29	emphasized that effects from inorganic arsenic, as the toxic moiety, are the primary
30	considerations for their risk management decisions. Given the higher toxicity, relevant
31	environmental exposure levels, and risk management needs, the toxicological review will
32	consider inorganic arsenic the stressor of concern.

1.4.3.4 Stressor Consideration – Inorganic Arsenic Speciation

1	Oxidation state of inorganic arsenic was considered during stressor selection. Inorganic
2	arsenic can be found in different oxidation states depending upon environmental
3	conditions. Arsenic found in soil forms insoluble complexes which are relatively
4	immobile; however, under reducing conditions arsenic may become soluble and enter
5	into ground water (ATSDR, 2007). In an aquatic environment, inorganic arsenic exists
6	primarily as a mixture of two oxidation states. The +5 oxidation state (arsenate or As[V])
7	is the most stable form in an oxygenated environment, whereas the +3 oxidation state
8	(arsenite or As[III]) is the more common in a reducing environment (ATSDR, 2007). In
9	air, inorganic arsenic also exists as a mixture of arsenate and arsenite, although As(V)
10	predominates (<u>IARC, 2009</u>).
11	As the inorganic arsenic species found most frequently in the environment, As(III) and
11 12	As the inorganic arsenic species found most frequently in the environment, As(III) and As(V) were considered as candidate stressors. An assessment parameter was established
12	As(V) were considered as candidate stressors. An assessment parameter was established
12 13	As(V) were considered as candidate stressors. An assessment parameter was established that oxidation state will not impact the toxicity of inorganic arsenic. This assessment
12 13 14	As(V) were considered as candidate stressors. An assessment parameter was established that oxidation state will not impact the toxicity of inorganic arsenic. This assessment parameter is based upon inorganic arsenic metabolism. In the human body, inorganic
12 13 14 15	As(V) were considered as candidate stressors. An assessment parameter was established that oxidation state will not impact the toxicity of inorganic arsenic. This assessment parameter is based upon inorganic arsenic metabolism. In the human body, inorganic arsenic is reduced from As(V) to As(III) as the initial step in metabolism. Therefore,
12 13 14 15 16	As(V) were considered as candidate stressors. An assessment parameter was established that oxidation state will not impact the toxicity of inorganic arsenic. This assessment parameter is based upon inorganic arsenic metabolism. In the human body, inorganic arsenic is reduced from As(V) to As(III) as the initial step in metabolism. Therefore, environmental exposure to As(V) or As(III) leads to increased levels of As(III) in the
12 13 14 15 16 17	As(V) were considered as candidate stressors. An assessment parameter was established that oxidation state will not impact the toxicity of inorganic arsenic. This assessment parameter is based upon inorganic arsenic metabolism. In the human body, inorganic arsenic is reduced from As(V) to As(III) as the initial step in metabolism. Therefore, environmental exposure to As(V) or As(III) leads to increased levels of As(III) in the human body. Because environmental exposure to As(III) or As(V) leads to increased
12 13 14 15 16 17 18	As(V) were considered as candidate stressors. An assessment parameter was established that oxidation state will not impact the toxicity of inorganic arsenic. This assessment parameter is based upon inorganic arsenic metabolism. In the human body, inorganic arsenic is reduced from As(V) to As(III) as the initial step in metabolism. Therefore, environmental exposure to As(V) or As(III) leads to increased levels of As(III) in the human body. Because environmental exposure to As(III) or As(V) leads to increased internal levels of As(III) in humans, it was hypothesized that oxidation state of

1.4.3.5 Summary of Assessment Parameters for Stressors

This section summarizes the assessment parameters outlined during stressor selection for
the toxicological review. The rationales for these assessment parameters are described, as
are the potential qualitative impacts of these decisions.

Assessment Parameters for Stressor	Rationale	Potential Impact on Toxicological Review
Effects of environmental exposure to arsenic are largely attributable to inorganic forms of arsenic.	Inorganic arsenic forms are generally more toxic than organic arsenic compounds; inorganic compounds are more prevalent in exposure routes of concern, and inorganic arsenic is a risk driver for Agency partners and public stakeholders.	Overestimation of inorganic arsenic exposure dose due to limitations in exposure characterization (i.e., arsenic speciation) in human studies.
Oxidation state of environmental inorganic arsenic will not significantly impact health effects from exposure.	Metabolism reduces As(V) to As(III); therefore, exposure to As(V) or As(III) will lead to increased internal dose levels of As(III).	Underestimation of impact of speciation on inorganic arsenic toxicity.

1.4.4 Exposure Pathways

1.4.4.1 Summary

1	This section considers routes by which inorganic arsenic exposure may occur. Sources of
2	inorganic arsenic suggest that oral, inhalation, and dermal pathways are all potential
3	routes of exposure. An assessment parameter is established that inorganic arsenic
4	exposure occurs through oral, inhalation, or dermal pathways, likely simultaneously. The
5	potential impact of this assessment parameter is that limitations in inorganic arsenic
6	exposure data may underestimate the total environmental exposure to inorganic arsenic
7	and increase uncertainty in estimating exposure to inorganic arsenic.

1.4.4.2 Oral Exposure Pathways of Inorganic Arsenic

8	Oral exposure is the primary route of environmental exposure to inorganic arsenic,
9	occurring through dietary intake of contaminated food or drinking arsenic contaminated
10	water. Inorganic arsenic is found in meats, poultry, dairy products and cereal (IARC,
11	<u>2009</u>). In young children, oral exposure to inorganic arsenic may occur through hand-to-
12	mouth activity with contaminated soil. Naturally occurring levels of inorganic arsenic in

1	soil are approximately 5 mg/kg, but can range from 1 mg/kg to 40 mg/kg depending upon
2	the geological formation. In addition, certain foods grown in soil containing inorganic
3	arsenic have been shown to concentrate arsenic. For the general population within the
4	United States, the hypothesized primary route of exposure is dietary intake.
5	Surface water generally contains less than 10 µg/L of arsenic; however, concentrations
6	can vary depending upon proximity to anthropogenic or natural sources of arsenic. Levels
7	of inorganic arsenic in water can exceed 1,000 µg/L in regions with arsenic-rich
8	geological formations. For populations living in these regions, drinking groundwater or
9	well-water contaminated with arsenic could contribute to inorganic arsenic exposure
10	(IARC, 2009). In addition, preparation of food in water containing inorganic arsenic
11	could also increase arsenic content of food. Exposure to high levels of inorganic arsenic
12	in drinking water has been documented in several regions of the world, including China,
13	Taiwan, Bangladesh, and South America. In the United States, that average inorganic
14	arsenic content of drinking water is $2 \mu g/L$, although 12% of water supplies from surface
15	water in the central United States and 12% of ground water sources in the western United
16	States exceed 20 μ g/L (<u>ATSDR, 2007</u>).

1.4.4.3 Inhalation Exposure Pathways of Inorganic Arsenic

17	For the general population, inhalation of inorganic arsenic from air is not a primary route
18	of exposure. Exposures range from 0.02-0.6 μ g/day in areas without substantial inorganic
19	arsenic emissions from anthropogenic sources. Higher levels of inhalation exposure to
20	inorganic arsenic are observed in more "polluted" areas, and smokers can reach up to
21	10 μg/day of arsenic exposure (IARC, 2009; ATSDR, 2007).
22	Inhalation is the principal route of exposure in occupational exposure settings. Industries
22 23	Inhalation is the principal route of exposure in occupational exposure settings. Industries with potential inorganic arsenic exposure include smelting, coal-fired power plants,
23	with potential inorganic arsenic exposure include smelting, coal-fired power plants,

1.4.4.4 **Dermal Exposure Pathways of Inorganic Arsenic**

27	Evidence of dermal exposure to inorganic arsenic in humans is limited, although
28	evidence in animals does suggest that dermal exposure has toxicological effects (ATSDR,
29	2007). Dermal exposure to inorganic arsenic has been investigated as a route of exposure
30	in occupational settings, although these dermal exposures are most likely concurrent with
31	inhalation and oral exposure. Although inorganic arsenic is widespread at low-levels in

These draft development materials are for review purposes only and do not constitute Agency policy.April 20141-25Draft: Do Not Cite or Quote

1the soil, it usually forms insoluble complexes with iron, aluminum, or magnesium oxide2in soils surfaces which are relatively immobile and poorly absorbed in humans (ATSDR,32007). Thus, exposure through inhalation or ingestion would likely remain predominant4exposure routes.

1.4.4.5 **Exposure Pathways for the Toxicological Review** 5 For the purposes of the toxicological review, oral, inhalation, and dermal routes of 6 exposure will be considered as contributors to environmental inorganic arsenic exposure. 7 This assessment parameter is based upon the available exposure data as well as Agency 8 partner and public stakeholder needs for the toxicological review. 9 Sources of environmental inorganic arsenic suggest that oral, inhalation, and dermal 10 routes of exposure are all possible. Oral exposure, either through dietary exposure or 11 drinking water exposure, is the primary source of exposure. Inhalation exposure to 12 inorganic arsenic, either in occupational settings or in locations with high levels of 13 arsenic emissions, likely contributes to overall exposure to inorganic arsenic. Although 14 dermal exposure data is limited, the presence of inorganic arsenic in soils and building 15 materials suggest that dermal exposure is likely a contributor to overall environmental 16 arsenic exposure. In addition, Agency partners and public stakeholders have requested 17 that oral, inhalation, and dermal routes of exposure be evaluated in the toxicological 18 review.

1.4.4.6 Summary of Assessment Parameters for Exposure Pathways

19This section of the conceptual model summarizes the assessment parameters outlined20during evaluation of the exposure pathways for inorganic arsenic. The rationale for the21assessment parameter is described, as is the potential qualitative impact of this decision22on the hazard identification.

Assessment Parameters for Exposure Pathways	Rationale	Potential Impact on Toxicological Review
Oral, inhalation, and dermal exposure pathways all contribute to environmental inorganic arsenic exposure.	Sources of environmental inorganic arsenic indicate potential for oral, inhalation, and dermal exposure; Agency partner and public stakeholder requested all three routes of exposure be considered.	Underestimating exposure dose due to limitations in exposure characterization data based upon route of exposure which would limit dose estimation.

1.4.5 Receptors

1.4.5.1 Summary

1	A receptor is the population exposed to inorganic arsenic. Characterization of a receptor
2	also includes consideration of life stages or susceptible populations that may have
3	increased sensitivity to inorganic arsenic. This section outlines the decision to focus the
4	toxicological review of inorganic arsenic on human health effects. With respect to
5	susceptibility, an assessment parameter is made that considers the early life period a
6	susceptible life stage for exposure to inorganic arsenic. The potential impact of this
7	assessment parameter is to underestimate the health impact of subsequent inorganic
8	arsenic exposure in individuals exposed during perinatal development.

1.4.5.2 Receptor Considerations for the Toxicological Review

9	Inorganic arsenic is widespread in the environment and it is possible that inorganic
10	arsenic exposure could impact both human health and ecosystems. The toxicological
11	review of inorganic arsenic will focus on human health impacts of inorganic arsenic
12	exposure. This decision is based on toxicological considerations as well as Agency
13	partner and public stakeholder needs.
14	Based upon the available data, humans are more sensitive to inorganic exposure than
15	animals. Interspecies metabolism differences likely explain the differences in toxicity
16	between animals and humans, with animals requiring higher exposure doses to reach
17	internal doses of inorganic arsenic comparable to those observed in humans. At

environmental exposure levels of inorganic arsenic, humans are likely to be the most sensitive species. In addition, the toxicological review is expected to provide scientific support for risk management decisions. These decisions are generally based on human health impacts of chemical exposure; therefore, focusing on human health effects of inorganic arsenic exposure will ensure that the toxicological review meets Agency partner and public stakeholder needs.

1.4.5.3 Consideration of Susceptible Life Stages and Populations

1

2

3

4

5

6

- 7 Several factors may modify the association between exposure to inorganic arsenic and 8 health outcomes among potentially susceptible populations. These factors can be 9 considered in three broad categories: life stage, human variability, and environmental 10 factors. Modification by life stage postulates that inorganic exposure at a particular life 11 stage (e.g. in utero or geriatric) may have an exacerbated impact compared to exposure 12 during other life stages. Modification due to human variability postulates that certain 13 human populations are more sensitive to inorganic arsenic exposure. For example, such 14 human populations may be characterized by particular socioeconomic or genetic traits 15 which modify their response to inorganic arsenic. Environmental factors, such as diet, 16 smoking, alcohol consumption, and exposure to mixtures, could also serve as at-risk 17 factors by potentially exacerbating the effects of inorganic arsenic through co-exposures 18 or epigenetic mechanisms.
- 19 Based on available health effect data on in utero exposures, the toxicological review will 20 consider early life of human development a susceptible life stage. To identify other 21 susceptible life stages and populations, the potential impact of life stage, human 22 variability, and environmental factors will be evaluated using a strength of evidence 23 framework. As shown in Table 1-4, evidence across scientific disciplines will be 24 evaluated to examine coherence of effects and determine biological plausibility. The 25 collective results will be used to determine if a particular factor increases effects from 26 inorganic arsenic exposure. When data are available to identify populations or life stages 27 potentially at increased risk to inorganic arsenic exposure, these populations or life stages 28 will be considered.

Table 1-4	Strength of Evidence Framework for Susceptibility
-----------	---

Descriptor*	Strength of Evidence Considerations*
Adequate Evidence	There is substantial, consistent evidence within a discipline to conclude that a factor results in a population or life stage being at increased risk of inorganic arsenic-related health effect(s) relative to some reference population or life stage. Where applicable this includes coherence across disciplines. Evidence includes multiple high-quality studies.
Suggestive Evidence	The collective evidence suggests that a factor results in a population or life stage being at increased risk of an inorganic arsenic-related health effect relative to some reference population or life stage, but the evidence is limited due to some inconsistency within a discipline or, where applicable, a lack of coherence across disciplines.
Inadequate evidence	The collective evidence is inadequate to determine if a factor results in a population or life stage being at increased risk of an inorganic arsenic-related health effect relative to some reference population or life stage. The available studies are of insufficient quantity, quality, consistency, and/or statistical power to permit a conclusion to be drawn.
Evidence of no effect	There is substantial, consistent evidence within a discipline to conclude that a factor does not result in a population or life stage being at increased risk of inorganic arsenic-related health effect(s) relative to some reference population or life stage. Where applicable this includes coherence across disciplines. Evidence includes multiple high-quality studies.

*Adapted from the Integrated Science Assessment for Lead (U.S. EPA, 2013)

1.4.5.4 Summary of Assessment Parameters for Receptors

1	This section summarizes the assessment parameters described for identifying the receptor
2	for the toxicological review. The rationales for the assessment parameters are described,
3	as are potential qualitative impacts of these decisions.

Assessment Parameters for Receptors	Rationale	Potential Impact on Toxicological Review
The toxicological review will focus on human health effects.	Humans are more susceptible to inorganic arsenic exposure than animal species; human health effects are the driver for risk management decisions	Underestimate the impact of inorganic arsenic on ecosystems (not applicable to the toxicological review).
Populations or life stages with increased sensitivity to inorganic arsenic exposure will be considered susceptible.	Life stages, intrahuman variability, and environmental factors may exacerbate the effects of inorganic arsenic exposure.	Underestimate the impact of exposure to inorganic arsenic due to insufficient data on susceptible populations.
Early life period of human development as a susceptible life stage.	Emerging data in humans, as well as animal data, suggest that in utero exposure to inorganic arsenic may have lasting impacts.	Underestimate the health impact of subsequent inorganic arsenic exposure in individuals exposed during perinatal development.

1.4.6 Endpoints

1.4.6.1 **Summary**

1	Endpoints are measures of the effects of inorganic arsenic exposure. This section
2	describes a causality framework for evaluating cancer and noncancer human health
3	effects data. This section also describes several assessment parameters regarding the
4	human relevance of health effects data. The first assessment parameter considers health
5	effects reported in epidemiology studies relevant to humans, regardless of country of
6	origin. This assessment parameter may result in endpoints included that may be specific
7	to susceptible populations. A second assessment parameter states that health effects
8	associated with inorganic arsenic exposure in epidemiological studies with no known
9	mode of action are relevant to humans. A third assessment parameter states that health
10	effects due to exposure to inorganic arsenic exposure in animals, in the absence of an
11	animal-specific mode of action, are relevant to humans regardless of dose. The potential
12	impacts of these assessment parameters are overestimating the number of health effects
13	relevant to humans.

1.4.6.2 Evaluating Health Effects Data

1	The toxicological review of inorganic arsenic will consider health effects data for cancer
2	and noncancer endpoints from subchronic and chronic exposures to inorganic arsenic.
3	Three broad types of studies, if available, will be used to inform human health effects:
4	controlled human exposures, epidemiologic, and toxicological studies. Controlled human
5	exposures provide evidence of health effects following direct exposure, as well as
6	information on the biological plausibility of associations observed in epidemiologic
7	studies. Some study design features of controlled human exposure studies, such as small
8	sample size and short exposure times, are limitations for estimating the effects of lifetime
9	exposure to inorganic arsenic. In addition, controlled human exposures generally include
10	individuals who are relatively healthy, limiting the ability to extrapolate health effects
11	data to the general population or identify potential susceptibilities. Such study design
12	limitations may underestimate the response to inorganic arsenic exposure.
13	Epidemiologic studies report associations between environmental exposure and health
14	effects. Evaluating epidemiologic data requires consideration of several factors. The three
15	factors most likely to impact the evaluation of epidemiologic data on inorganic arsenic
16	are consideration of multiple chemical exposures, exposure measurement error, and effect
17	modification. Inorganic arsenic is likely a component of multipollutant exposures in
18	environmental exposures; therefore the contribution of inorganic arsenic to a health effect
19	in a multipollutant exposure will be an important factor for consideration. Exposure
20	misclassification is uncertainty associated with the measurements used to represent
21	exposure. Epidemiologic studies often do not control chemical exposures and ecological
22	studies often use environmental sources to estimate exposure; therefore, the impact of
23	exposure misclassification on the health effects data for inorganic arsenic is an important
24	consideration. Effect modification occurs when a risk modifier changes the association
25	between exposure and health effect in different subgroups. Effect modification is an
26	important consideration for identifying potential susceptible populations or factors
27	impacting the observed health effects of inorganic arsenic.
28	In vivo toxicological studies in animals provide evidence of health effects under
29	controlled exposure circumstances. For inorganic arsenic health effects data, a significant
30	human database is available. Data from in vivo toxicological studies in animals will
31	likely provide supporting evidence for human data in the toxicological review of
32	inorganic arsenic, except when effects are only observed in in vivo toxicology studies. In
33	such instances, the ability to extrapolate endpoints observed in animals to health
34	outcomes in humans will be evaluated.

1.4.6.3 Role of Mechanistic Data in Hazard Identification

1	Mechanistic or mode of action data are informative for questions of human relevance,
2	susceptibility, and dose-response relationships. For hazard identification, mechanistic
3	data will be used specifically to address human relevance of the health effects data and
4	for causal determination. Using mode of action data to inform susceptibility and dose-
5	response relationships will be discussed in the next section of the conceptual model
6	(Section 1.4.7 – Risk Metrics).
7	The toxicological review will consider health effects data from human studies and animal
8	studies. Health effects reported in epidemiology studies will be considered relevant to
9	humans, regardless of the country of origin. In addition, human health effects with no
10	known mode of action will be considered relevant to humans. On the basis of these
11	assessment parameters, evaluating mechanistic data for hazard identification is of limited
12	value to inform the human relevance of human health effects data.
13	Conversely, the human relevance of in vivo toxicology data is informed by mode of
14	action data. If health effects are reported exclusively in animal studies, mechanistic data
15	will be used to determine human relevance of these effects. In the absence of mechanistic
16	data indicating a mode of action not relevant to humans, health effects data from in vivo
17	toxicology studies will be considered relevant to humans, regardless of exposure dose.

1.4.6.4 Framework for Causal Determination of Human Health Effect Endpoints

18	The toxicological review will assess relevant health effects data to draw conclusions on
19	the causal relationships between inorganic arsenic exposure and human health effects.
20	Determination of causality will focus on a range of inorganic arsenic exposure doses
21	rather than determining causality at a specific exposure dose. The toxicological review
22	will use a five-level hierarchy to determine causality for health effects (U.S. EPA, 2013).
23	Table 1-5 shows the five causality descriptors for health effects and outlines the weight of
24	evidence considerations for each descriptor. Weight of evidence evaluation will involve
25	evaluation and integration of health effects data, as well as characterization of evidence
26	upon which causal determination is based. This characterization will identify any data
27	gaps which would inform future causal determinations for inorganic arsenic.
28	Determination of causality for health effects corresponds with cancer descriptors for
29	carcinogenic effects (U.S. EPA, 2005); therefore, this causal determination framework
30	will be used for both cancer and noncancer health effects associated with inorganic
31	arsenic exposure.

Descriptor	Causal Determination Considerations
Causal relationship	Evidence is sufficient to conclude that there is a causal relationship with relevant pollutant exposures (i.e., doses or exposures generally within one to two orders of magnitude of current levels). That is, the pollutant has been shown to result in health effects in studies in which chance, bias, and confounding could be ruled out with reasonable confidence. For example: (1) controlled human exposure studies that demonstrate consistent effects; or (2) observational studies that cannot be explained by plausible alternatives or are supported by other lines of evidence (e.g., animal studies or mode of action information). Evidence includes multiple high-quality studies.
Likely to be a causal relationship	Evidence is sufficient to conclude that a causal relationship is likely to exist with relevant pollutant exposures, but important uncertainties remain. That is, the pollutant has been shown to result in health effects in studies in which chance and bias can be ruled out with reasonable confidence but potential issues remain. For example: (1) observational studies show an association, but copollutant exposures are difficult to address and/or other lines of evidence (controlled human exposure, animal, or mode of action information) are limited or inconsistent; or (2) animal toxicological evidence from multiple studies from different laboratories that demonstrate effects, but limited or no human data are available. Evidence generally includes multiple high-quality studies.
Suggestive of a causal relationship	Evidence is suggestive of a causal relationship with relevant pollutant exposures, but is limited. For example; (1) at least one high-quality epidemiologic study shows an association with a given health outcome but the results of other studies are inconsistent; or (2) a well-conducted toxicological study, such as those conducted in the National Toxicology Program (NTP), shows effects in animal species.
Inadequate to infer a causal relationship	Evidence is inadequate to determine that a causal relationship exists with relevant pollutant exposures. The available studies are of insufficient quantity, quality, consistency, or statistical power to permit a conclusion regarding the presence or absence of an effect.
Not likely to be a causal relationship	Evidence is suggestive of no causal relationship with relevant pollutant exposures. Several adequate studies, covering the full range of levels of exposure that human beings are known to encounter and considering at-risk populations, are mutually consistent in not showing an effect at any level of exposure.

Table 1-5	Causal Determination Framew	ork
		••••

1.4.6.5 Summary of Assessment Parameters for Endpoints

1This section summarizes the assessment parameters outlined for evaluating endpoints.2The rationales for the assessment parameters are described, as are the potential qualitative3impacts of these decisions.

Assessment Parameters for Endpoints	Rationale	Potential Impact on Toxicological Review
Health effects data in human studies are relevant to humans, regardless of country of origin.	All available health effects data are considered for hazard identification and causal determination. Issues of susceptibility are addressed in the dose-response analysis.	Effects observed in susceptible populations considered relevant to the general population for hazard identification.
Human health effects with no known mode of action are relevant to humans.	Emerging health effects data may lack the mechanistic data, but may be important to human health. Human health effects are considered relevant in the absence of mode of action information.	Consideration of emerging health endpoints or health endpoints with limited mechanistic data in the hazard identification.
In the absence of mode of action data indicating otherwise, endpoints from animal studies are relevant to humans regardless of administered dose.	Animal studies, through study design advantages, may indicate effects at particular life stages or provide insight into progression of health effects. Animal data may be important for hazard identification and dose- response.	Consideration of emerging health endpoints which may have limited data in human populations. Species extrapolation will depend upon available scientific data (e.g., dosimetry data).

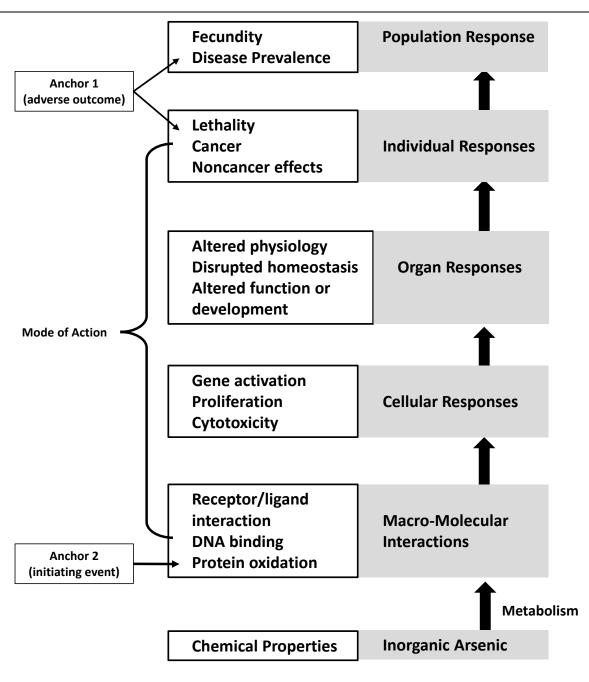
1.4.7 Risk Metrics

1.4.7.1 **Summary**

4 Risk metrics are the measure by which risk is quantified. Although risk characterization
5 is beyond the scope of the toxicological review of inorganic arsenic, this section
6 describes how endpoints will be selected for dose-response analysis, as well as the role of

mechanistic data for susceptibility and dose extrapolation. The issues of dose
 extrapolation and susceptibility will be informed using an adverse outcome pathway
 framework.

1.4.7.2 Selection of Endpoints for Dose-response


4	Health effect endpoints for which inorganic arsenic exposure is "causal" or "likely
5	causal" will be included in the dose-response analysis (see Table 1-5). Health effect
6	endpoints which have a "suggestive," "inadequate," or "not likely" causal relationship
7	will not be considered for dose-response analysis.

1.4.7.3 Role of Mechanistic Data in Dose-Response Analysis: Adverse Outcome Pathway Framework

8 Agency partners and public stakeholders recommended evaluating the health effects of 9 inorganic arsenic exposure using an adverse outcome pathway framework. An adverse 10 outcome pathway connects a molecular initiating event to an endpoint at a biological 11 level of organization. The advantage of an adverse outcome pathway is that mechanistic 12 data are organized to answer questions in support of risk assessment decisions. However, 13 mechanistic data or adverse outcome pathways will not be a requirement for evaluating 14 observed health effects due to exposure to inorganic arsenic.

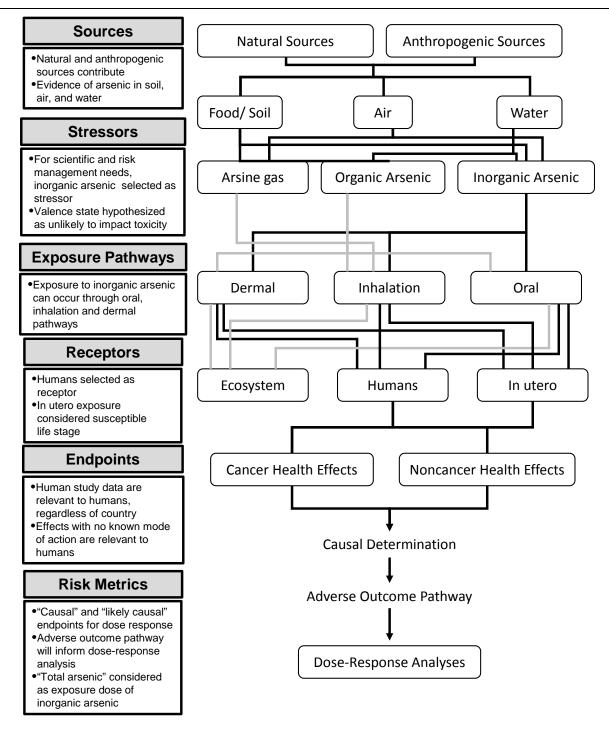
- 15 In the dose-response analysis of the toxicological review of inorganic arsenic, the adverse 16 outcome pathway will address two considerations. The first consideration is uncertainty 17 in the dose-response analysis. An adverse outcome pathway can identify where data gaps 18 increase uncertainty in the dose-response analyses. The second consideration is 19 variability. Human variability in response to chemical exposure may be due to various 20 factors that affect an individual's or subpopulation's susceptibility (e.g., nutritional 21 status). The adverse outcome pathway can inform how sources of variability (i.e. 22 susceptibility factors) in the mode of action may impact dose-response. For instance, an 23 adverse outcome pathway may identify molecular initiating events to which certain 24 human populations may show additional sensitivity.
- Adverse outcome pathways for the toxicological review will be developed, if possible, for causal or likely causal health effect outcomes (see Figure 1-2). Effects in this figure are examples and more effects may be attributed to inorganic arsenic. Pathways may also involve more steps. There are two important considerations for the adverse outcome pathway analysis. First, as outlined in the endpoints section, a health effect with no known mode of action is assumed to be relevant to humans. Therefore, human health

1 2 3 toxicity values would still be derived even in the absence of data on molecular initiating events. Secondly, regulatory decisions of Agency partners and public stakeholders are partially based upon the observation of health effects from inorganic arsenic exposure.

Figure 1-2 General framework for Adverse Outcome Pathway Analyses for Inorganic Arsenic

1.4.7.4 Consideration of Exposure Dose: Total Arsenic versus Inorganic Arsenic

1	Exposure misclassification should be considered when evaluating epidemiological studies
2	for dose-response analyses. Ecological studies often lack individual exposure data,
3	instead reporting human exposure using environmental sources. These environmental
4	sources are often estimates of "total arsenic" exposure, a mixture of organic and
5	inorganic forms of arsenic. In addition, ecological exposure metrics are often single
6	measurements, further increasing the challenge of estimating exposure dose.
7	For the purposes of the toxicological review, total arsenic exposure will be considered
8	exposure to inorganic arsenic unless exposure data are available to delineate between
9	inorganic arsenic and total arsenic. This assessment parameter is based on two factors:
10	the geography within which "highly" exposed populations reside and the source of
11	inorganic arsenic exposure. Most of the ecological exposure data comes from populations
12	living in arsenic-rich geographical regions. Generally, in populations with high levels of
13	arsenic exposure, the primary route of exposure is consuming arsenic contaminated well
14	water. Because the primary form of arsenic in ground water from arsenic-rich
15	geographical regions is inorganic arsenic, it is hypothesized that the majority of intake is
16	inorganic arsenic. The potential impact of this assessment parameter is underestimation
17	of inorganic arsenic toxicity, as the level of inorganic arsenic in the source exposure is
18	likely less than the reported levels of "total arsenic."


1.4.7.5 Summary of Assessment Parameters for Risk Metrics

This section summarizes the assessment parameters discussed for dose-response analyses.
 Rationales for assessment parameters are described, as are potential qualitative impacts of these decisions.

Assessment Parameters for Risk Metrics	Rationale	Potential Impact on Toxicological Review
For ecological studies, total arsenic will be considered exposure to inorganic arsenic.	Populations studied usually reside in arsenic-rich geographical regions and consume arsenic in drinking water; inorganic arsenic is the primary form of arsenic in well- water from arsenic-rich geography.	Underestimation of inorganic arsenic toxicity, as inorganic arsenic concentration is likely less than total arsenic level.

1.4.8 Overall Conceptual Model

5 model for the toxicological review is presented in Figure 1-3. Black lines indicate 6 relationships that will be considered in the toxicological review, whereas gray lines 7 indicate aspects of inorganic arsenic exposure that are beyond the scope of the 8 toxicological review. This conceptual model may be revised based on as scientific data 9 become available or based on recommendations from Agency partners and public 10 stakeholders.	4	Based upon the assessment parameters outlined in these sections, the overall conceptual
 indicate aspects of inorganic arsenic exposure that are beyond the scope of the toxicological review. This conceptual model may be revised based on as scientific data become available or based on recommendations from Agency partners and public 	5	model for the toxicological review is presented in Figure 1-3. Black lines indicate
 8 toxicological review. This conceptual model may be revised based on as scientific data 9 become available or based on recommendations from Agency partners and public 	6	relationships that will be considered in the toxicological review, whereas gray lines
9 become available or based on recommendations from Agency partners and public	7	indicate aspects of inorganic arsenic exposure that are beyond the scope of the
	8	toxicological review. This conceptual model may be revised based on as scientific data
10 stakeholders.	9	become available or based on recommendations from Agency partners and public
	10	stakeholders.

Source: Adapted from NRC (2009)

Overall Conceptual Model for Toxicological Review of Inorganic Arsenic

1.5 Analysis Plan for the Toxicological Review

This analysis plan is the implementation plan for developing the toxicological review of inorganic arsenic. The analysis plan expands on the conceptual model framework, describing approaches for evaluating the relationships outlined in the conceptual model.

Key Points - Analysis Plan

1

2

3

- The analysis plan is the implementation plan for the toxicological review
- Describes approaches to evaluate the relationships outlined in the conceptual model
- Flexible framework that can be modified during development of the toxicological review
- Revised in response to NRC recommendations in the interim report "Critical Aspects of EPA's IRIS Assessment of Inorganic arsenic"

4 Like the conceptual model, the analysis plan has been revised in response to NRC 5 recommendations in the interim report "Critical Aspects of EPA's IRIS Assessment of 6 Inorganic arsenic" (NRC, 2013). The analysis plan provides proposed EPA responses to 7 NRC recommendations. When a NRC recommendation may impact multiple sections of 8 the analysis plan, the proposed EPA responses are provided in all of the relevant sections 9 of the analysis plan. The analysis plan can be further modified as data become available, 10 if novel relationships become apparent during data analysis, and to implement advances 11 in human health assessment methodology.

1.5.1 Approaches to Source Considerations

12 An exposure assessment is beyond the scope of the toxicological review. For the 13 purposes of the toxicological review, inorganic arsenic will be considered widely 14 distributed throughout the environment; specific natural or anthropogenic sources of 15 inorganic arsenic in soil, air, or water will not be considered. Aspects of source 16 characterization, however, are important considerations for estimating exposure to 17 inorganic arsenic. For the purpose of estimating total daily exposure, the NRC report 18 (NRC, 2013) indicates that delineation of exposure sources (e.g., drinking water, diet, 19 etc.) should be characterized, preferably utilizing probabilistic approaches. 20 In response to the NRC recommendation, EPA will evaluate in a qualitative and, where 21 possible, quantitative manner relationships between exposure source and biomarkers of 22 exposure. The EPA evaluations will focus on delineating exposures to inorganic arsenic 23 versus other forms (e.g., MMA, DMA,), with emphasis on characterizing the contribution

1	of specific foods (e.g., rice, fruit juices). Where possible a range of estimates regarding
2	the contribution of unique sources of inorganic arsenic based upon an average
3	background exposure should be evaluated as well as identification of where the lack of
4	scientific information exists (i.e., data gaps). All studies conducted in the United States
5	population and other populations (e.g., Taiwan, Bangladesh, etc.) will be evaluated for
6	hazard identification and a determination may be made as to whether or not an
7	adjustment is warranted in estimating potency in the United States population.
8	Additionally, the available scientific information should be characterized for the
9	bioavailability of inorganic arsenic in various media (e.g., soil, water, foodstuffs, etc.).

1.5.1.1 Supplementary Materials Related to Source Considerations

10	Supplementary materials for source consideration will be source characterization
11	summary reports. These reports will characterize, based upon available data, the range of
12	background exposures to inorganic arsenic. Background exposures to inorganic arsenic
13	shall include all potential sources of exposure to inorganic arsenic, including but not
14	limited to dietary, inhalation, oral, and dermal exposures. The source characterization
15	summary reports shall be updated as new data become available. The data used to create
16	source characterization summary reports shall be organized and maintained on EPA's
17	HERO database (<u>http://hero.epa.gov/</u>).
18	Based upon NRC recommendations, the source characterization summary reports will
19	focus on background exposures to inorganic arsenic for the United States population. If
20	necessary, source characterization summary reports may be generated for non-United

21 States populations, based upon available data.

31

1.5.2 Approaches to Stressor Considerations

22	For the purposes of the toxicological review, different oxidation states of inorganic
23	arsenic will be considered to have the same biological effect. This assessment parameter
24	is based upon the metabolism of inorganic arsenic, which reduces As(V) to As(III) in
25	humans. Therefore, environmental exposure to As(V) or As(III) will result in increased
26	internal concentrations of As(III). As exposure to inorganic arsenic in either oxidation
27	state results in increased As(III), inorganic arsenic (either in the +3 or +5 oxidation state),
28	is the principle stressor for the toxicological review.
29	The toxicological review shall summarize potential impact of chemical properties on the
30	toxicological effects of inorganic arsenic exposure. Potential chemical properties could

include forms of arsenic in the environment (e.g., organic or inorganic) or oxidation

These draft development materials are for review purposes only and do not constitute Agency policy.April 20141-41Draft: Do Not Cite or Quote

1	states of the exposure compounds. Inorganic arsenic is metabolized to organic arsenic in
2	the human body; therefore, health effects of inorganic arsenic exposure data will be
3	informed by data on organic arsenic metabolites. Analysis of organic arsenic metabolite
4	data will be used to address specific hypothesis regarding the effects of inorganic arsenic
5	exposure. For instance, metabolite data may serve as a biomarker of exposure or inform
6	adverse outcome pathway analyses. In addition, uncertainty with respect to the stressor
7	(e.g., potential levels of organic arsenicals in exposure dose) will be considered
8	qualitatively and/or quantitatively in dose-response analyses. The health effects of
9	environmental exposure to organic arsenic compounds are beyond the scope of the
10	toxicological review.

1.5.3 Approaches to Exposure Pathway Considerations

11	The toxicological review will characterize pathways of exposure to inorganic arsenic.
12	Exposure pathways are processes by which a receptor is exposed to the stressor. For the
13	purposes of the toxicological review, inorganic arsenic exposure will be considered as
14	occurring through oral, inhalation, and dermal routes, and in some exposure scenarios,
15	simultaneously. A critical aspect of exposure pathway considerations is capability to
16	estimate exposure dose and/or internal dose based on available data. EPA will evaluate
17	the feasibility for qualitative and quantitative analyses based upon the available data and
18	physiologically based pharmacokinetic (PBPK) models. In the absence of exposure data
19	for particular exposure route, the contribution of the route of exposure will be considered
20	as naturally occurring levels of inorganic arsenic. For instance, if exposure data are
21	available for dermal and oral exposure only, then inhalation exposure would be estimated
22	at naturally occurring levels of inorganic arsenic.
23	Another important aspect of exposure pathway consideration is exposure
24	misclassification. Studies may report arsenic concentrations for a particular route of
25	exposure (e.g., drinking water), but not consider contribution from other sources such as
26	dietary or inhalation exposure. Studies may report arsenic exposure concentrations from a
27	particular source (e.g., community water supply) rather than individual exposure levels.
28	Furthermore, these source concentrations may be estimated from samples taken over a
29	limited period of time and extrapolated to lifetime exposures. Therefore, studies with
30	exposure data on individuals are hypothesized to introduce less uncertainty into
31	associations between health effect and inorganic arsenic.

1.5.3.1 Supplementary Materials Related to Exposure Pathways

1	Supplementary materials for exposure pathway considerations will include (1) a survey
2	of available PBPK and/or toxicokinetic models for inorganic arsenic, (2) evaluate the
3	applicability of PBPK models to estimate biomarkers of exposures such as inorganic
4	arsenic and/or its metabolites levels in urine, (3) use PBPK model(s) for the forward
5	estimation of biomarkers of exposures (e.g. urine levels) and reverse calculations of total
6	ingested inorganic arsenic levels related to risk-estimated biomarkers, and (4) feasibility
7	study for modifying adult mouse PBPK model for developmental exposures to inorganic
8	arsenic.
9	The survey of available PBPK models for inorganic arsenic will be used to determine the
10	capability for qualitatively or quantitatively estimating exposure dose and/or internal dose
11	based on available epidemiological data. Similarly, a reverse dosimetry model using
12	internal biomarker concentrations would inform estimates of exposure misclassification
13	from available drinking water exposure data.
14	The NRC, as well as Agency partners and public stakeholders, indicated that an
15	important consideration for the toxicological review is developmental exposure to
16	inorganic arsenic. In response to these recommendations, EPA shall perform a feasibility
17	study on modifying an adult mouse PBPK model (Gentry et al., 2004) for inorganic
18	arsenic for developmental exposure. This model shall estimate inorganic arsenic and its
19	metabolites levels in prenatal and postnatal tissues in mice. Depending on availability of
20	literature data, a scale up developmental PBPK model will also be considered for a
21	humans. This study will determine (1) availability of human or animal physiological
22	parameters and data for developing fetus and preweened offspring, (2) possibility of
23	inorganic arsenic transport and metabolism in placental and fetal tissues, (3) availability
24	of information to estimate metabolic and transport kinetics in placental and fetal tissues if
25	needed, (4) availability of data and information on exposure and toxicokinetics of
26	inorganic arsenic in lactating pups. Based on this feasibility study, EPA will develop a
27	summary of the added value for constructing a mouse developmental exposure PBPK
28	model to inform the health assessment of inorganic arsenic, including the arguments for
29	and against construction of the developmental PBPK model for mice and humans.

30

1.5.4 Approaches to Receptor Considerations

31 32 Receptors are populations, including life stages, which are exposed to the stressor. For the purposes of the toxicological review, the receptor selected was humans. Potential

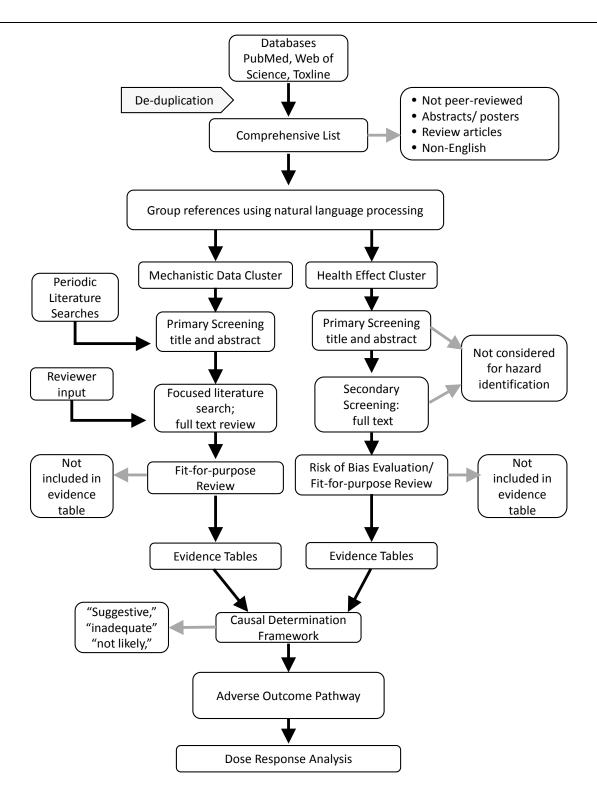
These draft development materials are for review purposes only and do not constitute Agency policy.April 20141-43Draft: Do Not Cite or Quote

- 1 human receptors include the general population and populations that may be at increased 2 risk to inorganic arsenic exposure because of certain factors (e.g., diet, pre-existing 3 diseases, smoking, alcohol consumption, exposure to mixtures, and life stages). The 4 toxicological review will evaluate human populations and life stages for susceptibility 5 using a strength of evidence framework. This framework evaluates data across scientific 6 disciplines to determine if a factor results in a population or life stage being at increased 7 risk of exposure to inorganic arsenic. 8 A reference population is necessary for comparisons to susceptible populations. The 9 reference population for the toxicological review will be the United States population. As 10 part of characterizing the reference population, EPA will examine potential associations 11 between drinking water exposure and health effect endpoints (e.g., mortality, bladder 12 cancer, cardiovascular disease, diabetes) in the United States. There are potential impacts 13 for selecting as a reference receptor the United States population. The United States 14 standard of living, including access to health care and ability to relocate from 15 environmental sources of exposure, could also lead to a healthier population with fewer 16 health effects relative to other countries or nationalities. In addition, the United States 17 population consists of several ethnic groups, which may limit the ability to determine the 18 impact of genetic susceptibility or ethnicity on health effects from inorganic arsenic 19 exposure. 20 Identification of susceptible life stages requires comparison of effects with a reference 21 life stage. Life stages will be categorized, where possible, on the basis of biological 22 development rather than age ranges. The reference life stage for the toxicological review 23 will be sexually mature adults. The toxicological review will consider early-life as a 24 susceptible life stage in humans. 25 Receptor considerations are also important for dose-response analyses. Factors, such as 26 smoking, life stage, or underlying disease, may increase susceptibility relative to the 27 reference population. EPA will develop sensitivity analyses to determine how receptor
- 28 considerations impact dose-response analyses for inorganic arsenic.

1.5.4.1 Supplementary Materials Related to Receptors

29Supplementary materials for receptor considerations will include (1) receptor evidence30tables, (2) receptor sensitivity analyses, and (3) an analysis of potential associations31between drinking water exposure to inorganic arsenic exposure and health effect32endpoints. The data used to create these supplementary materials will be available on33EPA's HERO database (http://hero.epa.gov/).

1	Receptor evidence tables will summarize the available evidence considered during
2	evaluation of potential receptors for the IRIS toxicological review of inorganic arsenic.
3	At a minimum, these tables will include the relevant bibliographic information,
4	description of study design/quality, reported effects of inorganic arsenic exposure, and
5	dose-response information. These tables will be updated as new data become available.
6	Receptor sensitivity analyses will inform how receptor considerations impact dose-
7	response analyses for inorganic arsenic. Receptor considerations for sensitivity analyses
8	will include, but are not limited to, smoking synergism size effect for health effects
9	associated with inorganic arsenic.
10	Analyses examining the potential associations between drinking water exposure and
11	health effect endpoints in the United States will also be provided as supplementary
12	material. Endpoints may include, but are not limited to, mortality, bladder cancer,
13	cardiovascular disease, and diabetes. These data will inform comparisons of susceptible
14	populations with the general population of the United States.


1.5.5 Approaches to Endpoint Considerations

15 16	Endpoints are measures of the health effects of exposure to inorganic arsenic. Potential endpoints associated with exposure to inorganic arsenic to be considered in this
17	toxicological review include both cancer and noncancer health effects.
18	The endpoint evaluation process for inorganic arsenic includes multiple steps. The first
19	step is identification of available literature relevant for hazard identification. After
20	identifying the relevant literature, risk of bias (internal validity) evaluations will be
21	performed using the draft approach developed by the National Toxicology Program
22	(NTP) Office of Health Assessment and Translation (OHAT) (NTP, 2013). Studies and
23	risk of bias evaluations will inform strength of evidence determinations on the causal
24	relationships between inorganic arsenic exposure and particular health effects. Based
25	upon the causal determinations, particular health endpoints will be considered for dose-
26	response analysis (see Section 1.5.6 – Approaches to Risk Metric Considerations).

1.5.5.1 Approaches to Endpoint Considerations – Identifying Relevant Literature

27	EPA is committed to evaluating the available literature on inorganic arsenic by
28	incorporating elements of systematic review. Systematic review is a scientific
29	investigation of a specific question that uses explicit, pre-specified methods to identify,
30	select, summarize, and assess relevant study findings. For the literature search, this

1	involves an iterative process for identifying and selecting relevant scientific information
2	needed to address assessment-specific questions. The systematic review process
3	formulates specific strategies to identify and select studies relating to each question,
4	evaluates study methods based on clearly defined criteria, and transparently documents
5	the process and its outcomes.
6	The initial literature search process for the toxicological review of inorganic arsenic
7	includes: selecting databases of references, defining search terms, documenting search
8	strategies, and a strategy for periodically updating the literature search. In addition,
9	public submissions of relevant studies will be considered during development of the
10	toxicological review. These literature search products will be publicly available through
11	HERO (<u>http://hero.epa.gov/</u>). The end product of this initial literature search process is a
12	comprehensive list of the available scientific literature on inorganic arsenic.
13	Figure 1-4 outlines the overall literature search strategy for the toxicological review.
14	Searches will be conducted using the HERO interface and periodically updated.
15	Databases will be searched using the appropriate forms of the chemical name and CAS
16	number to "cast a wide net." The main databases that will be used in the literature search
17	are PubMed, Web of Science, and Toxline. Duplication records will be removed. The
18	gray lines in Figure 1-4 indicate literature which were removed from the literature search
19	process, whereas the dark lines indicate literature which will be considered during
20	development of the toxicological review.

1	From the comprehensive list of references identified by this literature search strategy,
2	non-peer reviewed articles, abstracts and posters, review articles, and non-English
3	references will be removed from the initial screening. Review articles will be considered
4	in the development of the toxicological review; however, the toxicological review
5	generally evaluates data from primary source material. The remaining references in the
6	considered list will be grouped using natural language processing. A computer algorithm
7	groups references into "clusters" based on similarity in the title and abstract. The
8	clustering process is a tool to organize the arsenic literature database; it is not an
9	exclusion step.
10	References in these clusters will undergo primary screening by title and abstract. The
11	purpose of the primary screening is to categorize studies, it does not exclude studies from
12	consideration. Studies in other categories will be considered, as needed, to address other
13	questions such as toxicokinetics, mode of action, or susceptibility. The categories for the
14	primary screening of the health effect cluster are shown in in the Appendix (Section 1.6,
15	see Table 1-9).
16	Following categorization by title and abstract, studies were further reviewed using full
17	text. The purpose of the full text review was to identify studies that would be relevant to
18	hazard identification for inorganic arsenic. All epidemiologic and toxicological studies
19	identified as likely to contain information supporting hazard identification based on title
20	and abstract review were further characterized to identify characteristics of the study
21	design and the health effects reported in the study. Based upon the full text review,
22	epidemiologic and animal toxicology studies considered relevant to hazard identification
23	were selected for risk of bias evaluations.
24	The literature search for arsenic will be periodically updated. The references identified in
25	the updated literature search will bypass the natural language processing step and enter
26	into primary screening. Similarly, references recommended by Agency partners, public
27	stakeholders, or reviewers will undergo secondary screening, bypassing both natural
28	language processing and primary screening. All of the screening processes will be
29	captured in a publicly available database.

1.5.5.2 Approaches to Endpoint Considerations – Evaluating Risk of Bias

30	Following primary literature screening, studies will be evaluated for potential risk of bias.
31	These risk of bias evaluations are not exclusion criteria, rather, the evaluations will
32	determine the primary literature considered for hazard identification. Although studies
33	with a relatively high risk of bias will not be presented in evidence tables, these studies
34	may be considered supporting evidence for hazard identification. The magnitude and the

These draft development materials are for review purposes only and do not constitute Agency policy.April 20141-48Draft: Do Not Cite or Quote

- 1direction of the bias will be evaluated in order to consider the coherence of findings from2these supporting studies, within the context of the full body of evidence.
- 3 Risk of bias will be evaluated using a modified draft OHAT approach (NTP, 2013). The 4 draft OHAT approach identifies studies and extracts data from all of the available studies, 5 regardless of potential risk of bias. After data extraction, a series of questions addressing 6 selection bias, performance bias, attrition/exclusion bias, detection bias, and selective 7 reporting bias are applied to each study (Table 1-6). Individual studies are assessed for 8 risk of bias on an outcome basis using a 4-point scale (definitely low bias, probably low 9 bias, probably high bias, and definitely high bias). In the next step of the OHAT 10 approach, confidence ratings are developed that the group of studies on a particular 11 outcome reflect the true relationship between exposure to substance and that outcome. 12 Confidence ratings consider study design, factors that decrease confidence (such as risk 13 of bias or indirectness) and factors that increase confidence such as evidence of dose-14 response or consistency across animal species. These confidence ratings are translated 15 into evidence of health effects and integrated to develop hazard identification 16 conclusions.
- 17 The toxicological review for inorganic arsenic will evaluate risk of bias using a 18 modification of the OHAT approach. These modifications are necessary because of the 19 different types of questions addressed in evidence-based medicine compared to a 20 toxicological review. For evidence-based medicine, the question addressed is typically 21 narrowly focused in scope, resulting in a smaller literature database for evaluation. In 22 contrast, the scope of an IRIS toxicological review is much broader, addressing potential 23 toxicity in multiple tissue types across a broad dose range for various populations. As a 24 result, the relevant literature database for an IRIS toxicological review of inorganic 25 arsenic is much larger. Effective use of resources to develop a toxicological review 26 incorporating systematic review methods requires modifications to the draft OHAT 27 approach. The draft OHAT approach was modified such that potential risk of bias was 28 determined before extracting data from the studies.

	Table 1-6	Example Risk of Bias Considerations
--	-----------	-------------------------------------

Category	Risk of Bias Questions*				
Selection	1. Was administered dose or exposure level adequately randomized?				
	2. Was allocation to study groups adequately concealed?				
	3. Were the comparison groups appropriate?				
	4. Did the study design or analysis account for important confounding and modifying variables?				
	5. Did researchers adjust or control for other exposures that are anticipated to bias results?				
Performance	6. Were experimental conditions identical across study groups?				
	7. Did researchers adhere to the study protocol?				
	8. Were the research personnel and human subjects blinded to the study group during the study?				
Attrition	9. Were outcome data complete without attrition or exclusion from analysis?				
Detection	10. Were the outcome assessors blinded to study group or exposure level?				
	11. Were confounding variables assessed consistently across groups using valid and reliable measures?				
	12. Can we be confident in the exposure characterization?				
	13. Can we be confident in the outcome assessment?				
Selective Reporting Bias	14. Were all measured outcomes reported?				
Other	15. Were there no potential threats to internal validity (e.g., statistical methods were appropriate)?				

*Note, in consultation with OHAT, questions number 7, 9 and 15 were restated from the 2013 draft (<u>NTP, 2013</u>) so that answering "yes" would consistently indicate lower risk of bias, while answering "no" would indicate higher risk of bias.

1	Analysis of risk of bias necessarily requires subjective conclusions by an expert scientist.
2	Thus, to ensure consistency across the evaluators, OHAT drafted guidance for each risk
3	of bias question to ensure the ratings are applied as objectively and transparently as
4	possible. Each risk of bias question is assigned one of four standard ratings, ranging from
5	definitely low risk of bias to definitely high risk of bias (see Table 1-7). The evaluation of
6	each question depends on the availability of evidence of biased practices.

Rating	Description
(++) <i>Definitely Low</i> risk of bias	There is direct evidence of low risk of bias practices (Direct evidence is an explicit statement, generally from the study report or through contacting the authors) (May include specific examples of relevant low risk of bias practices)
(+) Probably Low risk of bias	There is indirect evidence of low risk of bias practices OR it is deemed by the risk of bias evaluator that deviations from low risk of bias practices for these criteria during the study would not appreciably bias results, including consideration of direction and magnitude of bias (Indirect evidence provides information to address the risk of bias question but falls short of direct evidence)
(-) Probably High risk of bias	There is indirect evidence of high risk of bias practices OR there is insufficient information provided about relevant risk of bias practices
() <i>Definitely High</i> risk of bias	There is direct evidence of high risk of bias practices (May include specific examples of relevant high risk of bias practices)

 Table 1-7
 General Risk of Bias Ratings

1.5.5.2.1 Risk of Bias Evaluation Criteria for Epidemiologic Studies

1	For evaluation of the inorganic arsenic literature, each study will be independently
2	evaluated by two scientists who refer to the OHAT Guidance for Assessing Risk of Bias -
3	Appendix 2 (<u>NTP, 2013</u>). After independently reviewing a given study, the two reviewers
4	discuss differences and resolve discrepancies between their ratings.
5	As a starting point, case-control, cohort, and cross-sectional studies were evaluated.
6	Other study types, such as ecological studies, provide less direct support for causal
7	determinations because individual-level exposure information is not used in the analyses.
8	Ecological studies are not excluded from consideration in the overall causal
9	determination for a given health outcome and will be used to provide further support in
10	making causal inferences when other types of studies are not available. Some ecological
11	studies are expected to provide supporting information regarding exposure during
12	sensitive development times (e.g., in utero or childhood exposures) or exposure to
13	susceptible populations. The Appendix (Section 1-6, see Table 1-10) provides additional
14	information used in evaluating risk of bias for inorganic arsenic. The table provides
15	criteria for the risk of bias standard ratings for each OHAT question considered.

1.5.5.2.2 Risk of Bias Evaluation Criteria for Animal Toxicology Studies

1	For evaluation of the inorganic arsenic literature, each study will be independently
2	evaluated by two scientists who refer to the OHAT Guidance for Assessing Risk of Bias -
3	Appendix 2 (<u>NTP, 2013</u>). After independently reviewing a given study, the two reviewers
4	discuss differences and resolve discrepancies between their ratings. The Appendix
5	(Section 1-6, see Table 1-11) provides additional information used in evaluating risk of
6	bias for inorganic arsenic. The table provides criteria for the risk of bias standard ratings
7	for each OHAT question considered.

1.5.5.3 Approaches to Endpoint Considerations – Impact of Risk of Bias on Hazard Identification

8	Risk of bias evaluations will not be used to exclude studies from consideration. Rather,
9	the risk of bias evaluations will be used to tier studies based on the risk of bias ratings for
10	the individual questions. Data from studies with low risk of bias ratings on many
11	elements will be considered "low risk of bias studies," whereas data from studies with
12	high risk of bias on many elements will be considered "high risk of bias studies."
13	Although "high risk of bias" studies will not have data extracted, these studies will be
14	considered supporting evidence for hazard identification. Data with "low risk of bias"
15	will be extracted and considered principal evidence for hazard identification.

16 Risk of bias determinations will be made using a modified version of the draft OHAT 17 approach (NTP, 2013). In the modified OHAT approach, individual studies will be 18 evaluated using a series of questions. Each question will be scored using a 4- point scale 19 (definitely low bias, probably low bias, probably high bias, and definitely high bias), such 20 that each individual study will have a rating for each of the 15 risk of bias questions. The 21 modified OHAT approach will not produce an "overall" risk of bias rating for each study. 22 The evaluation strategy for setting tiers will be unique depending upon the available 23 database; however, all epidemiologic studies can be evaluated using a single strategy 24 because the same risk of bias questions are applied across all studies. Similarly, all 25 animal toxicology studies can be evaluated using a single strategy.

1.5.5.3.1 Risk of Bias Tiering for Epidemiologic Studies

26The evaluation strategy for tiering epidemiologic studies based on risk of bias outlined27here is specific for inorganic arsenic. The evaluation strategy for inorganic arsenic is28intended to be inclusive; therefore, the evaluation strategy for tiering studies based on

1	risk of bias will focus on four elements or risk of bias questions. These four components
2	will be:
3 4	 confidence in the observed association based on a study design allowing for evaluation of association between exposure and outcome
5	• confidence in the exposure characterization
6	• confidence in the outcome assessment
7	• confidence that there were no other threats to internal validity of the study
8	Of the 15 risk of bias questions evaluated, six were selected as most informative to
9	address potential risk of bias of the available data. The six questions that will be used for
10	tiering epidemiologic studies based on the risk of bias are shown below in Table 1-8.
11	Based upon the risk of bias ratings for these questions, data will be considered either
12	"low risk of bias" and used for hazard identification or "high risk of bias" and used to
13	support hazard identification conclusions. Potential scenarios for responses to the six
14	questions located in column 1 result in a determination for risk of bias in the last row
15	(Tiering data) of Table 1-8.

Table 1-8	Determining data tiers using risk of bias evaluations
-----------	---

OHAT Risk of Bias Questions		Risk of bias ratings							
Were the comparison groups appropriate? (Confidence in observed association)	++ or +	Any of the six questions is a	Any	Two of the three questions are –	_	Three of the other four questions are –	No more than one of the other five questions is a –	++ or +	
Did the study design or analysis account for important confounding and modifying variables? (Confidence in observed association)	++ or +	Any of the six questions is a	Any	Two of the three questions are –	_	Three of the other four questions are –	No more than one of the other five questions is –	++ or +	

OHAT Risk of Bias Questions		Risk of bias ratings							
Did researchers adjust or control for other exposures that are anticipated to bias results? (Confidence in observed association)	++ or +	Any of the six questions is a	Any	Two of the three questions are –	_	Three of the other four questions are –	No more than one of the other five questions is –	++ or +	
Can we be confident in the exposure characterization? (Confidence in exposure characterization)	++ or +	Any of the six questions is a	_	++ or +	_	-	-	-	
Can we be confident in the outcome assessment? (Confidence in outcome assessment)	++ or +	Any of the six questions is a	_	++ or +	_	++ or +	No more than one of the other five questions is –	++ or +	
Were there no other potential threats to internal validity (e.g., statistical methods were appropriate)? (Other Threats to <i>Internal Validity</i>)	++ or+	Any of the six questions is a	-	-	Any	Three of the other four questions are –	No more than one of the other five questions is –	++ or +	

OHAT Risk of Bias Questions					Risk of	bias ratings		
Additional considerations							If one of those questions is unintended exposure and the study is an occupational setting, then study would be further considered for data extraction. If exposure characterization received a – because the study did not measure arsenic then low risk of bias	If exposure characterization received a – because the study did not measure arsenic then the study would be further considered for data extraction.
Tiering data	Low risk of bias	High Risk of Bias	High Risk of Bias	High Risk of Bias	High Risk of Bias	High Risk of Bias	Low risk of bias	Low risk of bias

1.5.5.3.2 Risk of Bias Tiering for Animal Toxicology Studies

1	The evaluation strategy for tiering animal toxicology studies based on risk of bias
2	outlined here is specific for inorganic arsenic. The evaluation strategy for inorganic
3	arsenic is intended to be inclusive; therefore, the evaluation strategy for tiering studies
4	based on risk of bias will focus on two elements of risk of bias questions. These two
5	components will be:
6	• confidence in the exposure characterization
7	confidence in the outcome assessment
8	Of the 15 risk of bias questions evaluated, two were selected as most helpful to address
9	potential risk of bias in the available data. The two risk of bias questions that will be used
10	for tiering studies based on the risk of bias are Question 12 and Question 13 (see Table
11	1-7). Based upon the risk of bias ratings for these questions, data will be considered
12	either "low risk of bias" and used for hazard identification or "high risk of bias" and used

1	to support hazard identification conclusions. The following decision criteria were used to
2	distinguish studies based upon risk of bias for the animal toxicology data:
3 4 5 6	• Studies receiving ratings of either <i>definitely</i> or <i>probably low risk of bias</i> (i.e., + or ++) for Question 13 <i>and also</i> receiving the same ratings (i.e., + or ++) for at least half of the remaining questions were included as primary evidence for a given health effect.
7 8 9 10 11	 Studies receiving ratings of either <i>definitely</i> or <i>probably high risk of bias</i> (i.e., - or -) for Question 13 <i>and also</i> receiving ratings of either <i>definitely</i> or <i>probably high risk of bias</i> (i.e., - or -) for at least half of the remaining questions were judged to pose a high potential risk of bias. These studies were set aside to be reviewed after all other literature.
12 13	• Any studies receiving a rating of <i>definitely high risk of bias</i> (i.e.,) for Question 12 were set aside for additional review.
14 15	• Studies that did not meet any of the above criteria were identified to be included as supporting evidence for a given health effect.
16	All animal studies identified as primary evidence for hazard identification based on the
17	risk of bias evaluation were included in the evidence tables for arsenic.

1.5.5.4 Approaches to Endpoint Considerations – Study Evaluation

18	Risk of bias evaluations will be used to assess internal validity or how credible are the
19	study findings based on study design and conduct. Risk of bias ratings will also be used
20	to tier studies for use later in the evaluation. Individual studies are considered within the
21	context of the full body of evidence for hazard identification, with more weight given to
22	stronger studies with relatively low risk of bias. Studies with high risk of bias ratings on
23	many questions will be considered "high risk of bias" studies and may be used to support
24	findings from studies with relatively low risk of bias, but will not have data extracted.
25	Studies with low risk of bias ratings will be considered "low risk of bias" studies and
26	considered the principal data for hazard identification. Data from low risk of bias studies
27	will be extracted and presented in evidence tables. Evidence tables will present data from
28	studies related to a specific outcome or endpoint of toxicity. At a minimum, these
29	evidence tables will include the relevant information for comparing key features such as
30	study design, exposure metrics, and dose-response information.
31	Evidence tables will serve as an additional method for presenting and evaluating whether
32	the data are fit-for-purpose (i.e., informing hazard identification for inorganic arsenic).
33	For each health effect domain, a series of specific questions or criteria will be developed
34	to help inform the fit-for-purpose, based upon NRC recommendations (NRC, 2013).
35	Criteria specific for each health effect domain are needed because experimental design
36	considerations or data analysis techniques may have a greater impact on a particular

1 health effect domain. For instance, a litter design may be important for developmental 2 toxicity studies, but not as important for chronic bioassays. In addition, these specific 3 criteria may focus the hazard evaluation to particular dose ranges or populations for 4 particular health effects. 5 The criteria for these endpoint-specific evaluations will be described for each individual 6 health effect in the hazard identification syntheses. Although, EPA is proposing to 7 modify the OHAT approach (NTP, 2013) by evaluating fit-for-purpose after the risk of 8 bias evaluation, because the use of endpoint or outcome specific criteria is considered 9 critical for fit-for-purpose evaluations. The hazard identification syntheses shall evaluate 10 the available data on individual endpoints associated with exposure to inorganic arsenic,

including data presented in evidence tables. Where possible, meta-analyses for hazard
 identification will be performed and discussed in these synthesis sections.

1.5.5.5 Approaches to Endpoint Considerations – Causal Determination for Hazard Identification

- 13 The hazard identification syntheses will draw conclusions on the relationship between 14 inorganic arsenic exposure and individual human health effects, using a causality 15 framework. Causality will be determined across a range of inorganic arsenic exposures 16 using a five-level hierarchy (see Table 1-5). The weight of evidence evaluation will be 17 based on the evaluation and integration of health effects, along with the characterization 18 of evidence upon which the causal determination is based. Aspects of an association that 19 suggest causality are drawn from Hill (1965), elaborated by Rothman and Greenland 20 (1998), and referred to in other risk assessment documents (IOM, 2008; IARC, 2006; 21 U.S. EPA, 2005; HHS, 2004). These aspects are described below. Recommendations 22 from the upcoming NRC IRIS review to evaluate evidence will be also be considered.
- 23Greater strength of association lends greater confidence that the association is not due to24chance or bias. Strength encompasses not only magnitude of the association, but25statistical confidence in effect measure estimates. Higher precision, as reflected by26narrow confidence bounds or smaller standard errors, also adds confidence in the27observed association.
- 28 Consistency of the association across studies is another important consideration for 29 causal determination. Observing an association in different study types, study 30 populations, and exposure scenarios makes it less likely that the association is due to 31 confounding or other factors specific to a given study, or is confined to a specific 32 susceptible population. Characterizations of consistency should distinguish between 33 heterogeneity of findings which may be explained (e.g., due to differences in populations,

- exposure measures, ranges of exposures, potential co-exposures, and other factors
 specific to the exposure and health outcomes under evaluation) and unexplained
 variability suggesting potentially spurious findings.
- 4 Specificity is established when a single cause causes a specific effect. When established, 5 specificity may lend greater confidence in an association; however, the absence of 6 specificity should not detract from an association. For example, many environmental 7 exposures may have carcinogenic action, but all contribute to a single health outcome. 8 Conversely, a single exposure may be linked to a range of health outcomes. Therefore, 9 evaluation of specificity should be considered in context with other criteria when 10 determining causal relationships.
- 11Temporality is necessary for an association to be causal. The exposure must precede the12health outcome. In terms of epidemiologic studies, temporality is often cited as a main13weakness of cross-sectional study designs. However, in evaluating a body of evidence,14other study designs which do inform temporality can lend strength to the group of studies15as a whole.
- 16 The exposure-response relationship is another aspect which lends confidence to an 17 observed association. Observing incremental changes in the risk of a health outcome 18 which correspond to incremental changes in the exposure of interest is an argument 19 against a spurious association. In evaluating a body of epidemiologic studies, it may be 20 that any one study only includes a portion of the range of exposure. Piecing together 21 evidence from multiple studies may yield a fuller understanding of the response and the 22 shape of the exposure-response curve over the full range of exposures. Similarly, an 23 observed lack of response in any one study does not imply a lack of an association 24 between exposure and a health outcome.
- 25 Biologic plausibility, coherence and analogy are addressed when weighing the totality of 26 evidence including human, animal and mode of action. Generally, the association 27 between exposure and a health outcome should be consistent with known scientific 28 principles or other existing information from epidemiology, toxicology, clinical 29 medicine, or other disciplines. A difficulty in applying these aspects is the reliance on 30 current information, or the 'state of the science'. Associations in the epidemiologic 31 literature may be observed well in advance of experiments being performed or insight 32 into mechanism or mode of action, but confidence that an association exists is 33 strengthened by these aspects.
- 34The final aspect is the existence of natural experiments, occurring when environmental35conditions change in such a way as to mimic a controlled experiment or randomized trial,36such as a change which reduces exposure. When change in exposure is followed by

changes in the risk of a health outcome of interest, this result provides greater confidence that an association exists.

1

2

- In evaluating epidemiologic studies, consideration of many study design factors and issues must be taken into account to properly inform their interpretation and determine whether observed associations are likely to represent the truth or if there are reasonable alternative explanations (e.g. biases or other threats to internal validity). Such alternative explanations include "reverse causality" where the health outcome precedes exposures, chance, bias (selection bias and information bias) and confounding. These alternatives are considered in the evaluation of the aspects of causality and of the evidence as a whole.
- 10 Temporality is an essential aspect of causality and ensures that "reverse causation" is 11 unlikely. Chance can always be a potential explanation for the results in any collection of 12 studies but is less likely as more studies are accrued that have similar observations across 13 different settings, study designs and populations. Selection bias may occur when study 14 groups (e.g., exposed and unexposed, cases and controls) are not sufficiently comparable. 15 Selection bias may alter epidemiologic findings when participation or follow-up rates are 16 related to the probability of exposure and to the outcome of interest. Selection bias can 17 lead to either an overestimate or underestimate of risk, and the potential direction and 18 size of the bias must be considered when deciding whether individual studies are given 19 more weight or less weight for a hazard evaluation. Studies where selection bias is less of 20 a concern are typically given more weight.
- 21 The potential effects of measurement error can lead to information bias. One example is 22 the uncertainty associated with using surrogate exposure metrics to represent the actual 23 exposure of an individual or population. This exposure measurement error can be an 24 important contributor to variability in epidemiologic study results. Exposure 25 measurement error can lead to misclassification that under- or over-estimates 26 epidemiologic associations between exposures and health outcomes, distort exposure-27 response relationships and widen confidence intervals around effect estimates (i.e. 28 decrease precision). There are several components that contribute to exposure 29 measurement error in epidemiologic studies, including the difference between true and 30 measured concentrations and the use of average population exposure rather than 31 individual exposure estimates. The importance of exposure misclassification varies with 32 study design and is dependent on the spatial and temporal aspects of the available data. 33 For a given set of epidemiologic studies informing a hazard evaluation, results from 34 studies with more accurate exposure estimates (minimizing exposure misclassification) 35 are given more weight, barring other serious design limitations (e.g., selection bias). 36 Generally, exposure misclassification, when nondifferential, results in a bias toward the

- 1 null and is a potential explanation for relatively small effect estimates or for variability in 2 results across studies with different degrees of exposure misclassification. 3 Confounding is a type of bias in which the apparent effect of the exposure is distorted 4 because the effect of an extraneous factor is mistaken for or mixed with the actual 5 exposure effect (Rothman and Greenland, 1998). Scientific judgment is needed to 6 evaluate the likely sources and extent of confounding, together with consideration of how 7 well study designs, results, and analyses address potential confounders. The ability to 8 statistically adjust for confounding in an epidemiologic study is dependent on the ability 9 to identify and measure potential confounders. Consistency in reported effect estimates 10 across multiple studies, conducted in various settings using different populations or 11 exposures, can increase confidence that unmeasured confounding is an unlikely 12 alternative explanation for the observed associations. Such consistency also reduces the 13 likelihood of chance as an alternative explanation through the accumulation of a larger 14 body of similar evidence. The observations of exposure-response trends across different 15 studies similarly reduce the likelihood that chance, confounding, or other biases can 16 explain the observed association. Studies in which confounding is a minimal concern are 17 typically given more weight. 18 Although these aspects provide a framework for assessing the evidence, they should not 19 be considered as a simple formula of evidence leading to conclusions about causality 20 (Hill, 1965). In particular, not meeting one or more of the aspects does not automatically 21 preclude a determination of causality. Rather, these aspects are taken into account with
- 22the goal of producing an objective appraisal of the evidence, which includes weighing23alternative explanations. Scientific judgment is needed to evaluate individual studies and24to weigh the overall body of evidence.

1.5.5.6 Approaches to Endpoint Considerations – Evaluation of Toxicological and Mode of Action Information for Hazard Identification

- 25A causal determination for hazard identification may be based entirely on human26evidence; however, evidence from animal and mode of action studies can influence the27causal determination. Therefore, toxicological and mechanistic data will be considered28for hazard identification.
- Animal studies for hazard identification will be identified by screening the health effect cluster from the comprehensive literature search product, as well as by primary screening of the literature search updates. Toxicological data will be evaluated using the modified approach for risk of bias based upon the draft OHAT approach [(NTP, 2013); see Section 5.5.2]. Similar to the epidemiologic studies, risk of bias evaluations will not be used to

1	exclude studies, rather, these evaluations will be used to inform risk of bias and to tier
2	studies based on risk of bias. Those studies with high risk of bias for multiple elements
3	will be considered supporting evidence and studies with low risk of bias will be
4	considered the principal data for hazard identification. Toxicological data with low risk
5	of bias will be presented for comparison with epidemiologic data in evidence tables. The
6	evidence tables shall contain, at a minimum, relevant information for comparing key
7	features such as study design, sample size, and dose-response information.
8	Mechanistic data will be identified through natural language processing based on
9	previous human health assessments of inorganic arsenic, as well as focused literature
10	searches. For hazard identification, human relevance will be informed by mechanistic
11	data. Mechanistic data will be organized into a qualitative mode of action for each health
12	endpoint. Qualitative mode of action analyses will provide sufficient detail to inform the
13	causal determination for each health effect. Qualitative mode of action analyses will be
14	organized based upon an adverse outcome pathway, but are not intended to inform dose-
15	response analyses. Health effects reported in epidemiologic studies with no known mode
16	of action will be considered relevant to humans. Similarly, if mechanistic data are
17	insufficient to indicate a mode of action is not relevant to humans, effects observed in
18	animal studies will be considered relevant to humans.

1.5.5.7 Supplementary Materials Related to Endpoints

19	Beyond the overview of the literature search product described in the toxicological
20	review, EPA will generate additional materials during the literature search process. One
21	of these products will be a literature search strategy document that provides additional
22	details on the identification and evaluation of literature for hazard identification. This
23	literature search strategy document will describe the identification of references, the use
24	of natural language processing to group studies, and the categorization of references by
25	title, abstract, and/or full text review.
26	Hazard identification summary tables will be provided as supplementary material for
27	endpoint considerations. Hazard identification summary tables provide an overview of
28	the types and numbers of inorganic arsenic studies available for each health effect
29	category. Specific outcomes as reported in the studies are characterized by health effect
30	category, and cancer and non-cancer effects are considered together in the appropriate

31 system. These hazard identification summary tables provide a synopsis of the data
32 considered for hazard identification in the toxicological review.
33 EPA will develop qualitative hypotheses summaries as a starting point for mode of action
34 analyses. These qualitative mode of action hypotheses summaries will briefly present the

1	available mechanistic data for several potential modes of action of inorganic arsenic.
2	Potential modes of action may include, but are not limited to, apoptosis and cellular
3	proliferation, activation of reactive oxygen species, and changes in gene expression
4	and/or regulation. In addition, tables will be prepared summarizing the available evidence
5	considered during qualitative evaluation of potential modes of action for inorganic
6	arsenic. These summary tables shall be updated as new data become available. The data
7	used to create these summary tables shall be organized and maintained on EPA's HERO
8	database (<u>http://hero.epa.gov/</u>).
9	The NRC recommended supporting the mode of action analyses for inorganic arsenic-
10	related health effects with microarray data. Available microarray data on inorganic
11	arsenic will be evaluated using the Systematic Omics Analysis Review (SOAR) tool
12	(Mcconnell, 2013). The SOAR evaluation shall be used as guidance for determining if
13	the data are appropriate for consideration in the toxicological review. Microarray
14	evidence considered in the toxicological review will be summarized in tables. At a
15	minimum, these tables should include the relevant bibliographic information, description
16	of study design/quality, SOAR scores, and dose-response information. These tables shall
17	be updated as new data become available. The data used to create these evidence tables
18	shall be organized and maintained on EPA's HERO database (http://hero.epa.gov/).

1.5.6 Approaches to Risk Metric Considerations

19	Risk metrics are measures by which effects of inorganic arsenic exposure are quantified.
20	Dose-response analyses will be developed for cancer and noncancer health endpoints for
21	which inorganic arsenic is "causal" or "likely causal." Mechanistic information and
22	susceptibility will be evaluated for the potential to inform dose-response analyses.

1.5.6.1 Approaches to Risk Metric Considerations – Data Selection for Dose-Response Analyses

23	Dose-response analyses describe how the likelihood and severity of adverse health effects
24	are related to the amount and condition of exposure. For inorganic arsenic, dose-response
25	analyses will be performed for health effects for which inorganic arsenic is "causal" or
26	"likely causal." The causal determinations required risk of bias and fit-for-purpose
27	evaluations of the available literature for hazard identification. Similarly, these
28	evaluations will determine which data are used for dose-response analyses. These fit-for-
29	purpose criteria will likely be dependent upon the available data for each health effect.

1	Generally, it is anticipated that dose-response analyses for these health effects will be
2	performed using epidemiologic data. Animal toxicology or in vitro data will provide a
3	mechanistic understanding and interpretation of low dose effects observed in
4	epidemiologic studies. When possible, dose-response analyses will be performed in the
5	range of epidemiologic observations. Therefore, studies examining low-to-moderate
6	levels of inorganic arsenic exposure (i.e., <100 µg/L arsenic in drinking water or
7	comparable equivalent) will be prioritized for dose-response analyses. Furthermore,
8	studies characterizing exposure in low-to-moderate range measuring arsenic-exposure
9	biomarkers will be given preference over studies characterizing only water exposure at
10	moderate-to-high arsenic levels. Other factors influencing selection of studies for dose-
11	response analyses may include number of subjects, methods of endpoint assessment,
12	controlling for confounders, and exposure misclassification.

	1.5.6.2	Approaches to Risk Metric Considerations – Variability and Uncertainty Analysis
3		Uncertainty and variability represent important components that have been considered to

13	Uncertainty and variability represent important components that have been considered to
14	a limited extent in human health assessment. Uncertainty represents unavailable or
15	incomplete information on a specific variable for which the impact on human health
16	toxicity could be described in quantitative analyses if the variable was fully
17	characterized. Variability represents the diversity or heterogeneity of a factor that can
18	impact the response within an individual or across a population. With respect to
19	variability, there are many factors that play a role in determining an individual's risk
20	from exposure, including concurrent background exposures to other chemicals, and the
21	individual's biologic susceptibility due to genetic, lifestyle, health and other factors. In
22	turn, population responses to chemical exposures depend on the distribution of these
23	varying individual determinants in the population. The toxicological review of inorganic
24	arsenic will use mechanistic data to inform the variability and uncertainty
25	characterizations.

1.5.6.2.1 Adverse Outcome Pathway Analysis

26	Dose-response analyses for causal or likely causal cancer and noncancer endpoints will
27	be informed by mechanistic information. Specifically, mechanistic information will be
28	used to inform variability and uncertainty in the dose-response analyses. In addition,
29	mechanistic information could inform interpretation of low dose effects of inorganic
30	arsenic. Mechanistic information for each endpoint will be organized into adverse
31	outcome pathways (see Figure 1-2). Adverse outcome pathways characterize existing
32	scientific information between a molecular initiating event and an adverse outcome for

- 1individual and population level responses. The adverse outcome pathway framework will2not displace the mode of action framework defined by the Cancer Guidelines (U.S. EPA,32005), but be inclusive of mode of action analyses.
- 4 The extent to which an adverse outcome pathway can inform dose-response analyses is 5 dependent upon the available mechanistic data. Data may be insufficient to support an 6 adverse outcome pathway for particular health effects. If the mode of action is unknown, 7 the health effect will be considered relevant to humans. Mechanistic data informing 8 adverse outcome pathways will be identified through natural language processing based 9 on previous human health assessments of inorganic arsenic, as well as focused literature 10 searches. These data will be sorted by health effect and organized into the levels 11 corresponding to an adverse outcome pathway. Data gaps preventing a complete adverse 12 outcome pathway will be considered sources of uncertainty.

1.5.6.2.2 Susceptibility Analyses

13	The adverse outcome pathway structure will be used to inform variability in the dose-
14	response. An analysis of adverse outcome pathways may be useful in characterizing the
15	potential impact of sources of variability for health effects, such as the increased risk for
16	particular key events or adverse outcomes. One potential source of variability is
17	susceptibility. Using an adverse outcome pathway framework, the potential impacts of
18	individual-level factors (e.g., sex, genetic polymorphisms, nutritional status, and cigarette
19	smoking status) and life stages (e.g., in utero and childhood) on inorganic arsenic health
20	effects will be characterized. To qualitatively or quantitatively evaluate contributions of
21	susceptibility to inorganic arsenic health effects, the susceptibility factors will be linked
22	to adverse outcome pathway(s) for each health effect. Qualitatively or quantitatively,
23	these evaluations for susceptibility will inform the selection of the most appropriate dose-
24	response model for individual and population level responses.

1.5.6.3 Approaches to Risk Metric Considerations – Dose-response Modeling Approaches

After organizing the available mechanistic data into an adverse outcome pathway and characterizing potential susceptibilities, dose-response analyses will be performed on endpoints for which inorganic arsenic is "causal" or "likely causal." Probabilistic methods will be incorporated into the dose-response analyses when the necessary data are available. These probabilistic approaches are meant to characterize the uncertainty and variability in the dose-response analysis, including dose estimation, model selection, and individual and population susceptibility.

These draft development materials are for review purposes only and do not constitute Agency policy.April 20141-64Draft: Do Not Cite or Quote

1	The NRC and others have recommended using novel approaches that result in a
2	probabilistic characterization of risk as a function of dose, while incorporating issues of
3	vulnerability. The use of probabilistic approaches to incorporate information on
4	uncertainty and variability into the derivation of human health toxicity values for cancer
5	and non-cancer endpoints will lead to an improved use of the available scientific
6	information as well as promotion of research to characterize these factors. The
7	toxicological review will qualitatively and/or quantitatively consider uncertainty and
8	variability as separate factors impacting the derivation of human health toxicity values.
9	Probabilistic risk assessment approaches to the dose-response analyses for inorganic
10	arsenic will be incorporated in a tiered manner. Each tier is associated with certain
11	assumptions, such that higher tiers relax or eliminate assumptions made in lower tiers.
12	Approaches described in higher tiers will likely require additional sources of information
13	to define relationships that were fixed by assumption in lower tiers. Consequently, while
14	it may be feasible to perform Tier 1 and Tier 2 analyses for most endpoints, the extent to
15	which a Tier 3 analysis can be performed will be highly dependent on the availability of
16	data for factors that impact inter-individual variability.

1.5.6.3.1 Tier 3 Probabilistic Dose-response Analyses – Inter-Individual Variability

17	In this tier, inter-individual level variability will be characterized when data are available.
18	This approach will evaluate if it is possible to approximate to variability in background
19	parameters via a probability density function, using standard sources of population-level
20	risk data (e.g., CDC disease rate tables, NHANES data, etc.). These analyses will also
21	examine means of integrating distributions of model predictions associated with such an
22	analysis (derived from the distributions of background parameters) with the model-
23	predicted distribution of estimates. For example, through Monte Carlo simulation one
24	might be able to synthesize the variability associated with within-model uncertainty,
25	across-model uncertainty, and inter-individual variability. These analyses may also be
26	used to inform the impacts of susceptibility factors or other co-chemical exposures on the
27	dose-response for inorganic arsenic.

1.5.6.3.2 Tier 2 Probabilistic Dose-response Analyses – Inter-Model and Inter-Study Uncertainty

28The first phase of this tier will involve the implementation of approaches to better29characterize between-model uncertainty for data from a given study.

1	A weighted model-averaging analysis will be implemented similar to the approach
2	described by Wheeler and Bailer (2009). Model weights will be assigned based on
3	individual model fit statistics obtained from the Tier 1 analysis (e.g., Akaike or Bayesian
4	Information Criteria) and biological considerations (e.g., with respect to the likelihood of
5	a flattening at either the low or high end of the dose-response). Sensitivity analyses will
6	be performed to determine the impact of weight assignments and comparisons will be
7	made with individual model results to assess the extent model averaging can reduce
8	uncertainties in the predictions, even for extrapolated levels of interest. Nonparametric
9	approaches will be implemented where possible and Bootstrap-based methods will be
10	applied to the averaged estimates to provide a more-complete characterization of the
11	uncertainty in the risk or dose estimates obtained from the model averaging approach.
12	The product of this Tier 2 analysis will consist of probability distributions for all the
13	estimates of interest, whether from a single model or a model average aggregate. The use
14	of different models will illustrate the magnitude of the impact of model selection (NRC,
15	<u>2013</u>).
16	To address inter-study uncertainty, when the data are available, meta-analyses of study-
17	specific results will be conducted. A non-parametric (spline-based) analysis will be
18	completed and parametric analyses employing the relative risk models from the
10	he states using and used all assessing an analysis has will also be examined. The goal of that

bootstrapping and model averaging approaches will also be examined. The goal of that
examination, using maximum likelihood approaches, will be to further evaluate the
relative merits of those models for risk predictions (especially at extrapolated levels), as
well as to evaluate assumptions about population-to-population variability in model
parameter values (e.g., background rates, and whether they differ).

1.5.6.3.3 Tier 1 Probabilistic Dose-response Analyses – Within-model uncertainty

24 Tier 1 consists of fitting a suite of dose-response relative risk models, selecting the best 25 model in accordance with EPA standard BMD guidance (U.S. EPA, 2012), and making 26 life-table-based predictions of risk. This tier evaluates within-model variability and 27 represents the baseline probabilistic risk assessment approach. Study selection will be 28 focused to facilitate the dose-response analyses, and preference may be given to studies 29 with low-to-moderate exposure levels. To the extent possible, dose or exposure 30 uncertainty will be incorporated via Monte Carlo analysis. One aspect of uncertainty 31 relates to the likelihood that doses derived from drinking water alone do not represent the 32 total inorganic arsenic dose. Consideration will be given to the possibility that 33 background exposure differ across study populations. A consistent exposure metric will 34 be required in order to allow comparisons across studies.

1	Relative risk models will be run on the datasets available. The analysis will generate
2	summaries with respect to model predictions for points of departure (PODs).
3	Consideration will be given to PODs both within and below the range of observations
4	(dovetailing with the Tier 2 analyses described above).

1.5.6.4 Approaches to Risk Metric Considerations - Extrapolation

5	In previous efforts, extrapolations performed for quantitative dose-response analyses
6	have been controversial. This controversy was recognized in the NRC interim report
7	"Critical Aspects of EPA's IRIS Assessment of Inorganic arsenic" (NRC, 2013). To
8	move the protection of public health beyond debates about the shape of the dose-response
9	curve, the NRC recommended using observed data to characterize dose-response
10	relationships. The NRC recommended limited extrapolation using the modeled shape of
11	the dose-response relationship to provide data-informed estimates of the potential dose-
12	response relationship below the range of observation. Further, the NRC recommended
13	characterizing dose-response relationships down to background levels, which the NRC
14	estimated background concentrations of as 1-5 μ g/L inorganic arsenic in urine for the
15	United States populations. The NRC indicated that the risks posed by background
16	concentrations should be characterized to the extent feasible, but that needs of assessing
17	health risks should be facilitated by characterizing the risk down to background
18	concentrations. Extrapolations in the toxicological review of inorganic arsenic will be
19	informed by these recommendations.

1.6 Appendix of Materials for Evaluating Literature

20	
21	

22

23

This appendix provides additional details for the identification of literature as well as the evaluation of risk of bias for epidemiologic and toxicology studies. For additional information, details on the approaches to screening and evaluating the literature, please refer to Section 1.5 – Analysis Plan for the Toxicological Review of Inorganic arsenic.

Primary Screening Category	Study Characteristics	
Hazard identification	Human studies relevant for hazard identification of chronic exposure to inorganic arsenic including meta analyses; animal studies relevant for hazard identification of chronic exposure to inorganic arsenic.	
Episodic exposure/acute exposure	Poisonings or short-term exposures (up to 30 days) unlikely to inform chronic health effects of inorganic arsenic exposure. This category also included case reports and case series as well as medical uses of arsenic. In some of the case series, exposure could be longer than acute or short term, but such studies are categorized here because they are supportive of the health effects of inorganic arsenic but may not be as informative for the hazard identification. If the hazard identification requires further justification, studies in this category can be reviewed at a later date if necessary.	
Physical Chemistry/Engineering	Studies that examine the chemical properties of arsenic or use arsenic for chemical engineering.	
Exposure Assessment	S tudies that only describe the sources/dose of arsenic in the air, water, food, particulate matter, plant/animal life (including feed used for livestock that humans consume), and other media. This includes bioavailability studies for the different media and studies that measured levels in humans (e.g., in nails, urine, blood) but did not evaluate any type of health effect in association with the measurements.	
Non-arsenic	Studies that do not consider arsenic exposure or studies where arsenic was mentioned but was not the primary focus of the publication.	
Non-peer reviewed	Studies that have not undergone peer review (e.g., newspaper articles, abstracts, posters, news and views, opinion papers, editorials, comments and replies to comments).	
Ecology	Studies that describe the impact of arsenic on non- mammalian animal models (e.g., fish) or plant life.	
Review/Risk Assessment/Guidance document	References that provide reviews of the available literature or references that used EPA guidelines to evaluate risk in a certain area based on exposure levels but did not directly evaluate health outcomes.	

Table 1-9	Categories for Primary Literature Screening
-----------	---

Primary Screening Category	Study Characteristics
Susceptibility	Studies in which health effects are evaluated based on factors other than dose (e.g., genetic polymorphisms, susceptibility due to methylation capacity or genetic markers, socio-economic factors, ethnicity). If the study also assessed the effects of inorganic arsenic before assessing the effects of the susceptibility factors, it was considered for the hazard identification.
Mode of Action	Studies that examine the molecular events occurring after inorganic arsenic exposure (e.g., in vitro models, genomics, proteomics).
РВРК/ТК	Papers that examine internal dose metrics, absorption, excretion, distribution, metabolism, etc. (toxicokinetics or TK) or detailed physiologically based pharmacokinetic (PBPK) models that model inorganic arsenic kinetics in humans or animals.
Other	 Additional papers that do not fit in the above categories, including: Public health campaigns/community knowledge, Analytical technique papers that do not include
	information on dose metrics or ADME,Co-exposure studies where inorganic arsenic cannot be separated,
	• Effects of a different compound in reversing the health effects of arsenic,
	• Arsenic bioremediation or removal of arsenic from contaminated locations,
	• Treatment methods for arsenic-induced disease, and
	• Effects on bacteria that are not related to MOA/bacterial tolerance.

Table 1-10Additional Information for Risk of Bias Determinations for
Epidemiological Studies

Risk	of Bias Questions and Rating Guidelines – Epidemiology Studies
1. V	/as administered dose or exposure level adequately randomized?
++	 Human Controlled Trial: There is direct evidence that subjects were allocated to any study group including controls using a method with a random component. Acceptable methods of randomization include: referring to a random number table, using a computer random number generator, coin tossing, shuffling cards or envelopes, throwing dice, or drawing of lots (Higgins et al., 2008). Restricted randomization (e.g., blocked randomization) to ensure particular allocation ratios will be considered low risk of bias. Similarly, stratified randomization and minimization approaches that attempt to minimize imbalance between groups on important factors prognostic factors (e.g., body weight) will be considered acceptable. Assessment-specific Clarification: None.
+	 Human Controlled Trial: There is indirect evidence that subjects were allocated to study groups using a method with a random component (i.e., authors state that allocation was random, without description of the method used) OR it is deemed that allocation without a clearly random component during the study would not appreciably bias results. For example, approaches such as biased coin or urn randomization, replacement randomization, mixed randomization, and maximal randomization may require consultation with a statistician to determine risk of bias rating (Higgins et al., 2008). Assessment-specific Clarification: None.
-	Human Controlled Trial: There is indirect evidence that subjects were allocated to study groups using a method with a non-random component OR there is insufficient information provided about how subjects were allocated to study groups. Non-random allocation methods may be systematic, but have the potential to allow participants or researchers to anticipate the allocation to study groups. Such "quasi-random" methods include alternation, assignment based on date of birth, case record number, or date of presentation to study (<u>Higgins et al., 2008</u>). Assessment-specific Clarification: None.
	Human Controlled Trial: There is direct evidence that subjects were allocated to study groups using a non-random method including judgment of the clinician, preference of the participant, the results of a laboratory test or a series of tests, or availability of the intervention (<u>Higgins et al., 2008</u>). Assessment-specific Clarification: None.

Risk	Risk of Bias Questions and Rating Guidelines – Epidemiology Studies	
2. W	/as allocation to study groups adequately concealed?	
++	 Human Controlled Trial: There is direct evidence that at the time of recruitment the research personnel and subjects did not know what study group subjects were allocated to, and it is unlikely that they could have broken the blinding of allocation until after recruitment was complete and irrevocable. Methods used to ensure allocation concealment include central allocation (including telephone, web-based and pharmacy-controlled randomization); sequentially numbered drug containers of identical appearance; sequentially numbered, opaque, sealed envelopes; or equivalent methods. Assessment-specific Clarification: None. 	
+	Human Controlled Trial: There is indirect evidence that the research personnel and subjects did not know what study group subjects were allocated to OR it is deemed that lack of adequate allocation concealment would not appreciably bias results. Assessment-specific Clarification: None.	
-	 Human Controlled Trial: There is indirect evidence that at the time of recruitment it was possible for the research personnel and subjects to know what study group subjects were allocated to, or it is likely that they could have broken the blinding of allocation before recruitment was complete and irrevocable OR there is insufficient information provided about allocation to study groups. Note: Inadequate methods include using an open random allocation schedule (e.g., a list of random numbers), assignment envelopes used without appropriate safeguards (e.g., if envelopes were unsealed or nonopaque or not sequentially numbered), alternation or rotation; date of birth; case record number; or any other explicitly unconcealed procedure. For example, if the use of assignment envelopes is described, but it remains unclear whether envelopes were sequentially numbered, opaque and sealed. Assessment-specific Clarification: None. 	
	Human Controlled Trial: There is direct evidence that at the time of recruitment it was possible for the research personnel and subjects to know what study group subjects were allocated to, or it is likely that they could have broken the blinding of allocation before recruitment was complete and irrevocable. Assessment-specific Clarification: None.	

Risk	of Bias Questions and Rating Guidelines – Epidemiology Studies
3. W	/ere the comparison groups appropriate?
++	Cohort, Cross-sectional : There is direct evidence that subjects (both exposed and non-exposed) were similar (e.g., recruited from the same eligible population, recruited with the same method of ascertainment using the same inclusion and exclusion criteria, and were of similar age and health status), recruited within the same time frame, and had the similar participation/response rates.
	Case-Control: There is direct evidence that cases and controls were similar (e.g., recruited from the same eligible population including being of similar age, gender, ethnicity, and eligibility criteria other than outcome of interest as appropriate), recruited within the same time frame, and controls are described as having no history of the outcome. Note: A study will be considered low risk of bias if baseline characteristics of groups differed but these differences were considered as potential confounding or stratification variables (see question #4).
	Assessment-specific Clarification: Comparison groups selected adequately. Study provides table of subject characteristics by exposure levels and/or by case status. Cross-sectional studies can be considered low risk of bias if a general table of subject characteristics is provided and analyses are adjusted for confounders.
+	Cohort, Cross-sectional : There is indirect evidence that subjects (both exposed and non-exposed) were similar (e.g., recruited from the same eligible population, recruited with the same method of ascertainment using the same inclusion and exclusion criteria, and were of similar age and health status), recruited within the same time frame, and had the similar participation/response rates OR differences between groups would not appreciably bias results.
	Case-Control: There is indirect evidence that cases and controls were similar (e.g., recruited from the same eligible population, recruited with the same method of ascertainment using the same inclusion and exclusion criteria, and were of similar age), recruited within the same time frame, and controls are described as having no history of the outcome OR differences between cases and controls would not appreciably bias results.
	Assessment-specific Clarification: Recruitment methods stated to be similar, but no table of information or text provided on potential differences in study subjects' characteristics that could bias results, OR no breakdown of subject characteristics by exposure group (or by case status) to display potential differences.
-	Cohort, Cross-sectional : There is indirect evidence that subjects (both exposed and non-exposed) were not similar, recruited within very different time frames, or had the very different participation/response rates OR there is insufficient information provided about the comparison group including a different rate of non-response without an explanation.
	Case-Control: There is direct evidence that controls were drawn from a very dissimilar population than cases or recruited within very different time frames OR there is insufficient information provided about the appropriateness of controls including rate of response reported for cases only.
	Assessment-specific Clarification: None.

	k of Bias Questions and Rating Guidelines – Epidemiology Studies
	Cohort, Cross-sectional : There is direct evidence that subjects (both exposed and non-exposed) were not similar, recruited within very different time frames, or had very different participation/response rates.
	Case-Control: There is direct evidence that controls were drawn from a very dissimilar population than cases or recruited within very different time frames.
	Assessment-specific Clarification: At least one known difference between the groups was not accounted for (e.g., the study authors acknowledged that the groups were different with respect to a variable that is a potential confounder <i>not</i> considered in the analysis), OR r ecruitment methods were very different (e.g., recruitment completed during different time frames, different criteria were used for recruitment).
4. C	bid the study design or analysis account for important confounding and modifying variables?
++	Human Controlled Trial, Cohort, Cross-sectional, Case Series/report: There is direct evidence that appropriate adjustments or explicit considerations were made for primary covariates and confounders in the final analyses through the use of statistical models to reduce research-specific bias including standardization, case matching, adjustment in multivariate model, stratification, propensity scoring, or other methods were appropriately justified. Acceptable consideration of appropriate adjustment factors includes cases when the factor is not included in the final adjustment model because the author conducted analyses that indicated it did not need to be included.
	Case-Control: There is direct evidence that appropriate adjustments were made for primary covariates and confounders in the final analyses through the use of statistical models to reduce research specific bias including standardization, matching of cases and controls, adjustment in multivariate model, stratification, propensity scoring, or other methods were appropriately justified.
	Assessment-specific Clarification: Study adjusted for or addressed important potential confounders. Age, gender, education, and socioeconomic status are potential confounders that need to be addressed and considered in the study design or analyses. In addition, specific important confounders for this assessment depend on the health outcome and include smoking for lung cancer, sun exposure for skin lesions, and alcohol drinking for hepatic outcomes. Other confounders might also be judged important for certain health outcomes. A low risk of bias rating was assigned for this question if potential confounders deemed important were adequately addressed (e.g., distribution of variables was compared between groups, and there was no statistically significant difference).
+	Human Controlled Trial, Cohort, Case-Control, Cross-sectional, Case Series/report: There is indirect evidence that appropriate adjustments were made for most primary covariates and confounders OR it is deemed that not considering or only considering a partial list of covariates or confounders in the final analyses would not appreciably bias results.
	Assessment-specific Clarification: Study adjusted only for some important potential confounders (e.g., sex and age), but it is likely that other confounders were present and not addressed (i.e., minimal number of confounders addressed).

	Human Controlled Trial Cohort Cross sectional Case Series /reports There is indirect evidence
•	Human Controlled Trial, Cohort, Cross-sectional, Case Series/report : There is indirect evidence that the distribution of primary covariates and known confounders differed between the groups and was not appropriately adjusted for in the final analyses OR there is insufficient information provided about the distribution of known confounders.
	Case-Control: There is indirect evidence that the distribution of primary covariates and known confounders differed between cases and controls and was not investigated further OR there is insufficient information provided about the distribution of known confounders in cases and controls.
	Assessment-specific Clarification: Design or analysis did not adjust for important potential confounders. Adjustments were made for some potential confounders, but at least one major confounder was not addressed (e.g., no adjustment for smoking when evaluating lung cancer, no adjustment for sun exposure when evaluating skin cancer).
	Human Controlled Trial, Cohort, Cross-sectional, Case Series/report: There is direct evidence that the distribution of primary covariates and known confounders differed between the groups, confounding was demonstrated, and was not appropriately adjusted for in the final analyses.
	Case-Control: There is direct evidence that the distribution of primary covariates and known confounders differed between cases and controls, confounding was demonstrated, but was not appropriately adjusted for in the final analyses.
	Assessment-specific Clarification: None.
5. D	id researchers adjust or control for other exposures that are anticipated to bias results?
++	Human Controlled Trial: There is direct evidence that other exposures anticipated to bias results were not present or were appropriately adjusted for.
	Cohort, Case- Control, Cross-sectional, Case Series/report : There is direct evidence that other exposures anticipated to bias results were not present or were appropriately adjusted for. For occupational studies or studies of contaminated sites, other chemical exposures known to be associated with those settings were appropriately considered.
	Assessment-specific Clarification: Researchers adjusted for other chemicals or accounted for occupational exposures likely to be associated with the outcome.
+	Human Controlled Trial, Cohort, Case-Control, Cross-sectional, Case Series/report: There is indirect evidence that other co-exposures anticipated to bias results were not present or were appropriately adjusted for OR it is deemed that co-exposures present would not appreciably bias results. Note, as discussed above, this includes insufficient information provided on co-exposures i general population studies.
	Assessment-specific Clarification: No evidence that co-exposures were addressed as confounders, but other specific chemicals or occupational exposures were addressed.

Risk	Risk of Bias Questions and Rating Guidelines – Epidemiology Studies	
-	Human Controlled Trial: There is indirect evidence that the control group may have received the treatment or there was an unbalanced provision of additional co-exposures which were not appropriately adjusted for.	
	Cohort, Cross-sectional, Case Series/report : There is indirect evidence that there was an unbalanced provision of additional co-exposures across the primary study groups, which were not appropriately adjusted for OR there is insufficient information provided about co-exposures in occupational studies or studies of contaminated sites where high exposures to other chemical exposures would have been reasonably anticipated.	
	Case-Control: There is indirect evidence that there was an unbalanced provision of additional co- exposures across cases and controls, which were not appropriately adjusted for OR there is insufficient information provided about co-exposures in occupational studies or studies of contaminated sites where high exposures to other chemical exposures would have been reasonably anticipated.	
	Assessment-specific Clarification: There is evidence that co-exposures might not have been addressed. Examples include a study population with farmers and/or other types of workers but occupational co-exposures (e.g., to pesticides) not addressed; or a study with known co-exposures, but the relevance of the co-exposure to inorganic arsenic effects is unknown, or it is not clear if other compounds were adjusted for in the analyses.	
	Human Controlled Trial: There is direct evidence that the control group received the treatment or there was an unbalanced provision of additional co-exposures which were not appropriately adjusted for.	
	Cohort, Cross-sectional, Case Series/report : There is direct evidence that there was an unbalanced provision of additional co-exposures across the primary study groups, which were not appropriately adjusted for.	
	Case-Control: There is direct evidence that there was an unbalanced provision of additional co- exposures across cases and controls, which were not appropriately adjusted for.	
	Assessment-specific Clarification: Known differential exposure to other chemical/pollutant also associated with the health outcome of interest occurred with inorganic arsenic, and exposure was not addressed by study authors. An example is a study of copper smelter workers where the study authors either (a) list other chemicals likely to be associated with the health outcome that the subjects were exposed to, or (b) provide levels of the other compounds, AND there were statistically significant differences related to the inorganic arsenic exposure that were not addressed. Such differences might have resulted from differential exposure to another compound or inorganic arsenic; thus, it cannot be determined which exposure impacted the results.	
6. W	ere experimental conditions identical across study groups?	
NA	NA	

Risk	Risk of Bias Questions and Rating Guidelines – Epidemiology Studies	
7. D	id researchers adhere to the study protocol?	
++	 Human Controlled Trial, Cohort, Case-Control, Cross-sectional, Case Series/report: There is direct evidence that there were no deviations from the protocol (i.e., the study report explicitly provides this level of detail). Assessment-specific Clarification: None. 	
+	Human Controlled Trial, Cohort, Case-Control, Cross-sectional, Case Series/report: There is indirect evidence that there were no deviations from the protocol (i.e., authors did not report any deviations) OR deviations from the protocol are described and it is deemed that they would not appreciably bias results.	
	Assessment-specific Clarification: Taking into consideration typical reporting practices, it seems unlikely that deviations from the protocol will be explicitly reported in most studies. Thus, unless stated otherwise by the authors (i.e., evidence of deviation is reported), or it is clear from the study report that deviations from the planned approach occurred, assume that no deviations occurred. It is anticipated that this approach will result in a rating of "probably low risk of bias" (+) for most studies. If there are deviations, the rating reflects how the deviations changed direction, magnitude and/or significance of the results.	
-	 Human Controlled Trial, Cohort, Case-Control, Cross-sectional, Case Series/report: There is indirect evidence that there were large deviations from the protocol as outlined in the methods or study report. Assessment-specific Clarification: None. 	
	 Human Controlled Trial, Cohort, Case-Control, Cross-sectional, Case Series/report: There is direct evidence that there were large deviations from the protocol as outlined in the methods or study report. Assessment-specific Clarification: None. 	
8. V	Vere the research personnel and human subjects blinded to the study group during the study?	
++	 Human Controlled Trial: There is direct evidence that the subjects and research personnel were adequately blinded to study group, and it is unlikely that they could have broken the blinding during the study. Methods used to ensure blinding include central allocation, sequentially numbered drug containers of identical appearance; sequentially numbered, opaque, sealed envelopes; or equivalent methods. Assessment-specific Clarification: None. 	
+	Human Controlled Trial: There is indirect evidence that the research personnel and subjects were adequately blinded to study group, and it is unlikely that they could have broken the blinding during the study, OR it is deemed that lack of adequate blinding during the study would not appreciably bias results.	
	Assessment-specific Clarification: None.	

Risk	Risk of Bias Questions and Rating Guidelines – Epidemiology Studies	
-	Human Controlled Trial: There is indirect evidence that it was possible for research personnel or subjects to infer the study group, OR there is insufficient information provided about blinding of study group. Inadequate methods include using an open random allocation schedule (e.g., a list of random numbers), assignment envelopes used without appropriate safeguards (e.g., if envelopes were unsealed or nonopaque or not sequentially numbered), alternation or rotation; date of birth; case record number; or any other explicitly unconcealed procedure. For example, if the use of assignment envelopes is described, but it remains unclear whether envelopes were sequentially numbered, opaque and sealed.	
	Assessment-specific Clarification: None.	
	Human Controlled Trial: There is direct evidence for lack of adequate blinding of the study group including no blinding or incomplete blinding of research personnel and subjects. For some treatments, such as behavioral interventions, allocation to study groups cannot be concealed. Assessment-specific Clarification: None.	

Risk of Bias Questions and Rating	Guidelines – Epidemiology Studies
this of Blas Questions and hading	

9. Were outcome data complete without attrition or exclusion from analysis?

++ Human Controlled Trial: There is direct evidence that there was no loss of subjects during the study and outcome data were complete OR loss of subjects (i.e., incomplete outcome data) was adequately addressed and reasons were documented when human subjects were removed from a study. Review authors should be confident that the participants included in the analysis are exactly those who were randomized into the trial. Acceptable handling of subject attrition includes: very little missing outcome data (less than 10% in each group); reasons for missing subjects unlikely to be related to outcome (for survival data, censoring unlikely to be introducing bias); missing outcome data balanced in numbers across study groups, with similar reasons for missing data across groups OR analyses (such as intention-to-treat analysis) in which missing data have been imputed using appropriate methods (insuring that the characteristics of subjects lost to follow up or with unavailable records are described in an identical way and are not significantly different from those of the study participants). NOTE: participants randomized but subsequently found not to be eligible need not always be considered as having missing outcome data (Higgins et al., 2008). Cohort: There is direct evidence that loss of subjects (i.e., incomplete outcome data) was adequately addressed and reasons were documented when human subjects were removed from a study. Acceptable handling of subject attrition includes: very little missing outcome data; reasons for missing subjects unlikely to be related to outcome (for survival data, censoring unlikely to be introducing bias); missing outcome data balanced in numbers across study groups, with similar reasons for missing data across groups; OR missing data have been imputed using appropriate methods, AND characteristics of subjects lost to follow up or with unavailable records are described in identical way and are not significantly different from those of the study participants. Case-Control, Cross-sectional: There is direct evidence that exclusion of subjects from analyses was adequately addressed, and reasons were documented when subjects were removed from the study or excluded from analyses. Assessment-specific Clarification: There are no reported data lost to attrition, and the numbers in the results tables sum to the total number of subjects, OR less than 10% of data are missing, OR there are some missing outcome data but study report clearly identifies missing data and how it was handled (e.g., loss to follow-up for a cohort study is determined to be minimal if there are some missing data for either the exposure or outcome for certain subjects at a specific time measured and the authors clearly explain what happened to everyone and which results were used

in the analyses).

Risk of Bias Questions and Rating Guidelines – Epidemiology Studies

- + Human Controlled Trial: There is indirect evidence that loss of subjects (i.e., incomplete outcome data) was adequately addressed and reasons were documented when human subjects were removed from a study **OR** it is deemed that the proportion lost to follow-up would not appreciably bias results (less than 20% in each group). This would include reports of no statistical differences in characteristics of subjects lost to follow up or with unavailable records from those of the study participants. Generally, the higher the ratio of participants with missing data to participants with events, the greater potential there is for bias. For studies with a long duration of follow-up, some withdrawals for such reasons are inevitable. **Cohort:** There is indirect evidence that loss of subjects (i.e., incomplete outcome data) was adequately addressed and reasons were documented when human subjects were removed from a study **OR** it is deemed that the proportion lost to follow-up would not appreciably bias results. This would include reports of no statistical differences in characteristics of subjects lost to follow up or with unavailable records from those of the study participants. Generally, the higher the ratio of participants with missing data to participants with events, the greater potential there is for bias. For studies with a long duration of follow-up, some withdrawals for such reasons are inevitable. **Case-Control, Cross-sectional**: There is indirect evidence that exclusion of subjects from analyses was adequately addressed, and reasons were documented when subjects were removed from the study or excluded from analyses. Assessment-specific Clarification: No direct evidence of loss to follow-up or attrition provided. The
 - Assessment-specific Clarification: No direct evidence of loss to follow-up or attrition provided. The tables of results do not include the number of subjects and it is not stated that there was any loss data missing. There appear to be no or very few missing data, **OR** in a cohort study, there is no mention of loss to follow-up.
 - Human Controlled Trial: There is indirect evidence that loss of subjects (i.e., incomplete outcome data) was unacceptably large (greater than 20% in each group) and not adequately addressed OR there is insufficient information provided about numbers of subjects lost to follow-up. Cohort: There is indirect evidence that loss of subjects (i.e., incomplete outcome data) was unacceptably large and not adequately addressed OR there is insufficient information provided about numbers of subjects lost to follow-up.
 - **Case-Control, Cross-sectional**: There is indirect evidence that exclusion of subjects from analyses was not adequately addressed, **OR** there is insufficient information provided about why subjects were removed from the study or excluded from analyses.
 - **Assessment-specific Clarification:** Missing outcome data with no explanation of why data was missing, and it is unclear from the characteristics table or other information provided in the report why the data might be missing.

Risk	Risk of Bias Questions and Rating Guidelines – Epidemiology Studies	
	Human Controlled Trial, Cohort: There is direct evidence that loss of subjects (i.e., incomplete outcome data) was unacceptably large and not adequately addressed. Unacceptable handling of subject attrition includes: reason for missing outcome data likely to be related to true outcome, with either imbalance in numbers or reasons for missing data across study groups; or potentially inappropriate application of imputation.	
	Case-Control, Cross-sectional : There is direct evidence that exclusion of subjects from analyses was not adequately addressed. Unacceptable handling of subject exclusion from analyses includes: reason for exclusion likely to be related to true outcome, with either imbalance in numbers or reasons for exclusion across study groups.	
	Assessment-specific Clarification: The missing outcome data are clearly related to exposure (more missing data for exposed compared to unexposed groups), but the study authors do not address why.	
10.	Were the outcome assessors blinded to study group or exposure level?	
++	Human Controlled Trial: There is direct evidence that the outcome assessors (including study subjects, if outcomes were self-reported) were adequately blinded to the study group, and it is unlikely that they could have broken the blinding prior to reporting outcomes.	
	Cohort, Cross-sectional, Case Series/report : There is direct evidence that the outcome assessors (including study subjects, if outcomes were self-reported) were adequately blinded to the exposure level, and it is unlikely that they could have broken the blinding prior to reporting outcomes.	
	Case-Control: There is direct evidence that the outcome assessors (including study subjects, if outcomes were self-reported) were adequately blinded to the exposure level when reporting outcomes.	
	Assessment-specific Clarification: The study report states that outcome assessors were blinded to subjects' exposure levels, OR in a case-control study, researchers who assigned exposure levels based on drinking water level were blinded to the case/control status of the participant.	

Ris	Risk of Bias Questions and Rating Guidelines – Epidemiology Studies		
+	Human Controlled Trial : There is indirect evidence that the outcome assessors (including study subjects, if outcomes were self-reported) were adequately blinded to the study group, and it is unlikely that they could have broken the blinding prior to reporting outcomes, OR it is deemed that lack of adequate blinding of outcome assessors would not appreciably bias results, which may vary by outcome (i.e., blinding is especially important for subjective measures).		
	Cohort, Cross-sectional, Case Series/report : There is indirect evidence that the outcome assessors were adequately blinded to the exposure level, and it is unlikely that they could have broken the blinding prior to reporting outcomes OR it is deemed that lack of adequate blinding of outcome assessors would not appreciably bias results (including that subjects self-reporting outcomes were likely not aware of reported links between the exposure and outcome lack of blinding is unlikely to bias a particular outcome).		
	Case-Control: There is direct evidence that the outcome assessors were adequately blinded to the exposure level when reporting outcomes OR it is deemed that lack of adequate blinding of outcome assessors would not appreciably bias results (including that subjects self-reporting outcomes were likely not aware of reported links between the exposure and outcome or lack of blinding is unlikely to bias a particular outcome).		
	Assessment-specific Clarification: No direct statement that outcome assessors were blind, but it is likely that they were (e.g., pathologists conducting histopathology on the tissue would most likely be blind to the exposure status), OR outcomes were assessed using an automated instrument, making it unlikely that the results would be biased since automated instrument would not be biased.		
-	Human Controlled Trial: There is indirect evidence that it was possible for outcome assessors (including study subjects if outcomes were self-reported) to infer the study group prior to reporting outcomes, OR there is insufficient information provided about blinding of outcome assessors.		
	Cohort, Cross-sectional, Case Series/report : There is indirect evidence that it was possible for outcome assessors to infer the exposure level prior to reporting outcomes (including that subjects self-reporting outcomes were likely aware of reported links between the exposure and outcome) OR there is insufficient information provided about blinding of outcome assessors.		
	Case-Control: There is indirect evidence that it was possible for outcome assessors to infer the exposure level prior to reporting outcomes (including that subjects self-reporting outcomes were likely aware of reported links between the exposure and outcome) OR there is insufficient information provided about blinding of outcome assessors.		
	Assessment-specific Clarification: Not enough information to determine if outcome assessors were blind to exposure status and possibility exists that they could have knowledge (e.g., it is a cohort and exposure was assessed prior to outcome), OR likely that outcome assessors were aware of exposure, but not necessarily level of exposure (e.g., outcome was assessed in subject's home, which is in either the control village or exposed village, but the study report evaluated different exposure levels in village so that when assessing the outcome, assessors would be aware that subjects were exposed or controls but not exact exposure level).		

Risk	Risk of Bias Questions and Rating Guidelines – Epidemiology Studies		
	Human Controlled Trial: There is direct evidence for lack of adequate blinding of outcome assessors (including study subjects if outcomes were self-reported), including no blinding or incomplete blinding.		
	Cohort, Cross-sectional, Case Series/report : There is direct evidence that outcome assessors were aware of the exposure level prior to reporting outcomes (including that subjects self-reporting outcomes were aware of reported links between the exposure and outcome).		
	Case-Control: There is direct evidence that outcome assessors were aware of the exposure level prior to reporting outcomes (including that subjects self-reporting outcomes were aware of reported links between the exposure and outcome).		
	Assessment-specific Clarification: There is direct evidence that outcome assessor knew exposure status (e.g., same situation as above with outcome assessed in the village, but the report only evaluates exposure as "exposed versus unexposed," with no arsenic levels measured).		
11. V	Vere confounding variables assessed consistently across groups using valid and reliable measures?		
++	Human Controlled Trial, Cohort, Case-Control, Cross-sectional, Case Series/report: There is direct evidence that primary covariates and confounders were assessed using valid and reliable measurements.		
	Assessment-specific Clarification: Methods provide specific details on how confounders were measured (e.g., for body weight, details provided to indicate precision of measurement instrument and, ideally, calibration of instrument). Validated or pretested questionnaires used.		
+	Human Controlled Trial, Cohort, Case-Control, Cross-sectional, Case Series/report: There is indirect evidence primary covariates and confounders were assessed using valid and reliable measurements OR it is deemed that the measures used would not appreciably bias results (i.e., the authors justified the validity of the measures from previously published research).		
	Assessment-specific Clarification: Self-administered questionnaire, OR questionnaire administered by a single interviewer for all subjects (thus eliminating the possibility for interviewer agreement bias), OR methods for assessing confounders were mixed (e.g., some methods well-conducted and consistent, but others may have been obtained from questionnaires not stated to be validated).		
-	Human Controlled Trial, Cohort, Case-Control, Cross-sectional, Case Series/report: There is indirect evidence that primary covariates and confounders were assessed using measurements of unknown validity OR there is insufficient information provided about the measures used.		
	Assessment-specific Clarification: Not enough details were provided on how the confounders were assessed. Questionnaire used and administered by several interviewers with no details on validity/reliability of the questionnaire or on consistency between the interviewers.		
	Human Controlled Trial, Cohort, Case-Control, Cross-sectional, Case Series/report: There is direct evidence that primary covariates and confounders were assessed using non valid measurements.		

Risk of Bias Questions and Rating Guidelines – Epidemiology Studies

12. Can we be confident in the exposure characterization?

++ Human Controlled Trial: There is direct or indirect evidence that the test material is confirmed as \leq 99% pure (or impurities have been characterized and not considered to be of serious concern). and that the concentration, stability, and homogeneity of stock material and formulation have been verified as appropriate (Note: < 99% purity value is considered achievable based on current advertised purity from Sigma-Aldrich); AND FOR INTERNAL DOSIMETRY STUDIES there is direct evidence that most data points for the chemical are *above* the level of quantitation (LOQ) for the assay; AND the study utilized spiked samples to confirm assay performance and the stability of the chemical in biological samples was appropriately addressed; AND studies took measures to assess potential contamination that might have occurred during sample collection and analysis, including method blanks. Note: Use of method blanks is necessary to identify potential sources of contamination in blood and urine but cannot rule out all possible sources of contamination. The risk of contamination for blood-based measurements is likely higher than for urinary measurements in part because sterile plastic blood collection containers can increase the number of sources of contamination and because of higher levels of protein and lipid levels in blood versus urine. Preferred practices include (1) measurement of the chemical for blood measurements, and (2) use of isotopically labeled dosing material (e.g., deuterated) to avoid issues of contamination, although we will not "downgrade" if a study did not follow these preferred practices.

Cohort, Case-Control, Cross-sectional, Case Series/report: There is direct evidence that most data points for the chemical are *above* the level of quantitation (LOQ) for the assay; AND the study utilized spiked samples to confirm assay performance and the stability of the chemical in biological samples was appropriately addressed; AND studies took measures to assess potential contamination that might have occurred during sample collection and analysis including method blanks. Note: Use of method blanks is necessary to identify potential sources of contamination in blood and urine but cannot rule out all possible sources of contamination. The risk of contamination for blood-based measurements is likely higher than for urinary measurements in part because sterile plastic blood collection containers can increase the number of sources of contamination and because of higher levels of protein and lipid levels in blood versus urine. Preferred practices include (1) measurement of the chemical for blood measurements, and (2) inclusion of multiple measurements of the chemical because a single sample from an individual does not appear to be strong predictor of a subject's exposure category. Use of a single measurement in large sample size studies such as NHANES is less of an issue because the number of participants offsets potential concern for differential exposure misclassification. We will not downgrade if a study did not follow these preferred practices.

Assessment-specific Clarification: Single spot urine samples are reported for a large number of subjects (over 1,000), **OR** multiple (repeated) spot urine samples were reported. Individual-level drinking water levels (e.g., obtained from household tap or household well, but not village-level well) with methods well-described, including reporting of levels of detection (LODs). Toenail and hair samples were cleaned, **AND** the recovery rate of the method or use of internal standards is reported. More than one arsenic exposure assessment (more than one matrix, and/or more than one measurement) and at least one of them is excellent (e.g., the large HEALS cohort and spot urine spot samples, in addition to village-level water inorganic arsenic measurements) and a correlation reported between the different measurements.

Risk of Bias Questions and Rating Guidelines – Epidemiology Studies

+ Human Controlled Trial: There is direct or indirect evidence that purity was ≤ 98%, (or impurities have been characterized and not considered to be of serious concern i.e., purity was independently confirmed by lab, purity is reported in paper or obtained through author query, or purity not reported but the source is listed and the supplier of the chemical provides documentation of the purity of the chemical; AND FOR INTERNAL DOSIMETRY STUDIES there is indirect evidence that most data points for the chemical are *above* the level of quantitation (LOQ) for the assay, i.e., the central estimate (median, mean, geometric mean) is *above* the LOQ but results for individual data values are not presented or the presentation of variance estimates do not permit assessment of whether most data points are likely *above* the LOQ; AND the study utilized spiked samples to confirm assay performance and the chemical in biological samples was appropriately addressed; AND studies took measures to assess potential contamination that might have occurred during sample collection and analysis including method blanks.

Cohort, Case-Control, Cross-sectional, Case Series/report: There is indirect evidence that most data points for the chemical are *above* the LOQ for the assay, i.e., the central estimate (median, mean, geometric mean) is *above* the LOQ but results for individual data values are not presented or the presentation of variance estimates do not permit assessment of whether most data points are likely *above* the LOQ; **AND** the study utilized spiked samples to confirm assay performance and the stability of the chemical in biological samples has been appropriately addressed; **AND** studies took measures to assess potential contamination that might have occurred during sample collection and analysis including method blanks; OR use of questionnaire items where results of biomonitoring studies support the use of the questionnaire item(s) as an indicator of relative level of exposure; **OR** job description for occupational studies where levels in the work environment or results of biomonitoring studies support the use of job description as an indicator of relative level of exposure.

Assessment-specific Clarification: Single spot urine samples with a moderate number of subjects (i.e., hundreds or more). Adequate measurements and methods, but LODs are not provided. Exposure based on occupational title but supported by some arsenic monitoring (air, urine or other biomarker).

Human Controlled Trial: Neither the source or purity of the chemical was reported in the study and information on purity could not be obtained through author query/vendor documentation; AND FOR INTERNAL DOSIMETRY STUDIES there is direct or indirect evidence that most data points for the chemical are *above* the level of quantitation (LOQ) for the assay **BUT** no steps were taken to assess potential contamination that might have occurred during sample collection and analysis; OR there is indirect or direct evidence that most individual data points for the chemical are **below** the level of quantitation (LOQ) for the assay; **OR** method to measure the chemical used ELISA which is less accepted as providing quantitatively accurate values and because of potential uncharacterized antibody cross-reactivity with conjugates and endogenous components of sample matrices Cohort, Case-Control, Cross-sectional, Case Series/report: There is direct or indirect evidence that most data points for the chemical are *above* the level of quantitation (LOQ) for the assay **BUT** no steps were taken to assess potential contamination that might have occurred during sample collection and analysis; OR there is indirect or direct evidence that most individual data points for the chemical are **below** the level of quantitation (LOQ) for the assay; **OR** method to measure the chemical used ELISA which leads to concern because of uncharacterized antibody cross-reactivity with conjugates and endogenous components of sample matrices; **OR** use of questionnaire items that are not supported by results of biomonitoring studies; **OR** job description for occupational studies that are not supported by information on levels in the work environment or results of biomonitoring studies Assessment-specific Clarification: Exposure based on single spot urine sample for a limited number of subjects (less than 100), OR exposure based on occupational title with no arsenic monitoring, OR cumulative arsenic levels based on self-reported duration/resident history and group well water measurements. Human Controlled Trial: There is indirect or direct evidence that purity was <98%; AND FOR **INTERNAL DOSIMETRY STUDIES** there is direct evidence of uncontrolled contamination. Cohort, Case-Control, Cross-sectional, Case Series/report: There is direct evidence of uncontrolled contamination; **OR** not reporting of methods used to assess exposure and this information could not be obtained through author query; **OR** self-report exposure. Assessment-specific Clarification: No measured arsenic concentrations. Exposure assessed based on presence/absence of skin lesions OR self-reported duration of drinking water or living in a certain area OR Lifetime cumulative arsenic exposure determined using self-reported information on residential history and drinking-water daily consumption rates, and village-level median inorganic arsenic concentration in drinking water.

_	Risk of Bias Questions and Rating Guidelines – Epidemiology Studies 13. Can we be confident in the outcome assessment?	
++	Human Controlled Trial, Cohort: There is direct evidence that the outcome was assessed using well-established methods, the "gold standard" or with validity and reliability >0.70 and subjects had been followed for the same length of time in all study groups. Acceptable assessment methods will depend on the outcome, but examples of such methods may include: objectively measured with diagnostic methods, measured by trained interviewers, obtained from registries.	
	Case-Control: There is direct evidence that the outcome was assessed in cases using well- established methods (the gold standard) and subjects had been followed for the same length of time in all study groups.	
	Cross-sectional, Case Series/report : There is direct evidence that the outcome was assessed using well-established methods (the gold standard).	
	Assessment-specific Clarification: Cancer cases are histologically confirmed, OR data obtained from nationwide registry are accepted as valid and complete (e.g., Taiwan), OR outcome diagnosed by physician, OR outcome obtained from medical record data or validated with such data (if self-reported).	
+	Human Controlled Trial, Cohort: There is indirect evidence that the outcome was assessed using acceptable methods [i.e., deemed valid and reliable but not the gold standard or with validity and reliability ≤ 0.40] and subjects had been followed for the same length of time in all study groups OR it is deemed that the outcome assessment methods used would not appreciably bias results. Acceptable, but not ideal assessment methods will depend on the outcome, but examples of such methods may include proxy reporting of outcomes and mining of data collected for other purposes.	
	Case-Control: There is indirect evidence that the outcome was assessed in cases (i.e., case definition) using acceptable methods and subjects had been followed for the same length of time in all study groups OR it is deemed that the outcome assessment methods used would not appreciably bias results.	
	Cross-sectional, Case Series/report : There is indirect evidence that the outcome was assessed using acceptable methods OR it is deemed that the outcome assessment methods used would not appreciably bias results.	
	Assessment-specific Clarification: Death certificates are used, but there is no statement that they were coded by certified nosologist, OR information on the accuracy/validity/completeness of the death certificates is missing, OR incident cancer cases are not stated to be histologically confirmed, but the study was conducted in a hospital setting (e.g., hospital-based case-control study).	

Risk	Risk of Bias Questions and Rating Guidelines – Epidemiology Studies	
-	Human Controlled Trial, Cohort: There is indirect evidence that the outcome assessment method is an insensitive instrument, the authors did not validate the methods used, or the length of follow up differed by study group OR there is insufficient information provided about validation of outcome assessment method.	
	Case-Control: There is indirect evidence that the outcome was assessed in cases using an insensitive instrument or was not adequately validated OR there is insufficient information provided about how cases were identified.	
	Cross-sectional, Case Series/report : There is indirect evidence that the outcome assessment method is an insensitive instrument or was not adequately validated OR there is insufficient information provided about validation of outcome assessment method.	
	Assessment-specific Clarification: Outcome is self-reported (e.g., "ever been diagnosed by a physician") and not verified by medical records or other means. There is insufficient information on quality of self-report or validation of answers. Outcome is assessed by nurses and there is no information on assessor agreement.	
	Human Controlled Trial, Cohort: There is direct evidence that the outcome assessment method is an insensitive instrument, or the length of follow up differed by study group.	
	Case-Control: There is direct evidence that the outcome was assessed in cases using an insensitive instrument.	
	Cross-sectional, Case Series/report : There is direct evidence that the outcome assessment method is an insensitive instrument.	
	Assessment-specific Clarification: Self-reported outcome when question is not worded "as diagnosed by a physician" and cannot be verified.	
14.	Were all measured outcomes reported?	
++	Human Controlled Trial, Cohort, Case-Control, Cross-sectional, Case Series/report: There is direct evidence that all of the study's measured outcomes (primary and secondary) outlined in the protocol, methods, abstract, and/or introduction (that are relevant for the evaluation) have been reported. This would include outcomes reported with sufficient detail to be included in meta- analysis or fully tabulated during data extraction. Assessment-specific Clarification: None.	
+	Human Controlled Trial, Cohort, Case-Control, Cross-sectional, Case Series/report: There is indirect evidence that all of the study's measured outcomes (primary and secondary) outlined in the protocol, methods, abstract, and/or introduction (that are relevant for the evaluation) have been reported OR analyses that had not been planned at the outset of the study (i.e., retrospective unplanned subgroup analyses) are clearly indicated as such and it is deemed that the omitted analyses were not appropriate and selective reporting would not appreciably bias results. This would include outcomes reported with insufficient detail such as only reporting that results were statistically significant (or not).	
	Assessment-specific Clarification: All outcomes outlined in abstract, introduction, and methods are reported.	

KISI	k of Bias Questions and Rating Guidelines – Epidemiology Studies
-	 Human Controlled Trial, Cohort, Case-Control, Cross-sectional, Case Series/report: There is indirect evidence that all of the study's measured outcomes (primary and secondary) outlined in the protocol, methods, abstract, and/or introduction (that are relevant for the evaluation) have been reported OR there is insufficient information provided about selective outcome reporting. Assessment-specific Clarification: If an outcome mentioned in a part of the study report is obviously missing from the results.
	 Human Controlled Trial, Cohort, Case-Control, Cross-sectional, Case Series/report: There is direct evidence that all of the study's measured outcomes (primary and secondary) outlined in the protocol, methods, abstract, and/or introduction (that are relevant for the evaluation) have not been reported. In addition to not reporting outcomes, this would include reporting outcomes based on composite score without individual outcome components or outcomes reported using measurements, analysis methods or subsets of the data (e.g., subscales) that were not prespecified or reporting outcomes not pre-specified (unless clear justification for their reporting is provided, such as an unexpected effect). Assessment-specific Clarification: None.
	Were there no other potential threats to internal validity (e.g., statistical methods were propriate)?
	On a project specific basis, additional questions for other potential threats to internal validity can be added and applied to study designs as appropriate.
++	Assessment-specific Clarification: Statistical analyses were appropriate and no other threats to internal validity were identified. Study authors might acknowledge limitations, but these are not expected to affect the study's internal validity.
+	Assessment-specific Clarification: There are study limitations likely to bias the results towards or away from the null, but adequate sample size was available in each cell ($n \le 5$), OR sample size is small and acknowledged as a potential limitation by study authors, but significant results were still observed.
+	away from the null, but adequate sample size was available in each cell ($n \le 5$), OR sample size is small and acknowledged as a potential limitation by study authors, but significant results were still

Source: Adapted from NTP (2013)

Table 1-11Additional Information for Risk of Bias Determinations for Animal
Toxicology Studies

Risk	Risk of Bias Questions and Rating Guidelines – Animal Toxicology Studies		
1. W	1. Was administered dose or exposure level adequately randomized?		
++	There is direct evidence that animals were allocated to any study group including controls using a method with a random component. Acceptable methods of randomization include: referring to a random number table, using a computer random number generator, coin tossing, shuffling cards or envelopes, throwing dice, or drawing of lots (Higgins et al., 2008). Restricted randomization (e.g., blocked randomization) to ensure particular allocation ratios will be considered low risk of bias. Similarly, stratified randomization and minimization approaches that attempt to minimize imbalance between groups on important factors prognostic factors (e.g., body weight) will be considered acceptable. This type of approach is used by NTP and included in OECD guidelines for toxicology protocols, i.e., random number generator with body weight as a covariate such that body weight is consistent across study groups. Discrimination criteria applied prior to randomization across study groups (e.g., only female rats displaying normal estrus cycles in the prior 3 months were included; rats were then randomly assigned to study groups using a random number table) will also be considered acceptable. Investigator-selection of animals from a cage is not considered random allocation because animals may not have an equal chance of being selected, e.g., investigator selecting animals. Use of concurrent controls is required as an indication that randomization covered all study groups.		
+	There is indirect evidence that animals were allocated to study groups using a method with a random component (i.e., authors state that allocation was random, without description of the method used) OR it is deemed that allocation without a clearly random component during the study would not appreciably bias results. For example, approaches such as biased coin or urn randomization, replacement randomization, mixed randomization, and maximal randomization may require consultation with a statistician to determine risk-of-bias rating (Higgins et al., 2008). Use of concurrent controls is required as an indication that randomization covered all study groups. Assessment-specific Clarification: None.		
-	There is indirect evidence that animals were allocated to study groups using a method with a non- random component OR there is insufficient information provided about how subjects were allocated to study groups. Non-random allocation methods may be systematic, but have the potential to allow researchers to anticipate the allocation of animals to study groups (Higgins et al., 2008). Such "quasi-random" methods include investigator-selection of animals from a cage, alternation, assignment based on shipment receipt date, date of birth, or animal number. A study reporting lack of concurrent controls is another indication that randomization to all study groups was not conducted.		
	Assessment-specific Clarification: None.		

Risk	of Bias Questions and Rating Guidelines – Animal Toxicology Studies
	There is direct evidence that animals were allocated to study groups using a non-random method including judgment of the investigator, the results of a laboratory test or a series of tests (Higgins et al., 2008). A study reporting lack of concurrent controls is another indication that randomization to all study groups was not conducted.
	Assessment-specific Clarification: None.
2. V	/as allocation to study groups adequately concealed?
++	There is direct evidence that at the time of assigning study groups the research personnel did not know what group animals were allocated to, and it is unlikely that they could have broken the blinding of allocation until after assignment was complete and irrevocable. Methods used to ensure allocation concealment include sequentially numbered treatment containers of identical appearance or equivalent methods. Assessment-specific Clarification: None.
+	There is indirect evidence that at the time of assigning study groups the research personnel did not know what group animals were allocated to OR it is deemed that lack of adequate allocation concealment would not appreciably bias results.
	Assessment-specific Clarification: Rarely reported; risk of bias based on information on randomization unless direct evidence provided in the study. If animals were randomized, it is expected that knowledge of the study groups would not appreciably bias the results unless the randomization method allows for bias.
-	There is indirect evidence that at the time of assigning study groups it was possible for the research personnel to know what group animals were allocated to, or it is likely that they could have broken the blinding of allocation before assignment was complete and irrevocable OR there is insufficient information provided about allocation to study groups. Assessment-specific Clarification: None.
	There is direct evidence that at the time of assigning study groups it was possible for the research personnel to know what group animals were allocated to, or it is likely that they could have broken the blinding of allocation before assignment was complete and irrevocable. Assessment-specific Clarification: None.
3. V	/ere the comparison groups appropriate?
N/A	N/A – only applies to epidemiological studies.
4. D	id the study design or analysis account for important confounding and modifying variables?
++	There is direct evidence that appropriate adjustments were made for body weight, litter size in studies of offspring (especially when the outcome measure is growth-related and assessed prior to weaning) or any other relevant covariates. Assessment-specific Clarification: None.

of Bias Questions and Rating Guidelines – Animal Toxicology Studies
There is indirect evidence that appropriate adjustments were made for body weight, litter size in studies of offspring (especially when the outcome measure is growth-related and assessed prior to weaning), or any other relevant covariates OR it is deemed that not considering or only considering a partial list of covariates or confounders in the final analyses would not appreciably bias results. Assessment-specific Clarification: None.
There is indirect evidence that appropriate adjustments were not made for body weight, litter size in studies of offspring (especially when the outcome measure is growth-related and assessed prior to weaning), or any other relevant covariates OR there is insufficient information provided about analysis of relevant covariates. Assessment-specific Clarification: None.
There is direct evidence that appropriate adjustments were not made for body weight, litter size in studies of offspring (especially when the outcome measure is growth-related and assessed prior to weaning), or any other relevant covariates. Assessment-specific Clarification: None.
d researchers adjust or control for other exposures that are anticipated to bias results?
There is direct evidence that other exposures anticipated to bias results were not present or were appropriately adjusted for. For estrogenic exposures or endpoints anticipated to be affected by estrogenic or endocrine pathways, this would include if animals were fed a phytoestrogen-free or low phytoestrogen diet.
Assessment-specific Clarification: None.
There is indirect evidence that other exposures anticipated to bias results were not present or were appropriately adjusted for OR it is deemed that co-exposures present would not appreciably bias results.
Assessment-specific Clarification: Note that issues related to exposures to compound of interest addressed in question 12 regarding exposure characterization.
There is indirect evidence that the control group may have received the treatment or there was an unbalanced provision of additional co-exposures which were not appropriately adjusted for. For estrogenic exposures or endpoints anticipated to be affected by estrogenic or endocrine pathways, this would include if animals were likely fed a diet that did not minimize or eliminate phytoestroger content (or phytoestrogen content of diet was not reported). Assessment-specific Clarification: None.
There is direct evidence that the control group received the treatment or there was an unbalanced provision of additional co-exposures which were not appropriately adjusted for. For estrogenic exposures or endpoints anticipated to be affected by estrogenic or endocrine pathways, this would include that animals were fed a diet that did not minimize or eliminate phytoestrogen content. Assessment-specific Clarification: None.

Risk	Risk of Bias Questions and Rating Guidelines – Animal Toxicology Studies		
6. Were experimental conditions identical across study groups?			
++	There is direct evidence that non-treatment-related experimental conditions were identical across study groups (i.e., the study report explicitly provides this level of detail) and the same vehicle was used in control and experimental animals.		
	Assessment-specific Clarification: Specific housing conditions reported and appear to be within standard protocol ranges without potential differences between groups		
+	There is indirect evidence that the same vehicle was used in control and experimental animals OR it is deemed that the vehicle used would not appreciably bias results. As described above, identical non-treatment-related experimental conditions are assumed if authors did not report differences in housing or husbandry.		
	Assessment-specific Clarification: None.		
-	There is indirect evidence that the vehicle differed between control and experimental animals OR authors did not report the vehicle used.		
	Assessment-specific Clarification: No concurrent vehicle was used, OR vehicle was different from that used for the treatment group, OR insufficient information to determine type of control used.		
	There is direct evidence from the study report that non-treatment-related experimental conditions were not comparable between study groups or control animals were untreated, or treated with a different vehicle than experimental animals.		
	Assessment-specific Clarification: None.		
7. Di	d researchers adhere to the study protocol?		
++	There is direct evidence that there were no deviations from the protocol (i.e., the study report explicitly provides this level of detail). Assessment-specific Clarification: None.		
+	There is indirect evidence that there were no deviations from the protocol (i.e., authors did not report any deviations) OR deviations from the protocol are described and it is deemed that they would not appreciably bias results. Assessment-specific Clarification: None.		
-	There is indirect evidence that there were large deviations from the protocol as outlined in the methods or study report. Assessment-specific Clarification: None.		
	There is direct evidence that there were large deviations from the protocol as outlined in the methods or study report.		
	methods or study report. Assessment-specific Clarification: None.		

Risl	Risk of Bias Questions and Rating Guidelines – Animal Toxicology Studies		
8. Were the research personnel and human subjects blinded to the study group during the study?			
++	There is direct or indirect evidence that the research personnel were adequately blinded to study group, and it is unlikely that they could have broken the blinding during the study. Methods used to ensure blinding include central allocation, sequentially numbered drug containers of identical appearance; sequentially numbered animal cages; or equivalent methods. Assessment-specific Clarification: None.		
+	Blinding was not reported OR blinding was not possible but research personnel took steps to minimize potential bias, such as randomized necropsy order. Assessment-specific Clarification: None.		
-	There is indirect evidence that the research personnel were not adequately blinded to study group and did not take steps to minimize potential bias. Assessment-specific Clarification: None.		
	There is direct evidence that the research personnel were not adequately blinded to study group and did not take steps to minimize potential bias. Assessment-specific Clarification: None.		
9. V	Vere outcome data complete without attrition or exclusion from analysis?		
++	There is direct evidence that loss of animals was adequately addressed and reasons were documented when animals were removed from a study. Acceptable handling of attrition includes: very little missing outcome data; reasons for missing animals unlikely to be related to outcome (or for survival data, censoring unlikely to be introducing bias); missing outcome data balanced in numbers across study groups, with similar reasons for missing data across groups; missing outcomes is not enough to impact the effect estimate OR missing data have been imputed using appropriate methods (insuring that characteristics of animals are not significantly different from animals retained in the analysis). Assessment-specific Clarification: None.		
+	There is indirect evidence that loss of animals was adequately addressed and reasons were documented when animals were removed from a study OR it is deemed that the proportion of animals lost would not appreciably bias results. This would include reports of no statistical differences in characteristics of animals removed from the study from those remaining in the study. Assessment-specific Clarification: Number of samples for each outcome reported.		
-	There is indirect evidence that loss of animals was unacceptably large and not adequately addressed OR there is insufficient information provided about loss of animals. Assessment-specific Clarification: Number of animals treated not specified; number of samples not specified.		

Risk	of Bias Questions and Rating Guidelines – Animal Toxicology Studies
	There is direct evidence that loss of animals was unacceptably large and not adequately addressed. Unacceptable handling of attrition includes: reason for loss is likely to be related to true outcome, with either imbalance in numbers or reasons for loss across study groups.
	Assessment-specific Clarification: Mortality occurs in enough groups to make majority of data unusable.
10.	Were the outcome assessors blinded to study group or exposure level?
++	There is direct evidence that the outcome assessors were adequately blinded to the study group, and it is unlikely that they could have broken the blinding prior to reporting outcomes.
	Assessment-specific Clarification: None.
+	There is indirect evidence that the outcome assessors were adequately blinded to the study group, and it is unlikely that they could have broken the blinding prior to reporting outcomes OR it is deemed that lack of adequate blinding of outcome assessors would not appreciably bias results, which may vary by outcome (i.e., blinding is especially important for subjective measures). For some outcomes, particularly pathology assessment, outcome assessors are not blind to study group as they require comparison to the control to appropriately judge the outcome, but additional measures such as multiple levels of independent review by trained pathologists can minimize this potential bias.
	Assessment-specific Clarification: Blinding not reported but not expected to bias the results because results obtained from analytical methods or other non-subjective means, OR two different individuals conducted independent analyses. Tests based on timing or counts are considered to be objective as is assessment of presence or absence of developmental malformations.
-	There is indirect evidence that it was possible for outcome assessors to infer the study group prior to reporting outcomes without sufficient quality control measures OR there is insufficient information provided about blinding of outcome assessors.
	Assessment-specific Clarification: Blinding not reported and method of analysis is subjective. For example, behavioral tests can be subjective if assessors not blinded or if includes subjective measures (e.g., response to tail pinch). Assessment of other developmental malformations such as degree of deformity is considered to be subjective.
	There is direct evidence for lack of adequate blinding of outcome assessors, including no blinding or incomplete blinding without quality control measures. Assessment-specific Clarification: None.
11. \	Were confounding variables assessed consistently across groups using valid and reliable measures?
++	There is direct evidence that primary covariates and confounders were assessed using valid and reliable measurements.
	Assessment-specific Clarification: Methods provide specific details on how confounders measured (e.g., details regarding precision and calibration related to measurement of body weight provided). Litter size and sex considered to be observational results and assumed to be recorded accurately.

Risk	of Bias Questions and Rating Guidelines – Animal Toxicology Studies
+	There is indirect evidence primary covariates and confounders were assessed using valid and reliable measurements OR it is deemed that the measures used would not appreciably bias results (i.e., the authors justified the validity of the measures from previously published research).
	Assessment-specific Clarification: Methods for the confounder were not provided (e.g., body weight was measured, but details were not provided); assume confounders consistently assessed unless specifically stated otherwise, OR no confounders assessed and information for body weight or litter size provided in study and reported to be consistently measured.
-	There is indirect evidence that primary covariates and confounders were assessed using measurements of unknown validity OR there is insufficient information provided about the measures used.
	Assessment-specific Clarification: None.
	There is direct evidence that primary covariates and confounders were assessed using non valid measurements.
	Assessment-specific Clarification: None.
N/A	Assessment-specific Clarification: No confounders assessed; rating not applicable.
12. 0	Can we be confident in the exposure characterization?
++	There is direct or indirect evidence that the test material is confirmed as \leq 99% pure (or impurities have been characterized and not considered to be of serious concern), and that the concentration, stability, and homogeneity of stock material and formulation have been verified as appropriate (Note: \leq 99% purity value is considered achievable based on current advertised purity from Sigma-Aldrich); AND the study provides information about consumption through measurement of the dosing medium and dose intake quantity, e.g., feed or water consumption; AND FOR INTERNAL DOSIMETRY STUDIES there is direct evidence that most data points for the chemical are above the level of quantitation (LOQ) for the assay; AND the study utilized spiked samples to confirm assay performance and the stability of the chemical in biological samples was appropriately addressed; AND studies took measures to assess potential contamination that might have occurred during sample collection and analysis including method blanks. Note: Use of method blanks is necessary to identify potential sources of contamination in blood and urine but cannot rule out all possible sources of contamination. The risk of contamination for blood-based measurements is likely higher than for urinary measurements in part because sterile plastic blood collection containers can increase the number of sources of contamination and because of higher levels of protein and lipid levels in blood versus urine. Preferred practices include (1) measurement of the chemical for blood measurements, and (2) use of isotopically labeled dosing material (e.g., deuterated) is ideal to avoid issues of contamination, although we will not "downgrade" if a study did not follow these preferred practices.
	Assessment-specific Clarification: Analytical grade considered to be high purity, OR when substance administered in food or water, homogeneity, stability, and frequency of dose preparation reported; spillage of food and water only considered if specifically noted to be an issue or noted that it was not addressed.

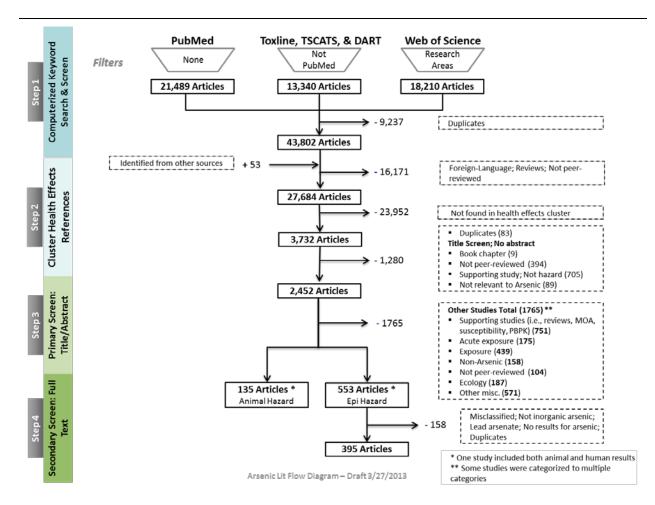
Risk of Bias Questions and Rating Guidelines – Animal Toxicology Studies	
+	There is direct or indirect evidence that purity was ≤ 98% pure (or impurities have been characterized and not considered to be of serious concern),, i.e., purity was independently confirmed by lab, purity is reported in paper or obtained through author query, or purity not reported but the source is listed and the supplier of the chemical provides documentation of the purity of the chemical; BUT the study does not provide information about consumption through measurement of the dosing medium and dose intake quantity, e.g., feed or water consumption; AND FOR INTERNAL DOSIMETRY STUDIES there is indirect evidence that most data points for the chemical are <i>above</i> the level of quantitation (LOQ) for the assay, i.e., the central estimate (median, mean, geometric mean) is <i>above</i> the LOQ but results for individual data values are not presented or the presentation of variance estimates do not permit assessment of whether most data points are likely <i>above</i> the LOQ; AND the study utilized spiked samples to confirm assay performance and the stability of the chemical in biological samples has been appropriately addressed; AND studies took measures to assess potential contamination that might have occurred during sample collection and analysis including method blanks. Assessment-specific Clarification: Purity >95% and methods described and appropriate, OR
	homogeneity and/or stability not reported and there was no evidence that they were a concern, OR substance administered via water or food and study reports animals housed in groups so that individual intake cannot be estimated but individual measures (e.g., serum or tissue levels) reported.
-	Neither the source or purity of the chemical was reported in the study and information on purity could not be obtained through author query/vendor documentation; AND FOR INTERNAL DOSIMETRY STUDIES there is direct or indirect evidence that most data points for the chemical are <i>above</i> the level of quantitation (LOQ) for the assay BUT no steps were taken to assess potential contamination that might have occurred during sample collection and analysis; OR there is indirect or direct evidence that most individual data points for the chemical are <i>below</i> the level of quantitation (LOQ) for the assay; OR method to measure the chemical used ELISA which is less accepted as providing quantitatively accurate values and because of potential uncharacterized antibody cross-reactivity with conjugates and endogenous components of sample matrices
	Assessment-specific Clarification: Spillage of food and water not reported and were noted to be an issue, OR substance administered via water or food and study reports animals housed in groups so that individual intake cannot be estimated.
	There is indirect or direct evidence that purity was <98%; AND FOR INTERNAL DOSIMETRY STUDIES there is direct evidence of uncontrolled contamination. Assessment-specific Clarification: Same criteria, but use a purity cutoff of <95%.
	Assessment specific clarification. Same criteria, but use a punty cutori of \$35%.

Risk	of Bias Questions and Rating Guidelines – Animal Toxicology Studies		
13.	Can we be confident in the outcome assessment?		
++	There is direct evidence that the outcome was assessed using well-established methods (the gold standard) assessed at the same length of time after initial exposure in all study groups. Assessment-specific Clarification: Study report provides specific details on outcome assessment including coefficient of variation, limits of detection, treatment of samples above or below limits of detection (e.g., values below detection imputed with specific value or samples diluted when above a certain range). Histopathology evaluation by pathologist and functional observational battery (FOB) with details reported are considered well-established, valid, and reliable methods.		
+	There is indirect evidence that the outcome was assessed using acceptable methods (i.e., deemed valid and reliable but not the gold standard) assessed at the same length of time after initial exposure in all study groups OR it is deemed that the outcome assessment methods used would not appreciably bias results.		
	Assessment-specific Clarification: Details provided to indicate methods seem reasonable for measuring outcome, OR commercial kit used for evaluation but limits of detection and treatment of samples above and below limits not provided.		
-	There is indirect evidence that the outcome assessment method is an insensitive instrument, the authors did not validate the methods used, or the length of time after initial exposure differed by study group OR there is insufficient information provided about validation of outcome assessment method.		
	Assessment-specific Clarification: Details not provided for methods, OR evaluation of outcome expected to be subjective, OR evaluation method not appropriate, OR steps not taken to ensure outcome or validate method.		
	There is direct evidence that the outcome assessment method is an insensitive instrument or the length of time after initial exposure differed by study group. Assessment-specific Clarification: None.		
14. \	14. Were all measured outcomes reported?		
++	There is direct evidence that all of the study's measured outcomes (primary and secondary) outlined in the protocol, methods, abstract, and/or introduction (that are relevant for the evaluation) have been reported. This would include outcomes reported with sufficient detail to be included in meta-analysis or fully tabulated during data extraction. Assessment-specific Clarification: Details provided for all outcomes either in report or		

Risk	of Bias Questions and Rating Guidelines – Animal Toxicology Studies
+	There is indirect evidence that all of the study's measured outcomes (primary and secondary) outlined in the protocol, methods, abstract, and/or introduction (that are relevant for the evaluation) have been reported OR analyses that had not been planned at the outset of the study (i.e., retrospective unplanned subgroup analyses) are clearly indicated as such and it is deemed that the omitted analyses were not appropriate and selective reporting would not appreciably bias results. This would include outcomes reported with insufficient detail such as only reporting that results were statistically significant (or not). Assessment-specific Clarification: All outcomes reported but data not provided for all outcomes (e.g., statement that results not statistically significant without presentation of results). If histopathology conducted on numerous tissues, analysis of every organ does not need to be reported in results.
-	There is indirect evidence that all of the study's measured outcomes (primary and secondary) outlined in the protocol, methods, abstract, and/or introduction (that are relevant for the evaluation) have been reported OR there is insufficient information provided about selective outcome reporting. Assessment-specific Clarification: Results for some outcomes, other than histopathology results, not reported.
	There is direct evidence that all of the study's measured outcomes (primary and secondary) outlined in the protocol, methods, abstract, and/or introduction (that are relevant for the evaluation) have not been reported. In addition to not reporting outcomes, this would include reporting outcomes based on composite score without individual outcome components or outcomes reported using measurements, analysis methods or subsets of the data (e.g., subscales) that were not pre-specified or reporting outcomes not pre-specified (unless clear justification for their reporting is provided, such as an unexpected effect).
	Vere there no other potential threats to internal validity (e.g., statistical methods were opriate)?
++	On a project specific basis, additional questions for other potential threats to internal validity can be added and applied to study designs as appropriate.
+	Assessment-specific Clarification: Evaluation of appropriateness of statistical analyses and
-	evaluation to determine statistical power (i.e., if number of animals sufficient to detect effect) either based on guidelines or study report of observed statistically significant results.
	:: Adapted from <u>NTP (2013)</u>
200100	

1.7 References for Assessment Development Plan

- ATSDR (Agency for Toxic Substances and Disease Registry). (2007). Toxicological Profile for Arsenic (Update, 2007). (NTIS/03060214_a). Atlanta, Georgia. <u>http://www.atsdr.cdc.gov/toxprofiles/tp2.pdf</u>
- <u>Gentry, PR; Covington, TR; Mann, S; Shipp, AM; Yager, JW; HJ, CI.</u> (2004). Physiologically based pharmacokinetic modeling of arsenic in the mouse. J Toxicol Environ Health A 67: 43-71. <u>http://dx.doi.org/10.1080/15287390490253660</u>
- <u>Health Canada.</u> (2006). Guidelines for Canadian drinking water quality: Guideline technical document Arsenic. Ottawa, Ontario: Water Quality and Health Bureau, Healthy Environments and Consumer Safety Branch, Health Canada. <u>http://www.hc-sc.gc.ca/ewh-semt/alt_formats/hecs-sesc/pdf/pubs/water-eau/arsenic/arseniceng.pdf</u>
- <u>HHS</u> (U.S. Department of Health and Human Services). (2004). The health consequences of smoking: A report of the Surgeon General. Washington, DC. <u>http://www.cdc.gov/tobacco/data_statistics/sgr/2004/complete_report/index.htm</u>
- Higgins, JPT; Green, S; Collaboration, TC. (2008). Cochrane handbook for systematic reviews of interventions version 5.0. 2: The Cochrane Collaboration.
- Hill, AB. (1965). The environment and disease: Association or causation? Proc R Soc Med 58: 295-300.
- <u>IARC</u> (International Agency for Research on Cancer). (2006). Preamble to the IARC monographs. Lyon, France. <u>http://monographs.iarc.fr/ENG/Preamble/</u>
- <u>IARC</u> (International Agency for Research on Cancer). (2009). A review of human carcinogens. Part C: Arsenic, metals, fibres, and dusts. In IARC Monographs on the Evaluation of Carcinogenic Risk to Humans. Lyon, France: World Health Organization; International Agency for Research on Cancer. <u>http://monographs.iarc.fr/ENG/Monographs/vol100C/mono100C-1.pdf</u>
- <u>IOM</u> (Institute of Medicine). (2008). Improving the presumptive disability decision-making process for veterans. In JM Samet; CC Bodurow (Eds.). Washington, DC: National Academies Press. <u>http://www.nap.edu/openbook.php?record_id=11908</u>
- Mcconnell, ER. (2013) Systematic omics analysis review tool to support risk assessment. (Duke University, Durham, NC. Retrieved from http://dukespace.lib.duke.edu/dspace/handle/10161/6699
- <u>NRC</u> (National Research Council). (1999). Arsenic in drinking water. Washington, DC: National Academy Press. <u>http://www.nap.edu/catalog/6444.html</u>
- NRC (National Research Council). (2001). Arsenic in drinking water: 2001 update. Washington, DC: National Academy Press. <u>http://www.nap.edu/openbook.php?record_id=10194&page=R1</u>
- <u>NRC</u> (National Research Council). (2009). Science and decisions: Advancing risk assessment. Washington, DC: National Academies Press. <u>http://www.nap.edu/catalog/12209.html</u>
- <u>NRC</u> (National Research Council). (2011). Review of the Environmental Protection Agency's draft IRIS assessment of formaldehyde. Washington, DC: National Academies Press. <u>http://www.nap.edu/catalog/13142.html</u>
- NRC (National Research Council). (2013). Critical aspects of EPA's IRIS assessment of inorganic arsenic: Interim report. Washington, D.C: The National Academies Press.
- <u>NTP</u> (National Toxicology Program). (2013). Draft OHAT approach for systematic review and evidence integration for literature-based health assessments February 2013. National Institute of Environmental Health Sciences, National Institutes of Health. http://ntp.niehs.nih.gov/ntp/ohat/evaluationprocess/draftohatapproach_february2013.pdf


Rothman, KJ; Greenland, S. (1998). Modern epidemiology (2nd ed.). Philadelphia, PA: Lippincott, Williams, & Wilkins.

- <u>SAB</u> (Science Advisory Board). (2007). Advisory on EPAs assessments of carcinogenic effects of organic and inorganic arsenic: A report of the US EPA Science Advisory Board. (EPA-SAB-07-008). Washington, D.C.: U.S. Environmental Protection Agency. <u>http://cfpub.epa.gov/ncea/iris_drafts/recordisplay.cfm?deid=219111</u>
- <u>SAB</u> (Science Advisory Board). (2011). Review Comments on EPAs Responsiveness to SAB 2007 Recommendations for the Revision of Cancer Assessment of Inorganic arsenic. (EPA-SAB-11-003). Washington, D.C.: U.S. Environmental Protection Agency. <u>http://yosemite.epa.gov/sab/sabproduct.nsf/9FCEE4E20ABD6EB48525784600791AC2/\$File/EPA-SAB-11-003-unsigned.pdf</u>
- U.S. Congress. (2011). Consolidated Appropriations Act, 2012. (Pub. L. No. 112-74; 125 STAT. 786). 112th U.S. Congress. <u>http://www.gpo.gov/fdsys/pkg/PLAW-112pub174/pdf/PLAW-112pub174.pdf</u>
- U.S. EPA (U.S. Environmental Protection Agency). (2005). Guidelines for carcinogen risk assessment. (EPA/630/P-03/001F). Washington, DC: U.S. Environmental Protection Agency, Risk Assessment Forum. http://www.epa.gov/cancerguidelines/
- U.S. EPA (U.S. Environmental Protection Agency). (2006). Revised re-registration eligibility decision document for MSMA, DSMA, CAMA, and cacodylic acid [EPA Report]. (EPA/738-R-06-021). Washington, DC.
- <u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2010). IRIS Toxicological review of inorganic arsenic (cancer) external review draft. (EPA/635/R-10/001). Washington, DC. http://cfpub.epa.gov/ncea/iris_drafts/recordisplay.cfm?deid=219111
- U.S. EPA (U.S. Environmental Protection Agency). (2012). Benchmark dose technical guidance. (EPA/100/R-12/001). Washington, DC: Risk Assessment Forum. http://www.epa.gov/raf/publications/pdfs/benchmark_dose_guidance.pdf
- <u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2013). Integrated science assessment for lead [EPA Report]. (EPA/600/R-10/075F). Research Triangle Park, NC. http://ofmpub.epa.gov/eims/eimscomm.getfile?p_download_id=514513
- Wheeler, M; Bailer, AJ. (2009). Comparing model averaging with other model selection strategies for benchmark dose estimation. Environ Ecol Stat 16: 37-51. <u>http://dx.doi.org/10.1007/s10651-007-0071-7</u>
- <u>WHO</u> (World Health Organization). (2000). Air quality guidelines for Europe (2nd ed.). Copenhagen, Denmark: World Health Organization, Regional Office for Europe. <u>http://www.euro.who.int/en/what-we-do/health-topics/environmental-health/air-quality/publications/pre2009/air-quality-guidelines-for-europe</u>
- WHO (World Health Organization). (2011). Safety evaluation of certain contaminants in food. (WHO Food Additives Series: 63. FAO JECFA Monographs 8). Geneva, Switzerland: prepared by the Seventy-second meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA. http://whqlibdoc.who.int/publications/2011/9789241660631_eng.pdf

2 LITERATURE SEARCH STRATEGY AND SYSTEMATIC REVIEW FOR DEVELOPMENT OF THE TOXICOLOGICAL REVIEW OF INORGANIC ARSENIC

2.1 Overview of Literature Search Strategy

1	This document describes EPA's systematic approach to literature search, screening and
2	evaluation to identify relevant studies for the toxicological review of inorganic arsenic
3	and summarizes the results of application of this approach. The methods that have been
4	applied for inorganic arsenic are based on evolving EPA guidance on the IRIS process
5	and methods for evaluating potential risk of bias proposed by the National Toxicology
6	Program (NTP) at NIEHS. This approach includes the following components:
7	• Computerized keyword search of PubMed, Web of Science, and Toxline using
8	search terms presented here with search updates conducted through December
9	2013;
10	• Health effects cluster determination using natural language processing to group
11	studies based on the similarity of their titles and abstracts and then clustering
12	references around known relevant "seed" studies to identify a subset for further
13	review;
14	• Categorization of references by subject based on manual review of the title and
15	abstract of each, thereby identifying the toxicology and epidemiology studies that
16	support the identification of a human hazard for inorganic arsenic;
17	• Characterization of studies and development of hazard identification tables
18 19	using the previously identified toxicology and epidemiology studies, resulting in an overview of the available hazard identification literature;
20 21	• Evaluation of potential risk of bias of studies, enabling the identification of the literature likely to serve as primary evidence; and
22 23	• Development of evidence tables for each health effect category that summarize the primary evidence available.
23	the primary evidence available.
24	Figure 2-1 below outlines the steps in the literature search and review process leading up
25	to development of the hazard identification tables and figures. The results of the
26	systematic review of the inorganic arsenic literature are summarized as well, including
27	the numbers of references identified and screened.
-	

*Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

Figure 2-1 Literature Flow Diagram

2.2 Computerized Keyword Search

1 The objective of the literature search was to systematically identify and evaluate 2 published literature to consider during development of the toxicological review. To 3 ensure the capture of all of the scientific literature pertinent to assessing the chronic 4 human health effects of exposure to inorganic arsenic, the initial literature search 5 conducted in January 2013 included the PubMed, Web of Science, and Toxline 6 databases. The search strings used for each database are provided in Table 2-1. This 7 initial search resulted in 53,039 references, and after duplicate studies were removed (i.e., 8 studies that appeared in the search results of multiple databases), 43,802 unique

1	references remained. Additional references submitted for consideration by Agency
2	partners and public stakeholders were added to the list of potentially relevant studies.
3	References identified as foreign-language, not peer-reviewed, or review articles were set
4	aside
5	The initial literature search is updated monthly to identify new literature recently
6	published; unique studies are added to the overall literature database. Those studies that
7	are published in English, peer reviewed, and present original research (i.e., not review
8	articles) are carried through the process to determine if they are relevant to the hazard
9	identification for inorganic arsenic. The current appendices include studies identified in
10	the literature search updates conducted through December 2013.

2.3 Health Effects Cluster Determination

11	The subset of unique references in hand after completion of the first step were then
12	clustered into groups on the basis of language similarity using OmniViz reference
13	visualization software. Using natural language processing, the titles and abstracts of the
14	references were grouped based on similarity. To identify references relevant for hazard
15	identification, approximately 900 references were used as "seed" references. "Seed"
16	references are those previously identified by experts as relevant to hazard identification in
17	peer reviewed inorganic arsenic human health risk assessments. Reference clusters
18	containing one or more of these "seed" references were used to create the health effects
19	cluster of 3,732 references. These 3,732 references formed the basis of subsequent
20	screening for relevance for hazard identification.
21	References identified after the initial literature search were screened manually and

21References identified after the initial literature search were screened manually and
clustering was not applied.

Database	Search String
PubMed	("arsenic"[MeSH Terms] OR "arsenic"[All Fields]) OR "7440-38-2"[All Fields] OR "inorganic arsenic"[All Fields] OR "monomethylarsenic"[All Fields] OR "dimethylarsenic"[All Fields] OR "methyl arsenic"[All Fields] OR "monomethylarsonic acid"[All Fields] OR (124[All Fields] AND 58[All Fields] AND 3[All Fields]) OR "monomethylarsonous acid"[All Fields] OR "dimethylarsinic acid"[All Fields] OR "75-60- 5"[All Fields] OR "dimethylarsinous acid"[All Fields] OR "arsenate"[All Fields] OR (12523[All Fields] AND 21[All Fields] AND 6[All Fields]) OR "arsenite"[All Fields] OR (7784[All Fields] AND 46[All Fields] AND 5[All Fields]) OR "cacodylic acid"[All Fields] NOT "arsenic trioxide"[All Fields])
Web of Science	(TS=arsenic OR TS="7440-38-2" OR TS="inorganic arsenic" OR TS=monomethylarsenic OR TS=dimethylarsenic OR TS=methylarsenic OR TS="monomethylarsonic acid" OR TS="124-58-3" OR TS="monomethylarsonous acid" OR TS="dimethylarsinic acid" OR TS="cacodylic acid" OR TS="75-60-5" OR TS="dimethylarsenous acid" OR TS=arsenate OR TS="12523-21-6" OR TS=arsenite OR TS="7784-46-5") NOT TS="arsenic trioxide" NOT WC="Geochemistry Geophysics" NOT WC="Physics Applied" NOT WC="Physics Condensed Matter" NOT WC="Materials Science Coatings Films" NOT WC=Optics NOT WC="Chemistry Physical" NOT WC=Mechanics NOT WC="Instruments Instrumentation" NOT WC="Engineering Manufacturing" NOT WC="Materials Science Characterization Testing" NOT WC=Electrochemistry NOT WC="Metallurgy Metallurgical Engineering" NOT WC="Chemistry Analytical" NOT WC="Engineering Environmental" NOT WC="Materials Science Multidisciplinary" NOT WC="Chemistry Inorganic Nuclear" NOT WC="Engineering Electrical Electronic" NOT WC="Engineering Chemical" NOT WC="Spectroscopy NOT WC=Crystallography NOT WC="Engineering Civil" NOT WC="Materials Science Paper Wood" NOT WC="Materials Science Ceramics" NOT WC="Materials Science Paper Wood" NOT WC="Physics Nuclear" NOT WC="Materials Science Characterization Testing" NOT WC="Engineering NOT WC="Engineering Fuels" NOT WC="Materials Science Paper Wood" NOT WC="Physics Nuclear" NOT WC="Polymer Science" NOT WC=Geology NOT WC=Limnology NOT WC="Engineering Manufacturing" NOT WC="Agricultural Engineering" NOT WC="Engineering Mechanical" NOT WC="Computer Science Hardware Architecture" NOT WC="Engineering Mechanical"
Toxline	(7440-38-2 OR 124-58-3 OR 75-60-5 OR 7784-46-5 OR arsenic OR "inorganic+arsenic" OR monomethylarsenic OR dimethylarsenic OR methylarsenic OR "monomethylarsonic acid" OR "monomethylarsonous acid" OR "dimethylarsinic acid" OR "dimethylarsinous acid" OR arsenate OR arsenite OR arsenicals) NOT "arsenic trioxide"

2.4 Categorization of References

1

2

3

30

Categorization and all steps following were performed in a database to facilitate data management, record-keeping with respect to decisions, and consistency across evaluations conducted by multiple reviewers.

2.4.1 Categorization of Health Effects Literature Based on Title and Abstract

- 4 Studies in the health effects cluster were categorized based on review of the title and 5 abstract and placed in one or more of the following pre-determined categories. The 6 primary purpose of this step was to identify epidemiology and toxicology studies 7 potentially relevant to the hazard identification for inorganic arsenic. Studies in other 8 categories might prove useful to development of other sections of the toxicological 9 review and were set aside for later review. 10 Two individuals independently assigned one or more categories to each reference. In 11 cases where the two reviewers' categorization decisions differed, a third senior reviewer 12 evaluated the information and made the final decision. The primary screening identified 13 653 epidemiology studies and 99 animal studies. The full list of categories used in this 14 step included the following study categories. 15 • **Epidemiologic hazard identification:** Human studies relevant for hazard 16 identification of chronic exposure to inorganic arsenic; this included meta-17 analyses. 18 • Animal hazard identification: Animal studies relevant for hazard identification 19 of chronic exposure to inorganic arsenic. 20 • Episodic exposure/acute exposure: Poisonings or short-term exposures (up to 30 21 days) that are supportive of the health effects of inorganic arsenic but not related to 22 chronic health effects of inorganic arsenic exposure. This category also included 23 case reports and case series as well as medical uses of arsenic. In some of the case 24 series, exposure could be longer than acute or short term, but such studies are
- categorized here because they are supportive of the health effects of inorganic
 arsenic but may not be as informative for the hazard identification. If the hazard
 identification requires further justification, studies in this category can be reviewed
 at a later date if necessary. **Physical chemistry/engineering:** Studies that examine the chemical properties of
 - **Physical chemistry/engineering:** Studies that examine the chemical properties of arsenic or uses of arsenic in chemical engineering.

1 2 3 4 5 6	• Exposure assessment: Studies that only describe the sources/dose of arsenic in the air, water, food, particulate matter, plant/animal life (including feed used for livestock that humans consume), and other media. This includes bioavailability studies for the different media and studies that measured levels in humans (e.g., in nails, urine, blood) but did not evaluate any type of health effect in association with the measurements.
7 8	• Non-arsenic: Studies that do not consider arsenic exposure or studies where arsenic was mentioned but was not the primary focus of the publication.
9 10 11	• Non-peer reviewed: Studies that have not undergone peer review (e.g., newspaper articles, abstracts, posters, news and views, opinion papers, editorials, comments and replies to comments).
12 13	• Ecology: Studies that describe the impact of arsenic on non-mammalian animal models (e.g., fish) or plant life.
14 15 16 17	• Review, risk assessment, or guidance document: References that provide reviews of the available literature or references that used EPA guidelines to evaluate risk in a certain area based on exposure levels but did not directly evaluate health outcomes.
18 19 20 21 22	• Susceptibility: Studies in which health effects are evaluated based on factors other than dose (e.g., genetic polymorphisms, susceptibility due to methylation capacity or genetic markers, socio-economic factors, ethnicity). If the study also assessed the effects of inorganic arsenic before assessing the effects of the susceptibility factors, it was considered for the hazard identification.
23 24 25	• Mode of action (MOA): Studies that examine the molecular events occurring after inorganic arsenic exposure (e.g., in vitro models, genomics, proteomics, genotoxicity, reactive oxygen species).
26 27 28 29	• PBPK/TK : Papers that examine internal dose metrics, absorption, excretion, distribution, and metabolism (i.e., toxicokinetics, or TK) or detailed physiologically based pharmacokinetic (PBPK) models that model inorganic arsenic kinetics in humans or animals.
30	• Other: Additional papers that do not fit in the above categories, including:
31	 Public health campaigns/community knowledge,
32 33	 Analytical technique papers that do not include information on dose metrics or ADME,
34	 Co-exposure studies where inorganic arsenic cannot be separated,
35 36	 Effects of a different compound in reversing the health effects of inorganic arsenic,
37	 Arsenic bioremediation or removal of arsenic from contaminated locations,
38	 Treatment methods for arsenic-induced disease, and
39	 Effects on bacteria that are not related to MOA/bacterial tolerance.
40	

1	Studies with no abstract were evaluated separately and placed into one of the following
2	groups:
3	• Book chapters;
4 5	 Not peer-reviewed, including abstracts (identified based on a single page reference), letters, comments, and editorials;
6	• Supporting studies;
7	• Not relevant to arsenic; or
8 9	• Epidemiologic or animal hazard identification (references in this group were further categorized as described below).
10	Duplicate references were set aside, and only one instance of the study advanced to the
11	next round of screening.

2.4.2 Further Categorization of Epidemiologic and Animal Hazard Identification Studies

12	Epidemiology studies were further categorized to identify studies reporting effects
13	associated with inorganic arsenic exposure. The evaluation of these references was also
14	conducted by two reviewers independently, with a third individual evaluating the study
15	when the first two reviewers differed. Studies were set aside if they reported the
16	following types of exposures:
17	• Exposure to organic arsenic only;
18	• Exposure other than to inorganic arsenic only, including cases where the arsenic
19	exposure could not or was not evaluated separately from other possible exposures;
20	• Occupational exposure where there was no evaluation of arsenic only (e.g.,
21 22	evaluation of effects in glass workers or copper smelter workers compared to the general population without any other qualifying exposure information);
23	• Environmental exposure where there was no evaluation of arsenic only;
24	• Studies where arsenic was not the primary focus (e.g., arsenic was only noted as a
25	confounder for evaluating other chemical exposures); and
26	• Studies of exposure to arsenical pesticides or lead arsenate.
27	These studies might be reviewed later in the development; however, they will not serve
28	as primary evidence for development of the hazard identification and causal
29	determination for inorganic arsenic.

1	References were also reserved for review in the next step if it was not possible, based on
2	review of the title and abstract, to determine if results were reported for exposure to
3	inorganic arsenic only. These included:
4	• Studies reporting exposure to an unknown form of arsenic;
5 6	• Occupational study where arsenic was evaluated separately from other chemical exposures; and
7 8	• Environmental exposure (e.g., air or dust) where results were evaluated separately for arsenic.
9	In cases where only urinary or blood levels of arsenic were available, it was not always
10	possible to identify the type of arsenic exposure based on review of title and abstract.
11	Because inorganic arsenic is metabolized, the metabolites can be measured in the urine or
12	blood. Studies reporting urinary or blood arsenic levels of metabolites only were
13	categorized as "not inorganic arsenic only." Reviewers tended to err on the side of
14	inclusion in cases where categorization was not clear based on title and abstract review,
15	so that the full text of studies could be reviewed in the following step. However, if both
16	reviewers selected "not inorganic arsenic only," the study was characterized as such and
17	not further evaluated.

2.5 Characterization of Studies and Development of "Summary of Epidemiological/Toxicological studies for Hazard Identification" Tables

The full text of all epidemiology and toxicology studies identified as reporting inorganic arsenic exposure, including exposure to unknown forms of arsenic, was reviewed to determine the following characteristics.

Epidemiology Studies	Toxicology Studies
Route of exposure	Route of exposure
Country in which the study population livedStudy design	 Species and strain Study design Health effects observed, grouped by
 Health effects observed, grouped by system 	system

The information was entered into DRAGON by one reviewer, and each entry was independently checked by another reviewer.

21

22

1	In many studies, more than one route of exposure is possible (e.g., an occupational study
2	can evaluate exposures via inhalation and dermal, or a study focusing on oral exposures
3	can also have dermal components if the subjects also bathed in the water). In these cases,
4	the primary route of exposure was used for characterization purposes. In cases where
5	only measurements in blood or urine were available and the study did not indicate the
6	possible exposure route (e.g., only urine levels available in subjects who live in a rural
7	environment with no indication of potential exposure), the study was characterized as
8	both oral and inhalation.
9	Health effects were categorized using a pre-determined standard vocabulary included in
10	DRAGON. In general, health effect categories represent biological systems and health
11	effects can be logically assigned to the appropriate system. In a few cases, the category is
12	more general and represents a collection of outcomes that are not easily categorized in a
13	specific system (e.g., eye effects are assigned to the "Other" group).
14	At any point in these characterizations, a study could be considered misclassified and
15	assigned back to one of the original categories used a priori in the Primary Screen. For
16	example, a publication might re-evaluate data previously published elsewhere. If the
17	publication provides an independent evaluation of data, it was included as part of the
18	hazard identification. However, if the main objective of the publication was a critique of
19	the methods used by others and not a truly independent review (i.e., one presenting
20	previously unpublished evaluation results), it was categorized under "review/risk
21	assessment/guidance document" for potential use as supporting evidence.
22	The tables in the appendix provide an overview of the types and numbers of inorganic
23	arsenic studies available for each health effect category. Epidemiology studies are
24	characterized based on study design, route of exposure, country, and health effects
25	reported. Specific outcomes as reported in the studies are characterized by health effect
26	category, and cancer and non-cancer effects are considered together in the appropriate
27	system. The specific health effect is included in the hazard identification tables, with
28	cancer outcomes listed as "neoplastic lesions." When no studies of a particular type or
29	exposure route were identified, placeholders for those study types or routes are omitted
30	from the tables and figures.

2.6 Evaluation of Potential Risk of Bias

31 32 The next step in the evaluation process was the analysis of the risk of bias for each study. Because the literature database was still large after the initial screening, categorization, 1 2

31

and characterization steps, assessing risk of bias can help to further differentiate primary evidence from supporting evidence for hazard identification.

2.6.1 General Approach for Risk of Bias Evaluation

3	The Office of Health Assessment and Translation (OHAT) at the National Institute of
4	Environmental Health Science (NIEHS) developed a draft protocol in 2013 for
5	systematic evaluation of risk of bias in human and animal studies. A version of this draft
6	protocol (which continues to evolve) has been adopted for use in this assessment of
7	inorganic arsenic because it provides a unified approach for evaluating risk of bias from
8	animal and epidemiology studies. The OHAT draft protocol includes 14 risk of bias
9	questions grouped in five domains based on the type of potential bias: selection,
10	performance, attrition, detection, and reporting bias. These questions, as discussed in
11	Table 1-6 of the ADP, were derived by OHAT based on guidance from the Agency for
12	Healthcare Research and Quality (AHRQ). The questions are intended to be applied on
13	an outcome-specific basis when evaluating risk of bias (i.e., the rating for some questions
14	depending on what types of health effects are of interest). Not all questions are applicable
15	to both animal and epidemiology studies or to all types of study designs.
16	For each of these 15 questions, a reviewer assigns one of four standard risk of bias
17	ratings, ranging from definitely low risk of bias to definitely high risk of bias (see Table
18	1-7). The rating assigned for each question is intended to represent the bias (or lack
19	thereof) in the related methods and practices employed by the study authors. The set of
20	ratings obtained for a study then can be used to inform an overall risk of bias conclusion
21	for a study. Some of the questions can be assigned different ratings within a given study
22	for different health outcomes, and therefore it is possible to obtain a range of outcome-
23	specific ratings for a single study. Included in the draft OHAT protocol are guidelines for
24	assigning ratings for each question, with separate guidance developed for review of
25	epidemiology and animal studies. The draft OHAT risk of bias rating guidelines are
26	included in Section 2.8 of this summary.

2.6.2 Assessing Risk of Bias for Arsenic Studies

27	For the evaluation of studies identified as potentially relevant to the hazard identification
28	for inorganic arsenic, the draft OHAT risk of bias protocol was applied using the
29	DRAGON database as a framework for managing and recording evaluation results and
30	decisions. The goal of this aspect of the assessment was to assign a rating for each

category for every study assessed as objectively as possible. Analysis of risk of bias,

These draft development materials are for review purposes only and do not constitute Agency policy.April 20142-10Draft: Do Not Cite or Quote

1	however, necessarily requires subjective conclusions by an expert scientist. To increase
2	consistency across the evaluations conducted in this assessment, each study was
3	independently evaluated by two scientists, and each reviewer's assessment results were
4	recorded independently in DRAGON. Assessment results included both the overall rating
5	associated with a risk of bias question (i.e., ++, +, -, or) and a written rationale
6	supporting the rating. Reviewers referred to the draft OHAT protocol during their review
7	(with key questions embedded in the DRAGON software for reference). In some cases,
8	the draft OHAT guidelines were augmented with inorganic arsenic-specific guidelines
9	developed for the current assessment. Any additions to the OHAT guidelines are also
10	included in the tables in Attachment A and are clearly marked as specific to this
11	assessment.

- 12 After independently reviewing a given inorganic arsenic study, the two assigned 13 reviewers discussed and resolved any differences in ratings entered for a question. In 14 some cases, tertiary review by a third senior scientist was conducted of individual ratings 15 or the overall study (plus endpoint) conclusions, and additional quality control reviews 16 were conducted for studies for which conclusions were not straightforward. The resolved 17 ratings for each study were then considered to develop an overall risk of bias conclusion 18 for the study. Because the ratings for some risk of bias questions can vary by health 19 endpoint (e.g., some outcome assessment methods are more reliable than others), a range 20 of overall risk of bias evaluations is possible for a given study (if multiple endpoints were 21 considered in the study). The development of overall risk of bias evaluations for 22 inorganic arsenic animal studies is discussed in Section 6.
- 23 The risk of bias evaluation process is time-intensive, requiring two scientists to review 24 the full-text version of an article, develop responses to each question, resolve differences, 25 and enter answers and conclusions for each question. Consequently, for the assessment of 26 arsenic literature, an additional sorting step was conducted following the characterization 27 step (described in Section 4) and before full risk of bias evaluation to identify studies less 28 likely to be useful in the overall hazard identification for inorganic arsenic. This step uses 29 several criteria to identify studies considered lower priority for hazard identification, and 30 these studies were set aside without conducting a complete risk of bias evaluation. In 31 addition, key data were not extracted from these studies into evidence tables. It is noted 32 that these studies were not fully "excluded" from consideration for hazard identification; 33 some studies might be used later in this assessment where additional evidence regarding 34 health hazard is needed. Criteria used to identify these lower-priority epidemiology and 35 animal studies are described in the following sections.

2.6.2.1 **Prioritization and Assessing Risk of Bias in Epidemiology Studies**

1	For epidemiology studies, all studies with a case-control, cohort, or cross-sectional design
2	were subjected to a full risk of bias evaluation and were extracted into evidence tables.
3	Other studies, including those designed as ecological studies, case series, and case
4	reports, were not evaluated because individual-level exposure information is not used in
5	the analyses and thus they provide less direct support for causal determinations. These
6	studies might be used to provide further support in making causal inferences when other
7	types of studies are not available. For example, some ecological studies are expected to
8	provide supporting information regarding exposure during sensitive development times
9	(e.g., in utero or childhood exposures) or exposure to susceptible populations.
10	Following this prioritization step, the risk of bias evaluation was conducted for all
11	remaining epidemiology studies in accordance with the guidelines presented in the
12	Appendix (Section 1.6 of the ADP). The results of the risk of bias evaluation are
13	summarized in Section 4 and Section 5, which indicates ratings for each relevant risk of
14	bias question.

2.6.2.2 Prioritization and Assessing Risk of Bias in Animal Arsenic Studies

15	For animal studies, studies that do not include adequate information relevant to hazard
16	identification were eliminated from full risk of bias evaluation. Studies primarily focused
17	on mode of action-related outcomes were not evaluated, including:
18 19	• mode of action studies presenting only data on liver weight for hazard identification; and
20 21	 mode of action studies presenting histopathology data with only descriptions and no incidence data reported.
22	Studies that only evaluated clinical chemistry endpoints as measures of liver toxicity
23	were not evaluated, because this was considered to support clinical chemistry hazard
24	identification rather than identification of liver effects. In addition, developmental studies
25	that presented only pup weight, and/or studies without controls were not evaluated.
26	Following this prioritization step, the risk of bias evaluation was conducted for all
27	remaining animal studies in accordance with the guidelines presented in Section 6.

2.7 Development of Evidence Tables for Hazard Identification

2.7.1 Epidemiology Data

April 2014

2.7.1.1 Criteria for Identifying Primary Evidence Based on Risk of Bias

1	The results of the potential risk of bias evaluation were used to select studies for
2	inclusion in evidence tables. Studies with the lowest potential risk of bias were selected
3	to serve as the <i>primary</i> evidence supporting a causal relationship between inorganic
4	arsenic exposure and outcomes for a given health effect category. Other relevant and
5	useful studies, including those that may pose a higher risk of bias, were identified as
6	providing supporting evidence. The most critical qualities of an epidemiology study with
7	respect to risk of bias were identified to be:
8 9	• Confidence in the observed association based on a study design that allows for evaluation of an association between the exposure and the outcome;
10	• Confidence in the exposure assessment;
11	• Confidence in the outcome assessment; and
12	• Confidence in the overall internal validity of the study.
13	Of the risk of bias questions evaluated for epidemiology studies, six were selected as
14	most informative for addressing these four critical study qualities.
15 16	• Question 3: Were the comparison groups appropriate? (<i>Confidence in observed association</i>)
17 18	• Question 4: Did the study design or analysis account for important confounding and modifying variables? (<i>Confidence in observed association</i>)
19 20	• Question 5: Did researchers adjust or control for other exposures that are anticipated to bias results? (<i>Confidence in observed association</i>)
21 22	• Question 12: Can we be confident in the exposure characterization? (<i>Confidence in exposure assessment</i>)
23 24	• Question 13: Can we be confident in the outcome assessment? (<i>Confidence in outcome assessment</i>)
25	• Question 15: Were there no other potential threats to internal validity (e.g.,
26	statistical methods were appropriate)? (Internal validity)
27	Studies receiving a rating of <i>definitely</i> or <i>probably low risk of bias</i> (i.e., + or ++) for all
28	six core questions were identified as primary evidence.
29	Studies receiving a rating of <i>definitely high risk of bias</i> (i.e.,) for any of the six
30	questions listed above were classified as supporting evidence. These studies might be
	These draft development materials are for review purposes only and do not constitute Agency policy.

2-13

Draft: Do Not Cite or Quote

1	considered later in making causal determinations for an effect after evaluation of all
2	primary evidence, but the information in these studies was not extracted into the current
3	evidence tables.
4	Other studies classified as supporting include those receiving a rating of probably high
5	risk of bias (-) for the following questions and combinations of questions:
6 7	 for all 3 observed association questions and exposure assessment and outcome assessment
8	• for 2 of the 3 observed association questions and <i>internal validity</i>
9	• for exposure assessment, outcome assessment, and internal validity
10 11	• for exposure assessment and 3 of the 4 questions for observed association and internal validity
12 13	• for exposure assessment and 2 of the 5 other questions for observed association, outcome assessment, and internal validity
14	• or <i>exposure assessment</i> and <i>unintended exposure</i> if the study is occupational
15 16 17	• for <i>exposure assessment</i> because the study did not measure arsenic (e.g., skin lesions versus no skin lesions or just control versus exposed with no arsenic measurements)
18	For the epidemiology studies meeting the criteria for "primary" studies, we reviewed the
19	results of the evaluation of potential risk of bias and identified a subset of studies to
20	include in the evidence tables. The evidence tables are not intended to be comprehensive,
21	but rather to provide an overview of the more robust evidence. Thus, following the
22	review of all primary studies, some were not included in the evidence tables. Any studies
23	in this category of "primary but not included in evidence tables" are flagged with a
24	footnote in the attached risk of bias summary tables. Primary studies not included in the
25	evidence tables include studies focused on susceptibility factors, studies stratifying the
26	population based on an existing disease, studies with inorganic arsenic water
27	concentrations exceeding 150 μ g/L, and some additional studies. These studies <i>will</i> be
28	considered in the causal determination along with ecological studies, toxicology studies,
29	and those with potentially high risk of bias (i.e., studies providing "supporting"
30	evidence). In summary, studies selected for inclusion in the evidence tables are an
31	overview of the available data supporting hazard identification.

2.7.1.2 Creation of Evidence Tables

32	Using the studies selected for inclusion in the evidence tables, data were extracted to
33	support a weight of evidence discussion for on the basis of health outcome category.
34	While the hazard identification tables provide an overview of all the information
35	available for any given health effect system, the evidence tables provide more specific

These draft development materials are for review purposes only and do not constitute Agency policy.April 20142-14Draft: Do Not Cite or Quote

1	information and present the specific data that support the strongest causal inference
2	conclusions (e.g., using the Hill Criteria) regardless of results (positive, negative, or null).
3	In selecting specific study results and data to present in the evidence table, adjusted
4	statistical estimates were presented rather than crude estimates when possible. All
5	presented matrices of inorganic arsenic exposure (including water, hair, nails, urine) were
6	selected when more than one was available. When multiple inorganic arsenic metrics
7	were presented for the same exposure matrix, cumulative arsenic levels were selected
8	preferentially over other metrics, when available. Total urinary arsenic levels were
9	selected over concentrations of individual metabolites, when available. Within a health
10	effect system, the different measures of the health effect (e.g., pinprick score in left leg,
11	in right leg, in left arm, and in right arm) are included as separate columns in the table.
12	All statistically significant results were included, regardless of health outcome. The null
13	results were included for the main health effects, including lung cancer, bladder cancer,
14	skin cancer, skin lesions, diabetes, and ischemic heart disease. Null results for the health
15	effects not included in this list are described qualitatively.

2.7.2 Animal Data

2.7.2.1 Criteria for Identifying Primary Evidence Based on Risk of Bias

16	As with the epidemiology studies, toxicology studies with the lowest potential risk of bias
17	were selected to serve as the primary evidence to demonstrate evidence of a causal
18	relationship between inorganic arsenic exposure and outcomes for a given health effect
19	category. For toxicology studies, confidence in the outcome assessment was considered
20	to be the most critical quality of a study with respect to risk of bias (i.e., Question 13,
21	"Can we be confident in the outcome assessment?"). Question 12 pertaining to exposure
22	characterization (i.e., "Can we be confident in the exposure characterization?") was also
23	considered to be of importance. Based on these assumptions, the following decision
24	criteria were used to determine a study's utility with respect to evidence.
25 26 27 28 29	 Studies receiving ratings of either <i>definitely</i> or <i>probably low risk of bias</i> (i.e., + or ++) for Question 13 <i>and also</i> receiving the same ratings (i.e., + or ++) for at least half of the remaining questions were included as primary evidence for a given health effect. Studies receiving ratings of either <i>definitely</i> or <i>probably high risk of bias</i>
30 31 32 33	(i.e., $-$ or $-$) for Question 13 <i>and also</i> receiving ratings of either <i>definitely</i> or <i>probably high risk of bias</i> (i.e., $-$ or $-$) for at least half of the remaining questions were judged to pose a high potential risk of bias. These studies were set aside to be reviewed after all other literature.

Any studies receiving a rating of *definitely high risk of bias* (i.e., - -) for Question 12 were set aside for additional review.
Studies that did not meet any of the above criteria were identified to be included as supporting evidence for a given health effect.
All animal studies identified as primary evidence for hazard identification based on the risk of bias evaluation were included in the evidence tables for inorganic arsenic.

2.7.2.2 Creation of Evidence Tables


7	The accompanying evidence tables present an overview of the available data for selected
8	health effect categories, using the studies identified as primary evidence in the analysis of
9	risk of bias. The tables are meant to summarize what is known about the effects of
10	inorganic arsenic exposure in animals and do not include every outcome listed in every
11	study. The following types of data were systematically omitted from data extraction and
12	are not included in the attached evidence tables.
13	• Hematology, clinical chemistry, and urinalysis results.
14 15 16	• Histopathology results except when results are expected to potentially inform the causal determination for a health effect for which there is little epidemiologic data; in these cases, relevant significant and nonsignificant results were extracted.
17 18	• Organ weights, except data on thymus weights which immunologists consider a predictor of immune toxicity.
19 20	• Data on cytokines as this information more specifically informs mode of action determinations.
21	• Data presented in figures only; a qualitative description of the data was extracted.

2.8 Draft OHAT Guidance for Risk of Bias Evaluation and Assessment-specific Clarifications

22	Risk of bias questions and rating guidelines for epidemiology studies and animal studies
23	are described in the ADP (Tables 1-10 and 1-11).

3 SUMMARY OF LITERATURE IDENTIFIED TO SUPPORT HAZARD IDENTIFICATION FOR INORGANIC ARSENIC

3.1 Overview of Epidemiology Studies Identified

3.1.1 Summary of Epidemiology Studies for Hazard Identification for Bladder Effects

Health Effect Category Route of Exposure Study Type		Count		
Bladder Effects	71			
Oral	63			
Case-control	19			
Cross-sectional	1			
Cohort	14			
Ecological	27			
Other	2			
Inhalation	7			
Case-control	2			
Cohort	3			
Ecological	1			
Other	1			
Route Unknown	1			
Case-control	1			

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CASE-CONTROL				
Study References	Route of	Country	Health Effect	
	Exposure			
<u>Bates et al. (1995)</u>	Oral	United States	urinary bladder: neoplastic lesions	
Bates et al. (2004)	Oral	Argentina	urinary bladder: neoplastic lesions	
<u>Chen et al. (1986)</u>	Oral	Taiwan	urinary bladder: neoplastic lesions	
Chen et al. (2003b)	Oral	Taiwan	urinary bladder: neoplastic lesions	
<u>Chung et al. (2011)</u>	Oral	Taiwan	urinary bladder: neoplastic lesions	
<u>Chung et al. (2013)</u>	Oral	Taiwan	urinary tract: neoplastic lesions	
Feki-Tounsi et al. (2013)	Inhalation	Tunisia	urinary bladder: neoplastic lesions	
Ferreccio et al. (2013b)	Oral	Chile	urinary bladder: neoplastic lesions	
<u>Hsu et al. (2008)</u>	Oral	Taiwan	urinary tract: neoplastic lesions	
<u>Huang et al. (2008b)</u>	Oral	Taiwan	urinary tract: neoplastic lesions	
<u>Karagas et al. (2004)</u>	Oral	United States	urinary bladder: neoplastic lesions	
<u>Kurttio et al. (1999)</u>	Oral	Finland	urinary bladder: neoplastic lesions	
<u>Meliker et al. (2010)</u>	Oral	United States	urinary bladder: neoplastic lesions	
<u>Pu et al. (2007)</u>	Oral	Taiwan	urinary bladder: neoplastic lesions	
Steinmaus et al. (2003)	Oral	United States	urinary bladder: neoplastic lesions	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-2Draft: Do Not Cite or Quote

	Exposure		
Study References	Route of	Country	Health Effect
ECOLOGICAL	1		
<u>Paul et al. (2013)</u>	Oral	India	urine: parameters
eray hererenees	Exposure		
Study References	Route of	Country	Health Effect
CROSS-SECTIONAL		Japan	
Tsuda et al. (1978)	Oral	Japan	urinary bladder: neoplastic lesions
Pinto et al. (1978)	Inhalation	United States	urinary bladder. neoplastic lesions
Lubin et al. (1981)	Inhalation	United States	urinary bladder: neoplastic lesions
<u>Lewis et al. (1999)</u>	Oral	United States	urinary tract: neoplastic lesions (2 Types)
Enterline and Marsh (1982)	Inhalation	United States	urinary bladder: neoplastic lesions
	Exposure		
Study References	Route of	Country	Health Effect
COHORT (RETROSPECTIVE)			
Sawada et al. (2013)	Oral	Japan	urinary bladder: neoplastic lesions
Huang et al. (2008a)	Oral	Taiwan	urinary tract: neoplastic lesions
<u>Hsu et al. (2013a)</u>	Oral	Taiwan	urinary tract: neoplastic lesions
		Kingdom	
Cuzick et al. (1992)	Oral	United	urinary bladder: neoplastic lesions
Chung et al. (2012)	Oral	Taiwan	urinary bladder: neoplastic lesions
			Types)
<u>Chiou et al. (2001a)</u>	Oral	Taiwan	urinary tract: neoplastic lesions (2
<u>Chiou et al. (1995)</u>	Oral	Taiwan	urinary bladder: neoplastic lesions
			Types)
Chen et al. (2010b)	Oral	Taiwan	urinary tract: neoplastic lesions (2
Baastrup et al. (2008)	Oral	Denmark	urinary bladder: neoplastic lesions
Judy hererences	Exposure	Country	
Study References	Route of	Country	Health Effect
COHORT (PROSPECTIVE)	unknown		
Michaud et al. (2004)	Route unknown	Finland	urinary bladder: neoplastic lesions
Michaud et al. (2004)	Oral	Finland	urinary bladder: neoplastic lesions
Michaud et al. (2004)	Inhalation	Finland	urinary bladder: neoplastic lesions
	Exposure		
Study References	Route of	Country	Health Effect
CASE-CONTROL (NESTED)			
		China	
		Province Of	
<u>Wu et al. (2013)</u>	Oral	Taiwan,	urinary tract: neoplastic lesions
<u>Wu et al. (2012a)</u>	Oral	Taiwan	urinary bladder: neoplastic lesions
<u>Wang et al. (2009d)</u>	Oral	Taiwan	urinary bladder: neoplastic lesions
<u>Steinmaus et al. (2013)</u>	Oral	Chile	urinary bladder: neoplastic lesions

Buchet and Lison (1998)	Oral	Belgium	urinary bladder: neoplastic lesions
Chen et al. (1985)	Oral	Taiwan	urinary bladder: neoplastic lesions
Chen and Wang (1990)	Oral	Taiwan	urinary bladder: neoplastic lesions
Chen et al. (1992)	Oral	Taiwan	urinary bladder: neoplastic lesions
Fernández et al. (2012)	Oral	Chile	urinary bladder: neoplastic lesions
Guo et al. (1997)	Oral	Taiwan	urethra: neoplastic lesions
Guo et al. (1997)	Oral	Taiwan	urinary bladder: neoplastic lesions
 Guo (2011)	Oral	Taiwan	urinary bladder: neoplastic lesions
Han et al. (2009)	Oral	United States	urinary bladder: neoplastic lesions
Hinwood et al. (1999)	Oral	Australia	urinary bladder: neoplastic lesions
Hopenhayn-Rich et al. (1996)	Oral	Argentina	urinary bladder: neoplastic lesions
Hopenhayn-Rich et al. (1998)	Oral	Argentina	urinary bladder: neoplastic lesions
 Lamm et al. (2003)	Oral	Taiwan	urinary bladder: neoplastic lesions
<u>Lamm et al. (2004)</u>	Oral	United States	urinary bladder: neoplastic lesions
Marshall et al. (2007)	Oral	Chile	urinary bladder: neoplastic lesions
Meliker et al. (2007)	Oral	United States	urinary bladder: neoplastic lesions
Morales et al. (2000)	Oral	Taiwan	urinary bladder: neoplastic lesions
Mouly et al. (2012)	Oral	France	urinary bladder: neoplastic lesions
Pou et al. (2011)	Oral	Argentina	urinary bladder: neoplastic lesions
Rivara et al. (1997)	Inhalation	Chile	urinary bladder: neoplastic lesions
<u>Rivara et al. (1997)</u>	Oral	Chile	urinary bladder: neoplastic lesions
Smith et al. (1998)	Oral	Chile	urinary bladder: neoplastic lesions
Smith et al. (2012)	Oral	Chile	urinary bladder: neoplastic lesions
<u>Su et al. (2011)</u>	Oral	Taiwan	urinary bladder: neoplastic lesions
<u>Tsai et al. (1999)</u>	Oral	Taiwan	urinary bladder: neoplastic lesions
<u>Wu et al. (1989)</u>	Oral	Taiwan	urinary bladder: neoplastic lesions
Yang et al. (2005)	Oral	Taiwan	urinary bladder: neoplastic lesions
Yorifuji et al. (2011)	Oral	Japan	urinary tract: neoplastic lesions
OTHER			
Study References	Route of	Country	Health Effect
	Exposure		
Begum et al. (2012)	Oral	United States,	urinary bladder: neoplastic lesions
		Taiwan,	
		Bangladesh,	
		West Bengal,	
		Inner	
		Mongolia, and	
		China	
Chu and Crawford-Brown (2006)	Oral	Various	urinary bladder: neoplastic lesions
Pinto et al. (1977)	Inhalation	United States	urinary bladder: neoplastic lesions

3.1.2 Summary of Epidemiology Studies for Hazard Identification for Cardiovascular Disease

Health Effect Category Route of Exposure Study Type		Count			
Cardiovascular Disease	181				
Oral	161				
Case-control	14				
Cross-sectional	74				
Cohort	45				
Ecological	23				
Other	2				
Inhalation	17				
Case-control	4				
Cross-sectional	1				
Cohort	10				
Other	2				
Route Unknown	3				
Cross-sectional	3				

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CASE SERIES					
Study References	Route of	Country	Health Effect		
	Exposure				
Mazumder (2003)	Oral	India	vascular: disease		
Zaldívar (1980)	Oral	Chile	heart: function - ischemia		
CASE-COHORT					
Study References	Route of	Country	Health Effect		
	Exposure				
<u>Chen et al. (2013b)</u>	Oral	Bangladesh	cardiovascular disease (2 Types)		
<u>Chen et al. (2013b)</u>	Oral	Bangladesh	cerebrovascular disease		
CASE-CONTROL					
Study References	Route of	Country	Health Effect		
	Exposure				
Axelson et al. (1978)	Inhalation	Sweden	vascular: disease		
Chen et al. (1988)	Oral	Taiwan	vascular: disease		
<u>Ghosh (2013)</u>	Oral	India	heart: function - unspecified		
<u>Ghosh (2013)</u>	Oral	India	heart: neoplastic lesions		
Ghosh (2013)	Oral	India	heart: nonneoplastic lesions		

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-5Draft: Do Not Cite or Quote

Lagerkvist et al. (1988)	Inhalation	Sweden	blood pressure: unspecified (3
			Types)
<u>Wu et al. (2006)</u>	Oral	Taiwan	vascular: disease
CASE-CONTROL (NESTED)			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Hsieh et al. (2008a)</u>	Oral	Taiwan	vascular: function (2 Types)
<u>Hsieh et al. (2008b)</u>	Oral	Taiwan	vascular: disease
<u>Hsueh et al. (1998)</u>	Oral	Taiwan	heart: function - ischemia
<u>Kim et al. (2013)</u>	Oral	United States	blood pressure: unspecified
<u>Liao et al. (2009)</u>	Oral	Taiwan	heart: function - rhythm (2 Types)
Wang et al. (2007c)	Oral	Taiwan	vascular: disease
<u>Wu et al. (2010)</u>	Oral	Taiwan	vascular: disease
COHORT (PROSPECTIVE)	· · · ·		
Study References	Route of	Country	Health Effect
	Exposure		
<u>Chen et al. (1996)</u>	Oral	Taiwan	heart: function - ischemia
<u>Chen et al. (2006b)</u>	Oral	Bangladesh	vascular: function
<u>Chen et al. (2011b)</u>	Oral	Bangladesh	vascular: disease (4 Types)
<u>Chen et al. (2013c)</u>	Oral	Bangladesh	heart: function - rhythm (3 Types)
<u>Cuzick et al. (1992)</u>	Oral	United	vascular: disease
		Kingdom	
Gong and O'Bryant (2012)	Oral	United States	blood pressure: unspecified
Hawkesworth et al. (2013)	Oral	Bangladesh	blood pressure: unspecified (2
			Types)
<u>Liao et al. (2012)</u>	Oral	Taiwan	cardiovascular disease (2 Types)
<u>Moon et al. (2013)</u>	Oral	United States	cardiovascular disease (4 Types)
<u>Moon et al. (2013)</u>	Oral	United States	cerebrovascular disease (2 Types)
<u>Pi et al. (2005)</u>	Oral	China	vascular: disease
<u>Sohel et al. (2009)</u>	Oral	Bangladesh	vascular: disease
<u>Wang et al. (2002)</u>	Oral	Taiwan	vascular: disease (3 Types)
<u>Wang et al. (2010)</u>	Oral	Taiwan	vascular: disease (2 Types)
<u>Wang et al. (2011a)</u>	Oral	Taiwan	blood pressure: unspecified
<u>Wang et al. (2011a)</u>	Oral	Taiwan	vascular: disease
COHORT (RETROSPECTIVE)			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Chiou et al. (2005)</u>	Oral	Taiwan	vascular: disease
Enterline and Marsh (1982)	Inhalation	United States	cerebrovascular disease
Enterline and Marsh (1982)	Inhalation	United States	heart: function - contractility
Enterline and Marsh (1982)	Inhalation	United States	heart: nonneoplastic lesions
Enterline and Marsh (1982)	Inhalation	United States	vascular: disease
<u>Hertz-Picciotto et al. (2000)</u>	Oral	United States	cardiovascular system:
			nonneoplastic lesions

Jarup et al. (1989)	Inhalation	Sweden	heart: function - ischemia
Jarup et al. (1989)	Inhalation	Sweden	vascular: disease
Lewis et al. (1999)	Oral	United States	cardiovascular disease (7 Types)
Lewis et al. (1999)	Oral	United States	cerebrovascular disease
<u>Lewis et al. (1999)</u>	Oral	United States	vascular: disease
Lewis et al. (1999)	Oral	United States	vascular: function
Lubin et al. (1981)	Inhalation	United States	vascular: disease
Marsh et al. (2009)	Inhalation	United States	vascular: disease
Pinto et al. (1978)	Inhalation	United States	vascular: disease
Rahman et al. (1999a)	Oral	Bangladesh	blood pressure: unspecified
Wade et al. (2009)	Oral	China	heart: function - rhythm
Wade et al. (2009)	Oral	China	vascular: disease
Welch et al. (1982)	Inhalation	United States	heart: function - ischemia
CROSS-SECTIONAL		1	
Study References	Route of	Country	Health Effect
	Exposure		
Ahmad et al. (2006)	Oral	Bangladesh	heart: function - rhythm
Bosnjak et al. (2008)	Oral	Croatia	cardiovascular disease
Burgess et al. (2013)	Oral	United States,	vascular: disease
		Mexico	
<u>Chen et al. (2013a)</u>	Oral	Bangladesh	cardiovascular disease
<u>Chen et al. (1995)</u>	Oral	Taiwan	blood pressure: unspecified
<u>Chen et al. (2007b)</u>	Oral	Bangladesh	blood pressure: diastolic
<u>Chen et al. (2007b)</u>	Oral	Bangladesh	blood pressure: systolic
<u>Chen et al. (2007b)</u>	Oral	Bangladesh	blood pressure: unspecified (2
			Types)
<u>Chen et al. (2012b)</u>	Route	Taiwan,	blood pressure: unspecified (2
	unknown	Province Of	Types)
		China	
<u>Chen et al. (2012b)</u>	Route	Taiwan,	gene expression
	unknown	Province Of	
		China	
<u>Chiou et al. (1997)</u>	Oral	Taiwan	vascular: disease (2 Types)
Chiou et al. (2001b)	Oral	Taiwan	vascular: disease
Guha Mazumder et al. (2012)	Oral	India	blood pressure: unspecified
<u>Guo et al. (2007)</u>	Oral	Mongolia	blood pressure: unspecified
Huang et al. (2007)	Oral	Taiwan	blood pressure: unspecified
Huang et al. (2009b)	Oral	Taiwan	vascular: disease
Islam et al. (2012a)	Oral	Bangladesh	blood pressure: diastolic
Islam et al. (2012a)	Oral	Bangladesh	blood pressure: systolic
<u>Islam et al. (2012a)</u>	Oral	Bangladesh	blood pressure: unspecified (3
			Types)
Jensen and Hansen (1998)	Inhalation	Denmark	blood pressure: systolic
<u>Jones et al. (2011)</u>	Oral	United States	blood pressure: unspecified

Karim et al. (2013)	Oral	Bangladesh	antibody (B cell) mediated
	U.U.	Bunghuucshi	immunity: general (2 Types)
Karim et al. (2013)	Oral	Bangladesh	cholesterol (5 Types)
Karim et al. (2013)	Oral	Bangladesh	high sensitivity C reactive protein
		0	(hs-CRP)
Karim et al. (2013)	Oral	Bangladesh	inflammatory markers
Kim and Lee (2011)	Oral	South Korea	blood pressure: unspecified
Kunrath et al. (2013)	Oral	Romania	blood pressure: unspecified (12
			Types)
Kwok et al. (2007)	Oral	China	blood pressure: diastolic
Kwok et al. (2007)	Oral	China	blood pressure: systolic
<u>Li et al. (2013a)</u>	Oral	China	blood pressure: unspecified
<u>Li et al. (2009)</u>	Oral	Taiwan	vascular: disease
<u>Li et al. (2013b)</u>	Oral	China	blood pressure: unspecified
Mordukhovich et al. (2009)	Oral	United States	heart: function - rhythm (2 Types)
Mumford et al. (2007)	Oral	China	heart: function - rhythm (2 Types)
Osorio-Yáñez et al. (2013)	Oral	Mexico	cardiovascular disease (2 Types)
Rahman and Axelson (2001)	Oral	Bangladesh	blood pressure: unspecified
<u>Tseng et al. (1996)</u>	Oral	Taiwan	vascular: disease
<u>Tseng et al. (1997)</u>	Oral	Taiwan	vascular: disease
<u>Tseng et al. (2003)</u>	Oral	Taiwan	heart: function - ischemia
<u>Wang et al. (2009a)</u>	Oral	Taiwan	heart: function - rhythm (11 Types)
<u>Xia et al. (2009)</u>	Oral	China	cardiovascular disease
<u>Xia et al. (2009)</u>	Oral	China	cerebrovascular disease
<u>Yildiz et al. (2008)</u>	Oral	Turkey	heart: function - contractility
<u>Zhang et al. (2013a)</u>	Oral	China	blood pressure: unspecified
ECOLOGICAL			
Study References	Route of	Country	Health Effect
	Exposure		
Buchet and Lison (1998)	Oral	Belgium	heart: nonneoplastic lesions
<u>Chang et al. (2004)</u>	Oral	Taiwan	heart: function - ischemia
<u>Cheng et al. (2010)</u>	Oral	Taiwan	vascular: disease
<u>Chiu et al. (2007)</u>	Oral	Taiwan	vascular: disease
Dastgiri et al. (2010)	Oral	Iran	blood pressure: unspecified
Engel and Smith (1994)	Oral	United States	vascular: disease
Jovanović et al. (2012)	Oral	Serbia	vascular: function
Lisabeth et al. (2010)	Oral	United States	vascular: disease
<u>Medrano et al. (2010)</u>	Oral	Spain	vascular: disease
Meliker et al. (2007)	Oral	United States	vascular: disease
<u>Tsai et al. (1999)</u>	Oral	Taiwan	blood pressure: unspecified
<u>Tsai et al. (1999)</u>	Oral	Taiwan	heart: function - ischemia
<u>Tsai et al. (1999)</u>	Oral	Taiwan	vascular: disease
<u>Tseng (1977)</u>	Oral	Taiwan	vascular: disease
<u>Tseng (1989)</u>	Oral	Taiwan	vascular: disease

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-8Draft: Do Not Cite or Quote

<u>Tseng et al. (2005)</u>	Oral	Taiwan	vascular: disease		
Valentine et al. (1992)	Oral	United States	clinical observation		
Varsányi et al. (1991)	Oral	Hungary	vascular: disease		
<u>Wang et al. (2003)</u>	Oral	Taiwan	vascular: disease		
<u>Wu et al. (1989)</u>	Oral	Taiwan	vascular: disease		
Yang (2006)	Oral	Taiwan	vascular: disease		
<u>Yeh (1973)</u>	Oral	Taiwan	vascular: disease		
<u>Yuan et al. (2007)</u>	Oral	Chile	vascular: disease		
OTHER					
Study References	Route of	Country	Health Effect		
	Exposure				
Lagerkvist et al. (1986)	Inhalation	Sweden	vascular: function		
<u>Pinto et al. (1977)</u>	Inhalation	United States	heart: function - ischemia		

3.1.3 Summary of Epidemiology Studies for Hazard Identification for Clinical Chemistry and Urinalysis

Health Effect Category Route of Exposure Study Type	Count
Clinical Chemistry and Urinalysis	35
Oral	27
Case-control	5
Cross-sectional	21
Cohort	1
Inhalation	3
Cross-sectional	3
Route Unknown	5
Case-control	5

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CASE-CONTROL			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Nabi et al. (2005)</u>	Oral	Bangladesh	alanine aminotransferase (ALT)
<u>Nabi et al. (2005)</u>	Oral	Bangladesh	alkaline phosphatase (ALP)
<u>Nabi et al. (2005)</u>	Oral	Bangladesh	aspartate aminotransferase (AST)
<u>Nabi et al. (2005)</u>	Oral	Bangladesh	cholesterol
Shen et al. (2013)	Route	China	urine: parameters (5 Types)
	unknown		
CASE-CONTROL (NESTED)			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Kim et al. (2013)</u>	Oral	United States	albumin
COHORT (PROSPECTIVE)			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Chen et al. (2011c)</u>	Oral	Bangladesh	total protein
CROSS-SECTIONAL			
Study References	Route of	Country	Health Effect
	Exposure		
Casale et al. (2013)	Inhalation	Italy	alanine aminotransferase (ALT)
Casale et al. (2013)	Oral	Italy	alanine aminotransferase (ALT)
Casale et al. (2013)	Inhalation	Italy	aspartate aminotransferase (AST)

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-10Draft: Do Not Cite or Quote

Casale et al. (2013)	Oral	Italy	aspartate aminotransferase (AST)
Casale et al. (2013)	Inhalation	Italy	gamma-glutamyl transpeptidase
			(GGT)
Casale et al. (2013)	Oral	Italy	gamma-glutamyl transpeptidase
			(GGT)
Das et al. (2012a)	Oral	India	alanine aminotransferase (ALT)
Das et al. (2012a)	Oral	India	alkaline phosphatase (ALP)
Das et al. (2012a)	Oral	India	aspartate aminotransferase (AST)
Das et al. (2012a)	Oral	India	bilirubin
Islam et al. (2011)	Oral	Bangladesh	alanine aminotransferase (ALT)
Islam et al. (2011)	Oral	Bangladesh	alkaline phosphatase (ALP)
Islam et al. (2011)	Oral	Bangladesh	aspartate aminotransferase (AST)
<u>Maiti et al. (2012)</u>	Oral	India	alanine aminotransferase (ALT)
<u>Maiti et al. (2012)</u>	Oral	India	albumin
<u>Maiti et al. (2012)</u>	Oral	India	alkaline phosphatase (ALP)
<u>Maiti et al. (2012)</u>	Oral	India	aspartate aminotransferase (AST)
<u>Maiti et al. (2012)</u>	Oral	India	bilirubin
<u>Maiti et al. (2012)</u>	Oral	India	creatinine
Maiti et al. (2012)	Oral	India	gamma-glutamyl transpeptidase
			(GGT)
<u>Maiti et al. (2012)</u>	Oral	India	globulin
<u>Maiti et al. (2012)</u>	Oral	India	total protein
<u>Maiti et al. (2012)</u>	Oral	India	uric acid
Mazumder et al. (2013)	Oral	India	urine: parameters

3.1.4 Summary of Epidemiology Studies for Hazard Identification for Developmental Effects including Neurodevelopmental

Health Effect Category Route of Exposure Study Type	Count	
Developmental Effects including Neurod	166	
Oral	123	
Case-control	2	
Cross-sectional	76	
Cohort	36	
Ecological	8	
Other	1	
Inhalation	16	
Case-control	1	
Cross-sectional	7	
Cohort	6	
Ecological	2	
In Utero	10	
Cohort	10	
Route Unknown	17	
Cross-sectional	11	
Cohort	6	

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CASE-CONTROL				
Study References	Route of	Country	Health Effect	
	Exposure			
Jin et al. (2013)	Inhalation	China	congenital malformation	
<u>Jin et al. (2013)</u>	Oral	China	congenital malformation	
Zierler et al. (1988)	Oral	United States	congenital malformation	
COHORT (PROSPECTIVE)				
Study References	Route of	Country	Health Effect	
	Exposure			
Gardner et al. (2013)	Inhalation	Bangladesh	developmental milestone (6 Types)	
Gardner et al. (2013)	Oral	Bangladesh	developmental milestone (6 Types)	
Gardner et al. (2013)	In utero	Bangladesh	developmental milestone (6 Types)	
Gardner et al. (2013)	Route	Bangladesh	developmental milestone (6 Types)	
	unknown			
<u>Hamadani et al. (2010)</u>	Oral	Bangladesh	CNS: function - cognition (4 Types)	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-12Draft: Do Not Cite or Quote

Hamadani et al. (2011)	Oral	Bangladesh	CNS: function - cognition (3 Types)
Hopenhayn et al. (2003)	Oral	Chile	birth weight
Huyck et al. (2007)	Oral	Bangladesh	birth weight
Rahman et al. (2007)	Oral	Bangladesh	neonatal/infant mortality (3 Types)
Rahman et al. (2007)	Oral	Bangladesh	number of dead fetuses
Rahman et al. (2009)	Oral	Bangladesh	birth length
Rahman et al. (2009)	Oral	Bangladesh	birth weight
Rahman et al. (2009)	Oral	Bangladesh	growth
Rahman et al. (2009)	Oral	Bangladesh	head circumference
Rahman et al. (2010)	Oral	Bangladesh	neonatal/infant mortality
Saha et al. (2012)	Oral	Bangladesh	growth (6 Types)
Tofail et al. (2009)	Oral	Bangladesh	CNS: function - behavioral
Tofail et al. (2009)	In utero	Bangladesh	CNS: function - behavioral
Tofail et al. (2009)	Oral	Bangladesh	CNS: function - cognition (2 Types)
Tofail et al. (2009)	In utero	Bangladesh	CNS: function - cognition (2 Types)
Tofail et al. (2009)	Oral	Bangladesh	motor activity
Tofail et al. (2009)	In utero	Bangladesh	motor activity
COHORT (RETROSPECTIVE)			· ·
Study References	Route of	Country	Health Effect
	Exposure		
Sen and Chaudhuri (2007)	Oral	India	age at first estrous/menses
Sen and Chaudhuri (2007) Sohel et al. (2010)	Oral Oral	India Bangladesh	age at first estrous/menses neonatal/infant mortality
<u>Sohel et al. (2010)</u>			
Sohel et al. (2010) CROSS-SECTIONAL	Oral	Bangladesh	neonatal/infant mortality
Sohel et al. (2010) CROSS-SECTIONAL	Oral Route of	Bangladesh	neonatal/infant mortality
Sohel et al. (2010) CROSS-SECTIONAL Study References	Oral Route of Exposure	Bangladesh Country	neonatal/infant mortality Health Effect
Sohel et al. (2010) CROSS-SECTIONAL Study References Calderon et al. (2001)	Oral Route of Exposure Inhalation	Bangladesh Country Mexico	neonatal/infant mortality Health Effect CNS: function - cognition (7 Types)
Sohel et al. (2010) CROSS-SECTIONAL Study References Calderon et al. (2001) Calderon et al. (2001)	Oral Route of Exposure Inhalation Oral	Bangladesh Country Mexico Mexico	neonatal/infant mortality Health Effect CNS: function - cognition (7 Types) CNS: function - cognition (7 Types)
Sohel et al. (2010) CROSS-SECTIONAL Study References Calderon et al. (2001) Calderon et al. (2001) Chakraborti et al. (2003)	Oral Route of Exposure Inhalation Oral Oral	Bangladesh Country Mexico Mexico India	neonatal/infant mortality Health Effect CNS: function - cognition (7 Types) CNS: function - cognition (7 Types) birth weight
Sohel et al. (2010) CROSS-SECTIONAL Study References Calderon et al. (2001) Calderon et al. (2001) Chakraborti et al. (2003) Gelmann et al. (2013)	Oral Route of Exposure Inhalation Oral Oral Oral Oral	Bangladesh Country Mexico Mexico India Romania	neonatal/infant mortality Health Effect CNS: function - cognition (7 Types) CNS: function - cognition (7 Types) birth weight birth weight
Sohel et al. (2010) CROSS-SECTIONAL Study References Calderon et al. (2001) Calderon et al. (2001) Chakraborti et al. (2003) Gelmann et al. (2013)	Oral Route of Exposure Inhalation Oral Oral Oral Oral	Bangladesh Country Mexico Mexico India Romania	neonatal/infant mortality Health Effect CNS: function - cognition (7 Types) CNS: function - cognition (7 Types) birth weight birth weight birth height
Sohel et al. (2010) CROSS-SECTIONAL Study References Calderon et al. (2001) Calderon et al. (2001) Chakraborti et al. (2003) Gelmann et al. (2013)	Oral Route of Exposure Inhalation Oral Oral Oral Oral	Bangladesh Country Mexico Mexico India Romania	neonatal/infant mortality Health Effect CNS: function - cognition (7 Types) CNS: function - cognition (7 Types) birth weight birth weight birth height birth height
Sohel et al. (2010) CROSS-SECTIONAL Study References Calderon et al. (2001) Calderon et al. (2001) Chakraborti et al. (2003) Gelmann et al. (2013) Guan et al. (2012)	Oral Route of Exposure Inhalation Oral Oral Oral Oral Oral	Bangladesh Country Mexico Mexico India Romania China	neonatal/infant mortality Health Effect CNS: function - cognition (7 Types) CNS: function - cognition (7 Types) birth weight birth weight birth height birth height birth height
Sohel et al. (2010) CROSS-SECTIONAL Study References Calderon et al. (2001) Calderon et al. (2001) Chakraborti et al. (2003) Gelmann et al. (2013) Guan et al. (2012) Guan et al. (2012) Guan et al. (2012)	Oral Route of Exposure Inhalation Oral	Bangladesh Country Mexico Mexico India Romania China China	neonatal/infant mortality Health Effect CNS: function - cognition (7 Types) CNS: function - cognition (7 Types) birth weight birth weight birth height birth height birth height birth weight
Sohel et al. (2010) CROSS-SECTIONAL Study References Calderon et al. (2001) Calderon et al. (2001) Chakraborti et al. (2003) Gelmann et al. (2013) Guan et al. (2012) Guan et al. (2012)	Oral Route of Exposure Inhalation Oral	Bangladesh Country Mexico Mexico India Romania China China China	neonatal/infant mortality Health Effect CNS: function - cognition (7 Types) CNS: function - cognition (7 Types) birth weight birth weight birth height birth height birth weight birth weight chest circumference
Sohel et al. (2010) CROSS-SECTIONAL Study References Calderon et al. (2001) Calderon et al. (2001) Chakraborti et al. (2003) Gelmann et al. (2013) Guan et al. (2012) Guan et al. (2012) Guan et al. (2012)	Oral Route of Exposure Inhalation Oral	Bangladesh Country Mexico Mexico India Romania China China China China China China	neonatal/infant mortality Health Effect CNS: function - cognition (7 Types) CNS: function - cognition (7 Types) birth weight birth weight birth weight birth height birth height birth weight chest circumference head circumference
Sohel et al. (2010) CROSS-SECTIONAL Study References Calderon et al. (2001) Calderon et al. (2001) Chakraborti et al. (2003) Gelmann et al. (2013) Guan et al. (2012) Guan et al. (2012) Guan et al. (2012) Khan et al. (2012)	Oral Route of Exposure Inhalation Oral	Bangladesh Country Mexico Mexico India Romania China China China China China China Bangladesh	neonatal/infant mortality Health Effect CNS: function - cognition (7 Types) CNS: function - cognition (7 Types) birth weight birth weight birth height birth height birth weight chest circumference head circumference CNS: function - cognition (3 Types)
Sohel et al. (2010) CROSS-SECTIONAL Study References Calderon et al. (2001) Calderon et al. (2001) Chakraborti et al. (2003) Gelmann et al. (2013) Guan et al. (2012) Guan et al. (2012) Guan et al. (2012) Guan et al. (2012) Khan et al. (2012) Kippler et al. (2012)	Oral Route of Exposure Inhalation Oral	Bangladesh Country Mexico Mexico India Romania China China China China China China Bangladesh Bangladesh	neonatal/infant mortality Health Effect CNS: function - cognition (7 Types) CNS: function - cognition (7 Types) birth weight birth weight birth height birth height birth weight birth weight birth neight birth weight birth neight birth weight chest circumference head circumference CNS: function - cognition (3 Types) growth (4 Types)
Sohel et al. (2010) CROSS-SECTIONAL Study References Calderon et al. (2001) Calderon et al. (2001) Chakraborti et al. (2003) Gelmann et al. (2013) Guan et al. (2012) Guan et al. (2012) Guan et al. (2012) Khan et al. (2012) Kippler et al. (2012) Kippler et al. (2012)	OralRoute of ExposureInhalationOral	Bangladesh Country Mexico Mexico India Romania China China China China China China Bangladesh Bangladesh Bangladesh	neonatal/infant mortalityHealth EffectCNS: function - cognition (7 Types)CNS: function - cognition (7 Types)birth weightbirth weightbirth heightbirth heightbirth heightbirth weightchest circumferencehead circumferenceCNS: function - cognition (3 Types)growth (4 Types)head circumference
Sohel et al. (2010) CROSS-SECTIONAL Study References Calderon et al. (2001) Calderon et al. (2001) Chakraborti et al. (2003) Gelmann et al. (2013) Guan et al. (2012) Guan et al. (2012) Guan et al. (2012) Guan et al. (2012) Khan et al. (2012) Kippler et al. (2012) Kippler et al. (2012) Kippler et al. (2012)	Oral Route of Exposure Inhalation Oral Oral	Bangladesh Country Mexico Mexico India Romania China China China China China China China Bangladesh Bangladesh Bangladesh Bangladesh	neonatal/infant mortalityHealth EffectCNS: function - cognition (7 Types)CNS: function - cognition (7 Types)birth weightbirth weightbirth heightbirth heightbirth heightbirth weightchest circumferencehead circumferenceCNS: function - cognition (3 Types)growth (4 Types)head circumferencebirth weight (3 Types)
Sohel et al. (2010) CROSS-SECTIONAL Study References Calderon et al. (2001) Calderon et al. (2001) Chakraborti et al. (2003) Gelmann et al. (2013) Guan et al. (2012) Guan et al. (2012) Guan et al. (2012) Guan et al. (2012) Khan et al. (2012) Kippler et al. (2012) Kippler et al. (2012) Kippler et al. (2012) Kwok et al. (2006) Kwok et al. (2006)	OralRoute of ExposureInhalationOral	Bangladesh Country Mexico Mexico India Romania China China China China China China Bangladesh Bangladesh Bangladesh Bangladesh Bangladesh Bangladesh	neonatal/infant mortalityHealth EffectCNS: function - cognition (7 Types)CNS: function - cognition (7 Types)birth weightbirth weightbirth weightbirth heightbirth heightbirth weightchest circumferencehead circumferenceCNS: function - cognition (3 Types)growth (4 Types)head circumferencebirth weight (3 Types)external malformation
Sohel et al. (2010) CROSS-SECTIONAL Study References Calderon et al. (2001) Calderon et al. (2001) Chakraborti et al. (2003) Gelmann et al. (2013) Guan et al. (2012) Guan et al. (2012) Guan et al. (2012) Guan et al. (2012) Khan et al. (2012) Kippler et al. (2012) Kippler et al. (2012) Kippler et al. (2012) Kwok et al. (2006) Kwok et al. (2005)	OralRoute of ExposureInhalationOral	Bangladesh Country Mexico Mexico India Romania China China China China China China China Bangladesh Bangladesh Bangladesh Bangladesh Bangladesh Bangladesh Bangladesh Bangladesh	neonatal/infant mortalityHealth EffectCNS: function - cognition (7 Types)CNS: function - cognition (7 Types)birth weightbirth weightbirth heightbirth heightbirth heightbirth weightchest circumferencehead circumferenceCNS: function - cognition (3 Types)growth (4 Types)head circumferencebirth weight (3 Types)external malformationneonatal/infant mortality

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-13Draft: Do Not Cite or Quote

<u>Nahar et al. (2014)</u>	Oral	Bangladesh	IQ
Parvez et al. (2011)	Oral	Bangladesh	CNS: function - cognition (5 Types)
Rocha-Amador et al. (2007)	Oral	Mexico	CNS: function - cognition (3 Types)
<u>Roy et al. (2011)</u>	Oral	Mexico	CNS: function - behavioral (4 Types)
<u>Tsai et al. (2003)</u>	Oral	Taiwan	CNS: function - behavioral (4 Types)
Vall et al. (2012)	Oral	Spain	birth length
Vall et al. (2012)	Oral	Spain	birth weight
Vall et al. (2012)	Oral	Spain	gestational age at birth (humans)
<u>Vall et al. (2012)</u>	Oral	Spain	head circumference
<u>Vall et al. (2012)</u>	Oral	Spain	preterm birth/delivery (<37 weeks)
Von Ehrenstein et al. (2006)	Oral	India	neonatal/infant mortality (2 Types)
von Ehrenstein et al. (2007)	Oral	India	CNS: function - cognition (10 Types)
Wang et al. (2007a)	Oral	Bangladesh	CNS: function - cognition
Wasserman et al. (2004)	Oral	Bangladesh	CNS: function - cognition (3 Types)
Wasserman et al. (2007)	Oral	Bangladesh	CNS: function - cognition (4 Types)
Wasserman et al. (2011)	Oral	Bangladesh	CNS: function - cognition (5 Types)
<u>Wright et al. (2006)</u>	Route	United States	developmental milestone (8 Types)
	unknown		
<u>Wright et al. (2006)</u>	Route	United States	IQ (3 Types)
	unknown		
ECOLOGICAL			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Aelion et al. (2013)</u>	Inhalation	United States	birth weight
<u>Chakraborti et al. (2013a)</u>	Oral	Bangladesh;	birth weight (2 Types)
		India	
<u>Cherry et al. (2010)</u>	Oral	Bangladesh	neonatal/infant mortality
Engel and Smith (1994)	Oral	United States	congenital malformation
<u>Gerr et al. (2000)</u>	Inhalation	United States	CNS: function - behavioral
Hopenhayn-Rich et al. (1999)	Oral	Chile	neonatal/infant mortality
Hopenhayn-Rich et al. (2000)	Oral	Chile	neonatal/infant mortality
<u>Myers et al. (2010)</u>	Oral	China	birth weight
<u>Myers et al. (2010)</u>	Oral	China	neonatal/infant mortality
OTHER			
Study References	Route of	Country	Health Effect
	Exposure		
Dong and Su (2009)	Oral	China	CNS: function - cognition

3.1.5 Summary of Epidemiology Studies for Hazard Identification for Digestive System Effects

Health Effect Category Route of Exposure Study Type	Count	
Digestive System Effects	49	
Oral	30	
Case-control	1	
Cross-sectional	3	
Cohort	13	
Ecological	13	
Inhalation	16	
Cohort	9	
Ecological	5	
Other	2	
Dermal	1	
Other	1	
In Utero	2	
Cohort	2	

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CASE REPORT			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Kerr (1875)</u>	Inhalation	United	clinical observation
		Kingdom	
<u>Kerr (1875)</u>	Dermal	United	clinical observation
		Kingdom	
CASE-CONTROL	·		·
Study References	Route of	Country	Health Effect
	Exposure		
Amaral et al. (2012)	Oral	Spain	pancreas: neoplastic lesions
COHORT (PROSPECTIVE)	·		
Study References	Route of	Country	Health Effect
	Exposure		
Baastrup et al. (2008)	Oral	Denmark	digestive system: neoplastic lesions
Farzan et al. (2013)	In utero	United States	diarrhea
García-Esquinas et al. (2013)	Oral	United States	large intestine: neoplastic lesions
García-Esquinas et al. (2013)	Oral	United States	stomach: neoplastic lesions

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-15Draft: Do Not Cite or Quote

<u>Hsu et al. (2013b)</u>	Oral	Taiwan	large intestine: neoplastic lesions (2 Types)
<u>Hsu et al. (2013b)</u>	Oral	Taiwan	stomach: neoplastic lesions
Rahman et al. (2011)	Oral	Bangladesh	diarrhea
		_	diarrhea
Rahman et al. (2011)	In utero	Bangladesh	
Sawada et al. (2013)	Oral	Japan	digestive system: neoplastic lesions
Sawada et al. (2013)	Oral	Japan	stomach: neoplastic lesions
COHORT (RETROSPECTIVE)			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Bulbulyan et al. (1996)</u>	Inhalation	Russia	stomach: neoplastic lesions
Enterline and Marsh (1982)	Inhalation	United States	digestive system: neoplastic lesions
Enterline and Marsh (1982)	Inhalation	United States	large intestine: neoplastic lesions
Enterline and Marsh (1982)	Inhalation	United States	stomach: nonneoplastic lesions
<u>Kreuzer et al. (2012)</u>	Inhalation	Germany	stomach: neoplastic lesions
<u>Lewis et al. (1999)</u>	Oral	United States	digestive system: neoplastic lesions
<u>Lewis et al. (1999)</u>	Oral	United States	large intestine: neoplastic lesions
Lewis et al. (1999)	Oral	United States	stomach: neoplastic lesions
Lubin et al. (1981)	Inhalation	United States	digestive system: neoplastic lesions
			(2 Types)
Lubin et al. (1981)	Inhalation	United States	digestive system: nonneoplastic
			lesions
<u>Pinto et al. (1978)</u>	Inhalation	United States	digestive system: neoplastic lesions
Tsuda et al. (1995)	Oral	Japan	large intestine: neoplastic lesions
CROSS-SECTIONAL			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Syed et al. (2013)</u>	Oral	Bangladesh	oral cavity: nonneoplastic lesions (3
			Types)
ECOLOGICAL			
Study References	Route of	Country	Health Effect
	Exposure		
Cebrián et al. (1983)	Oral	Mexico	clinical observation
<u>Chen et al. (1985)</u>	Oral	Taiwan	large intestine: neoplastic lesions
Hinwood et al. (1999)	Oral	Australia	digestive system: neoplastic lesions
Hopenhayn-Rich et al. (1996)	Oral	Argentina	stomach: neoplastic lesions
<u>Rivara et al. (1997)</u>	Inhalation	Chile	digestive system: neoplastic lesions
<u></u>			(3 Types)
<u>Rivara et al. (1997)</u>	Oral	Chile	digestive system: neoplastic lesions
<u></u>	- Crui		(3 Types)
<u>Rivara et al. (1997)</u>	Inhalation	Chile	esophagus: neoplastic lesions
<u>Rivara et al. (1997)</u>	Oral	Chile	esophagus: neoplastic lesions
<u>Rivara et al. (1997)</u>	Inhalation	Chile	stomach: neoplastic lesions
<u>Rivara et al. (1997)</u> <u>Rivara et al. (1997)</u>	Oral	Chile	stomach: neoplastic lesions

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

<u>Tsai et al. (1999)</u>	Oral	Taiwan	digestive system: neoplastic lesions
Valentine et al. (1992)	Oral	United States	clinical observation
<u>Wu et al. (1989)</u>	Oral	Taiwan	digestive system: neoplastic lesions
Yang et al. (2008b)	Oral	Taiwan	large intestine: neoplastic lesions
OTHER	-		
Study References	Route of	Country	Health Effect
	Exposure		
<u>Pinto et al. (1977)</u>	Inhalation	United States	digestive system: neoplastic lesions

3.1.6 Summary of Epidemiology Studies for Hazard Identification for Endocrine System Effects including Diabetes

Health Effect Category Route of Exposure Study Type	Count		
Endocrine System Effects including Diabe	76		
Oral	55		
Case-control	9		
Cross-sectional	26		
Cohort	10		
Ecological	8		
Inhalation	16		
Case-control	2		
Cross-sectional	6		
Cohort	5		
Ecological	1		
Other	1		
Dermal	1		
Route Unknown	4		
Cross-sectional	4		

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CASE-COHORT				
Study References	Route of	Country	Health Effect	
	Exposure			
<u>James et al. (2013)</u>	Oral	United States	diabetes mellitus	
CASE-CONTROL				
Study References	Route of	Country	Health Effect	
	Exposure			
Coronado-González et al. (2007)	Oral	Mexico	diabetes, type 2	
<u>Nizam et al. (2013)</u>	Oral	Bangladesh	diabetes mellitus	
Pan et al. (2013)	Oral	Bangladesh	diabetes, type 2	
Rahman and Axelson (1995)	Inhalation	Sweden	diabetes mellitus	
<u>Rahman et al. (1996)</u>	Inhalation	Sweden	diabetes mellitus	
CASE-CONTROL (NESTED)				
Study References	Route of	Country	Health Effect	
	Exposure			
<u>Hsieh et al. (2008a)</u>	Oral	Taiwan	growth hormone	
<u>Hsieh et al. (2008a)</u>	Oral	Taiwan	testosterone (2 Types)	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-18Draft: Do Not Cite or Quote

Kim et al. (2013)	Oral	United States	blood: glucose (2 Types)
Kim et al. (2013)	Oral	United States	diabetes mellitus
COHORT (PROSPECTIVE)			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Chen et al. (2012a)</u>	Oral	Taiwan	diabetes mellitus
Ettinger et al. (2009)	Oral	United States	gestational diabetes
García-Esquinas et al. (2013)	Oral	United States	pancreas: neoplastic lesions
<u>Hsu et al. (2013b)</u>	Oral	Taiwan	diabetes mellitus
<u>Hsu et al. (2013b)</u>	Oral	Taiwan	pancreas: neoplastic lesions
Sawada et al. (2013)	Oral	Japan	pancreas: neoplastic lesions
<u>Tseng et al. (2000)</u>	Oral	Taiwan	diabetes mellitus
COHORT (RETROSPECTIVE)			
Study References	Route of	Country	Health Effect
	Exposure		
Enterline and Marsh (1982)	Inhalation	United States	diabetes mellitus (2 Types)
Enterline and Marsh (1982)	Inhalation	United States	thyroid gland: neoplastic lesions
<u>Lewis et al. (1999)</u>	Oral	United States	diabetes mellitus
<u>Lewis et al. (1999)</u>	Oral	United States	pancreas: neoplastic lesions
<u>Lubin et al. (1981)</u>	Inhalation	United States	endocrine system: nonneoplastic
			lesions (2 Types)
<u>Rahman et al. (1998)</u>	Oral	Bangladesh	diabetes mellitus
CROSS-SECTIONAL	I		
Study References	Route of	Country	Health Effect
	Exposure		
	-		
<u>Chen et al. (2010c)</u>	Oral	Bangladesh	diabetes mellitus
<u>Chen et al. (2010c)</u>	Oral Oral	Bangladesh	urine: glucose
<u>Chen et al. (2010c)</u> <u>Chen et al. (2011a)</u>	Oral Oral Oral	Bangladesh Taiwan	urine: glucose diabetes mellitus
Chen et al. (2010c) Chen et al. (2011a) Ciarrocca et al. (2012)	Oral Oral Oral Inhalation	Bangladesh Taiwan Italy	urine: glucose diabetes mellitus diabetes mellitus
Chen et al. (2010c) Chen et al. (2011a) Ciarrocca et al. (2012) Ciarrocca et al. (2012)	Oral Oral Oral Inhalation Inhalation	Bangladesh Taiwan Italy Italy	urine: glucose diabetes mellitus diabetes mellitus thyroglobulin
Chen et al. (2010c) Chen et al. (2011a) Ciarrocca et al. (2012) Ciarrocca et al. (2012) Ciarrocca et al. (2012)	Oral Oral Oral Inhalation Inhalation Inhalation	Bangladesh Taiwan Italy Italy Italy Italy	urine: glucose diabetes mellitus diabetes mellitus thyroglobulin thyroid stimulating hormone (TSH)
Chen et al. (2010c) Chen et al. (2011a) Ciarrocca et al. (2012)	Oral Oral Oral Inhalation Inhalation Inhalation Inhalation	Bangladesh Taiwan Italy Italy Italy Italy Italy	urine: glucosediabetes mellitusdiabetes mellitusthyroglobulinthyroid stimulating hormone (TSH)thyroxine (T4)
Chen et al. (2010c) Chen et al. (2011a) Ciarrocca et al. (2012)	Oral Oral Oral Inhalation Inhalation Inhalation Inhalation Inhalation	Bangladesh Taiwan Italy Italy Italy Italy Italy Italy	urine: glucosediabetes mellitusdiabetes mellitusthyroglobulinthyroid stimulating hormone (TSH)thyroxine (T4)triiodothyronine (T3)
Chen et al. (2010c) Chen et al. (2011a) Ciarrocca et al. (2012) Del Razo et al. (2011)	Oral Oral Oral Inhalation Inhalation Inhalation Inhalation Inhalation Oral	Bangladesh Taiwan Italy Italy Italy Italy Italy Italy Italy Mexico	urine: glucosediabetes mellitusdiabetes mellitusthyroglobulinthyroid stimulating hormone (TSH)thyroxine (T4)triiodothyronine (T3)diabetes mellitus
Chen et al. (2010c) Chen et al. (2011a) Ciarrocca et al. (2012) Del Razo et al. (2011) Del Razo et al. (2011)	Oral Oral Oral Inhalation Inhalation Inhalation Inhalation Oral Oral	Bangladesh Taiwan Italy Italy Italy Italy Italy Italy Mexico Mexico	urine: glucosediabetes mellitusdiabetes mellitusthyroglobulinthyroid stimulating hormone (TSH)thyroxine (T4)triiodothyronine (T3)diabetes mellitusinsulin
Chen et al. (2010c) Chen et al. (2011a) Ciarrocca et al. (2012) Del Razo et al. (2011) Del Razo et al. (2011) Del Razo et al. (2011)	Oral Oral Oral Inhalation Inhalation Inhalation Inhalation Oral Oral Oral Oral	BangladeshTaiwanItalyItalyItalyItalyItalyItalyItalyMexicoMexicoMexicoMexico	urine: glucosediabetes mellitusdiabetes mellitusthyroglobulinthyroid stimulating hormone (TSH)thyroxine (T4)triiodothyronine (T3)diabetes mellitusinsulininsulin resistance
Chen et al. (2010c) Chen et al. (2011a) Ciarrocca et al. (2012) Del Razo et al. (2011) Del Razo et al. (2011) Del Razo et al. (2011) Drobná et al. (2013)	OralOralOralOralInhalationInhalationInhalationInhalationInhalationOralOralOralOralOralOralOralOralOral	BangladeshTaiwanItalyItalyItalyItalyItalyItalyItalyMexicoMexicoMexicoMexicoMexicoMexicoMexico	urine: glucosediabetes mellitusdiabetes mellitusthyroglobulinthyroid stimulating hormone (TSH)thyroxine (T4)triiodothyronine (T3)diabetes mellitusinsulininsulin resistancediabetes mellitus
Chen et al. (2010c) Chen et al. (2011a) Ciarrocca et al. (2012) Del Razo et al. (2011) Gribble et al. (2012)	OralOralOralOralInhalationInhalationInhalationInhalationInhalationOralOralOralOralOralOralOralOralOralOralOralOralOralOralOralOralOralOral	BangladeshTaiwanItalyItalyItalyItalyItalyItalyMexico	urine: glucosediabetes mellitusdiabetes mellitusthyroglobulinthyroid stimulating hormone (TSH)thyroxine (T4)triiodothyronine (T3)diabetes mellitusinsulininsulin resistancediabetes mellitusdiabetes mellitus
Chen et al. (2010c) Chen et al. (2011a) Ciarrocca et al. (2012) Del Razo et al. (2011) Del Razo et al. (2011) Del Razo et al. (2013) Gribble et al. (2012) Guo et al. (2007)	OralOralOralOralInhalationInhalationInhalationInhalationInhalationOralOralOralOralOralOralOralOralOralOralOralOralOralOralOralOralOralOralOral	BangladeshTaiwanItalyItalyItalyItalyItalyItalyItalyMexicoMexicoMexicoMexicoMexicoUnited StatesMongolia	urine: glucosediabetes mellitusdiabetes mellitusthyroglobulinthyroid stimulating hormone (TSH)thyroxine (T4)triiodothyronine (T3)diabetes mellitusinsulininsulin resistancediabetes mellitusdiabetes mellitusurine: glucose
Chen et al. (2010c) Chen et al. (2011a) Ciarrocca et al. (2012) Del Razo et al. (2011) Del Razo et al. (2011) Del Razo et al. (2011) Del Razo et al. (2012) Gribble et al. (2012) Guo et al. (2007) Islam et al. (2012b)	OralOralOralOralInhalationInhalationInhalationInhalationInhalationOral	BangladeshTaiwanItalyItalyItalyItalyItalyItalyMexicoMexicoMexicoMexicoMexicoMexicoMexicoMexicoMexicoMexicoMexicoMexicoMexicoBangladesh	urine: glucosediabetes mellitusdiabetes mellitusthyroglobulinthyroid stimulating hormone (TSH)thyroxine (T4)triiodothyronine (T3)diabetes mellitusinsulininsulin resistancediabetes mellitusdiabetes mellitusurine: glucosediabetes, type 2
Chen et al. (2010c) Chen et al. (2011a) Ciarrocca et al. (2012) Del Razo et al. (2011) Del Razo et al. (2011) Del Razo et al. (2011) Drobná et al. (2013) Gribble et al. (2012) Guo et al. (2007) Islam et al. (2012b) Jensen and Hansen (1998)	OralOralOralOralInhalationInhalationInhalationInhalationInhalationOralOralOralOralOralOralOralOralOralOralOralOralOralOralOralOralOralInhalation	BangladeshTaiwanItalyItalyItalyItalyItalyItalyItalyMexicoMexicoMexicoMexicoMexicoMexicoBangladeshDenmark	urine: glucosediabetes mellitusdiabetes mellitusthyroglobulinthyroid stimulating hormone (TSH)thyroxine (T4)triiodothyronine (T3)diabetes mellitusinsulininsulin resistancediabetes mellitusdiabetes mellitusurine: glucosediabetes, type 2blood: glucose
Chen et al. (2010c) Chen et al. (2011a) Ciarrocca et al. (2012) Del Razo et al. (2011) Del Razo et al. (2011) Del Razo et al. (2011) Del Razo et al. (2013) Gribble et al. (2012) Guo et al. (2007) Islam et al. (2012b) Jensen and Hansen (1998) Jovanovic et al. (2013)	OralOralOralOralInhalationInhalationInhalationInhalationInhalationOral	BangladeshTaiwanItalyItalyItalyItalyItalyItalyItalyMexicoMexicoMexicoMexicoMexicoMexicoMexicoBangladeshDenmarkSerbia	urine: glucosediabetes mellitusdiabetes mellitusthyroglobulinthyroid stimulating hormone (TSH)thyroxine (T4)triiodothyronine (T3)diabetes mellitusinsulininsulin resistancediabetes mellitusdiabetes mellitusurine: glucosediabetes, type 2blood: glucosediabetes, type 2
Chen et al. (2010c) Chen et al. (2011a) Ciarrocca et al. (2012) Del Razo et al. (2011) Del Razo et al. (2011) Del Razo et al. (2011) Drobná et al. (2013) Gribble et al. (2012) Guo et al. (2007) Islam et al. (2012b) Jensen and Hansen (1998)	OralOralOralOralInhalationInhalationInhalationInhalationInhalationOralOralOralOralOralOralOralOralOralOralOralOralOralOralOralOralOralInhalation	BangladeshTaiwanItalyItalyItalyItalyItalyItalyItalyMexicoMexicoMexicoMexicoMexicoMexicoBangladeshDenmark	urine: glucosediabetes mellitusdiabetes mellitusthyroglobulinthyroid stimulating hormone (TSH)thyroxine (T4)triiodothyronine (T3)diabetes mellitusinsulininsulin resistancediabetes mellitusdiabetes mellitusurine: glucosediabetes, type 2blood: glucose

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-19Draft: Do Not Cite or Quote

<u>Li et al. (2013a)</u>	Oral	China	diabetes, type 2
Maiti et al. (2012)	Oral	India	blood: glucose
<u>Makris et al. (2012)</u>	Oral		diabetes, type 2
Makis et al. (2012) Meeker et al. (2009)	Oral	Cyprus United States	prolactin (PRL)
Meeker et al. (2009)	Oral	United States	thyroid stimulating hormone (TSH)
Navas-Acien et al. (2008)	Oral	United States	diabetes, type 2
Navas-Acien et al. (2009)	Oral	United States	diabetes, type 2
Rahman et al. (1999b)	Oral	Bangladesh	urine: glucose (2 Types)
Rahman and Axelson (2001)	Oral	Bangladesh	urine: glucose
<u>Rhee et al. (2013)</u>	Route	Korea,	diabetes mellitus
	unknown	Republic Of	
<u>Rhee et al. (2013)</u>	Route	Korea,	glucose stimulated insulin secretion
	unknown	Republic Of	
<u>Rhee et al. (2013)</u>	Route	Korea,	impaired glucose tolerance
	unknown	Republic Of	
<u>Rhee et al. (2013)</u>	Route	Korea,	insulin resistance
	unknown	Republic Of	
<u>Steinmaus et al. (2009)</u>	Oral	United States	diabetes, type 2
Zierold et al. (2004)	Oral	United States	diabetes, type 2
ECOLOGICAL			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Chang et al. (1991)</u>	Oral	Taiwan	thyroid gland: gross pathology
<u>Chiu et al. (2006)</u>	Oral	Taiwan	diabetes mellitus
Liu-Mares et al. (2013)	Oral	United States	pancreas: neoplastic lesions
Meliker et al. (2007)	Oral	United States	diabetes mellitus
<u>Rivara et al. (1997)</u>	Inhalation	Chile	pancreas: neoplastic lesions
<u>Rivara et al. (1997)</u>	Oral	Chile	pancreas: neoplastic lesions
<u>Tsai et al. (1999)</u>	Oral	Taiwan	diabetes mellitus
<u>Wang et al. (2003)</u>	Oral	Taiwan	diabetes mellitus
<u>Yorifuji et al. (2011)</u>	Oral	Japan	pancreas: neoplastic lesions
META-ANALYSIS			
Study References	Route of	Country	Health Effect
	Exposure		
Wang et al. (2014)	Inhalation		diabetes, type 2
Wang et al. (2014)	Oral		diabetes, type 2
<u>Wang et al. (2014)</u>	Dermal		diabetes, type 2
OTHER			
Study References	Route of	Country	Health Effect
-	Exposure	-	
<u>Ojajarvi et al. (2000)</u>	Inhalation	Multiple	pancreas: neoplastic lesions
Study References	Exposure		

3.1.7 Summary of Epidemiology Studies for Hazard Identification for Hematology, Hematopoietic System

Health Effect Category Route of Exposure Study Type	Count	
Hematology, Hematopoietic System	25	
Oral	24	
Case-control	1	
Cross-sectional	11	
Cohort	5	
Ecological	6	
Other	1	
Inhalation	1	
Ecological	1	

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CASE SERIES			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Mazumder (2003)</u>	Oral	India	anemia
CASE-CONTROL			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Ghosh (2013)</u>	Oral	India	blood: coagulation/thrombosis
COHORT (PROSPECTIVE)			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Hopenhayn et al. (2006)</u>	Oral	Chile	hematocrit (packed cell volume)
<u>Saha et al. (2013)</u>	Oral	Bangladesh	hematocrit (packed cell volume)
<u>Saha et al. (2013)</u>	Oral	Bangladesh	hemoglobin
<u>Saha et al. (2013)</u>	Oral	Bangladesh	leukocyte count
<u>Saha et al. (2013)</u>	Oral	Bangladesh	leukocyte differential
CROSS-SECTIONAL			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Del Razo et al. (2011)</u>	Oral	Mexico	HbA1c
<u>Guo et al. (2007)</u>	Oral	Mongolia	blood: oxygen
Heck et al. (2008)	Oral	Bangladesh	hemoglobin
<u>Maiti et al. (2012)</u>	Oral	India	erythrocyte count

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-21Draft: Do Not Cite or Quote

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

<u>Maiti et al. (2012)</u>	Oral	India	hematocrit (packed cell volume)
Maiti et al. (2012)	Oral	India	hemoglobin
Maiti et al. (2012)	Oral	India	leukocyte count
Maiti et al. (2012)	Oral	India	leukocyte differential
<u>Maiti et al. (2012)</u>	Oral	India	mean corpuscular hemoglobin
			concentration
<u>Maiti et al. (2012)</u>	Oral	India	mean corpuscular volume
Majumdar et al. (2009)	Oral	India	hemoglobin
ECOLOGICAL			
Study References	Route of	Country	Health Effect
	Exposure		
Buchet and Lison (1998)	Oral	Belgium	bone marrow: nonneoplastic
			lesions
Buchet and Lison (1998)	Oral	Belgium	leukemia
Hinwood et al. (1999)	Oral	Australia	leukemia
<u>Rivara et al. (1997)</u>	Inhalation	Chile	leukemia
<u>Rivara et al. (1997)</u>	Oral	Chile	leukemia
<u>Wu et al. (1989)</u>	Oral	Taiwan	leukemia
Yorifuji et al. (2011)	Oral	Japan	hematopoietic system: neoplastic

3.1.8 Summary of Epidemiology Studies for Hazard Identification for Liver Effects

Health Effect Category Route of Exposure Study Type		Count
Liver Effects	39	
Oral	36	
Case-control	3	
Cross-sectional	4	
Cohort	7	
Ecological	18	
Other	4	
Inhalation	3	
Cohort	2	
Ecological	1	

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CASE REPORT			
Study References	Route of	Country	Health Effect
	Exposure		
Morris et al. (1974)	Oral	United	liver: nonneoplastic lesions
		Kingdom	
Zaldívar et al. (1981)	Oral	Chile	liver: nonneoplastic lesions
CASE SERIES			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Datta et al. (1979)</u>	Oral	India	liver: nonneoplastic lesions
Mazumder (2003)	Oral	India	clinical observation
CASE-CONTROL	·		·
Study References	Route of	Country	Health Effect
	Exposure		
<u>Chen et al. (1986)</u>	Oral	Taiwan	liver: neoplastic lesions
<u>Ghosh (2013)</u>	Oral	India	liver: gross pathology
<u>Wadhwa et al. (2011a)</u>	Oral	Pakistan	liver: neoplastic lesions
COHORT (PROSPECTIVE)	·		·
Study References	Route of	Country	Health Effect
	Exposure		
Baastrup et al. (2008)	Oral	Denmark	liver: neoplastic lesions
Chung et al. (2012)	Oral	Taiwan	liver: neoplastic lesions

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-23Draft: Do Not Cite or Quote

García-Esquinas et al. (2013)	Oral	United States	liver: neoplastic lesions
Hsu et al. (2013b)	Oral	Taiwan	liver: neoplastic lesions
Sawada et al. (2013)	Oral	Japan	liver: neoplastic lesions
COHORT (RETROSPECTIVE)			
Study References	Route of	Country	Health Effect
	Exposure		
Enterline and Marsh (1982)	Inhalation	United States	liver: nonneoplastic lesions (2
			Types)
Lewis et al. (1999)	Oral	United States	liver: neoplastic lesions
<u>Tsuda et al. (1995)</u>	Oral	Japan	liver: neoplastic lesions
CROSS-SECTIONAL			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Guo et al. (2007)</u>	Oral	Mongolia	liver: nonneoplastic lesions (2
			Types)
<u>Majumdar et al. (2009)</u>	Oral	India	liver: gross pathology
<u>Paul et al. (2013)</u>	Oral	India	liver: neoplastic lesions
ECOLOGICAL			
Study References	Route of	Country	Health Effect
	Exposure		
Buchet and Lison (1998)	Oral	Belgium	liver: nonneoplastic lesions
<u>Chen et al. (1985)</u>	Oral	Taiwan	liver: neoplastic lesions
Chen and Wang (1990)	Oral	Taiwan	liver: neoplastic lesions
<u>Chen et al. (1992)</u>	Oral	Taiwan	liver: neoplastic lesions
<u>Guo (2003)</u>	Oral	Taiwan	liver: neoplastic lesions
<u>Han et al. (2009)</u>	Oral	United States	liver: neoplastic lesions
<u>Hinwood et al. (1999)</u>	Oral	Australia	liver: neoplastic lesions
<u>Hopenhayn-Rich et al. (1998)</u>	Oral	Argentina	liver: neoplastic lesions
<u>Liaw et al. (2008)</u>	Oral	Chile	liver: neoplastic lesions
<u>Lin et al. (2013)</u>	Oral	Taiwan	liver: neoplastic lesions
<u>Meliker et al. (2007)</u>	Oral	United States	liver: neoplastic lesions
Morales et al. (2000)	Oral	Taiwan	liver: neoplastic lesions
<u>Rivara et al. (1997)</u>	Inhalation	Chile	liver: neoplastic lesions
<u>Rivara et al. (1997)</u>	Oral	Chile	liver: neoplastic lesions
Smith et al. (1998)	Oral	Chile	liver: neoplastic lesions
Smith et al. (2012)	Oral	Chile	liver: neoplastic lesions
<u>Tsai et al. (1999)</u>	Oral	Taiwan	liver: nonneoplastic lesions
Wu et al. (1989)	Oral	Taiwan	liver: neoplastic lesions
<u>wu et al. (1969)</u>	Orai	· unit unit	

3.1.9 Summary of Epidemiology Studies for Hazard Identification for Immune System and Lymphatic Effects

Health Effect Category Route of Exposure Study Type	Count	
Immune System and Lymphatic Effects	55	
Oral	44	
Case-control	2	
Cross-sectional	29	
Cohort	11	
Ecological	2	
Inhalation	5	
Cohort	5	
In Utero	2	
Cohort	2	
Route Unknown	4	
Cross-sectional	4	

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CASE-CONTROL					
Study References	Route of	Country	Health Effect		
	Exposure				
Infante-Rivard et al. (2001)	Oral	Canada	leukemia		
Lu and Chen (1991)	Oral	Taiwan	cell-mediated immunity effects		
COHORT (PROSPECTIVE)					
Study References	Route of	Country	Health Effect		
	Exposure				
Ahmed et al. (2012)	In utero	Bangladesh	thymus: function		
Ahmed et al. (2012)	In utero	Bangladesh	thymus: gross pathology		
García-Esquinas et al. (2013)	Oral	United States	lymph node: neoplastic lesions		
<u>Moore et al. (2009)</u>	Oral	Bangladesh	thymus: absolute weight		
Moore et al. (2009)	Oral	Bangladesh	thymus: relative weight		
Raqib et al. (2009)	Oral	Bangladesh	nonspecific/innate immunity effects		
Raqib et al. (2009)	Oral	Bangladesh	T cells		
<u>Raqib et al. (2009)</u>	Oral	Bangladesh	thymus: function (3 Types)		
<u>Saha et al. (2013)</u>	Oral	Bangladesh	immunoglobulin		
<u>Sohel et al. (2009)</u>	Oral	Bangladesh	clinical observation		
COHORT (RETROSPECTIVE)					
Study References	Route of	Country	Health Effect		

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-25Draft: Do Not Cite or Quote

	Exposure		
Enterline and Marsh (1982)	Inhalation	United States	lymphoma
Lewis et al. (1999)	Oral	United States	lymphoma
Lubin et al. (1981)	Inhalation	United States	lymphoma (2 Types)
Marsh et al. (2009)	Inhalation	United States	clinical observation
<u>Pinto et al. (1978)</u>	Inhalation	United States	lymphoma
CROSS-SECTIONAL	·		
Study References	Route of	Country	Health Effect
	Exposure		
Biswas et al. (2008)	Oral	India	cell (T cell) mediated immunity:
			general
Biswas et al. (2008)	Oral	India	nonspecific/innate immunity effects
			(6 Types)
Bosnjak et al. (2008)	Oral	Croatia	nonspecific/innate immunity effects
Islam et al. (2007)	Oral	Bangladesh	immunoglobulin
Josyula et al. (2006)	Oral	United States	nonspecific/innate immunity effects
			(5 Types)
Mazumder et al. (2000)	Oral	India	clinical observation
<u>Milton et al. (2001)</u>	Oral	Bangladesh	clinical observation
Milton and Rahman (2002)	Oral	Bangladesh	clinical observation
<u>Pesola et al. (2012)</u>	Oral	Bangladesh	clinical observation
<u>Shiue (2013)</u>	Oral	United States	immediate-type hypersensitivity
			response (4 Types)
<u>Shiue (2013)</u>	Route	United States	immediate-type hypersensitivity
	unknown		response (4 Types)
Von Ehrenstein et al. (2005)	Oral	India	clinical observation
<u>Wu et al. (2012b)</u>	Oral	Bangladesh	inflammatory markers (6 Types)
ECOLOGICAL			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Han et al. (2009)</u>	Oral	United States	lymphoma
<u>Tsai et al. (1999)</u>	Oral	Taiwan	lymphoma

3.1.10 Summary of Epidemiology Studies for Hazard Identification for Renal Effects

Health Effect Category Route of Exposure Study Type	Count		
Renal Effects	65		
Oral	53		
Case-control	12		
Cross-sectional	7		
Cohort	12		
Ecological	22		
Inhalation	11		
Case-control	1		
Cross-sectional	3		
Cohort	5		
Ecological	2		
Route Unknown	1		
Case-control	1		

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CASE-CONTROL					
Study References	Route of	Country	Health Effect		
	Exposure				
Boffetta et al. (2011)	Inhalation	Czech	kidney: nonneoplastic lesions		
		Republic;			
		Poland;			
		Romania;			
		Russian			
		Federation			
Feng et al. (2013)	Oral	China	kidney: function		
Feng et al. (2013)	Oral	China	urine: parameters		
Ferreccio et al. (2013a)	Oral	Chile	kidney: neoplastic lesions (3 Types)		
Ferreccio et al. (2013a)	Oral	Chile	ureter: neoplastic lesions		
Huang et al. (2011)	Oral	Taiwan	kidney: neoplastic lesions		
Huang et al. (2012)	Oral	Taiwan	kidney: neoplastic lesions		
<u>Kurttio et al. (1999)</u>	Oral	Finland	kidney: neoplastic lesions		
Mostafa and Cherry (2013)	Oral	Bangladesh	kidney: neoplastic lesions (3 Types)		
Palaneeswari et al. (2013)	Route	India	kidney: function		
	unknown				

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-27Draft: Do Not Cite or Quote

COHORT (PROSPECTIVE)			
Study References	Route of Exposure	Country	Health Effect
Baastrup et al. (2008)	Oral	Denmark	kidney: neoplastic lesions
Enterline et al. (1995)	Inhalation	United States	kidney: neoplastic lesions
García-Esquinas et al. (2013)	Oral	United States	kidney: neoplastic lesions
Hawkesworth et al. (2013)	Oral	Bangladesh	kidney: function (2 Types)
Hsu et al. (2013b)	Oral	Taiwan	kidney: neoplastic lesions
Hsu et al. (2013b)	Oral	Taiwan	urinary bladder: neoplastic lesions
<u>Pi et al. (2005)</u>	Oral	China	urine: parameters
Sawada et al. (2013)	Oral	Japan	kidney: neoplastic lesions
COHORT (RETROSPECTIVE)			
Study References	Route of Exposure	Country	Health Effect
<u>Chiou et al. (2005)</u>	Oral	Taiwan	kidney: function
Enterline and Marsh (1982)	Inhalation	United States	kidney: neoplastic lesions
Enterline and Marsh (1982)	Inhalation	United States	kidney: nonneoplastic lesions (2 Types)
Lewis et al. (1999)	Oral	United States	kidney: neoplastic lesions
Lewis et al. (1999)	Oral	United States	kidney: nonneoplastic lesions
Lubin et al. (1981)	Inhalation	United States	kidney: neoplastic lesions
<u>Yuan et al. (2010)</u>	Oral	Chile	kidney: neoplastic lesions
CROSS-SECTIONAL			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Chen et al. (2011a)</u>	Oral	Taiwan	kidney: function (3 Types)
<u>Eom et al. (2011)</u>	Oral	Korea	kidney: function
<u>García-Vargas et al. (1994)</u>	Oral	Mexico	urine: parameters
<u>Hernández-Zavala et al. (1999)</u>	Oral	Mexico	urine: parameters
<u>Jayatilake et al. (2013)</u>	Inhalation	Sri Lanka	kidney: nonneoplastic lesions
Jayatilake et al. (2013)	Oral	Sri Lanka	kidney: nonneoplastic lesions
<u>Ng et al. (2005)</u>	Inhalation	China	urine: parameters
Nordberg et al. (2005)	Inhalation	China	kidney: function
ECOLOGICAL			
Study References	Route of Exposure	Country	Health Effect
Buchet and Lison (1998)	Oral	Belgium	kidney: neoplastic lesions
<u>Chen et al. (1985)</u>	Oral	Taiwan	kidney: neoplastic lesions
Chen and Wang (1990)	Oral	Taiwan	kidney: neoplastic lesions
<u>Chen et al. (1992)</u>	Oral	Taiwan	kidney: neoplastic lesions
Chiu and Yang (2005)	Oral	Taiwan	kidney: function
<u>Guo et al. (1997)</u>	Oral	Taiwan	kidney: neoplastic lesions
<u>Guo et al. (1997)</u>	Oral	Taiwan	ureter: neoplastic lesions
Han et al. (2009)	Oral	United States	kidney: neoplastic lesions

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-28Draft: Do Not Cite or Quote

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

Hinwood et al. (1999)	Oral	Australia	kidney: neoplastic lesions
Hopenhayn-Rich et al. (1998)	Oral	Argentina	kidney: neoplastic lesions
Meliker et al. (2007)	Oral	United States	kidney: function
Meliker et al. (2007)	Oral	United States	kidney: neoplastic lesions
<u>Mouly et al. (2012)</u>	Oral	France	kidney: neoplastic lesions
Rivara et al. (1997)	Inhalation	Chile	kidney: neoplastic lesions
Rivara et al. (1997)	Oral	Chile	kidney: neoplastic lesions
<u>Smith et al. (1998)</u>	Oral	Chile	kidney: neoplastic lesions
<u>Smith et al. (2012)</u>	Oral	Chile	kidney: function
<u>Tsai et al. (1999)</u>	Oral	Taiwan	kidney: neoplastic lesions
<u>Tsai et al. (1999)</u>	Oral	Taiwan	kidney: nonneoplastic lesions
Wang et al. (2003)	Oral	Taiwan	kidney: function
Wang et al. (2009b)	Oral	China	kidney: function
<u>Wu et al. (1989)</u>	Oral	Taiwan	kidney: neoplastic lesions
<u>Xie et al. (2001)</u>	Inhalation	China	urine: parameters
Yang et al. (2004)	Oral	Taiwan	kidney: neoplastic lesions

3.1.11 Summary of Epidemiology Studies for Hazard Identification for Mortality

Health Effect Category Route of Exposure Study Type		Count
Mortality	19	
Oral	13	
Cohort	8	
Ecological	5	
Inhalation	6	
Cohort	6	

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

COHORT (PROSPECTIVE)			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Argos et al. (2010)</u>	Oral	Bangladesh	mortality
Rahman et al. (2013)	Oral	Bangladesh	mortality (2 Types)
<u>Sohel et al. (2009)</u>	Oral	Bangladesh	mortality
<u>Sohel et al. (2009)</u>	Oral	Bangladesh	total body neoplastic lesions
COHORT (RETROSPECTIVE)	<u>.</u>		
Study References	Route of	Country	Health Effect
	Exposure		
Enterline and Marsh (1982)	Inhalation	United States	mortality (2 Types)
<u>Lubin et al. (1981)</u>	Inhalation	United States	mortality (2 Types)
<u>Pinto et al. (1978)</u>	Inhalation	United States	mortality
<u>Tsuda et al. (1994)</u>	Oral	Japan	mortality
<u>Tsuda et al. (1995)</u>	Oral	Japan	mortality
<u>Wade et al. (2009)</u>	Oral	China	total body neoplastic lesions
<u>Welch et al. (1982)</u>	Inhalation	United States	mortality
ECOLOGICAL			
Study References	Route of	Country	Health Effect
	Exposure		
Brown and Chen (1995)	Oral	Taiwan	mortality
<u>Medrano et al. (2010)</u>	Oral	Spain	mortality
<u>Smith et al. (1998)</u>	Oral	Chile	mortality
<u>Tsai et al. (1999)</u>	Oral	Taiwan	mortality
<u>Tseng (1977)</u>	Oral	Taiwan	mortality

3.1.12 Summary of Epidemiology Studies for Hazard Identification for Nervous System Effects

Health Effect Category Route of Exposure Study Type		Count
Nervous System Effects	127	
Oral	. 85	
Case-control	1	
Cross-sectional	65	
Cohort	2	
Ecological	17	
Inhalation	36	
Cross-sectional	31	
Cohort	3	
Ecological	1	
Other	1	
Dermal	1	1
Other	1	
Route Unknown	5	
Case-control	5	

*Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CASE REPORT			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Kerr (1875)</u>	Inhalation	United	clinical observation
		Kingdom	
<u>Kerr (1875)</u>	Dermal	United	clinical observation
		Kingdom	
CASE-CONTROL			
Study References	Route of	Country	Health Effect
	Exposure		
Adams et al. (2013)	Route	United States	CNS: function - behavioral (4 Types)
	unknown		
<u>Ghosh (2013)</u>	Oral	India	PNS: function
Park et al. (2014)	Route	Korea,	CNS: function - cognition
	unknown	Republic Of	
COHORT (RETROSPECTIVE)			
Study References	Route of	Country	Health Effect

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-31Draft: Do Not Cite or Quote

	Exposure		
<u>Chiou et al. (2005)</u>	Oral	Taiwan	sensory neuropathy
Enterline and Marsh (1982)	Inhalation	United States	eye: neoplastic lesions
Enterline and Marsh (1982)	Inhalation	United States	nervous system: neoplastic lesions
Lewis et al. (1999)	Oral	United States	nervous system: neoplastic lesions
Navas-Acién et al. (2002)	Inhalation	Sweden	brain: neoplastic lesions
CROSS-SECTIONAL			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Ali et al. (2010)</u>	Oral	Bangladesh	cholinesterase activity
<u>Blom et al. (1985)</u>	Inhalation	Sweden	PNS: function (2 Types)
Chakraborti et al. (2003)	Oral	India	sensory neuropathy
Feldman et al. (1979)	Inhalation	United States	sensory function (3 Types)
Feldman et al. (1979)	Inhalation	United States	sensory neuropathy (2 Types)
Ghosh et al. (2007b)	Oral	India	eye: nonneoplastic lesions
Ghosh et al. (2007b)	Oral	India	sensory neuropathy
Gong et al. (2011)	Oral	United States	CNS: function - cognition
<u>Guo et al. (2007)</u>	Oral	Mongolia	sensory neuropathy (4 Types)
Hafeman et al. (2005)	Oral	Bangladesh	sensory neuropathy (2 Types)
Halatek et al. (2009)	Inhalation	Poland	brain: function (other than FOB) (4
			Types)
Kreiss et al. (1983)	Oral	United States	sensory function (10 Types)
Kreiss et al. (1983)	Oral	United States	sensory neuropathy
Lagerkvist and Zetterlund (1994)	Inhalation	Sweden	PNS: function (10 Types)
<u>Li et al. (2006)</u>	Oral	China	sensory neuropathy (4 Types)
Lilis et al. (1985)	Inhalation	Canada	clinical observation
Lin et al. (2008)	Oral	Taiwan	eye: nonneoplastic lesions
Mackenzie and Kyle (1984)	Inhalation	Canada	PNS: function (2 Types)
<u>Mao et al. (2010)</u>	Oral	China	brain: function (other than FOB)
<u>O'Bryant et al. (2011)</u>	Oral	United States	CNS: function - cognition (6 Types)
<u>Otto et al. (2006)</u>	Oral	China	sensory function (4 Types)
<u>Otto et al. (2007)</u>	Oral	China	sensory neuropathy (8 Types)
<u>Paul et al. (2013)</u>	Oral	India	eye: function
Paul et al. (2013)	Oral	India	sensory neuropathy
Rosado et al. (2007)	Oral	Mexico	CNS: function - cognition (11 Types)
<u>See et al. (2007)</u>	Oral	Taiwan	eye: nonneoplastic lesions (4 Types)
Sińczuk-Walczak et al. (2010)	Inhalation	Poland	brain: function (other than FOB) (3
			Types)
Sińczuk-Walczak et al. (2010)	Inhalation	Poland	clinical observation (4 Types)
<u>Tseng et al. (2006)</u>	Oral	Taiwan	sensory neuropathy
Zierold et al. (2004)	Oral	United States	CNS: function - behavioral
ECOLOGICAL			
Study References	Route of	Country	Health Effect
	Exposure		

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-32Draft: Do Not Cite or Quote

Ahamed et al. (2006b)	Oral	Bangladesh	sensory neuropathy
Ahamed et al. (2006a)	Oral	India	sensory neuropathy
Buchet and Lison (1998)	Oral	Belgium	nervous system: nonneoplastic
			lesions
Chakraborti et al. (2013a)	Oral	Bangladesh;	sensory neuropathy
		India	
<u>Gerr et al. (2000)</u>	Inhalation	United States	PNS: function
Rahman et al. (2003)	Oral	India	sensory neuropathy
<u>Tseng (2003)</u>	Oral	Taiwan	sensory function (9 Types)
Valentine et al. (1992)	Oral	United States	clinical observation
<u>Wang et al. (2003)</u>	Oral	Taiwan	eye: nonneoplastic lesions
Wang et al. (2003)	Oral	Taiwan	nervous system: nonneoplastic
			lesions

3.1.13 Summary of Epidemiology Studies for Hazard Identification for Other Effects

Health Effect Category Route of Exposure Study Type	Count	
Other	42	
Oral	28	
Cross-sectional	9	
Cohort	7	
Ecological	11	
Other	1	
Inhalation	10	
Case-control	1	
Cross-sectional	4	
Cohort	5	
Route Unknown	4	
Cross-sectional	4	

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CASE SERIES				
Study References	Route of	Country	Health Effect	
	Exposure			
Choprapawon and Porapakkham	Oral	Thailand	total body neoplastic lesions	
<u>(2001)</u>				
CASE-CONTROL				
Study References	Route of	Country	Health Effect	
	Exposure			
<u>Sobel et al. (1987)</u>	Inhalation	United States	soft tissue: neoplastic lesions	
COHORT (PROSPECTIVE)				
Study References	Route of	Country	Health Effect	
	Exposure			
<u>Chiou et al. (1995)</u>	Oral	Taiwan	total body neoplastic lesions	
<u>Chung et al. (2012)</u>	Oral	Taiwan	total body neoplastic lesions (2	
			Types)	
Enterline et al. (1995)	Inhalation	United States	bone: neoplastic lesions	
<u>Hsu et al. (2013b)</u>	Oral	Taiwan	total body neoplastic lesions	
<u>Wang et al. (2011a)</u>	Oral	Taiwan	total body neoplastic lesions	
COHORT (RETROSPECTIVE)				
Study References	Route of	Country	Health Effect	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-34Draft: Do Not Cite or Quote

	Exposure		
Bulbulyan et al. (1996)	Inhalation	Russia	total body neoplastic lesions
Enterline and Marsh (1982)	Inhalation	United States	bone: neoplastic lesions
Enterline and Marsh (1982)	Inhalation	United States	total body neoplastic lesions
Nakadaira et al. (2002)	Oral	Japan	total body neoplastic lesions
<u>Pinto et al. (1978)</u>	Inhalation	United States	total body neoplastic lesions
<u>Tsuda et al. (1995)</u>	Oral	Japan	total body neoplastic lesions
CROSS-SECTIONAL			
Study References	Route of	Country	Health Effect
	Exposure		
Akbal et al. (2013)	Route	Turkey	bone: gross pathology (4 Types)
	unknown		
Cordova et al. (2013)	Oral	Mexico	genetic endpoints (2 Types)
Fujino et al. (2004)	Oral	China	brain: function (other than FOB)
<u>Kurttio et al. (1998)</u>	Oral	Finland	clinical observation
Majumdar et al. (2009)	Oral	India	clinical observation
Mazumder et al. (2013)	Oral	India	hair follicle: gross pathology
Mitra et al. (2002)	Oral	Bangladesh	clinical observation
Paul et al. (2013)	Oral	India	bone: neoplastic lesions
Sińczuk-Walczak et al. (2010)	Inhalation	Poland	clinical observation (4 Types)
Syed et al. (2012)	Oral	Bangladesh	CNS: function - behavioral
ECOLOGICAL	·		
Study References	Route of	Country	Health Effect
	Exposure		
Cebrián et al. (1983)	Oral	Mexico	clinical observation
<u>Dastgiri et al. (2010)</u>	Oral	Iran	hair follicle: nonneoplastic lesions
<u>Han et al. (2009)</u>	Oral	United States	total body neoplastic lesions
Mazumder et al. (2009)	Oral	Cambodia	clinical observation
<u>Moore et al. (2002)</u>	Oral	United States	total body neoplastic lesions
Smith et al. (2012)	Oral	Chile	total body neoplastic lesions
<u>Tsai et al. (1998)</u>	Oral	Taiwan	total body neoplastic lesions
<u>Tsai et al. (1999)</u>	Oral	Taiwan	bone: neoplastic lesions
<u>Tsai et al. (1999)</u>	Oral	Taiwan	total body neoplastic lesions
Varsányi et al. (1991)	Oral	Hungary	total body neoplastic lesions
Yorifuji et al. (2011)	Oral	Japan	total body neoplastic lesions

3.1.14 Summary of Epidemiology Studies for Hazard Identification for Reproductive System Effects including Pregnancy Outcomes

Health Effect Category Route of Exposure Study Type	Count	
Reproductive System Effects including Pr	60	
Oral	50	
Case-control	3	
Cross-sectional	16	
Cohort	14	
Ecological	17	
Inhalation	8	
Case-control	1	
Cohort	1	
Ecological	6	
Route Unknown	2	
Case-control	1	
Cohort	1	

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CASE-CONTROL				
Study References	Route of	Country	Health Effect	
	Exposure			
<u>Ihrig et al. (1998)</u>	Inhalation	United States	stillbirth	
Sengupta et al. (2013)	Oral	India	sperm parameters (2 Types)	
<u>Shen et al. (2013)</u>	Route	China	male reproductive system:	
	unknown		nonneoplastic lesions	
CASE-CONTROL (NESTED)				
Study References	Route of	Country	Health Effect	
	Exposure			
Garland et al. (1996)	Oral	United States	mammary gland: neoplastic lesions	
COHORT (PROSPECTIVE)				
Study References	Route of	Country	Health Effect	
	Exposure			
Baastrup et al. (2008)	Oral	Denmark	female reproductive system:	
			neoplastic lesions	
Baastrup et al. (2008)	Oral	Denmark	male accessory sex gland:	
			neoplastic lesions	
García-Esquinas et al. (2013)	Oral	United States	male accessory sex gland:	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-36Draft: Do Not Cite or Quote

			neoplastic lesions
García-Esquinas et al. (2013)	Oral	United States	mammary gland: neoplastic lesions
Pollack et al. (2013)	Route	United States	female reproductive system
	unknown		disease/dysfunction
Rahman et al. (2010)	Oral	Bangladesh	spontaneous abortion/miscarriage
Rahman et al. (2010)	Oral	Bangladesh	stillbirth
Sawada et al. (2013)	Oral	Japan	female reproductive system:
			neoplastic lesions
Sawada et al. (2013)	Oral	Japan	male accessory sex gland:
			neoplastic lesions
<u>Sawada et al. (2013)</u>	Oral	Japan	mammary gland: neoplastic lesions
COHORT (RETROSPECTIVE)			
Study References	Route of	Country	Health Effect
	Exposure		
Enterline and Marsh (1982)	Inhalation	United States	testis: neoplastic lesions
Lewis et al. (1999)	Oral	United States	female reproductive system:
			neoplastic lesions (2 Types)
Lewis et al. (1999)	Oral	United States	male accessory sex gland:
			neoplastic lesions
Lewis et al. (1999)	Oral	United States	uterus: neoplastic lesions
<u>Tsuda et al. (1995)</u>	Oral	Japan	uterus: neoplastic lesions
CROSS-SECTIONAL			
Study References	Route of	Country	Health Effect
	Eveneeure		
	Exposure		
Ahmad et al. (2001)	Oral	Bangladesh	postimplantation loss
Chakraborti et al. (2003)	Oral Oral	India	preterm birth/delivery (<37 weeks)
Chakraborti et al. (2003) Chakraborti et al. (2003)	Oral	India India	preterm birth/delivery (<37 weeks) stillbirth
Chakraborti et al. (2003)Chakraborti et al. (2003)Kwok et al. (2006)	Oral Oral	India India Bangladesh	preterm birth/delivery (<37 weeks) stillbirth stillbirth
Chakraborti et al. (2003) Chakraborti et al. (2003) Kwok et al. (2006) Milton et al. (2005)	Oral Oral Oral Oral Oral Oral	India India Bangladesh Bangladesh	preterm birth/delivery (<37 weeks) stillbirth stillbirth spontaneous abortion/miscarriage
Chakraborti et al. (2003) Chakraborti et al. (2003) Kwok et al. (2006) Milton et al. (2005) Milton et al. (2005)	Oral Oral Oral Oral Oral Oral Oral	India India Bangladesh	preterm birth/delivery (<37 weeks) stillbirth stillbirth spontaneous abortion/miscarriage stillbirth
Chakraborti et al. (2003) Chakraborti et al. (2003) Kwok et al. (2006) Milton et al. (2005) Milton et al. (2005) Mukherjee et al. (2005)	Oral Oral Oral Oral Oral Oral	India India Bangladesh Bangladesh	preterm birth/delivery (<37 weeks) stillbirth stillbirth spontaneous abortion/miscarriage stillbirth preterm birth/delivery (<37 weeks)
Chakraborti et al. (2003) Chakraborti et al. (2003) Kwok et al. (2006) Milton et al. (2005) Milton et al. (2005) Mukherjee et al. (2005) Mukherjee et al. (2005)	Oral Oral Oral Oral Oral Oral Oral	India India Bangladesh Bangladesh Bangladesh India India	preterm birth/delivery (<37 weeks) stillbirth stillbirth spontaneous abortion/miscarriage stillbirth preterm birth/delivery (<37 weeks) spontaneous abortion/miscarriage
Chakraborti et al. (2003) Chakraborti et al. (2003) Kwok et al. (2006) Milton et al. (2005) Milton et al. (2005) Mukherjee et al. (2005) Mukherjee et al. (2005) Mukherjee et al. (2005) Mukherjee et al. (2005)	Oral Oral Oral Oral Oral Oral Oral Oral	India India Bangladesh Bangladesh Bangladesh India India India	preterm birth/delivery (<37 weeks) stillbirth stillbirth spontaneous abortion/miscarriage stillbirth preterm birth/delivery (<37 weeks) spontaneous abortion/miscarriage stillbirth
Chakraborti et al. (2003) Chakraborti et al. (2003) Kwok et al. (2006) Milton et al. (2005) Milton et al. (2005) Mukherjee et al. (2005) Mukherjee et al. (2005) Mukherjee et al. (2005) Sen and Chaudhuri (2008)	Oral Oral Oral Oral Oral Oral Oral Oral	India India Bangladesh Bangladesh Bangladesh India India India India India	preterm birth/delivery (<37 weeks) stillbirth stillbirth spontaneous abortion/miscarriage stillbirth preterm birth/delivery (<37 weeks) spontaneous abortion/miscarriage stillbirth spontaneous abortion/miscarriage
Chakraborti et al. (2003) Chakraborti et al. (2003) Kwok et al. (2006) Milton et al. (2005) Milton et al. (2005) Mukherjee et al. (2005) Mukherjee et al. (2005) Mukherjee et al. (2005) Mukherjee et al. (2005) Sen and Chaudhuri (2008)	Oral Oral Oral Oral Oral Oral Oral Oral	India India Bangladesh Bangladesh Bangladesh India India India India India India	preterm birth/delivery (<37 weeks) stillbirth stillbirth spontaneous abortion/miscarriage stillbirth preterm birth/delivery (<37 weeks) spontaneous abortion/miscarriage stillbirth spontaneous abortion/miscarriage stillbirth
Chakraborti et al. (2003) Chakraborti et al. (2003) Kwok et al. (2006) Milton et al. (2005) Milton et al. (2005) Mukherjee et al. (2005) Mukherjee et al. (2005) Mukherjee et al. (2005) Sen and Chaudhuri (2008) Sen and Chaudhuri (2006) Von Ehrenstein et al. (2006)	Oral Oral Oral Oral Oral Oral Oral Oral	India India Bangladesh Bangladesh Bangladesh India India India India India India India India	preterm birth/delivery (<37 weeks)stillbirthstillbirthspontaneous abortion/miscarriagestillbirthpreterm birth/delivery (<37 weeks)
Chakraborti et al. (2003) Chakraborti et al. (2003) Kwok et al. (2006) Milton et al. (2005) Milton et al. (2005) Mukherjee et al. (2005) Mukherjee et al. (2005) Mukherjee et al. (2005) Sen and Chaudhuri (2008) Sen and Chaudhuri (2008) Von Ehrenstein et al. (2006)	Oral	India India Bangladesh Bangladesh Bangladesh India India India India India India India India India	preterm birth/delivery (<37 weeks) stillbirth stillbirth spontaneous abortion/miscarriage stillbirth preterm birth/delivery (<37 weeks) spontaneous abortion/miscarriage stillbirth spontaneous abortion/miscarriage stillbirth spontaneous abortion/miscarriage stillbirth
Chakraborti et al. (2003) Chakraborti et al. (2003) Kwok et al. (2006) Milton et al. (2005) Milton et al. (2005) Mukherjee et al. (2005) Mukherjee et al. (2005) Mukherjee et al. (2005) Sen and Chaudhuri (2008) Sen and Chaudhuri (2008) Von Ehrenstein et al. (2006) Von Ehrenstein et al. (2006) Xu et al. (2012)	Oral Oral Oral Oral Oral Oral Oral Oral	India India Bangladesh Bangladesh Bangladesh India India India India India India India India	preterm birth/delivery (<37 weeks)stillbirthstillbirthspontaneous abortion/miscarriagestillbirthpreterm birth/delivery (<37 weeks)
Chakraborti et al. (2003) Chakraborti et al. (2003) Kwok et al. (2006) Milton et al. (2005) Milton et al. (2005) Mukherjee et al. (2005) Mukherjee et al. (2005) Mukherjee et al. (2005) Sen and Chaudhuri (2008) Sen and Chaudhuri (2008) Von Ehrenstein et al. (2006) Von Ehrenstein et al. (2006) Xu et al. (2012) ECOLOGICAL	Oral Oral Oral Oral Oral Oral Oral Oral	India India Bangladesh Bangladesh Bangladesh India India India India India India India China	preterm birth/delivery (<37 weeks) stillbirth stillbirth spontaneous abortion/miscarriage stillbirth preterm birth/delivery (<37 weeks) spontaneous abortion/miscarriage stillbirth spontaneous abortion/miscarriage stillbirth spontaneous abortion/miscarriage stillbirth
Chakraborti et al. (2003) Chakraborti et al. (2003) Kwok et al. (2006) Milton et al. (2005) Milton et al. (2005) Mukherjee et al. (2005) Mukherjee et al. (2005) Mukherjee et al. (2005) Sen and Chaudhuri (2008) Sen and Chaudhuri (2008) Von Ehrenstein et al. (2006) Von Ehrenstein et al. (2006) Xu et al. (2012)	Oral Oral <t< td=""><td>India India Bangladesh Bangladesh Bangladesh India India India India India India India India India</td><td>preterm birth/delivery (<37 weeks) stillbirth stillbirth spontaneous abortion/miscarriage stillbirth preterm birth/delivery (<37 weeks) spontaneous abortion/miscarriage stillbirth spontaneous abortion/miscarriage stillbirth spontaneous abortion/miscarriage stillbirth</td></t<>	India India Bangladesh Bangladesh Bangladesh India India India India India India India India India	preterm birth/delivery (<37 weeks) stillbirth stillbirth spontaneous abortion/miscarriage stillbirth preterm birth/delivery (<37 weeks) spontaneous abortion/miscarriage stillbirth spontaneous abortion/miscarriage stillbirth spontaneous abortion/miscarriage stillbirth
Chakraborti et al. (2003)Chakraborti et al. (2003)Kwok et al. (2006)Milton et al. (2005)Milton et al. (2005)Mukherjee et al. (2005)Mukherjee et al. (2005)Mukherjee et al. (2005)Sen and Chaudhuri (2008)Sen and Chaudhuri (2008)Sen and Chaudhuri (2008)Von Ehrenstein et al. (2006)Von Ehrenstein et al. (2006)Xu et al. (2012)ECOLOGICALStudy References	Oral	India India Bangladesh Bangladesh Bangladesh India India India India India India China Country	preterm birth/delivery (<37 weeks)stillbirthstillbirthspontaneous abortion/miscarriagestillbirthpreterm birth/delivery (<37 weeks)
Chakraborti et al. (2003) Chakraborti et al. (2003) Kwok et al. (2006) Milton et al. (2005) Milton et al. (2005) Mukherjee et al. (2005) Mukherjee et al. (2005) Mukherjee et al. (2005) Mukherjee et al. (2005) Sen and Chaudhuri (2008) Sen and Chaudhuri (2008) Von Ehrenstein et al. (2006) Von Ehrenstein et al. (2006) Xu et al. (2012) ECOLOGICAL Study References Aelion et al. (2013)	OralInhalation	India India Bangladesh Bangladesh Bangladesh India India India India India India China China China United States	preterm birth/delivery (<37 weeks)stillbirthstillbirthspontaneous abortion/miscarriagestillbirthpreterm birth/delivery (<37 weeks)
Chakraborti et al. (2003)Chakraborti et al. (2003)Kwok et al. (2006)Milton et al. (2005)Milton et al. (2005)Mukherjee et al. (2005)Mukherjee et al. (2005)Mukherjee et al. (2005)Sen and Chaudhuri (2008)Sen and Chaudhuri (2008)Sen and Chaudhuri (2008)Von Ehrenstein et al. (2006)Von Ehrenstein et al. (2006)Xu et al. (2012)ECOLOGICALStudy References	Oral	India India Bangladesh Bangladesh Bangladesh India India India India India India China Country	preterm birth/delivery (<37 weeks)stillbirthstillbirthspontaneous abortion/miscarriagestillbirthpreterm birth/delivery (<37 weeks)

Chakraborti et al. (2013a)	Oral	Bangladesh;	spontaneous abortion/miscarriage
		India	
Chen and Wang (1990)	Oral	Taiwan	male accessory sex gland:
			neoplastic lesions
Cherry et al. (2008)	Oral	Bangladesh	stillbirth
Hinwood et al. (1999)	Oral	Australia	male reproductive system:
			neoplastic lesions
Meliker et al. (2007)	Oral	United States	female reproductive system:
			neoplastic lesions
<u>Myers et al. (2010)</u>	Oral	China	stillbirth
<u>Rivara et al. (1997)</u>	Inhalation	Chile	cervix: neoplastic lesions
<u>Rivara et al. (1997)</u>	Oral	Chile	cervix: neoplastic lesions
<u>Rivara et al. (1997)</u>	Inhalation	Chile	male accessory sex gland:
			neoplastic lesions
<u>Rivara et al. (1997)</u>	Oral	Chile	male accessory sex gland:
			neoplastic lesions
<u>Rivara et al. (1997)</u>	Inhalation	Chile	mammary gland: neoplastic lesions
<u>Rivara et al. (1997)</u>	Oral	Chile	mammary gland: neoplastic lesions
<u>Rivara et al. (1997)</u>	Inhalation	Chile	testis: neoplastic lesions
<u>Rivara et al. (1997)</u>	Oral	Chile	testis: neoplastic lesions
<u>Stocks (1960)</u>	Inhalation	England	mammary gland: neoplastic lesions
<u>Tsai et al. (1999)</u>	Oral	Taiwan	cervix: neoplastic lesions
<u>Tsai et al. (1999)</u>	Oral	Taiwan	male reproductive system:
			neoplastic lesions
<u>Wu et al. (1989)</u>	Oral	Taiwan	male accessory sex gland:
			neoplastic lesions
Yang et al. (2003)	Oral	Taiwan	preterm birth/delivery (<37 weeks)
Yang et al. (2008a)	Oral	Taiwan	male accessory sex gland:
			neoplastic lesions

3.1.15 Summary of Epidemiology Studies for Hazard Identification for Respiratory Effects

Health Effect Category Route of Exposure Study Type	Count	
Respiratory Effects	158	
Oral	103	
Case-control	14	
Cross-sectional	16	
Cohort	41	
Ecological	30	
Other	2	
Inhalation	43	
Case-control	8	
Cross-sectional	2	
Cohort	28	
Ecological	4	
Other	1	
In Utero	9	
Cohort	9	
Route Unknown	3	
Case-control	3	

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CASE SERIES				
Study References	Route of	Country	Health Effect	
	Exposure			
Mazumder (2003)	Oral	India	clinical observation	
CASE-CONTROL	·			
Study References	Route of	Country	Health Effect	
	Exposure			
Axelson et al. (1978)	Inhalation	Sweden	lung: neoplastic lesions	
<u>Chen et al. (1986)</u>	Oral	Taiwan	lung: neoplastic lesions	
D'Errico et al. (2009)	Inhalation	Italy	nasal cavity: neoplastic lesions	
Dauphiné et al. (2013)	Oral	United States	lung: neoplastic lesions	
Ferreccio et al. (1998)	Oral	Chile	lung: neoplastic lesions	
Ferreccio et al. (2000)	Oral	Chile	lung: neoplastic lesions	
Ferreccio et al. (2013b)	Oral	Chile	lung: neoplastic lesions	
<u>Ghosh (2013)</u>	Oral	India	cough	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-39Draft: Do Not Cite or Quote

<u>Ghosh (2013)</u>	Oral	India	lung: spirometry
<u>Ghosh (2013)</u>	Oral	India	respiratory system: neoplastic lesions
<u>Ghosh (2013)</u>	Oral	India	respiratory system: nonneoplastic lesions
Grimsrud et al. (2005)	Inhalation	Norway	lung: neoplastic lesions
<u>Heck et al. (2009)</u>	Oral	United States	lung: neoplastic lesions (2 Types)
<u>Hu et al. (1999)</u>	Inhalation	Canada	lung: neoplastic lesions
<u>Khlifi et al. (2014)</u>	Route	Tunisia	larynx: neoplastic lesions
	unknown		
<u>Khlifi et al. (2014)</u>	Route	Tunisia	pharynx: neoplastic lesions
	unknown		
<u>Khlifi et al. (2014)</u>	Route	Tunisia	respiratory system: neoplastic
	unknown		lesions
<u>Mostafa et al. (2008)</u>	Oral	Bangladesh	lung: neoplastic lesions
<u>Steinmaus et al. (2013)</u>	Oral	Chile	lung: neoplastic lesions
<u>'T Mannetje et al. (2011)</u>	Inhalation	Central/Easter	lung: neoplastic lesions
		n Europe and	
		UK	
<u>Taylor et al. (1989)</u>	Inhalation	China	lung: neoplastic lesions
		Pakistan	lung: neoplastic lesions
Wadhwa et al. (2011b)	Oral	Fakistali	
CASE-CONTROL (NESTED)			
	Route of	Country	Health Effect
CASE-CONTROL (NESTED) Study References	Route of Exposure	Country	Health Effect
CASE-CONTROL (NESTED) Study References Ades and Kazantzis (1988)	Route of Exposure Inhalation	Country FRANCE	Health Effect lung: neoplastic lesions
CASE-CONTROL (NESTED) Study References Ades and Kazantzis (1988) Lee-Feldstein (1989)	Route of Exposure	Country	Health Effect
CASE-CONTROL (NESTED) Study References Ades and Kazantzis (1988) Lee-Feldstein (1989) COHORT (PROSPECTIVE)	Route of Exposure Inhalation Inhalation	Country FRANCE United States	Health Effect lung: neoplastic lesions lung: neoplastic lesions
CASE-CONTROL (NESTED) Study References Ades and Kazantzis (1988) Lee-Feldstein (1989)	Route of Exposure Inhalation Inhalation Route of	Country FRANCE	Health Effect lung: neoplastic lesions
CASE-CONTROL (NESTED) Study References Ades and Kazantzis (1988) Lee-Feldstein (1989) COHORT (PROSPECTIVE) Study References	Route of Exposure Inhalation Inhalation Route of Exposure	Country FRANCE United States Country	Health Effect lung: neoplastic lesions lung: neoplastic lesions Health Effect
CASE-CONTROL (NESTED) Study References Ades and Kazantzis (1988) Lee-Feldstein (1989) COHORT (PROSPECTIVE)	Route of Exposure Inhalation Inhalation Route of	Country FRANCE United States	Health Effect lung: neoplastic lesions lung: neoplastic lesions
CASE-CONTROL (NESTED) Study References Ades and Kazantzis (1988) Lee-Feldstein (1989) COHORT (PROSPECTIVE) Study References	Route of Exposure Inhalation Inhalation Route of Exposure	Country FRANCE United States Country	Health Effect lung: neoplastic lesions lung: neoplastic lesions Health Effect respiratory system: neoplastic
CASE-CONTROL (NESTED) Study References Ades and Kazantzis (1988) Lee-Feldstein (1989) COHORT (PROSPECTIVE) Study References Baastrup et al. (2008)	Route of Exposure Inhalation Inhalation Koute of Exposure Oral	Country FRANCE United States Country Denmark	Health Effect lung: neoplastic lesions lung: neoplastic lesions Health Effect respiratory system: neoplastic lesions
CASE-CONTROL (NESTED) Study References Ades and Kazantzis (1988) Lee-Feldstein (1989) COHORT (PROSPECTIVE) Study References Baastrup et al. (2008) Chen et al. (2004a) Chen et al. (2010a) Chiou et al. (1995)	Route of Exposure Inhalation Inhalation Route of Exposure Oral Oral	Country FRANCE United States Country Denmark Taiwan	Health Effect lung: neoplastic lesions lung: neoplastic lesions Health Effect respiratory system: neoplastic lesions lung: neoplastic lesions
CASE-CONTROL (NESTED) Study References Ades and Kazantzis (1988) Lee-Feldstein (1989) COHORT (PROSPECTIVE) Study References Baastrup et al. (2008) Chen et al. (2010a)	Route of Exposure Inhalation Inhalation Route of Exposure Oral Oral Oral	Country FRANCE United States Country Country Denmark Taiwan Taiwan	Health Effect lung: neoplastic lesions lung: neoplastic lesions Health Effect respiratory system: neoplastic lesions lung: neoplastic lesions (6 Types)
CASE-CONTROL (NESTED) Study References Ades and Kazantzis (1988) Lee-Feldstein (1989) COHORT (PROSPECTIVE) Study References Baastrup et al. (2008) Chen et al. (2004a) Chen et al. (2010a) Chiou et al. (1995)	Route of Exposure Inhalation Inhalation Route of Exposure Oral Oral Oral Oral Oral	Country FRANCE United States Country Country Denmark Taiwan Taiwan Taiwan Taiwan	Health Effect lung: neoplastic lesions lung: neoplastic lesions Health Effect respiratory system: neoplastic lesions lung: neoplastic lesions lung: neoplastic lesions lung: neoplastic lesions lung: neoplastic lesions (6 Types) lung: neoplastic lesions
CASE-CONTROL (NESTED) Study References Ades and Kazantzis (1988) Lee-Feldstein (1989) COHORT (PROSPECTIVE) Study References Baastrup et al. (2008) Chen et al. (2004a) Chen et al. (2010a) Chiou et al. (1995) Chung et al. (2012)	Route of Exposure Inhalation Inhalation Route of Exposure Oral	Country FRANCE United States Country Country Denmark Taiwan Taiwan Taiwan Taiwan Taiwan Taiwan	Health Effect lung: neoplastic lesions lung: neoplastic lesions Health Effect respiratory system: neoplastic lesions lung: neoplastic lesions lung: neoplastic lesions lung: neoplastic lesions (6 Types) lung: neoplastic lesions lung: neoplastic lesions lung: neoplastic lesions lung: neoplastic lesions
CASE-CONTROL (NESTED) Study References Ades and Kazantzis (1988) Lee-Feldstein (1989) COHORT (PROSPECTIVE) Study References Baastrup et al. (2008) Chen et al. (2004a) Chen et al. (2010a) Chiou et al. (1995) Chung et al. (1995)	Route of Exposure Inhalation Inhalation Inhalation Oral Oral Oral Oral Oral Inhalation	Country FRANCE United States Country Country Country Country Taiwan Taiwan Taiwan Taiwan Taiwan United States	Health Effect lung: neoplastic lesions lung: neoplastic lesions Health Effect respiratory system: neoplastic lesions lung: neoplastic lesions
CASE-CONTROL (NESTED) Study References Ades and Kazantzis (1988) Lee-Feldstein (1989) COHORT (PROSPECTIVE) Study References Baastrup et al. (2008) Chen et al. (2004a) Chen et al. (2010a) Chiou et al. (1995) Chung et al. (2012) Enterline et al. (1995) Farzan et al. (2013)	Route of Exposure Inhalation Inhalation Inhalation Route of Exposure Oral Oral Oral Oral Inhalation Inhalation	Country FRANCE United States Country Country Denmark Taiwan Taiwan Taiwan Taiwan United States United States United States	Health Effect lung: neoplastic lesions lung: neoplastic lesions Health Effect respiratory system: neoplastic lesions lung: neoplastic lesions respiratory system: nonneoplastic lesions (7 Types)
CASE-CONTROL (NESTED) Study References Ades and Kazantzis (1988) Lee-Feldstein (1989) COHORT (PROSPECTIVE) Study References Baastrup et al. (2008) Chen et al. (2004a) Chen et al. (2004a) Chen et al. (2010a) Chiou et al. (1995) Chung et al. (2012) Enterline et al. (1995) Farzan et al. (2013)	Route of Exposure Inhalation Inhalation Inhalation Oral Oral Oral Oral Inhalation Oral	Country FRANCE United States Country Country Country Denmark Taiwan Taiwan Taiwan Taiwan Taiwan United States United States United States United States	Health Effect lung: neoplastic lesions lung: neoplastic lesions Health Effect respiratory system: neoplastic lesions lung: neoplastic lesions lung: neoplastic lesions (6 Types) lung: neoplastic lesions
CASE-CONTROL (NESTED) Study References Ades and Kazantzis (1988) Lee-Feldstein (1989) COHORT (PROSPECTIVE) Study References Baastrup et al. (2008) Chen et al. (2004a) Chen et al. (2010a) Chiou et al. (1995) Chung et al. (2012) Enterline et al. (1995) Farzan et al. (2013) García-Esquinas et al. (2013) Hsu et al. (2013a)	Route of Exposure Inhalation Inhalation Inhalation Route of Exposure Oral Oral Oral Oral Inhalation Oral Oral	Country FRANCE United States Country Denmark Taiwan Taiwan Taiwan Taiwan United States United States United States United States United States United States Taiwan	Health Effect lung: neoplastic lesions lung: neoplastic lesions Health Effect respiratory system: neoplastic lesions lung: neoplastic lesions
CASE-CONTROL (NESTED) Study References Ades and Kazantzis (1988) Lee-Feldstein (1989) COHORT (PROSPECTIVE) Study References Baastrup et al. (2008) Chen et al. (2004a) Chen et al. (2010a) Chiou et al. (1995) Chung et al. (2012) Enterline et al. (1995) Farzan et al. (2013) Hsu et al. (2013a) Hsu et al. (2013b)	Route of Exposure Inhalation Inhalation Inhalation Oral Oral Oral Oral Inhalation Oral Oral	Country FRANCE United States Country Country Country Denmark Taiwan Taiwan Taiwan Taiwan Taiwan United States United States United States Taiwan Taiwan Taiwan Taiwan	Health Effect lung: neoplastic lesions lung: neoplastic lesions Health Effect respiratory system: neoplastic lesions lung: neoplastic lesions

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-40Draft: Do Not Cite or Quote

<u>Rahman et al. (2011)</u>	Oral	Bangladesh	cough (2 Types)
Rahman et al. (2011)	In utero	Bangladesh	cough (2 Types)
Raqib et al. (2009)	Oral	Bangladesh	lung: function
Sawada et al. (2013)	Oral	Japan	lung: neoplastic lesions
Smith et al. (2013)	Oral	Bangladesh	lung: function (8 Types)
COHORT (RETROSPECTIVE)			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Bulbulyan et al. (1996)</u>	Inhalation	Russia	lung: neoplastic lesions
Dauphiné et al. (2011)	Oral	Chile	lung: function (5 Types)
Enterline and Marsh (1982)	Inhalation	United States	larynx: neoplastic lesions
Enterline and Marsh (1982)	Inhalation	United States	lung: function (4 Types)
Enterline and Marsh (1982)	Inhalation	United States	lung: neoplastic lesions
Enterline and Marsh (1982)	Inhalation	United States	lung: nonneoplastic lesions
Enterline and Marsh (1982)	Inhalation	United States	respiratory system: neoplastic lesions
Enterline et al. (1987)	Inhalation	United States	lung: neoplastic lesions
Jarup et al. (1989)	Inhalation	Sweden	lung: neoplastic lesions
Lewis et al. (1999)	Oral	United States	airway obstruction
<u>Lewis et al. (1999)</u>	Oral	United States	respiratory system: neoplastic lesions
<u>Lewis et al. (1999)</u>	Oral	United States	respiratory system: nonneoplastic lesions
<u>Lubin et al. (1981)</u>	Inhalation	United States	larynx: neoplastic lesions (2 Types)
Lubin et al. (1981)	Inhalation	United States	lung: function (3 Types)
Lubin et al. (1981)	Inhalation	United States	lung: neoplastic lesions
Lubin et al. (1981)	Inhalation	United States	respiratory system: neoplastic lesions (2 Types)
<u>Lubin et al. (2000)</u>	Inhalation	United States	respiratory system: neoplastic lesions
<u>Lubin et al. (2008)</u>	Inhalation	United States	respiratory system: neoplastic lesions
Nakadaira et al. (2002)	Oral	Japan	lung: neoplastic lesions
<u>Pinto et al. (1978)</u>	Inhalation	United States	lung: function
<u>Pinto et al. (1978)</u>	Inhalation	United States	respiratory system: neoplastic lesions
Smith et al. (2011)	Oral	Chile	lung: function
Sorahan (2009)	Inhalation	United States	lung: neoplastic lesions
<u>Tsuda et al. (1995)</u>	Oral	Japan	lung: neoplastic lesions
Welch et al. (1982)	Inhalation	United States	lung: neoplastic lesions
<u>Welch et al. (1982)</u>	Inhalation	United States	respiratory system: nonneoplastic lesions
CROSS-SECTIONAL			•

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-41Draft: Do Not Cite or Quote

	Exposure		
<u>Chakraborti et al. (2013b)</u>	Oral	India	bronchitis
Chattopadhyay et al. (2010)	Oral	India	lung: spirometry
<u>De et al. (2004)</u>	Oral	India	lung: spirometry
Ghosh et al. (2007b)	Oral	India	lung: function
<u>Guo et al. (2007)</u>	Oral	Mongolia	lung: function
Halatek et al. (2009)	Inhalation	Poland	clara cell protein (CC16)
Halatek et al. (2009)	Inhalation	Poland	lung: spirometry
<u>Majumdar et al. (2009)</u>	Oral	India	lung: nonneoplastic lesions
Mazumder et al. (2005)	Oral	India	lung: nonneoplastic lesions
Milton et al. (2001)	Oral	Bangladesh	respiratory system: nonneoplastic lesions
Nafees et al. (2011)	Oral	Pakistan	lung: function (3 Types)
Parvez et al. (2008)	Oral	Bangladesh	lung: spirometry (3 Types)
Paul et al. (2013)	Oral	India	lung: function
Paul et al. (2013)	Oral	India	lung: neoplastic lesions
ECOLOGICAL			
Study References	Route of	Country	Health Effect
	Exposure		
Buchet and Lison (1998)	Oral	Belgium	lung: neoplastic lesions
<u>Chen et al. (1985)</u>	Oral	Taiwan	lung: neoplastic lesions
Chen and Wang (1990)	Oral	Taiwan	lung: neoplastic lesions
Chen and Wang (1990)	Oral	Taiwan	nasal cavity: neoplastic lesions
<u>Chen et al. (1992)</u>	Oral	Taiwan	lung: neoplastic lesions
<u>Chiu et al. (2004)</u>	Oral	Taiwan	lung: neoplastic lesions
Engel and Smith (1994)	Oral	United States	lung: function
Engel and Smith (1994)	Oral	United States	lung: neoplastic lesions
<u>Guo (2004)</u>	Oral	Taiwan	lung: neoplastic lesions
<u>Guo et al. (2004)</u>	Oral	Taiwan	lung: neoplastic lesions
<u>Han et al. (2009)</u>	Oral	United States	lung: neoplastic lesions
<u>Hinwood et al. (1999)</u>	Oral	Australia	respiratory system: neoplastic lesions
Hopenhayn-Rich et al. (1998)	Oral	Argentina	lung: neoplastic lesions
Marshall et al. (2007)	Oral	Chile	lung: neoplastic lesions
Meliker et al. (2007)	Oral	United States	lung: function
<u>Meliker et al. (2007)</u>	Oral	United States	respiratory system: neoplastic lesions
Morales et al. (2000)	Oral	Taiwan	lung: neoplastic lesions
<u>Mouly et al. (2012)</u>	Oral	France	lung: neoplastic lesions
<u>Rivara et al. (1997)</u>	Inhalation	Chile	larynx: neoplastic lesions
<u>Rivara et al. (1997)</u>	Oral	Chile	larynx: neoplastic lesions
<u>Rivara et al. (1997)</u>	Inhalation	Chile	lung: neoplastic lesions
<u>Rivara et al. (1997)</u>	Oral	Chile	lung: neoplastic lesions
<u>Smith et al. (1998)</u>	Oral	Chile	airway obstruction

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-42Draft: Do Not Cite or Quote

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

<u>Smith et al. (1998)</u>	Oral	Chile	lung: neoplastic lesions
<u>Smith et al. (2006)</u>	Oral	Chile	lung: function
<u>Smith et al. (2006)</u>	Oral	Chile	lung: neoplastic lesions
Smith et al. (2012)	Oral	Chile	larynx: neoplastic lesions
<u>Stocks (1960)</u>	Inhalation	England	clinical observation
<u>Stocks (1960)</u>	Inhalation	England	lung: neoplastic lesions
<u>Su et al. (2011)</u>	Oral	Taiwan	lung: neoplastic lesions
<u>Tsai et al. (1999)</u>	Oral	Taiwan	airway obstruction
<u>Tsai et al. (1999)</u>	Oral	Taiwan	respiratory system: neoplastic
			lesions
<u>Wu et al. (1989)</u>	Oral	Taiwan	lung: neoplastic lesions
Yorifuji et al. (2011)	Oral	Japan	lung: neoplastic lesions
OTHER			
Study References	Route of	Country	Health Effect
	Exposure		
Begum et al. (2012)	Oral	United States,	lung: neoplastic lesions
		Taiwan,	
		Bangladesh,	
		West Bengal,	
		Inner	
		Mongolia, and	
		China	
		Linited Ctates	recoiratory system: peoplastic
<u>Pinto et al. (1977)</u>	Inhalation	United States	respiratory system: neoplastic

3.1.16 Summary of Epidemiology Studies for Hazard Identification for Skin Diseases

Health Effect Category Route of Exposure Study Type	Count	
Skin Diseases	156	
Oral	144	
Case-control	28	
Cross-sectional	56	
Cohort	15	
Ecological	37	
Other	8	
Inhalation	10	
Case-control	3	
Cross-sectional	2	
Cohort	2	
Ecological	3	
Dermal	1	
Ecological	1	
Route Unknown	1	
Ecological	1	

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CASE REPORT				
Study References	Route of	Country	Health Effect	
	Exposure			
Zaldívar et al. (1981)	Oral	Chile	skin and subcutaneous tissue:	
			neoplastic lesions	
CASE SERIES		·		
Study References	Route of	Country	Health Effect	
	Exposure			
Cabrera and Gomez (2003)	Oral	Argentina	skin and subcutaneous tissue:	
			neoplastic lesions	
Cabrera and Gomez (2003)	Oral	Argentina	skin and subcutaneous tissue:	
			nonneoplastic lesions	
Choprapawon and Porapakkham	Oral	Thailand	skin and subcutaneous tissue:	
<u>(2001)</u>			neoplastic lesions	
<u>Dhar et al. (1997)</u>	Oral	Bangladesh	skin and subcutaneous tissue:	
			neoplastic lesions	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-44Draft: Do Not Cite or Quote

Mazumder (2003)	Oral	India	skin and subcutaneous tissue:
			neoplastic lesions
Mazumder (2003)	Oral	India	skin and subcutaneous tissue:
			nonneoplastic lesions
<u>Yeh et al. (1968)</u>	Oral	Taiwan	skin and subcutaneous tissue:
			neoplastic lesions
CASE-CONTROL			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Applebaum et al. (2007)</u>	Oral	United States	skin and subcutaneous tissue:
			neoplastic lesions
Beane Freeman et al. (2004)	Oral	United States	skin and subcutaneous tissue:
			neoplastic lesions
Bhowmick et al. (2013)	Oral	India	skin and subcutaneous tissue:
			nonneoplastic lesions
<u>Breton et al. (2006)</u>	Oral	Bangladesh	skin and subcutaneous tissue:
			nonneoplastic lesions
<u>Chen et al. (2003a)</u>	Oral	Taiwan	skin and subcutaneous tissue:
			neoplastic lesions
<u>Ghosh (2013)</u>	Oral	India	skin and subcutaneous tissue:
			nonneoplastic lesions (3 Types)
Gilbert-Diamond et al. (2013)	Oral	United States	skin and subcutaneous tissue:
			neoplastic lesions
<u>Graham et al. (1961)</u>	Oral	United States	skin and subcutaneous tissue:
			nonneoplastic lesions
<u>Guo et al. (2006b)</u>	Oral	Inner	skin and subcutaneous tissue:
		Mongolia	nonneoplastic lesions (2 Types)
<u>Hon et al. (2012)</u>	Oral	China	skin and subcutaneous tissue:
			nonneoplastic lesions
<u>Karagas et al. (2001)</u>	Oral	United States	skin and subcutaneous tissue:
			neoplastic lesions (2 Types)
<u>Karagas et al. (2002)</u>	Oral	United States	skin and subcutaneous tissue:
			neoplastic lesions
<u>Leonardi et al. (2012)</u>	Oral	Hungary,	skin and subcutaneous tissue:
		Romania,	neoplastic lesions
		Slovakia	
Lindberg et al. (2010)	Oral	Bangladesh	skin and subcutaneous tissue:
			nonneoplastic lesions
McCarty et al. (2006)	Oral	Bangladesh	skin and subcutaneous tissue:
			nonneoplastic lesions
<u>McDonald et al. (2007)</u>	Oral	Bangladesh	skin and subcutaneous tissue:
			nonneoplastic lesions
Pesch et al. (2002)	Inhalation	Slovakia	skin and subcutaneous tissue:
			neoplastic lesions
<u>Rahman et al. (2006b)</u>	Oral	Bangladesh	skin and subcutaneous tissue:

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-45Draft: Do Not Cite or Quote

			nonneoplastic lesions
Rahman et al. (2006a)	Oral	Bangladesh	skin and subcutaneous tissue:
			nonneoplastic lesions
Ranft et al. (2003)	Inhalation	Slovakia	skin and subcutaneous tissue:
			neoplastic lesions
Ranft et al. (2003)	Oral	Slovakia	skin and subcutaneous tissue:
			neoplastic lesions
Rosales-Castillo et al. (2004)	Oral	Mexico	skin and subcutaneous tissue:
			neoplastic lesions
<u>Surdu et al. (2013)</u>	Inhalation	Hungary,	skin and subcutaneous tissue:
		Romania,	neoplastic lesions
		Slovakia	
CASE-CONTROL (NESTED)			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Chen et al. (2007c)</u>	Oral	Bangladesh	skin and subcutaneous tissue:
			nonneoplastic lesions
<u>Hall et al. (2006)</u>	Oral	Bangladesh	skin and subcutaneous tissue:
			nonneoplastic lesions
<u>Haque et al. (2003)</u>	Oral	India	skin and subcutaneous tissue:
			nonneoplastic lesions
Lindberg et al. (2008)	Oral	Bangladesh	skin and subcutaneous tissue:
			nonneoplastic lesions
соновт (prospective) Study References	Route of	Country	Health Effect
Study References		country	
Argos et al. (2011)	Exposure Oral	Bangladach	skin and subcutaneous tissue:
<u>Argos et al. (2011)</u>	Urai	Bangladesh	nonneoplastic lesions (2 Types)
Baastrup et al. (2008)	Oral	Denmark	skin and subcutaneous tissue:
	Orai	Definitian	neoplastic lesions (2 Types)
Hsu et al. (2013a)	Oral	Taiwan	skin and subcutaneous tissue:
<u></u>	••••		neoplastic lesions (2 Types)
Hsu et al. (2013a)	Oral	Taiwan	skin and subcutaneous tissue:
·			nonneoplastic lesions (2 Types)
<u>Hsueh et al. (1997)</u>	Oral	Taiwan	skin and subcutaneous tissue:
			neoplastic lesions
<u>Melkonian et al. (2011)</u>	Oral	Bangladesh	skin and subcutaneous tissue:
			nonneoplastic lesions
Pierce et al. (2011)	Oral	Bangladesh	skin and subcutaneous tissue:
			nonneoplastic lesions
<u>Seow et al. (2012)</u>	Oral	Bangladesh	skin and subcutaneous tissue:
			nonneoplastic lesions (2 Types)
Valentine et al. (1991)	Oral	United States	skin and subcutaneous tissue:
			nonneoplastic lesions

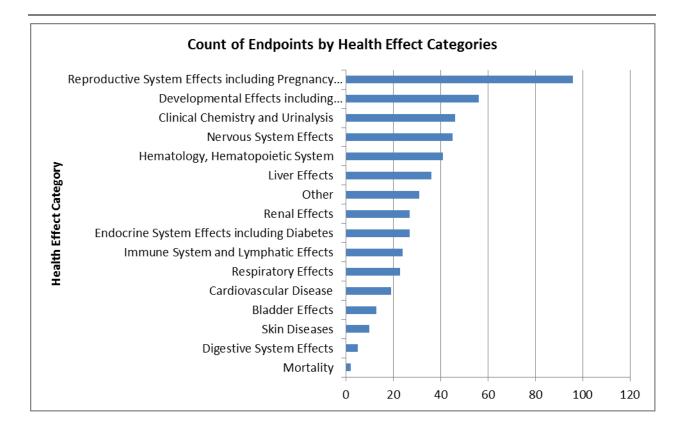
These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-46Draft: Do Not Cite or Quote

COHORT (RETROSPECTIVE)			
Study References	Route of	Country	Health Effect
	Exposure		
Enterline and Marsh (1982)	Inhalation	United States	skin and subcutaneous tissue:
			neoplastic lesions
<u>Lewis et al. (1999)</u>	Oral	United States	skin and subcutaneous tissue:
			neoplastic lesions
<u>Lubin et al. (1981)</u>	Inhalation	United States	skin and subcutaneous tissue:
			neoplastic lesions
CROSS-SECTIONAL			
Study References	Route of	Country	Health Effect
	Exposure		
<u>Ahmad et al. (1999)</u>	Oral	Bangladesh	skin and subcutaneous tissue:
			nonneoplastic lesions
Ahsan et al. (2000)	Oral	Bangladesh	skin and subcutaneous tissue:
			nonneoplastic lesions (3 Types)
Ahsan et al. (2006)	Oral	Bangladesh	skin and subcutaneous tissue:
			nonneoplastic lesions
Argos et al. (2007)	Oral	Bangladesh	skin and subcutaneous tissue:
			nonneoplastic lesions
Barati et al. (2010)	Oral	Iran	skin and subcutaneous tissue:
			nonneoplastic lesions (6 Types)
Borgono et al. (1977)	Oral	Chile	skin and subcutaneous tissue:
			nonneoplastic lesions
Chakraborti et al. (2013b)	Oral	India	skin and subcutaneous tissue:
			neoplastic lesions
Chakraborti et al. (2013b)	Oral	India	skin and subcutaneous tissue:
			nonneoplastic lesions (5 Types)
Chakraborti et al. (2003)	Oral	India	skin and subcutaneous tissue:
			nonneoplastic lesions
<u>Chen et al. (2006a)</u>	Oral	Bangladesh	skin and subcutaneous tissue:
			nonneoplastic lesions
<u>Fatmi et al. (2009)</u>	Oral	Pakistan	skin and subcutaneous tissue:
			nonneoplastic lesions
Fatmi et al. (2013)	Oral	Pakistan	skin and subcutaneous tissue:
			nonneoplastic lesions
Ghosh et al. (2007b)	Oral	India	skin and subcutaneous tissue:
			neoplastic lesions
Ghosh et al. (2007b)	Oral	India	skin and subcutaneous tissue:
			nonneoplastic lesions
Guo et al. (2006a)	Oral	China	skin and subcutaneous tissue:
			nonneoplastic lesions
<u>Guo et al. (2007)</u>	Oral	Mongolia	skin and subcutaneous tissue:
			nonneoplastic lesions
Hashim et al. (2013)	Oral	Cambodia	skin and subcutaneous tissue:

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-47Draft: Do Not Cite or Quote

			nonneoplastic lesions (4 Types)
<u>Hsueh et al. (1995)</u>	Oral	Taiwan	skin and subcutaneous tissue:
			nonneoplastic lesions
Knobeloch et al. (2006)	Oral	United States	soft tissue: neoplastic lesions
Lamm et al. (2007)	Oral	China	skin and subcutaneous tissue:
			neoplastic lesions
Lamm et al. (2007)	Oral	China	skin and subcutaneous tissue:
			nonneoplastic lesions
<u>Li et al. (2013a)</u>	Oral	China	skin and subcutaneous tissue:
			neoplastic lesions
Liu et al. (2013)	Oral	China	skin and subcutaneous tissue:
			nonneoplastic lesions
<u>Maden et al. (2011)</u>	Oral	Nepal	skin and subcutaneous tissue:
			nonneoplastic lesions
Maharjan et al. (2005)	Oral	Nepal	skin and subcutaneous tissue:
			nonneoplastic lesions
<u>Maharjan et al. (2007)</u>	Oral	Nepal	skin and subcutaneous tissue:
			nonneoplastic lesions
Mazumder et al. (1998)	Oral	India	skin and subcutaneous tissue:
			nonneoplastic lesions (2 Types)
Mazumder et al. (2013)	Oral	India	skin and subcutaneous tissue:
			nonneoplastic lesions
<u>Mitra et al. (2002)</u>	Oral	Bangladesh	skin and subcutaneous tissue:
			nonneoplastic lesions (2 Types)
Mosaferi et al. (2008)	Oral	Iran	skin and subcutaneous tissue:
			nonneoplastic lesions (2 Types)
<u>Paul et al. (2013)</u>	Oral	India	skin and subcutaneous tissue:
			neoplastic lesions
Pavittranon et al. (2003)	Oral	Thailand	skin and subcutaneous tissue:
			nonneoplastic lesions
<u>Pei et al. (2013)</u>	Oral	China	skin and subcutaneous tissue:
			nonneoplastic lesions
<u>Perry et al. (1948)</u>	Inhalation	Not Specified	skin and subcutaneous tissue:
			nonneoplastic lesions
<u>Pesola et al. (2012)</u>	Oral	Bangladesh	skin and subcutaneous tissue:
			nonneoplastic lesions
<u>Schäfer et al. (1999)</u>	Inhalation	Germany	skin and subcutaneous tissue:
			nonneoplastic lesions
<u>Smith et al. (2000)</u>	Oral	Chile	skin and subcutaneous tissue:
			nonneoplastic lesions
<u>Tondel et al. (1999)</u>	Oral	Bangladesh	skin and subcutaneous tissue:
			nonneoplastic lesions
Valenzuela et al. (2005)	Oral	Mexico	skin and subcutaneous tissue:
			nonneoplastic lesions (2 Types)
<u>Xia et al. (2009)</u>	Oral	China	skin and subcutaneous tissue:

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-48Draft: Do Not Cite or Quote


			nonneoplastic lesions
ECOLOGICAL			
Study References	Route of Exposure	Country	Health Effect
Ahamed et al. (2006b)	Oral	Bangladesh	skin and subcutaneous tissue: nonneoplastic lesions
Ahamed et al. (2006a)	Oral	India	skin and subcutaneous tissue: nonneoplastic lesions
Bencko et al. (2009)	Inhalation	Slovakia	skin and subcutaneous tissue: neoplastic lesions
Besuschio et al. (1980)	Oral	Argentina	skin and subcutaneous tissue: neoplastic lesions
Biswas et al. (1998)	Oral	Bangladesh	skin and subcutaneous tissue: nonneoplastic lesions
<u>Brown et al. (1989)</u>	Oral	Taiwan	skin and subcutaneous tissue: neoplastic lesions
Cebrián et al. (1983)	Oral	Mexico	skin and subcutaneous tissue: nonneoplastic lesions
Chakraborti et al. (2013a)	Oral	Bangladesh; India	skin and subcutaneous tissue: nonneoplastic lesions
<u>Chen et al. (1985)</u>	Oral	Taiwan	skin and subcutaneous tissue: neoplastic lesions
Chen and Wang (1990)	Oral	Taiwan	skin and subcutaneous tissue: neoplastic lesions
<u>Del Razo et al. (1997)</u>	Oral	Mexico	skin and subcutaneous tissue: nonneoplastic lesions
<u>Guo et al. (1998)</u>	Oral	Taiwan	skin and subcutaneous tissue: neoplastic lesions
<u>Guo et al. (2001)</u>	Oral	Taiwan	skin and subcutaneous tissue: neoplastic lesions
<u>Hinwood et al. (1999)</u>	Oral	Australia	skin and subcutaneous tissue: neoplastic lesions
Hopenhayn-Rich et al. (1998)	Oral	Argentina	skin and subcutaneous tissue: neoplastic lesions
<u>Maharjan et al. (2006)</u>	Oral	Nepal	skin and subcutaneous tissue: nonneoplastic lesions
Mazumder et al. (2009)	Oral	Cambodia	skin and subcutaneous tissue: nonneoplastic lesions
Mazumder et al. (2010)	Oral	India	skin and subcutaneous tissue: nonneoplastic lesions
Mcdonald et al. (2006)	Oral	Bangladesh	skin and subcutaneous tissue: nonneoplastic lesions
<u>Morton et al. (1976)</u>	Oral	United States	skin and subcutaneous tissue: neoplastic lesions
Mouly et al. (2012)	Oral	France	skin and subcutaneous tissue:

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-49Draft: Do Not Cite or Quote

			neoplastic lesions
Philipp et al. (1983)	Inhalation	United	skin and subcutaneous tissue:
		Kingdom	neoplastic lesions
Philipp et al. (1983)	Oral	United	skin and subcutaneous tissue:
		Kingdom	neoplastic lesions
Philipp et al. (1983)	Dermal	United	skin and subcutaneous tissue:
		Kingdom	neoplastic lesions
Rahman et al. (2003)	Oral	India	skin and subcutaneous tissue:
			nonneoplastic lesions
Rahman et al. (2005c)	Oral	India	skin and subcutaneous tissue:
			nonneoplastic lesions
Rahman et al. (2005a)	Oral	India	skin and subcutaneous tissue:
			nonneoplastic lesions
Rahman et al. (2005b)	Oral	India	skin and subcutaneous tissue:
			nonneoplastic lesions
<u>Rivara et al. (1997)</u>	Inhalation	Chile	skin and subcutaneous tissue:
			neoplastic lesions
Rivara et al. (1997)	Oral	Chile	skin and subcutaneous tissue:
			neoplastic lesions
Saha and Poddar (1986)	Oral	India	skin and subcutaneous tissue:
			nonneoplastic lesions
<u>Smith et al. (1998)</u>	Oral	Chile	skin and subcutaneous tissue:
			neoplastic lesions
<u>Tsai et al. (1999)</u>	Oral	Taiwan	skin and subcutaneous tissue:
			neoplastic lesions
<u>Tseng et al. (1968)</u>	Oral	Taiwan	skin and subcutaneous tissue:
			neoplastic lesions (2 Types)
<u>Tseng (1977)</u>	Oral	Taiwan	skin and subcutaneous tissue:
			neoplastic lesions
Valentine et al. (1992)	Oral	United States	clinical observation
Valentine et al. (1992)	Oral	United States	skin and subcutaneous tissue:
			nonneoplastic lesions
Wheeler et al. (2013)	Route	United	skin and subcutaneous tissue:
	unknown	Kingdom	neoplastic lesions
<u>Wu et al. (1989)</u>	Oral	Taiwan	skin and subcutaneous tissue:
			neoplastic lesions
<u>Yeh (1973)</u>	Oral	Taiwan	skin and subcutaneous tissue:
			neoplastic lesions
<u>Yu et al. (2007)</u>	Oral	China	skin and subcutaneous tissue:
			nonneoplastic lesions

3.2 Summary of Toxicology Literature Identified to Support Hazard Identification for Inorganic Arsenic

3.2.1 Overview of Toxicology Studies Identified

3.2.2 Summary of Toxicology Studies for Hazard Identification for Bladder Effects

Health Effect Category Route of Exposure Study Type		Count
Bladder Effects	12	
Oral	10	
Chronic (>90 days)	2	
Reproductive/Developmental	8	
Inhalation	2	
Subchronic (30 days to < 90 days)	2	

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CHRONIC (>90 DAYS)			
Study References	Route of Exposure	Species	Health Effect
Nain and Smits (2012)	Oral	rat	urinary bladder: nonneoplastic lesions
<u>Stępnik et al. (2009)</u>	Oral	mice	urinary bladder: nonneoplastic lesions
REPRODUCTIVE/DEVELOPMENTAL	· · · ·		
Study References	Route of	Species	Health Effect
	Exposure		
<u>Tokar et al. (2010b)</u>	Oral	mice	urinary bladder: neoplastic lesions
			(4 Types)
<u>Tokar et al. (2010b)</u>	Oral	mice	urinary bladder: nonneoplastic
			lesions (2 Types)
<u>Tokar et al. (2011)</u>	Oral	mice	urinary bladder: nonneoplastic
			lesions (2 Types)
<u>Tokar et al. (2012)</u>	Oral	mice	urinary bladder: neoplastic lesions
Tokar et al. (2012)	Oral	mice	urinary bladder: nonneoplastic
			lesions
Waalkes et al. (2006a)	Oral	mice	urinary bladder: nonneoplastic
			lesions (2 Types)
Waalkes et al. (2006b)	Oral	mice	urinary bladder: neoplastic lesions
Waalkes et al. (2006b)	Oral	mice	urinary bladder: nonneoplastic
			lesions

SUBCHRONIC (30 DAYS TO <90 DAYS)			
Study References	Route of	Species	Health Effect
	Exposure		
Blair et al. (1990b)	Inhalation	mice	urinary bladder: nonneoplastic
			lesions
Blair et al. (1990b)	Inhalation	rat	urinary bladder: nonneoplastic
			lesions

3.2.3 Summary of Toxicology Studies for Hazard Identification for Cardiovascular Disease

Health Effect Category Route of Exposure Study Type		Count
Cardiovascular Disease	19	
Oral	17	
Chronic (>90 days)	11	
Subchronic (30 days to < 90 days)	5	
Reproductive/Developmental	1	
Inhalation	2	
Subchronic (30 days to < 90 days)	2	

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CHRONIC (>90 DAYS)				
Study References	Route of	Species	Health Effect	
	Exposure			
Bunderson et al. (2004)	Oral	mice	inflammatory markers	
Bunderson et al. (2004)	Oral	mice	vascular: nonneoplastic lesions (2	
			Types)	
Nain and Smits (2012)	Oral	rat	vascular: nonneoplastic lesions	
Sanchez-Soria et al. (2012)	Oral	mice	blood pressure: diastolic	
Sanchez-Soria et al. (2012)	Oral	mice	blood pressure: systolic	
Sanchez-Soria et al. (2012)	Oral	mice	cardiovascular system:	
			nonneoplastic lesions	
Sanchez-Soria et al. (2012)	Oral	mice	heart: relative weight	
Simeonova et al. (2003)	Oral	mice	vascular: nonneoplastic lesions (2	
			Types)	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-53Draft: Do Not Cite or Quote

Soucy et al. (2005)	Oral	mice	vascular: gross pathology (2 Types)
Srivastava et al. (2009)	Oral	mice	heart: nonneoplastic lesions (2
			Types)
Stępnik et al. (2009)	Oral	mice	heart: nonneoplastic lesions
REPRODUCTIVE/DEVELOPMENTAL			
Study References	Route of	Species	Health Effect
	Exposure		
Rogers et al. (2014)	Oral	rat	blood pressure: systolic (2 Types)
SUBCHRONIC (30 DAYS TO <90 DAYS)	·		
Study References	Route of	Species	Health Effect
	Exposure		
<u>Blair et al. (1990b)</u>	Inhalation	mice	cardiovascular system:
			nonneoplastic lesions
<u>Blair et al. (1990b)</u>	Inhalation	rat	cardiovascular system:
			nonneoplastic lesions
Lemaire et al. (2011)	Oral	mice	cardiovascular system:
			nonneoplastic lesions
Lemaire et al. (2011)	Oral	mice	vascular: nonneoplastic lesions
Sharma and Sharma (2013)	Oral	rat	vascular: function
Soucy et al. (2005)	Oral	mice	vascular: gross pathology (4 Types)
Srivastava et al. (2009)	Oral	mice	heart: nonneoplastic lesions

3.2.4 Summary of Toxicology Studies for Hazard Identification for Clinical Chemistry and Urinalysis

Health Effect Category Route of Exposure Study Type		Count
Clinical Chemistry and Urinalysis	47	
Oral	45	
Chronic (>90 days)	23	
Subchronic (30 days to < 90 days)	13	
Reproductive/Developmental	9	
Inhalation	2	
Subchronic (30 days to < 90 days)	2	

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CHRONIC (>90 DAYS)				
Study References	Route of	Species	Health Effect	
	Exposure			
Das et al. (2012b)	Oral	goat	clinical chemistry, unspecified (3	
			Types)	
Arteel et al. (2008)	Oral	mice	clinical chemistry, unspecified	
Dwivedi and Flora (2011)	Oral	rat	alanine aminotransferase (ALT)	
Dwivedi and Flora (2011)	Oral	rat	aspartate aminotransferase (AST)	
Liu et al. (2000)	Oral	mice	clinical chemistry, unspecified (2	
			Types)	
Nain and Smits (2012)	Oral	rat	alanine aminotransferase (ALT)	
Nain and Smits (2012)	Oral	rat	alkaline phosphatase (ALP)	
Nain and Smits (2012)	Oral	rat	aspartate aminotransferase (AST)	
Nain and Smits (2012)	Oral	rat	blood urea nitrogen (BUN)	
Nain and Smits (2012)	Oral	rat	blood: glucose	
Nain and Smits (2012)	Oral	rat	chloride	
Nain and Smits (2012)	Oral	rat	creatine kinase	
Nain and Smits (2012)	Oral	rat	creatinine	
Nain and Smits (2012)	Oral	rat	gamma-glutamyl transpeptidase	
			(GGT) (2 Types)	
Nain and Smits (2012)	Oral	rat	potassium	
Nain and Smits (2012)	Oral	rat	sodium	
Nain and Smits (2012)	Oral	rat	total protein	
Simeonova et al. (2003)	Oral	mice	clinical chemistry, unspecified (2	
			Types)	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-55Draft: Do Not Cite or Quote

Srivastava et al. (2009)	Oral	mice	cholesterol (2 Types)
Srivastava et al. (2009)	Oral	mice	triglycerides (2 Types)
<u>Wang et al. (2009b)</u>	Oral	rat	blood: glucose
Wang et al. (2009b)	Oral	rat	N-acetyl-beta-D-glucosaminidase
			(NAG)
<u>Wu et al. (2004)</u>	Oral	mice	urine: parameters
REPRODUCTIVE/DEVELOPMENTAL			
Study References	Route of	Species	Health Effect
	Exposure		
<u>Rogers et al. (2014)</u>	Oral	rat	clinical chemistry, unspecified
<u>Ahmad et al. (2013)</u>	Oral	mice	clinical chemistry, unspecified
Antonio Garcia et al. (2013)	Oral	rat	clinical chemistry, unspecified
<u>Dávila-Esqueda et al. (2011)</u>	Oral	rat	cholesterol (2 Types)
<u>Dávila-Esqueda et al. (2011)</u>	Oral	rat	clinical chemistry, unspecified
<u>Dávila-Esqueda et al. (2011)</u>	Oral	rat	triglycerides
Srivastava et al. (2007)	Oral	mice	cholesterol
<u>Srivastava et al. (2007)</u>	Oral	mice	clinical chemistry, unspecified
<u>Srivastava et al. (2007)</u>	Oral	mice	triglycerides
SUBCHRONIC (30 DAYS TO <90 DAYS)			
Study References	Route of	Species	Health Effect
	Exposure		
<u>Blair et al. (1990b)</u>	Inhalation	rat	clinical chemistry, unspecified
<u>Blair et al. (1990b)</u>	Inhalation	mice	clinical chemistry, unspecified
<u>Fouad et al. (2012)</u>	Oral	mice	alanine aminotransferase (ALT)
<u>Owumi et al. (2013)</u>	Oral	rat	clinical chemistry, unspecified
<u>Patra et al. (2012)</u>			
	Oral	goat	alanine aminotransferase (ALT)
<u>Patra et al. (2012)</u>	Oral	goat goat	alanine aminotransferase (ALT) aspartate aminotransferase (AST)
<u>Patra et al. (2012)</u> Kharroubi et al. (2014)			
	Oral	goat	aspartate aminotransferase (AST)
Kharroubi et al. (2014)	Oral Oral	goat rat	aspartate aminotransferase (AST) alanine aminotransferase (ALT)
Kharroubi et al. (2014)Kharroubi et al. (2014)	Oral Oral Oral	goat rat rat	aspartate aminotransferase (AST) alanine aminotransferase (ALT) alkaline phosphatase (ALP)
Kharroubi et al. (2014)Kharroubi et al. (2014)Kharroubi et al. (2014)	Oral Oral Oral Oral Oral	goat rat rat rat	aspartate aminotransferase (AST) alanine aminotransferase (ALT) alkaline phosphatase (ALP) aspartate aminotransferase (AST)
Kharroubi et al. (2014)Kharroubi et al. (2014)Kharroubi et al. (2014)Kharroubi et al. (2014)	Oral Oral Oral Oral Oral Oral	goat rat rat rat rat rat	aspartate aminotransferase (AST) alanine aminotransferase (ALT) alkaline phosphatase (ALP) aspartate aminotransferase (AST) clinical chemistry, unspecified
Kharroubi et al. (2014)Kharroubi et al. (2014)Kharroubi et al. (2014)Kharroubi et al. (2014)Lemaire et al. (2011)	Oral Oral Oral Oral Oral Oral Oral	goat rat rat rat rat rat mice	aspartate aminotransferase (AST)alanine aminotransferase (ALT)alkaline phosphatase (ALP)aspartate aminotransferase (AST)clinical chemistry, unspecifiedclinical chemistry, unspecified
Kharroubi et al. (2014)Kharroubi et al. (2014)Kharroubi et al. (2014)Kharroubi et al. (2014)Lemaire et al. (2011)	Oral Oral Oral Oral Oral Oral Oral	goat rat rat rat rat rat mice	aspartate aminotransferase (AST)alanine aminotransferase (ALT)alkaline phosphatase (ALP)aspartate aminotransferase (AST)clinical chemistry, unspecifiedclinical chemistry, unspecifiedclinical chemistry, unspecifiedclinical chemistry, unspecifiedclinical chemistry, unspecified
Kharroubi et al. (2014)Kharroubi et al. (2014)Kharroubi et al. (2014)Kharroubi et al. (2014)Lemaire et al. (2011)Majhi et al. (2011)	Oral Oral Oral Oral Oral Oral Oral Oral	goat rat rat rat rat rat mice rat	aspartate aminotransferase (AST)alanine aminotransferase (ALT)alkaline phosphatase (ALP)aspartate aminotransferase (AST)clinical chemistry, unspecifiedclinical chemistry, unspecified

3.2.5 Summary of Toxicology Studies for Hazard Identification for Developmental Effects including Neurodevelopmental

Health Effect Category Route of Exposure Study Type		Count
Developmental Effects including Neurod	61	
Oral	58	
Subchronic (30 days to < 90 days)	2	
Reproductive/Developmental	56	
Inhalation	3	
Reproductive/Developmental	3	

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

REPRODUCTIVE/DEVELOPMENTAL				
Study References	Route of	Species	Health Effect	
	Exposure			
<u>Nagymajtenyi et al. (1985)</u>	Inhalation	mice	fetal body weight (2 Types)	
<u>Nagymajtenyi et al. (1985)</u>	Inhalation	mice	number of dead fetuses	
<u>Nagymajtenyi et al. (1985)</u>	Inhalation	mice	skeletal variation, malformation, or	
			anomaly	
Aggarwal et al. (2007)	Oral	rat	crown-rump length	
Aggarwal et al. (2007)	Oral	rat	external malformation	
Aggarwal et al. (2007)	Oral	rat	fetal body weight	
Aggarwal et al. (2007)	Oral	rat	skeletal variation, malformation, or	
			anomaly	
Aggarwal et al. (2007)	Oral	rat	soft-tissue variation, malformation,	
			or anomaly	
Colomina et al. (1997)	Oral	mice	developmental milestone (2 Types)	
Colomina et al. (1997)	Oral	mice	functional observation	
			battery/neuro-behavioral (7 Types)	
Gandhi et al. (2012)	Oral	rat	developmental milestone	
Gandhi et al. (2012)	Oral	rat	external malformation	
Gandhi et al. (2012)	Oral	rat	functional observation	
			battery/neuro-behavioral	
Gandhi et al. (2012)	Oral	rat	motor activity	
Gandhi et al. (2012)	Oral	rat	reflex ontogeny (9 Types)	
Miyazaki et al. (2005)	Oral	mice	fetal body weight	
Reilly et al. (2013)	Oral	rat	day at vaginal opening	
Rogers et al. (2014)	Oral	rat	birth weight (2 Types)	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-57Draft: Do Not Cite or Quote

<u>Ahmad et al. (2013)</u>	Oral	mice	developmental milestone
Ahmad et al. (2013)	Oral	mice	functional observation
			battery/neuro-behavioral (9 Types)
Antonio Garcia et al. (2013)	Oral	rat	body weight
Antonio Garcia et al. (2013)	Oral	rat	crown-rump length
Chattopadhyay et al. (2002)	Oral	rat	brain: gross pathology
Chattopadhyay et al. (2002)	Oral	rat	motor activity
Chattopadhyay et al. (2002)	Oral	rat	number of dead fetuses
Cronican et al. (2013)	Oral	mice	birth weight
Cronican et al. (2013)	Oral	mice	external malformation
<u>He et al. (2007)</u>	Oral	mice	litter weight (2 Types)
<u>He et al. (2007)</u>	Oral	mice	postnatal body weight
<u>He et al. (2007)</u>	Oral	mice	soft-tissue variation, malformation,
			or anomaly
Herrera et al. (2013)	Oral	rat	brain: absolute weight
Herrera et al. (2013)	Oral	rat	brain: relative weight
Herrera et al. (2013)	Oral	rat	postnatal body weight
Luo et al. (2013)	Oral	rat	brain: nonneoplastic lesions
Luo et al. (2013)	Oral	rat	functional observation
			battery/neuro-behavioral
Markowski et al. (2012)	Oral	mice	anogenital distance (2 Types)
Markowski et al. (2012)	Oral	mice	body weight gain (2 Types)
Markowski et al. (2012)	Oral	mice	crown-rump length (2 Types)
Markowski et al. (2012)	Oral	mice	developmental milestone (6 Types)
Markowski et al. (2012)	Oral	mice	functional observation
			battery/neuro-behavioral (9 Types)
Markowski et al. (2012)	Oral	mice	motor activity (2 Types)
Markowski et al. (2012)	Oral	mice	onset of puberty (2 Types)
Martinez et al. (2008)	Oral	mice	functional observation
			battery/neuro-behavioral (3 Types)
Martinez-Finley et al. (2009)	Oral	mice	brain: absolute weight
Martinez-Finley et al. (2009)	Oral	mice	functional observation
			battery/neuro-behavioral (2 Types)
<u>Ramsey et al. (2013a)</u>	Oral	mice	birth weight (2 Types)
Ramsey et al. (2013c)	Oral	mice	birth length
Ramsey et al. (2013c)	Oral	mice	birth weight
<u>Ríos et al. (2009)</u>	Oral	rat	brain: nonneoplastic lesions
Rodríguez et al. (2002)	Oral	rat	body weight
Rodríguez et al. (2002)	Oral	rat	CNS: function - cognition (4 Types)
Rodríguez et al. (2002)	Oral	rat	developmental milestone (6 Types)
Rodríguez et al. (2002)	Oral	rat	locomotor activity (2 Types)
Rodríguez et al. (2002)	Oral	rat	motor activity (2 Types)
Rodríguez et al. (2002)	Oral	rat	postnatal body weight
<u>Xi et al. (2009)</u>	Oral	rat	CNS: function - cognition (7 Types)

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-58Draft: Do Not Cite or Quote

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

<u>Xi et al. (2009)</u>	Oral	rat	developmental milestone (12
			Types)
<u>Xi et al. (2009)</u>	Oral	rat	locomotor activity
<u>Xi et al. (2009)</u>	Oral	rat	postnatal body weight
SUBCHRONIC (30 DAYS TO <90 DAYS)	·		
Study References	Route of	Species	Health Effect
	Exposure		
Nagaraja and Desiraju (1993)	Oral	rat	brain: absolute weight
Nagaraja and Desiraju (1993)	Oral	rat	developmental milestone

3.2.6 Summary of Toxicology Studies for Hazard Identification for Digestive System Effects

Health Effect Category Route of Exposure Study Type	Count		
Digestive System Effects	5		
Oral	3		
Chronic (>90 days)	1		
Reproductive/Developmental	2		
Inhalation	2		
Subchronic (30 days to < 90 days)	2		

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CHRONIC (>90 DAYS)					
Study References	Route of	Species	Health Effect		
	Exposure				
Stępnik et al. (2009)	Oral	mice	digestive system: nonneoplastic		
			lesions		
REPRODUCTIVE/DEVELOPMENTAL					
Study References	Route of	Species	Health Effect		
	Exposure				
Tokar et al. (2011)	Oral	mice	digestive system: neoplastic lesions		
			(8 Types)		
Tokar et al. (2011)	Oral	mice	digestive system: nonneoplastic		
			lesions (2 Types)		
SUBCHRONIC (30 DAYS TO <90 DAYS)					
Study References	Route of	Species	Health Effect		

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-59Draft: Do Not Cite or Quote

	Exposure		
<u>Blair et al. (1990b)</u>	Inhalation	mice	pancreas: nonneoplastic lesions
<u>Blair et al. (1990b)</u>	Inhalation	rat	pancreas: nonneoplastic lesions

3.2.7 Summary of Toxicology Studies for Hazard Identification for Endocrine System Effects including Diabetes

Health Effect Category Route of Exposure Study Type	Count	
Endocrine System Effects including Diabe	28	
Oral	26	
Chronic (>90 days)	2	
Subchronic (30 days to < 90 days)	2	
Reproductive/Developmental	22	
Inhalation	2	
Subchronic (30 days to < 90 days)	2	

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CHRONIC (>90 DAYS)					
Study References	Route of	Species	Health Effect		
	Exposure				
Nain and Smits (2012)	Oral	rat	thyroid gland: nonneoplastic lesions		
<u>Stępnik et al. (2009)</u>	Oral	mice	endocrine system: nonneoplastic		
			lesions		
REPRODUCTIVE/DEVELOPMENTAL					
Study References	Route of	Species	Health Effect		
	Exposure				
<u>Reilly et al. (2013)</u>	Oral	rat	estrogen		
Reilly et al. (2013)	Oral	rat	estrous cyclicity		
Reilly et al. (2013)	Oral	rat	growth hormone		
Reilly et al. (2013)	Oral	rat	luteinizing hormone (LH)		
Dávila-Esqueda et al. (2012)	Oral	rat	adrenal gland: absolute weight		
Dávila-Esqueda et al. (2012)	Oral	rat	adrenal gland: nonneoplastic		
			lesions		
Dávila-Esqueda et al. (2011)	Oral	rat	blood: glucose (4 Types)		
Dávila-Esqueda et al. (2011)	Oral	rat	hematology, unspecified (5 Types)		
Dávila-Esqueda et al. (2011)	Oral	rat	pancreas: nonneoplastic lesions (2		

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-60Draft: Do Not Cite or Quote

			Types)
Goggin et al. (2012)	Oral	mice	glucocorticoids
Martinez et al. (2008)	Oral	mice	corticosterone
Tokar et al. (2010b)	Oral	mice	adrenal gland: neoplastic lesions (2
			Types)
Tokar et al. (2010b)	Oral	mice	adrenal gland: nonneoplastic
			lesions
<u>Tokar et al. (2011)</u>	Oral	mice	adrenal gland: neoplastic lesions (2
			Types)
<u>Tokar et al. (2012)</u>	Oral	mice	adrenal gland: neoplastic lesions
Waalkes et al. (2004b)	Oral	mice	adrenal gland: neoplastic lesions (3
			Types)
Waalkes et al. (2006a)	Oral	mice	adrenal gland: neoplastic lesions
Waalkes et al. (2006a)	Oral	mice	thyroid gland: nonneoplastic lesions
Waalkes et al. (2006b)	Oral	mice	adrenal gland: neoplastic lesions
Waalkes et al. (2006b)	Oral	mice	thyroid gland: neoplastic lesions
Waalkes et al. (2003)	Oral	mice	adrenal gland: neoplastic lesions (3
			Types)
Waalkes et al. (2003)	Oral	mice	thyroid gland: neoplastic lesions (2
			Types)
SUBCHRONIC (30 DAYS TO <90 DAYS			
Study References	Route of	Species	Health Effect
	Exposure		
<u>Blair et al. (1990b)</u>	Inhalation	mice	endocrine system: nonneoplastic
			lesions
<u>Blair et al. (1990b)</u>	Inhalation	rat	endocrine system: nonneoplastic
			lesions
<u>Paul et al. (2007)</u>	Oral	mice	blood: glucose
<u>Yen et al. (2007)</u>	Oral	mice	pancreas: nonneoplastic lesions

3.2.8 Summary of Toxicology Studies for Hazard Identification for Hematology, Hematopoietic System

Health Effect Category Route of Exposure Study Type	Count	
Hematology, Hematopoietic System	39	
Oral	26	
Chronic (>90 days)	12	
Subchronic (30 days to < 90 days)	5	
Reproductive/Developmental	9	
Inhalation	13	
Subchronic (30 days to < 90 days)	13	

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CHRONIC (>90 DAYS)					
Study References	Route of	Species	Health Effect		
	Exposure				
Ghatak et al. (2011)	Oral	mice	hematology, unspecified (2 Types)		
Dwivedi and Flora (2011)	Oral	rat	erythrocyte count		
Dwivedi and Flora (2011)	Oral	rat	hematocrit (packed cell volume)		
Dwivedi and Flora (2011)	Oral	rat	hemoglobin		
Dwivedi and Flora (2011)	Oral	rat	leukocyte count		
Dwivedi and Flora (2011)	Oral	rat	mean corpuscular hemoglobin		
Dwivedi and Flora (2011)	Oral	rat	mean corpuscular hemoglobin		
			concentration		
Dwivedi and Flora (2011)	Oral	rat	mean corpuscular volume		
Dwivedi and Flora (2011)	Oral	rat	platelet count and morphologic		
			assessment		
Flora et al. (2012)	Oral	mice	hematology, unspecified		
Nain and Smits (2012)	Oral	rat	spleen: nonneoplastic lesions		
Stępnik et al. (2009)	Oral	mice	bone marrow: nonneoplastic		
			lesions		
REPRODUCTIVE/DEVELOPMENTAL					
Study References	Route of	Species	Health Effect		
	Exposure				
Antonio Garcia et al. (2013)	Oral	rat	hematology, unspecified		
Dávila-Esqueda et al. (2011)	Oral	rat	hematology, unspecified		
Tokar et al. (2010b)	Oral	mice	leukemia (4 Types)		
Tokar et al. (2010b)	Oral	mice	spleen: nonneoplastic lesions (2		

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-62Draft: Do Not Cite or Quote

			Types)
Tokar et al. (2012)	Oral	mice	vascular: neoplastic lesions (2
			Types)
Waalkes et al. (2004b)	Oral	mice	spleen: nonneoplastic lesions (2
			Types)
Waalkes et al. (2006a)	Oral	mice	spleen: nonneoplastic lesions
Waalkes et al. (2006b)	Oral	mice	spleen: neoplastic lesions
Waalkes et al. (2003)	Oral	mice	spleen: neoplastic lesions (2 Types)
SUBCHRONIC (30 DAYS TO <90 DAYS)			
Study References	Route of	Species	Health Effect
	Exposure		
<u>Blair et al. (1990b)</u>	Inhalation	rat	hematology, unspecified
<u>Blair et al. (1990b)</u>	Inhalation	mice	hematology, unspecified
<u>Blair et al. (1990b)</u>	Inhalation	rat	spleen: absolute weight
Blair et al. (1990b)	Inhalation	rat	spleen: nonneoplastic lesions
Blair et al. (1990b)	Inhalation	mice	spleen: nonneoplastic lesions
Blair et al. (1990b)	Inhalation	mice	spleen: relative weight
<u>Blair et al. (1990a)</u>	Inhalation	mice	hematology, unspecified (2 Types)
<u>Hong et al. (1989)</u>	Inhalation	mice	bone marrow: nonneoplastic
			lesions (3 Types)
<u>Hong et al. (1989)</u>	Inhalation	mice	hematology, unspecified
<u>Hong et al. (1989)</u>	Inhalation	mice	hematopoietic system:
			nonneoplastic lesions
<u>Hong et al. (1989)</u>	Inhalation	mice	spleen: absolute weight
<u>Hong et al. (1989)</u>	Inhalation	mice	spleen: nonneoplastic lesions
<u>Hong et al. (1989)</u>	Inhalation	mice	spleen: relative weight
Ferzand et al. (2008)	Oral	mice	hematology, unspecified
Ferzand et al. (2008)	Oral	mice	spleen: nonneoplastic lesions
Odstrcil et al. (2010)	Oral	rat	hematology, unspecified
<u>Sankar et al. (2013)</u>	Oral	rat	spleen: relative weight
<u>Yen et al. (2007)</u>	Oral	mice	hematology, unspecified

3.2.9 Summary of Toxicology Studies for Hazard Identification for Immune System and Lymphatic Effects

Health Effect Category Route of Exposure Study Type	Count	
Immune System and Lymphatic Effects	24	
Oral	20	
Chronic (>90 days)	6	
Subchronic (30 days to < 90 days)	7	
Reproductive/Developmental	7	
Inhalation	4	
Subchronic (30 days to < 90 days)	4	

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CHRONIC (>90 DAYS)			
Study References	Route of	Species	Health Effect
	Exposure		
<u>Das et al. (2012b)</u>	Oral	goat	cell-mediated immunity effects
<u>Das et al. (2012b)</u>	Oral	goat	immunoglobulin
Nain and Smits (2012)	Oral	rat	antibody (B cell) mediated
			immunity: general (2 Types)
Nain and Smits (2012)	Oral	rat	innate immunity/inflammation:
			general
<u>Stępnik et al. (2009)</u>	Oral	mice	immune and lymphatic system:
			nonneoplastic lesions
Stępnik et al. (2009)	Oral	mice	lymphoma
REPRODUCTIVE/DEVELOPMENTAL			
Study References	Route of	Species	Health Effect
	Exposure		
<u>Ramsey et al. (2013b)</u>	Oral	mice	innate immunity/inflammation:
			functional (2 Types)
Ramsey et al. (2013b)	Oral	mice	innate immunity/inflammation:
			general (2 Types)
<u>Tokar et al. (2010b)</u>	Oral	mice	lymphoma (2 Types)
Waalkes et al. (2006a)	Oral	mice	thymus: nonneoplastic lesions
Waalkes et al. (2006b)	Oral	mice	lymphoma
Waalkes et al. (2006b)	Oral	mice	thymus: neoplastic lesions
Waalkes et al. (2003)	Oral	mice	thymus: neoplastic lesions (2 Types)

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-64Draft: Do Not Cite or Quote

SUBCHRONIC (30 DAYS TO <90 DAYS)					
Study References	Route of	Species	Health Effect		
	Exposure				
Blair et al. (1990b)	Inhalation	rat	immune and lymphatic system:		
			nonneoplastic lesions		
Blair et al. (1990b)	Inhalation	mice	immune and lymphatic system:		
			nonneoplastic lesions		
Blair et al. (1990b)	Inhalation	rat	thymus: absolute weight		
Blair et al. (1990b)	Inhalation	mice	thymus: absolute weight		
<u>Kozul et al. (2009)</u>	Oral	mice	innate immunity/inflammation:		
			functional		
<u>Kozul et al. (2009)</u>	Oral	mice	innate immunity/inflammation:		
			general		
Kozul et al. (2009)	Oral	mice	lymph node: function		
<u>Kozul et al. (2009)</u>	Oral	mice	lymph node: gross pathology		
Ramsey et al. (2013b)	Oral	mice	innate immunity/inflammation:		
			functional (2 Types)		
Sankar et al. (2013)	Oral	rat	antibody-mediated immunity		
			effects (2 Types)		
Sankar et al. (2013)	Oral	rat	immunoglobulin (2 Types)		

3.2.10 Summary of Toxicology Studies for Hazard Identification for Liver Effects

Health Effect Category Route of Exposure Study Type		Count			
Liver Effects	36				
Oral	32				
Chronic (>90 days)	11				
Subchronic (30 days to < 90 days)	8				
Reproductive/Developmental	13				
Inhalation	4				
Subchronic (30 days to < 90 days)	4				

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CHRONIC (>90 DAYS)			
Study References	Route of	Species	Health Effect
	Exposure		
<u>Ghatak et al. (2011)</u>	Oral	mice	liver: biochemistry
<u>Ghatak et al. (2011)</u>	Oral	mice	liver: nonneoplastic lesions (2
			Types)
Arteel et al. (2008)	Oral	mice	liver: absolute weight
Arteel et al. (2008)	Oral	mice	liver: nonneoplastic lesions
Arteel et al. (2008)	Oral	mice	liver: relative weight
Flora et al. (2012)	Oral	mice	liver: nonneoplastic lesions
Liu et al. (2000)	Oral	mice	liver: nonneoplastic lesions (2
			Types)
Liu et al. (2000)	Oral	mice	liver: relative weight (2 Types)
Nain and Smits (2012)	Oral	rat	liver: nonneoplastic lesions
<u>Stępnik et al. (2009)</u>	Oral	mice	liver: neoplastic lesions
<u>Stępnik et al. (2009)</u>	Oral	mice	liver: nonneoplastic lesions
REPRODUCTIVE/DEVELOPMENTAL			
Study References	Route of	Species	Health Effect
	Exposure		
Reilly et al. (2013)	Oral	rat	liver: nonneoplastic lesions
Kozul-Horvath et al. (2012)	Oral	mice	liver: nonneoplastic lesions
Pineda et al. (2013)	Oral	rat	liver: absolute weight
Pineda et al. (2013)	Oral	rat	liver: relative weight
<u>Ríos et al. (2012)</u>	Oral	rat	liver: nonneoplastic lesions
Tokar et al. (2010b)	Oral	mice	liver: nonneoplastic lesions (2

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-66Draft: Do Not Cite or Quote

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

			Types)				
<u>Tokar et al. (2011)</u>	Oral	mice	liver: neoplastic lesions (6 Types)				
<u>Tokar et al. (2012)</u>	Oral	mice	liver: neoplastic lesions (3 Types)				
Waalkes et al. (2004b)	Oral	mice	liver: neoplastic lesions (8 Types)				
Waalkes et al. (2006a)	Oral	mice	liver: neoplastic lesions (2 Types)				
Waalkes et al. (2006a)	Oral	mice	liver: nonneoplastic lesions				
Waalkes et al. (2006b)	Oral	mice	liver: neoplastic lesions				
Waalkes et al. (2003)	Oral	mice	liver: neoplastic lesions (8 Types)				
SUBCHRONIC (30 DAYS TO <90 DAYS)	SUBCHRONIC (30 DAYS TO <90 DAYS)						
Study References	Route of	Species	Health Effect				
	Exposure						
<u>Blair et al. (1990b)</u>	Inhalation	mice	liver: nonneoplastic lesions				
<u>Blair et al. (1990b)</u>	Inhalation	rat	liver: nonneoplastic lesions				
<u>Blair et al. (1990b)</u>	Inhalation	mice	liver: relative weight				
<u>Blair et al. (1990b)</u>	Inhalation	rat	liver: relative weight				
Fouad et al. (2012)	Oral	mice	liver: nonneoplastic lesions				
<u>Owumi et al. (2013)</u>	Oral	rat	liver: nonneoplastic lesions				
<u>Patra et al. (2012)</u>	Oral	goat	liver: nonneoplastic lesions				
Bashir et al. (2006)	Oral	rat	liver: absolute weight				
Bashir et al. (2006)	Oral	rat	liver: nonneoplastic lesions				
Ferzand et al. (2008)	Oral	mice	liver: nonneoplastic lesions				
Kharroubi et al. (2014)	Oral	rat	liver: nonneoplastic lesions				
Odstrcil et al. (2010)	Oral	rat	liver: gross pathology				

3.2.11 Summary of Toxicology Studies for Hazard Identification for Mortality

Health Effect Category Route of Exposure Study Type	Count
Mortality	1
Oral	1
Reproductive/Developmental	1

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

REPRODUCTIVE/DEVELOPMENTAL				
Study References	Route of Exposure	Species	Health Effect	
Miyazaki et al. (2005)	Oral	mice	mortality	

3.2.12 Summary of Toxicology Studies for Hazard Identification for Nervous System Effects

Health Effect Category Route of Exposure Study Type		Count			
Nervous System Effects	35				
Oral	33				
Chronic (>90 days)	8				
Subchronic (30 days to < 90 days)	18				
Reproductive/Developmental	7				
Inhalation	2				
Subchronic (30 days to < 90 days)	2				

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CHRONIC (>90 DAYS)			
Study References	Route of	Species	Health Effect
	Exposure		
(Nagaraja and Desiraju, 1993, pp.	Oral	rat	brain: absolute weight
<u>author-year</u>)			
(Nagaraja and Desiraju, 1993, pp.	Oral	rat	brain: biochemical parameters (2
<u>author-year</u>)			Types)
Bardullas et al. (2009)	Oral	mice	brain: neurotransmitter (14 Types)
Bardullas et al. (2009)	Oral	mice	locomotor activity (2 Types)
Dwivedi and Flora (2011)	Oral	rat	cholinesterase activity (2 Types)
<u>Flora et al. (2012)</u>	Oral	mice	brain: nonneoplastic lesions
<u>Liu et al. (2012)</u>	Oral	mice	brain: nonneoplastic lesions
Stępnik et al. (2009)	Oral	mice	nervous system: nonneoplastic
			lesions
REPRODUCTIVE/DEVELOPMENTAL			
Study References	Route of	Species	Health Effect
	Exposure		
Chattopadhyay et al. (2002)	Oral	rat	brain: gross pathology
Chattopadhyay et al. (2002)	Oral	rat	motor activity
Herrera et al. (2013)	Oral	rat	cholinesterase activity
Martinez et al. (2008)	Oral	mice	brain: biochemical parameters
<u>Ríos et al. (2012)</u>	Oral	rat	brain: nonneoplastic lesions
Srivastava et al. (2007)	Oral	mice	vascular: function
<u>Xi et al. (2009)</u>	Oral	rat	CNS: function - cognition (3 Types)
SUBCHRONIC (30 DAYS TO <90 DAYS)			

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-69Draft: Do Not Cite or Quote

Study References	Route of	Species	Health Effect
	Exposure		
<u>Blair et al. (1990b)</u>	Inhalation	mice	nervous system: nonneoplastic
			lesions
<u>Blair et al. (1990b)</u>	Inhalation	rat	nervous system: nonneoplastic
			lesions
<u>Nagaraja and Desiraju (1994)</u>	Oral	rat	brain: absolute weight
<u>Nagaraja and Desiraju (1994)</u>	Oral	rat	brain: biochemical parameters
<u>Nagaraja and Desiraju (1994)</u>	Oral	rat	brain: function (other than FOB)
García-Chávez et al. (2007)	Oral	rat	CNS: neurochemical alterations and
			conduction
García-Chávez et al. (2007)	Oral	rat	nervous system: neoplastic lesions
<u>Nagaraja and Desiraju (1994)</u>	Oral	rat	brain: absolute weight
<u>Nagaraja and Desiraju (1994)</u>	Oral	rat	brain: biochemical parameters
<u>Nagaraja and Desiraju (1994)</u>	Oral	rat	brain: function (other than FOB)
Jing et al. (2012)	Oral	rat	brain: function (other than FOB) (2
			Types)
Jing et al. (2012)	Oral	rat	brain: nonneoplastic lesions
Luo et al. (2009)	Oral	rat	brain: function (other than FOB)
Luo et al. (2009)	Oral	rat	brain: nonneoplastic lesions
Sharma and Sharma (2013)	Oral	rat	brain: biochemical parameters
Sharma and Sharma (2013)	Oral	rat	brain: function (other than FOB)
Sharma and Sharma (2013)	Oral	rat	functional observation
			battery/neuro-behavioral
Wang et al. (2009c)	Oral	mice	brain: function (other than FOB)
Zhang et al. (2013b)	Oral	mice	brain: gross pathology
Zhang et al. (2013b)	Oral	mice	brain: neurotransmitter (12 Types)

3.2.13 Summary of Toxicology Studies for Hazard Identification for Other

Health Effect Category Route of Exposure Study Type		Count
Other	30	
Oral	30	
Chronic (>90 days)	8	
Subchronic (30 days to < 90 days)	11	
Reproductive/Developmental	11	

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

Study References	Route of	Species	Health Effect
-	Exposure		
(Nagaraja and Desiraju, 1993, pp.	Oral	rat	body weight
<u>author-year</u>)			
(Nagaraja and Desiraju, 1993, pp.	Oral	rat	food consumption
<u>author-year</u>)			
Liu et al. (2000)	Oral	mice	body weight (2 Types)
Nain and Smits (2012)	Oral	rat	body weight gain
Nain and Smits (2012)	Oral	rat	food consumption
Nain and Smits (2012)	Oral	rat	water consumption
Stępnik et al. (2009)	Oral	mice	bone: nonneoplastic lesions
Stępnik et al. (2009)	Oral	mice	musculoskeletal system:
			nonneoplastic lesions
REPRODUCTIVE/DEVELOPMENTAL		·	· · · · · · · · · · · · · · · · · · ·
Study References	Route of	Species	Health Effect
	Exposure		
<u>Shaw (1973)</u>	Oral	rat	tooth: nonneoplastic lesions (3
			Types)
<u>Miyazaki et al. (2005)</u>	Oral	mice	body weight gain
<u>Mehranjani and Taefi (2012)</u>	Oral	rat	body weight
Dávila-Esqueda et al. (2012)	Oral	rat	body weight
Dávila-Esqueda et al. (2011)	Oral	rat	body weight
Kozul-Horvath et al. (2012)	Oral	mice	body weight gain
Martinez et al. (2008)	Oral	mice	postnatal body weight
Martinez-Finley et al. (2009)	Oral	mice	body weight (2 Types)
Ramsey et al. (2013c)	Oral	mice	water consumption

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-71Draft: Do Not Cite or Quote

Ramsey et al. (2013b)	Oral	mice	body weight (2 Types)			
Waalkes et al. (2003)	Oral	mice	total body neoplastic lesions (4			
			Types)			
SUBCHRONIC (30 DAYS TO <90 DAYS)						
Study References	Route of	Species	Health Effect			
	Exposure					
Nagaraja and Desiraju (1994)	Oral	rat	body weight			
<u>Shaw (1973)</u>	Oral	rat	tooth: nonneoplastic lesions (2			
			Types)			
Nagaraja and Desiraju (1993)	Oral	rat	body weight			
Nagaraja and Desiraju (1993)	Oral	rat	food consumption			
Nagaraja and Desiraju (1994)	Oral	rat	body weight			
Jing et al. (2012)	Oral	rat	body weight			
Kozul et al. (2009)	Oral	mice	body weight			
Lemaire et al. (2011)	Oral	mice	body weight			
Luo et al. (2009)	Oral	rat	body weight			
Odstrcil et al. (2010)	Oral	rat	bone: gross pathology			
Odstrcil et al. (2010)	Oral	rat	bone: nonneoplastic lesions (2			
			Types)			

3.2.14 Summary of Toxicology Studies for Hazard Identification for Renal Effects

Health Effect Category Route of Exposure Study Type		Count
Renal Effects	28	
Oral	24	
Chronic (>90 days)	4	
Subchronic (30 days to < 90 days)	4	
Reproductive/Developmental	16	
Inhalation	4	
Subchronic (30 days to < 90 days)	4	

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CHRONIC (>90 DAYS)			
Study References	Route of	Species	Health Effect
	Exposure		
Liu et al. (2000)	Oral	mice	kidney: nonneoplastic lesions (2
			Types)
Liu et al. (2000)	Oral	mice	kidney: relative weight (2 Types)
Nain and Smits (2012)	Oral	rat	kidney: nonneoplastic lesions
Stępnik et al. (2009)	Oral	mice	kidney: nonneoplastic lesions
REPRODUCTIVE/DEVELOPMENTAL			
Study References	Route of	Species	Health Effect
	Exposure		
<u>Rogers et al. (2014)</u>	Oral	rat	kidney: function
<u>Rogers et al. (2014)</u>	Oral	rat	kidney: nonneoplastic lesions
<u>Pineda et al. (2013)</u>	Oral	rat	kidney: absolute weight
<u>Pineda et al. (2013)</u>	Oral	rat	kidney: relative weight
<u>Tokar et al. (2010b)</u>	Oral	mice	kidney: nonneoplastic lesions (2
			Types)
Tokar et al. (2011)	Oral	mice	kidney: neoplastic lesions (5 Types)
<u>Tokar et al. (2011)</u>	Oral	mice	kidney: nonneoplastic lesions (2
			Types)
<u>Tokar et al. (2012)</u>	Oral	mice	kidney: neoplastic lesions (3 Types)
Tokar et al. (2012)	Oral	mice	kidney: nonneoplastic lesions
Tokar et al. (2012)	Oral	mice	urinary bladder: neoplastic lesions
Waalkes et al. (2004b)	Oral	mice	kidney: nonneoplastic lesions (2
			Types)

Waalkes et al. (2006a)	Oral	mice	kidney: neoplastic lesions
Waalkes et al. (2006a)	Oral	mice	kidney: nonneoplastic lesions (2
			Types)
Waalkes et al. (2006b)	Oral	mice	kidney: neoplastic lesions
Waalkes et al. (2006b)	Oral	mice	kidney: nonneoplastic lesions
Waalkes et al. (2003)	Oral	mice	kidney: neoplastic lesions (2 Types)
SUBCHRONIC (30 DAYS TO <90 DAYS)		-	
Study References	Route of	Species	Health Effect
	Exposure		
<u>Blair et al. (1990b)</u>	Inhalation	mice	kidney: absolute weight
Blair et al. (1990b)	Inhalation	mice	kidney: nonneoplastic lesions
Blair et al. (1990b)	Inhalation	rat	kidney: nonneoplastic lesions
Blair et al. (1990b)	Inhalation	rat	kidney: relative weight
Ferzand et al. (2008)	Oral	mice	kidney: nonneoplastic lesions
<u>Majhi et al. (2011)</u>	Oral	rat	kidney: absolute weight (2 Types)
<u>Majhi et al. (2011)</u>	Oral	rat	kidney: relative weight (2 Types)
Odstrcil et al. (2010)	Oral	rat	kidney: gross pathology

3.2.15 Summary of Toxicology Studies for Hazard Identification for Reproductive System Effects including Pregnancy Outcomes

Health Effect Category Route of Exposure Study Type		Count
Reproductive System Effects including Pr	95	
Oral	85	
Chronic (>90 days)	1	
Subchronic (30 days to < 90 days)	19	
Reproductive/Developmental	65	
Inhalation	10	
Subchronic (30 days to < 90 days)	9	
Reproductive/Developmental	1	

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CHRONIC (>90 DAYS)				
Study References	Route of	Species	Health Effect	
	Exposure			
Stępnik et al. (2009)	Oral	mice	female reproductive system:	
			nonneoplastic lesions	
REPRODUCTIVE/DEVELOPMENTAL		·		
Study References	Route of	Species	Health Effect	
	Exposure			
<u>Nagymajtenyi et al. (1985)</u>	Inhalation	mice	number of live fetuses	
Aggarwal et al. (2007)	Oral	rat	corpora lutea	
Aggarwal et al. (2007)	Oral	rat	implantations	
Aggarwal et al. (2007)	Oral	rat	number of dead fetuses	
Aggarwal et al. (2007)	Oral	rat	number of live fetuses	
Aggarwal et al. (2007)	Oral	rat	postimplantation loss	
Aggarwal et al. (2007)	Oral	rat	preimplantation loss	
Aggarwal et al. (2007)	Oral	rat	resorption: unspecified	
Aggarwal et al. (2007)	Oral	rat	sex ratio	
Aggarwal et al. (2007)	Oral	rat	uterus: absolute weight	
Gandhi et al. (2012)	Oral	rat	gestation length	
Gandhi et al. (2012)	Oral	rat	neonatal/infant mortality	
Miyazaki et al. (2005)	Oral	mice	litter size	
Reilly et al. (2013)	Oral	rat	mammary gland: nonneoplastic	
			lesions	
<u>Mehranjani and Taefi (2012)</u>	Oral	rat	testis: absolute weight	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-75Draft: Do Not Cite or Quote

Mehranjani and Taefi (2012)	Oral	rat	testis: nonneoplastic lesions
Chattopadhyay et al. (2002)	Oral	rat	gestation index (%)
Cronican et al. (2013)	Oral	mice	litter size
Dávila-Esqueda et al. (2012)	Oral	rat	estrogen
Dávila-Esqueda et al. (2012)	Oral	rat	estrous cyclicity (3 Types)
Dávila-Esqueda et al. (2012)	Oral	rat	female reproductive system:
			nonneoplastic lesions
Dávila-Esqueda et al. (2012)	Oral	rat	ovary: absolute weight
Dávila-Esqueda et al. (2012)	Oral	rat	progesterone
Dávila-Esqueda et al. (2012)	Oral	rat	uterus: absolute weight
<u>He et al. (2007)</u>	Oral	mice	birth index (3 Types)
<u>He et al. (2007)</u>	Oral	mice	litter size (3 Types)
<u>He et al. (2007)</u>	Oral	mice	postimplantation loss (2 Types)
<u>He et al. (2007)</u>	Oral	mice	resorption: unspecified
Kozul-Horvath et al. (2012)	Oral	mice	live births
Markowski et al. (2012)	Oral	mice	body weight gain
Markowski et al. (2012)	Oral	mice	gestation length
Markowski et al. (2012)	Oral	mice	litter size
Martinez et al. (2008)	Oral	mice	litter size
Ramsey et al. (2013a)	Oral	mice	birth weight
Ramsey et al. (2013a)	Oral	mice	gestation length (3 Types)
Ramsey et al. (2013a)	Oral	mice	litter size (3 Types)
Ramsey et al. (2013c)	Oral	mice	gestation length
Ramsey et al. (2013c)	Oral	mice	litter size
Ramsey et al. (2013b)	Oral	mice	gestation length (2 Types)
Ramsey et al. (2013b)	Oral	mice	litter size (2 Types)
<u>Tokar et al. (2010b)</u>	Oral	mice	oviduct: nonneoplastic lesions
<u>Tokar et al. (2010b)</u>	Oral	mice	testis: nonneoplastic lesions
<u>Tokar et al. (2010b)</u>	Oral	mice	uterus: neoplastic lesions (6 Types)
<u>Tokar et al. (2010b)</u>	Oral	mice	uterus: nonneoplastic lesions
<u>Tokar et al. (2011)</u>	Oral	mice	ovary: neoplastic lesions (3 Types)
<u>Tokar et al. (2011)</u>	Oral	mice	oviduct: neoplastic lesions
<u>Tokar et al. (2011)</u>	Oral	mice	oviduct: nonneoplastic lesions
<u>Tokar et al. (2011)</u>	Oral	mice	uterus: neoplastic lesions (4 Types)
<u>Tokar et al. (2011)</u>	Oral	mice	uterus: nonneoplastic lesions
Waalkes et al. (2004b)	Oral	mice	ovary: neoplastic lesions
Waalkes et al. (2004b)	Oral	mice	oviduct: nonneoplastic lesions
Waalkes et al. (2004b)	Oral	mice	uterus: nonneoplastic lesions
Waalkes et al. (2006a)	Oral	mice	testis: nonneoplastic lesions
Waalkes et al. (2006b)	Oral	mice	cervix: neoplastic lesions
Waalkes et al. (2006b)	Oral	mice	ovary: neoplastic lesions
Waalkes et al. (2006b)	Oral	mice	ovary: nonneoplastic lesions
Waalkes et al. (2006b)	Oral	mice	oviduct: nonneoplastic lesions
Waalkes et al. (2006b)	Oral	mice	urogenital system: neoplastic

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-76Draft: Do Not Cite or Quote

			lesions (6 Types)
Waalkes et al. (2006b)	Oral	mice	uterus: neoplastic lesions
Waalkes et al. (2006b)	Oral	mice	vulva: neoplastic lesions
Waalkes et al. (2003)	Oral	mice	ovary: neoplastic lesions (3 Types)
Waalkes et al. (2003)	Oral	mice	oviduct: neoplastic lesions (2 Types)
Waalkes et al. (2003)	Oral	mice	oviduct: nonneoplastic lesions
Waalkes et al. (2003)	Oral	mice	testis: neoplastic lesions
Waalkes et al. (2003)	Oral	mice	uterus: neoplastic lesions (2 Types)
Waalkes et al. (2003)	Oral	mice	uterus: nonneoplastic lesions
SUBCHRONIC (30 DAYS TO <90 DAYS)			
Study References	Route of	Species	Health Effect
	Exposure		
<u>Omura et al. (1996)</u>	Inhalation	rat	epididymis: absolute weight
<u>Omura et al. (1996)</u>	Inhalation	rat	epididymis: relative weight
<u>Omura et al. (1996)</u>	Inhalation	rat	sperm parameters (4 Types)
<u>Omura et al. (1996)</u>	Inhalation	rat	testis: absolute weight
<u>Omura et al. (1996)</u>	Inhalation	rat	testis: relative weight
<u>Blair et al. (1990b)</u>	Inhalation	mice	female reproductive system:
			nonneoplastic lesions
<u>Blair et al. (1990b)</u>	Inhalation	rat	female reproductive system:
			nonneoplastic lesions
<u>Blair et al. (1990b)</u>	Inhalation	rat	male reproductive system:
			nonneoplastic lesions
<u>Blair et al. (1990b)</u>	Inhalation	mice	male reproductive system:
			nonneoplastic lesions
<u>Momeni et al. (2012)</u>	Oral	rat	sperm parameters (4 Types)
<u>Momeni et al. (2012)</u>	Oral	rat	testis: absolute weight
<u>Momeni and Eskandari (2012)</u>	Oral	rat	sperm parameters (6 Types)
<u>Momeni and Eskandari (2012)</u>	Oral	rat	testis: absolute weight
<u>Owumi et al. (2013)</u>	Oral	rat	sperm parameters
Ferreira et al. (2012)	Oral	mice	epididymis: absolute weight
Ferreira et al. (2012)	Oral	mice	epididymis: relative weight
Ferreira et al. (2012)	Oral	mice	sperm parameters
<u>Ferreira et al. (2012)</u>	Oral	mice	testis: absolute weight
<u>Ferreira et al. (2012)</u>	Oral	mice	testis: gross pathology
Ferreira et al. (2012)	Oral	mice	testis: relative weight
Pant et al. (2001)	Oral	mice	epididymis: absolute weight
Pant et al. (2001)	Oral	mice	epididymis: relative weight
<u>Pant et al. (2001)</u>	Oral	mice	male accessory sex gland: absolute
			weight (3 Types)
<u>Pant et al. (2001)</u>	Oral	mice	male accessory sex gland: relative
			weight (3 Types)
Pant et al. (2001)	Oral	mice	sperm parameters (3 Types)
<u>Pant et al. (2001)</u>	Oral	mice	steroidogenic enzyme activity (6

			Types)
<u>Pant et al. (2001)</u>	Oral	mice	testis: absolute weight
<u>Pant et al. (2001)</u>	Oral	mice	testis: relative weight

3.2.16 Summary of Toxicology Studies for Hazard Identification for Respiratory Effects

Health Effect Category Route of Exposure Study Type	Count	
Respiratory Effects	22	
Oral	20	
Chronic (>90 days)	3	
Subchronic (30 days to < 90 days)	2	
Reproductive/Developmental	15	
Inhalation	2	
Subchronic (30 days to < 90 days)	2	

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CHRONIC (>90 DAYS)				
Study References	Route of	Species	Health Effect	
	Exposure			
Singh et al. (2010)	Oral	mice	lung: nonneoplastic lesions	
Nain and Smits (2012)	Oral	rat	lung: nonneoplastic lesions	
<u>Stępnik et al. (2009)</u>	Oral	mice	respiratory system: nonneoplastic	
			lesions	
REPRODUCTIVE/DEVELOPMENTAL	·			
Study References	Route of	Species	Health Effect	
	Exposure			
<u>Lantz et al. (2009)</u>	Oral	mice	lung: function (2 Types)	
<u>Ramsey et al. (2013a)</u>	Oral	mice	lung: function (5 Types)	
<u>Ramsey et al. (2013a)</u>	Oral	mice	lung: gross pathology (3 Types)	
<u>Ramsey et al. (2013c)</u>	Oral	mice	lung: function (8 Types)	
Ramsey et al. (2013c)	Oral	mice	lung: gross pathology (2 Types)	
Ramsey et al. (2013b)	Oral	mice	innate immunity/inflammation:	
			general (6 Types)	
Tokar et al. (2010b)	Oral	mice	lung: neoplastic lesions (4 Types)	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-78Draft: Do Not Cite or Quote

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

<u>Tokar et al. (2010b)</u>	Oral	mice	lung: nonneoplastic lesions (2
			Types)
<u>Tokar et al. (2011)</u>	Oral	mice	lung: neoplastic lesions (6 Types)
<u>Tokar et al. (2012)</u>	Oral	mice	lung: neoplastic lesions (4 Types)
Waalkes et al. (2004b)	Oral	mice	lung: neoplastic lesions (2 Types)
Waalkes et al. (2006a)	Oral	mice	lung: neoplastic lesions (2 Types)
Waalkes et al. (2006a)	Oral	mice	lung: nonneoplastic lesions
Waalkes et al. (2006b)	Oral	mice	lung: neoplastic lesions
Waalkes et al. (2003)	Oral	mice	lung: neoplastic lesions (4 Types)
SUBCHRONIC (30 DAYS TO <90 DAYS)	· · ·		
Study References	Route of	Species	Health Effect
	Exposure		
<u>Blair et al. (1990b)</u>	Inhalation	mice	respiratory system: nonneoplastic
			lesions
Blair et al. (1990b)	Inhalation	rat	respiratory system: nonneoplastic
			lesions
		-	
Lantz et al. (2009)	Oral	mice	lung: function (2 Types)

3.2.17 Summary of Toxicology Studies for Hazard Identification for Skin Diseases

Health Effect Category Route of Exposure Study Type		Count
Skin Diseases	10	
Oral	8	
Chronic (>90 days)	2	
Reproductive/Developmental	6	
Inhalation	2	
Subchronic (30 days to < 90 days)	2	

Note: Studies may be placed in more than one category depending upon the data presented. Therefore, the totals may not sum to the total number of studies presented in the figure.

CHRONIC (>90 DAYS)			
Study References	Route of Exposure	Species	Health Effect
Germolec et al. (1998)	Oral	mice	skin and subcutaneous tissue: neoplastic lesions
<u>Stępnik et al. (2009)</u>	Oral	mice	skin and subcutaneous tissue: nonneoplastic lesions
REPRODUCTIVE/DEVELOPMENTAL			i
Study References	Route of	Species	Health Effect
	Exposure		
Tokar et al. (2010b)	Oral	mice	skin and subcutaneous tissue:
			neoplastic lesions (2 Types)
Waalkes et al. (2004b)	Oral	mice	skin and subcutaneous tissue: nonneoplastic lesions (2 Types)
<u>Waalkes et al. (2006a)</u>	Oral	mice	skin and subcutaneous tissue: nonneoplastic lesions
Waalkes et al. (2006b)	Oral	mice	skin and subcutaneous tissue: neoplastic lesions
Waalkes et al. (2008)	Oral	mice	skin and subcutaneous tissue: neoplastic lesions
Waalkes et al. (2003)	Oral	mice	skin and subcutaneous tissue: neoplastic lesions (2 Types)
SUBCHRONIC (30 DAYS TO <90 DAYS)			
Study References	Route of Exposure	Species	Health Effect
Blair et al. (1990b)	Inhalation	mice	skin and subcutaneous tissue:

These draft development materials are for review purposes only and do not constitute Agency policy.April 20143-80Draft: Do Not Cite or Quote

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

			nonneoplastic lesions
<u>Blair et al. (1990b)</u>	Inhalation	rat	skin and subcutaneous tissue:
			nonneoplastic lesions

4 SUMMARY OF RISK OF BIAS EVALUATIONS FOR INORGANIC ARSENIC **EPIDEMIOLOGIC STUDIES**

4.1 Risk of Bias Overview - Clinical Chemistry and Urinalysis

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
Casale et al. (2013)	Р	n/a	n/a	++	++	-	n/a	+	n/a	++	-	-	+	+	+	++
<u>Chen et al. (2011c)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	++	+	++	++	+	++
Das et al. (2012a)*	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	-	+	-	+	+	++
Islam et al. (2011)*	Р	n/a	n/a	++	++	++	n/a	+	n/a	+	+	+	+	++	+	++
<u>Kim et al. (2013)</u>	Р	n/a	n/a	++	+	+	n/a	+	n/a	++	-	-	+	+	+	++
<u>Maiti et al. (2012)</u> *	Р	n/a	n/a	++	+	-	n/a	+	n/a	++	-	-	-	+	+	+
Mazumder et al. (2013)*	Р	n/a	n/a	++	++	++	n/a	+	n/a	-	-	-	++	+	+	++
<u>Nabi et al. (2005)</u>	S	n/a	n/a	-	-	+	n/a	+	n/a	-	-	-	-	-	+	-
<u>Shen et al. (2013)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	-	-	-	-	++	+	+

*Data not yet included in accompanying evidence tables. Abbreviations: Att (attrition/exclusion); SRB (Selective Reporting Bias)

These draft development materials are for review purposes only and do not constitute Agency policy. Draft: Do Not Cite or Quote

4.2 Risk of Bias Overview - Endocrine System Effects including Diabetes

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection	-	SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
<u>Chen et al. (2012a)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	-	-	+	++	+	++
<u>Chen et al. (2010c)</u>	Р	n/a	n/a	++	+	+	n/a	+	n/a	++	++	+	++	++	+	+
<u>Chen et al. (2011a)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	++	++	+	++
Ciarrocca et al. (2012)*	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	-	+	++	++	+	+
<u>Coronado-González et al.</u> (2007)	Ρ	n/a	n/a	++	++	+	n/a	+	n/a	++	+	+	+	++	+	++
Del Razo et al. (2011)	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	-	+	+	+	+	++
Drobná et al. (2013)*	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	-	-	-	+	+	+
Enterline and Marsh (1982)	S	n/a	n/a	-	-	-	n/a	+	n/a	+	+	-	-	++	+	++
Ettinger et al. (2009)	Р	n/a	n/a	+	++	-	n/a	+	n/a	+	++	-	++	++	+	++
<u>García-Esquinas et al.</u> (2013)	Ρ	n/a	n/a	+	++	+	n/a	+	n/a	++	+	+	++	+	+	++

These draft development materials are for review purposes only and do not constitute Agency policy. Draft: Do Not Cite or Quote

			Selectio	n	Confo	unding	P	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
Gribble et al. (2012)	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	++	++	++	+	++
<u>Guo et al. (2007)</u>	S	n/a	n/a	-		-	n/a	+	n/a	-	-	-	-	-	+	-
<u>Hsieh et al. (2008a)</u>	Р	n/a	n/a	+	++	+	n/a	+	n/a	+	-	+	+	+	+	++
<u>Hsu et al. (2013b)</u>	Ρ	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	-	++	+	++
<u>Islam et al. (2012b)</u>	Ρ	n/a	n/a	++	++	+	n/a	+	n/a	++	++	++	+	-	+	+
<u>James et al. (2013)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	-	+	+	++
Jensen and Hansen (1998)	Р	n/a	n/a	-	+	-	n/a	+	n/a	-	+	-	+	+	+	++
Jovanovic et al. (2013)	S	n/a	n/a	-		+	n/a	+	n/a	+	+	-		+	++	++
Kim and Lee (2011)	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	+	+	++	+	+	+
<u>Kim et al. (2013)</u>	Ρ	n/a	n/a	++	+	+	n/a	+	n/a	++	-	-	+	+	+	++
<u>Lai et al. (1994)</u>	Р	n/a	n/a	++	++	-	n/a	+	n/a	++	-	-	-	+	+	+
<u>Lewis et al. (1999)</u>	Ρ	n/a	n/a	+	-	+	n/a	+	n/a	+	+	-	-	++	+	-
<u>Li et al. (2013a)</u>	Ρ	n/a	n/a	++	++	+	n/a	+	n/a	+	++	+	-	+	+	++
<u>Lubin et al. (1981)</u>	S	n/a	n/a	-	-	-	n/a	+	n/a	+	-	+	-	-	+	+
<u>Maiti et al. (2012)</u> *	Р	n/a	n/a	++	+	-	n/a	+	n/a	++	-	-	-	+	+	+
Makris et al. (2012)	S	n/a	n/a	++	+	+	n/a	+	n/a	+	-	+		-	+	+

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

These draft development materials are for review purposes only and do not constitute Agency policy. Draft: Do Not Cite or Quote

			Selectio	า	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
Navas-Acien et al. (2008)	Р	n/a	n/a	++	++	++	n/a	+	n/a	++	+	+	++	+	+	++
Navas-Acien et al. (2009)	Р	n/a	n/a	++	++	++	n/a	+	n/a	++	+	+	++	+	+	++
<u>Nizam et al. (2013)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	+	-	+	+	++
<u>Ojajarvi et al. (2000)</u>	S	n/a	n/a	-	+	-	n/a	+	n/a	+	-	-		-	+	++
<u>Pan et al. (2013)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	-	-	+	++	+	++
Rahman and Axelson (1995)	S	n/a	n/a	-	-	-	n/a	+	n/a	++	-	-	-	-	+	-
Rahman and Axelson (2001)	S	n/a	n/a	++	++	+	n/a	+	n/a	++	-	-	-	-	+	-
<u>Rahman et al. (1996)</u>	S	n/a	n/a	+	-	-	n/a	+	n/a	++	+	-		+	+	+
<u>Rahman et al. (1998)</u>	S	n/a	n/a		+	+	n/a	+	n/a	++	-	-	-	-	+	-
<u>Rahman et al. (1999b)</u> *	Р	n/a	n/a	++	+	+	n/a	+	n/a	++	-	-	-	-	+	++
<u>Rhee et al. (2013)</u>	Р	n/a	n/a	++	++	++	n/a	+	n/a	++	+	-	++	++	+	++
<u>Sawada et al. (2013)</u>	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	+	++	-	++	+	++

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

	Selection				Confo	Confounding Performance					Att. Detection					Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
Steinmaus et al. (2009)	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	+	++	+	+	++
<u>Tseng et al. (2000)</u>	Р	n/a	n/a	++	++	-	n/a	+	n/a	++	-	-	-	++	+	++
Zierold et al. (2004)*	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	++	+	-	-	+	+

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

*Data not yet included in accompanying evidence tables.

4.3 Risk of Bias Overview - Hematology, Hematopoietic System

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
Del Razo et al. (2011)	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	-	+	+	+	+	++
<u>Ghosh (2013)</u>	S	n/a	n/a	-	-	-	n/a	+	n/a	+	-	-	-	-	+	++
<u>Guo et al. (2007)</u>	S	n/a	n/a	-		-	n/a	+	n/a	-	-	-	-	-	+	-
Heck et al. (2008)	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	-	+	++	-	+	++
Hopenhayn et al. (2006)	S	n/a	n/a	++	++	+	n/a	+	n/a	++	-	+	-	-	+	++
<u>Maiti et al. (2012)</u> *	Р	n/a	n/a	++	+	-	n/a	+	n/a	++	-	-	-	+	+	+
Majumdar et al. (2009)	Р	n/a	n/a	-	-	+	n/a	+	n/a	++	-	-	-	-	+	++
<u>Saha et al. (2013)</u>	Р	n/a	n/a	+	+	+	n/a	+	n/a	+	++	-	-	+	+	++

*Data not yet included in accompanying evidence tables.

4.4 Risk of Bias Overview - Liver Effects

	ing		Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
Baastrup et al. (2008)	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	+	+	-	+	+	-
<u>Chen et al. (1986)</u>	S	n/a	n/a	++	+	-	n/a	+	n/a	+	+	+		++	+	++
<u>Chung et al. (2012)</u>	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	+	-	++	+	+	++
Enterline and Marsh (1982)	S	n/a	n/a	-	-	-	n/a	+	n/a	+	+	-	-	++	+	++
<u>García-Esquinas et al.</u> (2013)	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	+	+	++	+	+	++
<u>Ghosh (2013)</u>	S	n/a	n/a	-	-	-	n/a	+	n/a	+	-	-	-	-	+	++
<u>Guo et al. (2007)</u>	S	n/a	n/a	-		-	n/a	+	n/a	-	-	-	-	-	+	-
<u>Hsu et al. (2013b)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	-	++	+	++
Lewis et al. (1999)	Р	n/a	n/a	+	-	+	n/a	+	n/a	+	+	-	-	++	+	-
Majumdar et al. (2009)	Р	n/a	n/a	-	-	+	n/a	+	n/a	++	-	-	-	-	+	++
<u>Paul et al. (2013)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	+	++	+	++
Sawada et al. (2013)	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	+	++	-	++	+	++

These draft development materials are for review purposes only and do not constitute Agency policy.4-7Draft: Do Not Cite or Quote

	ing		Selectio	n	Confo	unding	P	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Randomization Allocation Concealment Comparison Group			Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
<u>Tsuda et al. (1995)</u>	Ρ	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	-	++	+	+
Wadhwa et al. (2011a)	S	n/a	n/a	-	-	-	n/a	+	n/a	+	+	-	-	-	-	-

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

4.5 Risk of Bias Overview - Immune System and Lymphatic Effects

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
<u>Ahmed et al. (2012)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	-	-	++	+	+	+
Biswas et al. (2008)*	Р	n/a	n/a	++	+	+	n/a	+	n/a	+	-	-	-	++	++	++
Bosnjak et al. (2008)	Р	n/a	n/a	++	-	+	n/a	+	n/a	++	-	-	-	++	+	-
Enterline and Marsh (1982)	S	n/a	n/a	-	-	-	n/a	+	n/a	+	+	-	-	++	+	++
<u>García-Esquinas et al.</u> (2013)	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	+	+	++	+	+	++
Infante-Rivard et al. (2001)	S	n/a	n/a	++	+		n/a	+	n/a	++	+	-	-	++	+	++
<u>Islam et al. (2007)</u>	S	n/a	n/a	-	-	+	n/a	+	n/a	+	-	-	-	+	+	-
Josyula et al. (2006)	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	+	+	+	+
Lewis et al. (1999)	Р	n/a	n/a	+	-	+	n/a	+	n/a	+	+	-	-	++	+	-
Lu and Chen (1991)	S	n/a	n/a	++	++	+	n/a	+	n/a	++	-	++	-	++	+	++
Lubin et al. (1981)	S	n/a	n/a	-	-	-	n/a	+	n/a	+	-	+	-	-	+	+

These draft development materials are for review purposes only and do not constitute Agency policy.4-9Draft: Do Not Cite or Quote

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
<u>Marsh et al. (2009)</u>	S	n/a	n/a	+	+	++	n/a	+	n/a	++	+	+	-	+	+	+
Mazumder et al. (2000)	S	n/a	n/a	+	+	-	n/a	+	n/a	+	-	-	-	-	+	-
Milton and Rahman (2002)	S	n/a	n/a	-	-	-	n/a	+	n/a	-	-	-	-	-	-	-
<u>Milton et al. (2001)</u>	S	n/a	n/a	-	++	-	n/a	+	n/a	++		-		-	+	+
<u>Moore et al. (2009)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	-	+	+	++	+	++
Pesola et al. (2012)	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	+	+	+	++
<u>Pinto et al. (1978)</u>	S	n/a	n/a	+	-		n/a	+	n/a	++	+	-	-	++	+	-
<u>Raqib et al. (2009)</u>	Р	n/a	n/a	++	-	+	n/a	+	n/a	+	+	+	++	-	+	++
<u>Saha et al. (2013)</u>	Р	n/a	n/a	+	+	+	n/a	+	n/a	+	++	-	-	+	+	++
<u>Shiue (2013)</u>	Р	n/a	n/a	+	++	+	n/a	+	n/a	+	-	+	+	+	+	++
<u>Sohel et al. (2009)</u>	Р	n/a	n/a	++	+	+	n/a	+	n/a	+	-	+	+	+	+	++
Von Ehrenstein et al. (2005)	S	n/a	n/a	++	++	++	n/a	+	n/a	++	-	+		-	+	++
<u>Wu et al. (2012b)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	-	-	++	++	+	++

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

* Data not yet included in accompanying evidence tables.

4.6 Risk of Bias Overview - Renal Effects

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection	-	SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
Baastrup et al. (2008)	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	+	+	-	+	+	-
Boffetta et al. (2011)	S	n/a	n/a	++	++	+	n/a	+	n/a	+	+	-		++	+	++
<u>Chen et al. (2011a)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	++	++	+	++
<u>Chiou et al. (2005)</u>	Р	n/a	n/a	+	-	+	n/a	+	n/a	++	++	++	+	++	+	++
Enterline and Marsh (1982)	S	n/a	n/a	-	-	-	n/a	+	n/a	+	+	-	-	++	+	++
Enterline et al. (1995)	S	n/a	n/a	+	-	-	n/a	+	n/a	++	+	-	-	+	+	+
Eom et al. (2011)*	Р	n/a	n/a	+	++	+	n/a	+	n/a	-	-	-	+	+	+	++
Feng et al. (2013)*	Р	n/a	n/a	+	++	+	n/a	+	n/a	+	-	-	++	+	+	++
Ferreccio et al. (2013a)	Р	n/a	n/a	++	++	++	n/a	+	n/a	+	+	-	-	++	-	++

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
García-Esquinas et al. (2013)	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	+	+	++	+	+	++
<u>García-Vargas et al.</u> (1994)*	Р	n/a	n/a	+	+	++	n/a	+	n/a	++	-	-	-	+	+	+
Hawkesworth et al. (2013)	Р	n/a	n/a	++	++	++	n/a	+	n/a	++	+	++	+	++	+	++
<u>Hernández-Zavala et al.</u> (1999)*	Ρ	n/a	n/a	-	+	++	n/a	+	n/a	+	-	-	+	++	+	++
<u>Hsu et al. (2013b)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	-	++	+	++
<u>Huang et al. (2011)</u>	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	+	-	++	++	+	+
<u>Huang et al. (2012)</u>	Р	n/a	n/a	+	++	+	n/a	+	n/a	+	+	-	++	++	+	++
Jayatilake et al. (2013)	S	n/a	n/a	-	++	-	n/a	+	n/a	++	-	-	-	-	+	++
Kurttio et al. (1999)	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	+	+	-	++	+	+
Lewis et al. (1999)	Р	n/a	n/a	+	-	+	n/a	+	n/a	+	+	-	-	++	+	-
<u>Lubin et al. (1981)</u>	S	n/a	n/a	-	-	-	n/a	+	n/a	+	-	+	-	-	+	+
Mostafa and Cherry (2013)	Р	n/a	n/a	+	++	+	n/a	+	n/a	+	+	-	-	++	+	++

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
<u>Ng et al. (2005)</u>	S	n/a	n/a	-	+	-	n/a	+	n/a	+	-	-	-	+	+	+
Palaneeswari et al. (2013)	S	n/a	n/a	-		+	n/a	+	n/a	++	+	-	-	-	+	-
<u>Pi et al. (2005)</u> *	Р	n/a	n/a	++	+	+	n/a	+	n/a	-	-	-	++	+	+	+
Sawada et al. (2013)	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	+	++	-	++	+	++
<u>Yuan et al. (2010)</u>	Р	n/a	n/a	++	+	+	n/a	+	n/a	+	++	-	-	+	+	++

*Data not yet included in accompanying evidence tables.

4.7 Risk of Bias Overview - Mortality

			Selectio	n	Confo	unding	P	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
Enterline and Marsh (1982)	S	n/a	n/a	-	-	-	n/a	+	n/a	+	+	-	-	++	+	++
Lubin et al. (1981)	S	n/a	n/a	-	-	-	n/a	+	n/a	+	-	+	-	-	+	+
<u>Pinto et al. (1978)</u>	S	n/a	n/a	+	-		n/a	+	n/a	++	+	-	-	++	+	-
<u>Rahman et al. (2013)</u>	Р	n/a	n/a	+	+	+	n/a	+	n/a	-	++	+	-	++	+	++
<u>Sohel et al. (2009)</u>	Р	n/a	n/a	++	+	+	n/a	+	n/a	+	-	+	+	+	+	++
<u>Tsuda et al. (1995)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	-	++	+	+
<u>Wade et al. (2009)</u>	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	++	-	+	-	+	++
<u>Welch et al. (1982)</u>	S	n/a	n/a	-	+	+	n/a	+	n/a	+	+	-	-	++	+	+

	ting		Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
Amaral et al. (2012)	Р	n/a	n/a	+	++	++	n/a	+	n/a	-	+	-	+	+	+	++
Baastrup et al. (2008)	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	+	+	-	+	+	-
Bulbulyan et al. (1996)	S	n/a	n/a	+	-	+	n/a	+	n/a	++	-	+		-	+	++
Enterline and Marsh (1982)	S	n/a	n/a	-	-	-	n/a	+	n/a	+	+	-	-	++	+	++
<u>Farzan et al. (2013)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	+	+	+	-	+	++
García-Esquinas et al. (2013)	Ρ	n/a	n/a	+	++	+	n/a	+	n/a	++	+	+	++	+	+	++
Hsu et al. (2013b)	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	-	++	+	++
Kreuzer et al. (2012)	S	n/a	n/a	+	+	-	n/a	+	n/a	+	-	-	-	-	+	++
Lewis et al. (1999)	Р	n/a	n/a	+	-	+	n/a	+	n/a	+	+	-	-	++	+	-
Lubin et al. (1981)	S	n/a	n/a	-	-	-	n/a	+	n/a	+	-	+	-	-	+	+
<u>Pinto et al. (1977)</u>	S	n/a	n/a	-	-		n/a	+	n/a	++	+	-	-	++	+	-
<u>Pinto et al. (1978)</u>	S	n/a	n/a	+	-		n/a	+	n/a	++	+	-	-	++	+	-

These draft development materials are for review purposes only and do not constitute Agency policy.4-15Draft: Do Not Cite or Quote

	ing		Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
Rahman et al. (2011)	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	+	+	++	+	+	++
Sawada et al. (2013)	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	+	++	-	++	+	++
Syed et al. (2013)	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	++	++	++	++	+	++
<u>Tsuda et al. (1995)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	-	++	+	+

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

4.9 Risk of Bias Overview - Cardiovascular Disease

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
<u>Ahmad et al. (2006)</u> *	Р	n/a	n/a	++	++	-	n/a	+	n/a	++	++	+	-	+	+	++
Axelson et al. (1978)	S	n/a	n/a	+	-	+	n/a	+	n/a	++	++	++	-	++	+	+
Bosnjak et al. (2008)	Р	n/a	n/a	++	-	+	n/a	+	n/a	++	-	-	-	++	+	-
Burgess et al. (2013)	Р	n/a	n/a	+	++	-	n/a	+	n/a	+	-	-	++	++	+	+
<u>Chen et al. (2012b)</u>	Р	n/a	n/a	++	++	-	n/a	+	n/a	++	+	+	+	+	++	++
<u>Chen et al. (2013a)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	++	-	++	++	+	++
<u>Chen et al. (1988)</u>	S	n/a	n/a	++	++		n/a	+	n/a	++	+	+		+	+	++
<u>Chen et al. (1995)</u>	S	n/a	n/a	+	++	++	n/a	+	n/a	+	-	-	-	+	+	+
<u>Chen et al. (1996)</u>	Р	n/a	n/a	+	++	++	n/a	+	n/a	++	+	+	-	++	+	+
<u>Chen et al. (2006b)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	++	-	+	+	+	-
<u>Chen et al. (2007b)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	++	-	+	++	+	++
<u>Chen et al. (2011b)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	++	+	++	++	+	++

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
<u>Chen et al. (2013c)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	++	-	++	++	+	++
<u>Chiou et al. (1997)</u>	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	+	-	+	+	+	++
<u>Chiou et al. (2001b)</u> *	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	+	+	+	+	++
<u>Chiou et al. (2005)</u>	Р	n/a	n/a	+	-	+	n/a	+	n/a	++	++	++	+	++	+	++
<u>Cuzick et al. (1992)</u>	S	n/a	n/a	-	-	-	n/a	+	n/a	+	+	-	-	+	+	+
Enterline and Marsh (1982)	S	n/a	n/a	-	-	-	n/a	+	n/a	+	+	-	-	++	+	++
<u>Ghosh (2013)</u>	S	n/a	n/a	-	-	-	n/a	+	n/a	+	-	-	-	-	+	++
Gong and O'Bryant (2012)	S	n/a	n/a	+	++	+	n/a	+	n/a	+	-	-	-	+	+	++
<u>Guha Mazumder et al.</u> (2012)	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	-	-	+	++	+	+
<u>Guo et al. (2007)</u>	S	n/a	n/a	-		-	n/a	+	n/a	-	-	-	-	-	+	-
Hawkesworth et al. (2013)	Р	n/a	n/a	++	++	++	n/a	+	n/a	++	+	++	+	++	+	++
Hertz-Picciotto et al. (2000)	S	n/a	n/a	+	+	-	n/a	+	n/a	+	+	+	-	++	+	++

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
<u>Hsieh et al. (2008b)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	+	-	+	+	+	+
<u>Hsieh et al. (2008a)</u>	Р	n/a	n/a	+	++	+	n/a	+	n/a	+	-	+	+	+	+	++
<u>Hsueh et al. (1998)</u> *	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	-	+	+	+
<u>Huang et al. (2007)</u> *	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	+	-	++	+	+	+
Huang et al. (2009b)*	Р	n/a	n/a	+	++	+	n/a	+	n/a	+	-	-	+	+	+	++
<u>Islam et al. (2012a)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	-	++	+	+	+	++
<u>Jarup et al. (1989)</u>	S	n/a	n/a	+	-		n/a	+	n/a	++	+	-	-	+	+	++
Jensen and Hansen (1998)	Р	n/a	n/a	-	+	-	n/a	+	n/a	-	+	-	+	+	+	++
Jones et al. (2011)	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	+	++	+	+	++
Karim et al. (2013)*	Р	n/a	n/a	++	++	++	n/a	+	n/a	++	+	+	-	++	+	++
Kim and Lee (2011)	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	+	+	++	+	+	+
<u>Kim et al. (2013)</u>	Р	n/a	n/a	++	+	+	n/a	+	n/a	++	-	-	+	+	+	++
Kunrath et al. (2013)	Р	n/a	n/a	++	+	+	n/a	+	n/a	++	+	+	+	+	+	++
<u>Kwok et al. (2007)</u>	Р	n/a	n/a	++	-	+	n/a	+	n/a	++	+	-	-	+	+	+

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

These draft development materials are for review purposes only and do not constitute Agency policy.4-19Draft: Do Not Cite or Quote

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
Lagerkvist et al. (1986)	S	n/a	n/a	-	++	-	n/a	+	n/a	++	-	-	-	++	+	-
Lagerkvist et al. (1988)	S	n/a	n/a	++	+	-	n/a	+	n/a	+	-	+	-	+	+	+
Lewis et al. (1999)	Р	n/a	n/a	+	-	+	n/a	+	n/a	+	+	-	-	++	+	-
<u>Li et al. (2013a)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	++	+	-	+	+	++
<u>Li et al. (2009)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	++	-	-	+	+	++
<u>Li et al. (2013b)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	-	+	+	+	+	++
<u>Liao et al. (2012)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	+	-	-	+	+	++
Liao et al. (2009)*	Р	n/a	n/a	+	++	+	n/a	+	n/a	-	++	-	-	+	+	++
<u>Lubin et al. (1981)</u>	S	n/a	n/a	-	-	-	n/a	+	n/a	+	-	+	-	-	+	+
<u>Marsh et al. (2009)</u>	S	n/a	n/a	+	+	++	n/a	+	n/a	++	+	+	-	+	+	+
<u>Moon et al. (2013)</u>	Р	n/a	n/a	-	++	+	n/a	+	n/a	++	-	+	++	++	+	++
Mordukhovich et al. (2009)	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	-	+	++	++	+	+
Mumford et al. (2007)	Р	n/a	n/a	++	++	++	n/a	+	n/a	++	++	-	++	++	+	++
Osorio-Yáñez et al. (2013)	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	++	+	-	++	+	++

These draft development materials are for review purposes only and do not constitute Agency policy.4-20Draft: Do Not Cite or Quote

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
<u>Pi et al. (2005)</u> *	Р	n/a	n/a	++	+	+	n/a	+	n/a	-	-	-	++	+	+	+
<u>Pinto et al. (1977)</u>	S	n/a	n/a	-	-		n/a	+	n/a	++	+	-	-	++	+	-
Pinto et al. (1978)	S	n/a	n/a	+	-		n/a	+	n/a	++	+	-	-	++	+	-
Rahman and Axelson (2001)	S	n/a	n/a	++	++	+	n/a	+	n/a	++	-	-	-	-	+	-
Rahman et al. (1999a)	Р	n/a	n/a	++	-	+	n/a	+	n/a	++	-	-	-	++	+	+
<u>Sohel et al. (2009)</u>	Р	n/a	n/a	++	+	+	n/a	+	n/a	+	-	+	+	+	+	++
<u>Tseng et al. (1996)</u>	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	++	-	-	+	+	-
<u>Tseng et al. (1997)</u>	Р	n/a	n/a	+	++	-	n/a	+	n/a	++	++	-	-	++	+	+
<u>Tseng et al. (2003)</u>	Р	n/a	n/a	++	++	-	n/a	+	n/a	+	++	+	-	+	+	++
<u>Wade et al. (2009)</u>	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	++	-	+	-	+	++
Wang et al. (2002)	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	-	-	-	+	+	+
Wang et al. (2007c)*	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	++	-	++	+	+	+
Wang et al. (2009a)*	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	++	-	-	++	+	++
<u>Wang et al. (2010)</u> *	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	+	+	-	++	+	++

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

These draft development materials are for review purposes only and do not constitute Agency policy. Draft: Do Not Cite or Quote

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
<u>Wang et al. (2011a)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	-	-	-	+	+	+	++
<u>Welch et al. (1982)</u>	S	n/a	n/a	-	+	+	n/a	+	n/a	+	+	-	-	++	+	+
<u>Wu et al. (2006)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	-	+	+	+	+	++
<u>Wu et al. (2010)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	-	+	+	+	+	++
<u>Xia et al. (2009)</u>	Р	n/a	n/a	++	++	++	n/a	+	n/a	++	++	-	+	+	+	++
<u>Yildiz et al. (2008)</u>	S	n/a	n/a	++	++	-	n/a	+	n/a	++	++	-	-	-	+	+
Zhang et al. (2013a)	S	n/a	n/a	+	+		n/a	+	n/a	+	++	-		++	+	++
* Data not yet included in accor	npanying	evidence	tables.													

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

	ing		Selectio	n	Confo	unding	P	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
Akbal et al. (2013)	S	n/a	n/a	-	-	-	n/a	+	n/a	+	+	-	-	+	+	-
Bulbulyan et al. (1996)	S	n/a	n/a	+	-	+	n/a	+	n/a	++	-	+		-	+	++
<u>Chiou et al. (1995)</u>	Р	n/a	n/a	+	++	+	n/a	+	n/a	+	-	-	-	+	+	++
<u>Chung et al. (2012)</u>	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	+	-	++	+	+	++
<u>Cordova et al. (2013)</u> *	Р	n/a	n/a	-	-	+	n/a	+	n/a	++	+	-	+	++	+	+
Enterline and Marsh (1982)	S	n/a	n/a	-	-	-	n/a	+	n/a	+	+	-	-	++	+	++
Enterline et al. (1995)	S	n/a	n/a	+	-	-	n/a	+	n/a	++	+	-	-	+	+	+
<u>Fujino et al. (2004)</u> *	Ρ	n/a	n/a	++	++	-	n/a	+	n/a	++	-	+	-	+	+	-
<u>Hsu et al. (2013b)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	-	++	+	++
Kurttio et al. (1998)*	Р	n/a	n/a	+	++	+	n/a	+	n/a	-		-	-	-	-	-
Majumdar et al. (2009)	Р	n/a	n/a	-	-	+	n/a	+	n/a	++	-	-	-	-	+	++
Mazumder et al. (2013)*	Р	n/a	n/a	++	++	++	n/a	+	n/a	-	-	-	++	+	+	++

4.10Risk of Bias Overview - Other

These draft development materials are for review purposes only and do not constitute Agency policy.4-23Draft: Do Not Cite or Quote

	ing		Selectio	n	Confo	ounding	P	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
<u>Mitra et al. (2002)</u>	Р	n/a	n/a	+	-	+	n/a	+	n/a	++	-	+	-	-	+	++
Nakadaira et al. (2002)	S	n/a	n/a	+	+	-	n/a	+	n/a	+	+	-		-	+	-
Paul et al. (2013)	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	+	++	+	++
<u>Pinto et al. (1978)</u>	S	n/a	n/a	+	-		n/a	+	n/a	++	+	-	-	++	+	-
Sińczuk-Walczak et al. (2010)	S	n/a	n/a	-	+	-	n/a	+	n/a	++	-	-	-	+	+	+
<u>Sobel et al. (1987)</u>	S	n/a	n/a	+	+	-	n/a	+	n/a	+	-	-	-	+	+	+
Syed et al. (2012)	S	n/a	n/a	++	+	+	n/a	+	n/a	++	-	++		++	+	++
<u>Tsuda et al. (1995)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	-	++	+	+
<u>Wang et al. (2011a)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	-	-	-	+	+	+	++

* Data not yet included in accompanying evidence tables.

4.11Risk of Bias Overview - Reproductive System Effects including Pregnancy Outcomes

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
<u>Ahmad et al. (2001)</u>	S	n/a	n/a	++	++	+	n/a	+	n/a	+	-	++	-	-	+	++
Baastrup et al. (2008)	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	+	+	-	+	+	-
Chakraborti et al. (2003)	S	n/a	n/a	-	-	+	n/a	+	n/a	++	-	-	-	-	+	-
Enterline and Marsh (1982)	S	n/a	n/a	-	-	-	n/a	+	n/a	+	+	-	-	++	+	++
García-Esquinas et al. (2013)	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	+	+	++	+	+	++
Garland et al. (1996)	Р	n/a	n/a	+	++	++	n/a	+	n/a	-	+	+	-	++	+	++
<u>Ihrig et al. (1998)</u>	S	n/a	n/a	++	++	-	n/a	+	n/a	++	+	+	-	+	+	++
<u>Kwok et al. (2006)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	+	+	+	++
Lewis et al. (1999)	Р	n/a	n/a	+	-	+	n/a	+	n/a	+	+	-	-	++	+	-
<u>Milton et al. (2005)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	+	++	-	-	+	++

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
Mukherjee et al. (2005)	S	n/a	n/a	-	-	+	n/a	+	n/a	+	-	-	-	-	+	-
Pollack et al. (2013)	Р	n/a	n/a	++	++	++	n/a	+	n/a	++	+	+	+	++	+	++
<u>Rahman et al. (2010)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	-	+	+	+	+	+	++
Sawada et al. (2013)	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	+	++	-	++	+	++
Sen and Chaudhuri (2008)	S	n/a	n/a	+	+	+	n/a	+	n/a	+	-	-	-	-	+	-
Sengupta et al. (2013)	Р	n/a	n/a	+	++	-	n/a	+	n/a	+	-	-	+	++	+	++
<u>Shen et al. (2013)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	-	-	-	-	++	+	+
<u>Tsuda et al. (1995)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	-	++	+	+
<u>Von Ehrenstein et al.</u> (2006)	Ρ	n/a	n/a	++	++	++	n/a	+	n/a	+	++	+	-	-	+	++
<u>Xu et al. (2012)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	+	-	++	+	+	+

4.12Risk of Bias Overview - Skin Diseases

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
Ahmad et al. (1999)	S	n/a	n/a	-	-	+	n/a	+	n/a	+	-	-	-	-	+	+
<u>Ahsan et al. (2000)</u>	Р	n/a	n/a	++	+	+	n/a	+	n/a	++	-	-	+	+	+	-
<u>Ahsan et al. (2006)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	++	-	++	+	+	++
Applebaum et al. (2007)*	Р	n/a	n/a	+	+	+	n/a	+	n/a	++	+	+	++	++	+	++
<u>Argos et al. (2007)</u> *	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	++	+	+	+	+	++
<u>Argos et al. (2011)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	++	-	++	+	+	++
Baastrup et al. (2008)	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	+	+	-	+	+	-
<u>Barati et al. (2010)</u>	Р	n/a	n/a	+	+	++	n/a	+	n/a	+	-	-	-	+	+	++
Beane Freeman et al. (2004)*	Ρ	n/a	n/a	++	-	-	n/a	+	n/a	-	+	+	-	+	+	+
Bhowmick et al. (2013)	Р	n/a	n/a	+	++	-	n/a	+	n/a	+	+	-	+	+	+	++
<u>Borgono et al. (1977)</u>	S	n/a	n/a	-	+	+	n/a	+	n/a	-	-	-	-	-	+	-
<u>Breton et al. (2006)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	+	-	+	++

These draft development materials are for review purposes only and do not constitute Agency policy.4-27Draft: Do Not Cite or Quote

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
Chakraborti et al. (2013b)	S	n/a	n/a	-	-	-	n/a	+	n/a	++	-	-	-	-	-	-
Chakraborti et al. (2003)	S	n/a	n/a	-	-	+	n/a	+	n/a	++	-	-	-	-	+	-
<u>Chen et al. (2003a)</u> *	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	+	+	-	++	+	++
<u>Chen et al. (2006a)</u> *	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	++	-	-	+	+	++
<u>Chen et al. (2007c)</u> *	Р	n/a	n/a	-	++	+	n/a	+	n/a	++	++	+	+	+	+	++
Enterline and Marsh (1982)	S	n/a	n/a	-	-	-	n/a	+	n/a	+	+	-	-	++	+	++
<u>Fatmi et al. (2009)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	-	-	-	-	+	+	++
<u>Fatmi et al. (2013)</u>	Р	n/a	n/a	+	-	-	n/a	+	n/a	+	-	-	+	+	+	-
<u>Ghosh et al. (2007b)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	++	-	+	+	++
<u>Ghosh (2013)</u>	S	n/a	n/a	-	-	-	n/a	+	n/a	+	-	-	-	-	+	++
<u>Gilbert-Diamond et al.</u> (2013)	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	-	-	++	+	+	++
<u>Guo et al. (2006b)</u>	Р	n/a	n/a	++	++	-	n/a	+	n/a	++	++	-	-	++	+	++
<u>Guo et al. (2006a)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	+	-	+	+	++

These draft development materials are for review purposes only and do not constitute Agency policy.4-28Draft: Do Not Cite or Quote

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
<u>Guo et al. (2007)</u>	S	n/a	n/a	-		-	n/a	+	n/a	-	-	-	-	-	+	-
<u>Hall et al. (2006)</u>	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	++	-	+	+	+	++
<u>Haque et al. (2003)</u>	S	n/a	n/a	++	++	++	n/a	-	n/a	++	-	+	-		+	++
Hashim et al. (2013)	Р	n/a	n/a	++	-	-	n/a	+	n/a	-	-	-	++	-	+	+
Hon et al. (2012)*	Р	n/a	n/a	++	-	++	n/a	+	n/a	-	+	+	-	++	+	++
<u>Hsu et al. (2013a)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	-	++	+	++
<u>Hsueh et al. (1995)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	-	+	-	-	++	+	+
<u>Hsueh et al. (1997)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	-	++	+	++
Karagas et al. (2001)	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	+	+	++	+	+
Knobeloch et al. (2006)	Р	n/a	n/a	++	+	+	n/a	+	n/a	++	+	+	++	+	+	++
Lamm et al. (2007)*	Р	n/a	n/a	+	-	-	n/a	+	n/a	++	-	-	-	++	+	+
Leonardi et al. (2012)	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	++	+	-	++	+	++
Lewis et al. (1999)	Р	n/a	n/a	+	-	+	n/a	+	n/a	+	+	-	-	++	+	-
<u>Li et al. (2013a)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	++	+	-	+	+	++

These draft development materials are for review purposes only and do not constitute Agency policy.4-29Draft: Do Not Cite or Quote

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
Lindberg et al. (2008)	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	+	+	+	++
Lindberg et al. (2010)*	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	++	+	+	++	+	++
<u>Liu et al. (2013)</u>	S	n/a	n/a	+		-	n/a	+	n/a	++	-	-	-	+	+	++
<u>Lubin et al. (1981)</u>	S	n/a	n/a	-	-	-	n/a	+	n/a	+	-	+	-	-	+	+
<u>Maden et al. (2011)</u>	Р	n/a	n/a	+	-	-	n/a	+	n/a	+		-	++	+	+	++
<u>Maharjan et al. (2005)</u>	S	n/a	n/a	-	-	+	n/a	+	n/a	++	++	-	-	+	+	-
<u>Maharjan et al. (2007)</u> *	Р	n/a	n/a	+	-	-	n/a	+	n/a	++	++	-	+	+	+	++
Mazumder et al. (1998)	Р	n/a	n/a	-	+	+	n/a	+	n/a	+	+	-	-	-	+	++
Mazumder et al. (2013)*	Р	n/a	n/a	++	++	++	n/a	+	n/a	-	-	-	++	+	+	++
McCarty et al. (2006)*	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	++	-	-	+	+	++
McDonald et al. (2007)	Р	n/a	n/a	+	+	+	n/a	+	n/a	++	-	-	-	-	+	++
Melkonian et al. (2011)	Р	n/a	n/a	++	++	++	n/a	+	n/a	++	++	-	++	+	+	++
<u>Mitra et al. (2002)</u>	Р	n/a	n/a	+	-	+	n/a	+	n/a	++	-	+	-	-	+	++
Mosaferi et al. (2008)	Р	n/a	n/a	++	-	++	n/a	+	n/a	+	-	-	-	+	+	++

These draft development materials are for review purposes only and do not constitute Agency policy.4-30Draft: Do Not Cite or Quote

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
<u>Paul et al. (2013)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	+	++	+	++
Pavittranon et al. (2003)	S	n/a	n/a	-	-	-	n/a	+	n/a	-	-	-	-	-	+	-
<u>Pei et al. (2013)</u>	Р	n/a	n/a	-	++	+	n/a	+	n/a	-	-	+	+	+	+	-
Perry et al. (1948)	S	n/a	n/a	-	-		n/a	+	n/a	++	-	-	-	-	+	-
Pesch et al. (2002)	S	n/a	n/a	++	++	++	n/a	+	n/a	+	+	-	-	++	+	++
Pesola et al. (2012)	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	+	+	+	++
<u>Pierce et al. (2011)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	++	-	+	++	+	++
Rahman et al. (2006a)	Р	n/a	n/a	++	-	+	n/a	+	n/a	++	++	+	-	++	+	++
<u>Ranft et al. (2003)</u>	Р	n/a	n/a	++	++	-	n/a	+	n/a	++	-	-	+	++	+	++
Rosales-Castillo et al. (2004)*	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	+	-	+	+	+
Schäfer et al. (1999)*	Р	n/a	n/a	-	-	++	n/a	+	n/a	-	-	-	-	+	+	+
<u>Seow et al. (2012)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	++	-	++	+	+	++
<u>Smith et al. (2000)</u>	S	n/a	n/a	-	-	+	n/a	+	n/a	+	++	-		++	+	-
<u>Surdu et al. (2013)</u>	S	n/a	n/a	++	++		n/a	+	n/a	++	+	++	-	++	+	++

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

These draft development materials are for review purposes only and do not constitute Agency policy. Draft: Do Not Cite or Quote

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
<u>Tondel et al. (1999)</u> *	Р	n/a	n/a	-	+	+	n/a	+	n/a	++	-	-	-	-	+	++
Valentine et al. (1991)	S	n/a	n/a	-	-	+	n/a	+	n/a	-	-	-	-	-	+	-
Valenzuela et al. (2005)	Р	n/a	n/a	++	++	-	n/a	+	n/a	++	++	-	+	+	+	+
<u>Xia et al. (2009)</u>	Р	n/a	n/a	++	++	++	n/a	+	n/a	++	++	-	+	+	+	++
* Data not yet included in accor	npanying	evidence	tables.													

4.13Risk of Bias Overview - Respiratory Effects

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
Ades and Kazantzis (1988)	S	n/a	n/a	+	-	++	n/a	+	n/a	+	-	-		-	+	-
Axelson et al. (1978)	S	n/a	n/a	+	-	+	n/a	+	n/a	++	++	++	-	++	+	+
Baastrup et al. (2008)	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	+	+	-	+	+	-
<u>Begum et al. (2012)</u>	S	n/a	n/a	-	-	+	n/a	+	n/a	-	-	-	-	-	+	++
<u>Bulbulyan et al. (1996)</u>	S	n/a	n/a	+	-	+	n/a	+	n/a	++	-	+		-	+	++
<u>Chakraborti et al. (2013b)</u>	S	n/a	n/a	-	-	-	n/a	+	n/a	++	-	-	-	-	-	-
<u>Chattopadhyay et al.</u> (2010)	S	n/a	n/a	-	-	-	n/a	+	n/a	++	-	+	-	-	+	-
<u>Chen et al. (1986)</u>	S	n/a	n/a	++	+	-	n/a	+	n/a	+	+	+		++	+	++
<u>Chen et al. (2004a)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	+	-	-	++	+	++
<u>Chen et al. (2010a)</u>	Р	n/a	n/a	++	++	++	n/a	+	n/a	++	+	-	++	++	+	++
<u>Chiou et al. (1995)</u>	Р	n/a	n/a	+	++	+	n/a	+	n/a	+	-	-	-	+	+	++
<u>Chung et al. (2012)</u>	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	+	-	++	+	+	++

These draft development materials are for review purposes only and do not constitute Agency policy.4-33Draft: Do Not Cite or Quote

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
D'Errico et al. (2009)	S	n/a	n/a	++	++	++	n/a	+	n/a	++	+	-	-	++	+	++
Dauphiné et al. (2011)	Р	n/a	n/a	+	++	++	n/a	+	n/a	++	-	+	-	-	+	+
Dauphiné et al. (2013)	Р	n/a	n/a	++	++	++	n/a	+	n/a	++	++	-	+	++	+	++
<u>De et al. (2004)</u>	S	n/a	n/a	+	+	+	n/a	+	n/a	-	-	-	-	-	-	-
Enterline and Marsh (1982)	S	n/a	n/a	-	-	-	n/a	+	n/a	+	+	-	-	++	+	++
Enterline et al. (1987)	S	n/a	n/a	-	+	-	n/a	+	n/a	+	+	+	-	+	+	-
Enterline et al. (1995)	S	n/a	n/a	+	-	-	n/a	+	n/a	++	+	-	-	+	+	+
Farzan et al. (2013)	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	+	+	+	-	+	++
Ferreccio et al. (1998)*	Р	n/a	n/a	+	++	++	n/a	+	n/a	+	+	+	-	++	+	++
Ferreccio et al. (2000)	Р	n/a	n/a	++	++	++	n/a	+	n/a	++	+	+	-	++	+	++
Ferreccio et al. (2013b)	Р	n/a	n/a	++	++	++	n/a	+	n/a	+	+	-	-	++	+	++
García-Esquinas et al. (2013)	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	+	+	++	+	+	++
<u>Ghosh et al. (2007b)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	++	-	+	+	++

These draft development materials are for review purposes only and do not constitute Agency policy.4-34Draft: Do Not Cite or Quote

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
<u>Ghosh (2013)</u>	S	n/a	n/a	-	-	-	n/a	+	n/a	+	-	-	-	-	+	++
Grimsrud et al. (2005)	S	n/a	n/a	+	++	++	n/a	+	n/a	++	-	+	-	-	+	-
<u>Guo et al. (2007)</u>	S	n/a	n/a	-		-	n/a	+	n/a	-	-	-	-	-	+	-
Halatek et al. (2009)	S	n/a	n/a	++	-	-	n/a	+	n/a	++	-	-	+	+	+	-
Heck et al. (2009)	Р	n/a	n/a	++	++	++	n/a	+	n/a	+	+	+	++	++	+	++
<u>Hsu et al. (2013b)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	-	++	+	++
<u>Hsu et al. (2013a)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	-	++	+	++
<u>Hu et al. (1999)</u>	S	n/a	n/a	+	++	++	n/a	+	n/a	+	+	-	-	++	+	+
Jarup et al. (1989)	S	n/a	n/a	+	-		n/a	+	n/a	++	+	-	-	+	+	++
<u>Khlifi et al. (2014)</u>	Р	n/a	n/a	++	++	++	n/a	+	n/a	++	+	-	+	++	+	++
Lee-Feldstein (1989)	S	n/a	n/a	+	-	-	n/a	+	n/a	++	-	-	-	-	++	++
Lewis et al. (1999)	Р	n/a	n/a	+	-	+	n/a	+	n/a	+	+	-	-	++	+	-
Lubin et al. (1981)	S	n/a	n/a	-	-	-	n/a	+	n/a	+	-	+	-	-	+	+
Lubin et al. (2000)	S	n/a	n/a	+	+	+	n/a	+	n/a	+	-	-	-	-	+	++

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

These draft development materials are for review purposes only and do not constitute Agency policy.4-35Draft: Do Not Cite or Quote

			Selectio	n	Confo	unding	Pe	erformai	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
Lubin et al. (2008)	S	n/a	n/a	+	+	-	n/a	+	n/a	-	-	-	-	-	+	++
Majumdar et al. (2009)	Р	n/a	n/a	-	-	+	n/a	+	n/a	++	-	-	-	-	+	++
Mazumder et al. (2005)	S	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-		+	-	+
<u>Milton et al. (2001)</u>	S	n/a	n/a	-	++	-	n/a	+	n/a	++		-		-	+	+
Mostafa et al. (2008)*	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	+	-	-	++	+	+
Nafees et al. (2011)	Р	n/a	n/a	++	++	++	n/a	+	n/a	++	-	++	-	+	+	+
Nakadaira et al. (2002)	S	n/a	n/a	+	+	-	n/a	+	n/a	+	+	-		-	+	-
Parvez et al. (2013)	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	+	++	++	+	++
Parvez et al. (2008)*	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	-	-	+	+	++	++
Parvez et al. (2010)	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	++	-	++	-	+	++
Paul et al. (2013)	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	+	++	+	++
Pinto et al. (1977)	S	n/a	n/a	-	-		n/a	+	n/a	++	+	-	-	++	+	-
<u>Pinto et al. (1978)</u>	S	n/a	n/a	+	-		n/a	+	n/a	++	+	-	-	++	+	-
<u>Rahman et al. (2011)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	+	+	++	+	+	++

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

These draft development materials are for review purposes only and do not constitute Agency policy.4-36Draft: Do Not Cite or Quote

			Selectio	n	Confo	unding	Pe	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
<u>Raqib et al. (2009)</u>	Р	n/a	n/a	++	-	+	n/a	+	n/a	+	+	+	++	-	+	++
Sawada et al. (2013)	Р	n/a	n/a	+	++	+	n/a	+	n/a	++	+	++	-	++	+	++
<u>Smith et al. (2011)</u>	S	n/a	n/a	++	++	+	n/a	+	n/a	+	++	-	-	+	+	+
<u>Smith et al. (2013)</u>	Р	n/a	n/a	++	++	++	n/a	+	n/a	+	-	-	-	++	+	++
<u>Sorahan (2009)</u>	S	n/a	n/a	-	-	-	n/a	+	n/a	-	-	-		-	+	++
Steinmaus et al. (2013)	Р	n/a	n/a	++	++	++	n/a	+	n/a	++	+	+	-	++	+	++
<u>'T Mannetje et al. (2011)</u>	S	n/a	n/a	++	++	++	n/a	+	n/a	++	+	-	-	-	+	++
<u>Taylor et al. (1989)</u>	S	n/a	n/a	+	++		n/a	+	n/a	++	+	+	-	++	+	++
<u>Tsuda et al. (1995)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	-	++	+	+
Wadhwa et al. (2011b)	S	n/a	n/a	-	-	-	n/a	+	n/a	+	+	-	-	++	+	-
<u>Welch et al. (1982)</u>	S	n/a	n/a	-	+	+	n/a	+	n/a	+	+	-	-	++	+	+
* Data not yet included in accon	npanying	evidence	tables.													

4.14Risk of Bias Overview - Nervous System Effects

	ing		Selectio	n	Confo	unding	P	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
<u>Adams et al. (2013)</u>	Р	n/a	n/a	+	-	+	n/a	+	n/a	++	++	+	+	+	+	++
<u>Ali et al. (2010)</u>	Р	n/a	n/a	++	++	++	n/a	+	n/a	+	-	-	++	++	+	++
<u>Blom et al. (1985)</u>	S	n/a	n/a	+	++	-	n/a	+	n/a	++	-	-	-	+	+	++
<u>Chakraborti et al. (2003)</u>	S	n/a	n/a	-	-	+	n/a	+	n/a	++	-	-	-	-	+	-
<u>Chiou et al. (2005)</u>	Р	n/a	n/a	+	-	+	n/a	+	n/a	++	++	++	+	++	+	++
Enterline and Marsh (1982)	S	n/a	n/a	-	-	-	n/a	+	n/a	+	+	-	-	++	+	++
<u>Feldman et al. (1979)</u>	S	n/a	n/a	-	+	-	n/a	+	n/a	+	++	-	-	+	+	+
<u>Ghosh et al. (2007b)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	++	-	+	+	++
<u>Ghosh (2013)</u>	S	n/a	n/a	-	-	-	n/a	+	n/a	+	-	-	-	-	+	++
<u>Gong et al. (2011)</u>	S	n/a	n/a	+	-	+	n/a	+	n/a	++	-	-	-	++	+	+
<u>Guo et al. (2007)</u>	S	n/a	n/a	-		-	n/a	+	n/a	-	-	-	-	-	+	-
Hafeman et al. (2005)	Р	n/a	n/a	++	+	++	n/a	+	n/a	+	-	+	++	++	+	+

	ng		Selectio	n	Confo	unding	P	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
Halatek et al. (2009)	S	n/a	n/a	++	-	-	n/a	+	n/a	++	-	-	+	+	+	-
<u>Kreiss et al. (1983)</u>	Р	n/a	n/a	+	-	-	n/a	+	n/a	++	++	-	-	++	+	+
Lagerkvist and Zetterlund (1994)	S	n/a	n/a	+	++	+	n/a	+	n/a	++	-	-	-	++	+	+
Lewis et al. (1999)	Ρ	n/a	n/a	+	-	+	n/a	+	n/a	+	+	-	-	++	+	-
<u>Li et al. (2006)</u>	Ρ	n/a	n/a	++	++	++	n/a	+	n/a	++	++	-	-	-	+	++
<u>Lilis et al. (1985)</u> *	Р	n/a	n/a	++	+	+	n/a	+	n/a	+	++	-	-	-	+	++
<u>Lin et al. (2008)</u>	Р	n/a	n/a	++	+	+	n/a	+	n/a	+	++	-	-	++	+	++
Mackenzie and Kyle (1984)	S	n/a	n/a	-	-	-	n/a	+	n/a	-	-	-	-	-	+	+
<u>Mao et al. (2010)</u>	S	n/a	n/a	+	+	+	n/a	+	n/a	++	++	-	-	-	+	-
O'Bryant et al. (2011)	S	n/a	n/a	++	++	-	n/a	+	n/a	-	+	-	-	++	+	++
<u>Otto et al. (2006)</u>	Р	n/a	n/a	+	++	++	n/a	+	n/a	++	-	-	-	++	+	++
<u>Otto et al. (2007)</u>	Р	n/a	n/a	+	++	++	n/a	+	n/a	+	++	-	++	++	+	++
Park et al. (2014)	Р	n/a	n/a	+	+	++	n/a	+	n/a	++	+	-	-	+	+	+
Paul et al. (2013)	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	+	-	+	++	+	++

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

These draft development materials are for review purposes only and do not constitute Agency policy. Draft: Do Not Cite or Quote

	ing		Selectio	n	Confo	unding	P	erforma	nce	Att.		Dete	ection		SRB	Other
Study	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
<u>Rosado et al. (2007)</u>	Р	n/a	n/a	++	++	++	n/a	+	n/a	++	-	+	+	++	+	++
<u>See et al. (2007)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	++	-	-	++	+	++
<u>Sińczuk-Walczak et al.</u> (2010)	S	n/a	n/a	-	+	-	n/a	+	n/a	++	-	-	-	+	+	+
<u>Tseng et al. (2006)</u>	Р	n/a	n/a	++	++	+	n/a	+	n/a	++	-	-	+	+	+	++
Zierold et al. (2004)*	Р	n/a	n/a	++	++	+	n/a	+	n/a	+	++	+	-	-	+	+
* Data not yet included in accor	npanyii	ng evider	ice tables													

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

4.15References for Risk of Bias Evaluations for Epidemiologic Studies

- Adams, JB; Audhya, T; Mcdonough-Means, S; Rubin, RA; Quig, D; Geis, E; Gehn, E; Loresto, M; Mitchell, J; <u>Atwood, S; Barnhouse, S; Lee, W.</u> (2013). Toxicological status of children with autism vs. neurotypical children and the association with autism severity. Biol Trace Elem Res 151: 171-180. <u>http://dx.doi.org/10.1007/s12011-012-9551-1</u>
- Ades, AE; Kazantzis, G. (1988). Lung cancer in a non-ferrous smelter: the role of cadmium. Br J Ind Med 45: 435-442. <u>http://dx.doi.org/10.1136/oem.45.7.435</u>
- <u>Ahmad, SA; Khatun, F; Sayed, MH; Khan, MH; Aziz, R; Hossain, MZ; Faruquee, MH.</u> (2006). Electrocardiographic abnormalities among arsenic-exposed persons through groundwater in Bangladesh. J Health Popul Nutr 24: 221-227.
- <u>Ahmad, SA; Sayed, MHS, U; Barua, S; Khan, MH; Faruquee, MH; Jalil, A; Hadi, SA; Talukder, HK.</u> (2001). Arsenic in drinking water and pregnancy outcomes. Environ Health Perspect 109: 629-631. <u>http://dx.doi.org/10.2307/3455038</u>
- <u>Ahmad, SA; Sayed, MHS, U; Hadi, SA; Faruquee, MH; Khan, MH; Jalil, MA; Ahmed, R; Khan, AW.</u> (1999). Arsenicosis in a village in Bangladesh. Int J Environ Health Res 9: 187-195. <u>http://dx.doi.org/10.1080/09603129973155</u>
- <u>Ahmed, S; Ahsan, KB; Kippler, M; Mily, A; Wagatsuma, Y; Hoque, AMW; Ngom, PT; El Arifeen, S; Raqib, R;</u> <u>Vahter, M.</u> (2012). In utero arsenic exposure is associated with impaired thymic function in newborns possibly via oxidative stress and apoptosis. Toxicol Sci 129: 305-314. <u>http://dx.doi.org/10.1093/toxsci/kfs202</u>
- <u>Ahsan, H; Chen, Y; Parvez, F; Zablotska, L; Argos, M; Hussain, I; Momotaj, H; Levy, D; Cheng, Z; Slavkovich, V; van Geen, A; Howe, GR; Graziano, JH.</u> (2006). Arsenic exposure from drinking water and risk of premalignant skin lesions in Bangladesh: Baseline results from the Health Effects of Arsenic Longitudinal Study. Am J Epidemiol 163: 1138-1148. <u>http://dx.doi.org/10.1093/aje/kwj154</u>
- <u>Ahsan, H; Perrin, M; Rahman, A; Parvez, F; Stute, M; Zheng, Y; Milton, AH; Brandt-Rauf, P; van Geen, A;</u> <u>Graziano, J.</u> (2000). Associations between drinking water and urinary arsenic levels and skin lesions in Bangladesh. J Occup Environ Med 42: 1195-1201. <u>http://dx.doi.org/10.1097/00043764-200012000-00016</u>
- <u>Akbal, A; Yılmaz, H; Tutkun, E.</u> (2013). Arsenic exposure associated with decreased bone mineralization in male. Aging Male1-3. <u>http://dx.doi.org/10.3109/13685538.2013.819326</u>
- Ali, N; Hoque, MA; Haque, A; Salam, KA; Karim, MR; Rahman, A; Islam, K; Saud, ZA; Khalek, MA; Akhand, AA; Hossain, M; Mandal, A; Karim, MR; Miyataka, H; Himeno, S; Hossain, K. (2010). Association between arsenic exposure and plasma cholinesterase activity: a population based study in Bangladesh. Environ Health 9: 36. <u>http://dx.doi.org/10.1186/1476-069X-9-36</u>
- <u>Amaral, AFS; Porta, M; Silverman, DT; Milne, RL; Kogevinas, M; Rothman, N; Cantor, KP; Jackson, BP;</u> <u>Pumarega, JA; López, T; Carrato, A; Guarner, L; Real, FX; Malats, N.</u> (2012). Pancreatic cancer risk and levels of trace elements. Gut 61: 1583-1588. <u>http://dx.doi.org/10.1136/gutjnl-2011-301086</u>
- <u>Applebaum, KM; Karagas, MR; Hunter, DJ; Catalano, PJ; Byler, SH; Morris, S; Nelson, HH.</u> (2007).
 Polymorphisms in nucleotide excision repair genes, arsenic exposure, and non-melanoma skin cancer in New Hampshire. Environ Health Perspect 115: 1231-1236. <u>http://dx.doi.org/10.1289/ehp.10096</u>

- <u>Argos, M; Kalra, T; Pierce, BL; Chen, Y; Parvez, F; Islam, T; Ahmed, A; Hasan, R; Hasan, K; Sarwar, G; Levy, D; Slavkovich, V; Graziano, JH; Rathouz, PJ; Ahsan, H. (2011). A prospective study of arsenic exposure from drinking water and incidence of skin lesions in Bangladesh. Am J Epidemiol 174: 185-194. http://dx.doi.org/10.1093/aje/kwr062
 </u>
- <u>Argos, M; Kalra, T; Rathouz, PJ; Chen, Y; Pierce, B; Parvez, F; Islam, T; Ahmed, A; Rakibuz-Zaman, M;</u> <u>Hasan, R; Sarwar, G; Slavkovich, V; van Geen, A; Graziano, J; Ahsan, H.</u> (2010). Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. Lancet 376: 252-258. <u>http://dx.doi.org/10.1016/S0140-6736(10)60481-3</u>
- <u>Argos, M; Parvez, F; Chen, Y; Hussain, AZ; Momotaj, H; Howe, GR; Graziano, JH; Ahsan, H.</u> (2007). Socioeconomic status and risk for arsenic-related skin lesions in Bangladesh. Am J Public Health 97: 825-831. <u>http://dx.doi.org/10.2105/AJPH.2005.078816</u>
- Axelson, O; Dahlgren, E; Jansson, CD; Rehnlund, SO. (1978). Arsenic exposure and mortality: a case-referent study from a Swedish copper smelter. Occup Environ Med 35: 8-15.
- Baastrup, R; Sørensen, M; Balstrøm, T; Frederiksen, K; Larsen, CL; Tjønneland, A; Overvad, K; Raaschou-Nielsen, O. (2008). Arsenic in drinking-water and risk for cancer in Denmark. Environ Health Perspect 116: 231-237. <u>http://dx.doi.org/10.1289/ehp.10623</u>
- Barati, AH; Maleki, A; Alasvand, M. (2010). Multi-trace elements level in drinking water and the prevalence of multi-chronic arsenical poisoning in residents in the west area of Iran. Sci Total Environ 408: 1523-1529. http://dx.doi.org/10.1016/j.scitotenv.2009.12.035
- Beane Freeman, LE; Dennis, LK; Lynch, CF; Thorne, PS; Just, CL. (2004). Toenail arsenic content and cutaneous melanoma in Iowa. Am J Epidemiol 160: 679-687. <u>http://dx.doi.org/10.1093/aje/kwh267</u>
- Begum, M; Horowitz, J; Hossain, MI. (2012). Low-dose risk assessment for arsenic: a meta-analysis approach. http://dx.doi.org/10.1177/1010539512466568
- Bhowmick, S; Halder, D; Kundu, AK; Saha, D; Iglesias, M; Nriagu, J; Guha Mazumder, DN; Roman-Ross, G; Chatterjee, D. (2013). Is saliva a potential biomarker of arsenic exposure? A case-control study in West Bengal, India. Environ Sci Technol 47: 3326-3332. <u>http://dx.doi.org/10.1021/es303756s</u>
- Biswas, R; Ghosh, P; Banerjee, N; Das, JK; Sau, T; Banerjee, A; Roy, S; Ganguly, S; Chatterjee, M; Mukherjee, <u>A; Giri, AK.</u> (2008). Analysis of T-cell proliferation and cytokine secretion in the individuals exposed to arsenic. Hum Exp Toxicol 27: 381-386. <u>http://dx.doi.org/10.1177/0960327108094607</u>

Blom, S; Lagerkvist, B; Linderholm, H. (1985). Arsenic exposure to smelter workers: Clinical and neurophysiological studies. Scand J Work Environ Health 11: 265-269. <u>http://dx.doi.org/10.5271/sjweh.2227</u>

- Boffetta, P; Fontana, L; Stewart, P; Zaridze, D; Szeszenia-Dabrowska, N; Janout, V; Bencko, V; Foretova, L;
 Jinga, V; Matveev, V; Kollarova, H; Ferro, G; Chow, WH; Rothman, N; van Bemmel, D; Karami, S;
 Brennan, P; Moore, LE. (2011). Occupational exposure to arsenic, cadmium, chromium, lead and nickel, and renal cell carcinoma: a case-control study from Central and Eastern Europe. Occup Environ Med 68: 723-728. http://dx.doi.org/10.1136/oem.2010.056341
- Borgono, JM; Vicent, P; Venturino, H; Infante, A. (1977). Arsenic in the drinking water of the city of Antofagasta: epidemiological and clinical study before and after the installation of a treatment plant. Environ Health Perspect 19: 103-105.
- Bosnjak, Z; Cavar, S; Klapec, T; Milic, M; Klapec-Basar, M; Toman, M. (2008). Selected markers of cardiovascular disease in a population exposed to arsenic from drinking water. Environ Toxicol Pharmacol 26: 181-186. <u>http://dx.doi.org/10.1016/j.etap.2008.03.005</u>
- Breton, CV; Houseman, EA; Kile, ML; Quamruzzaman, Q; Rahman, M; Mahiuddin, G; Christiani, DC. (2006). Gender-specific protective effect of hemoglobin on arsenic-induced skin lesions. Cancer Epidemiol Biomarkers Prev 15: 902-907. <u>http://dx.doi.org/10.1158/1055-9965.EPI-05-0859</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 20144-42Draft: Do Not Cite or Quote

- Bulbulyan, MA; Jourenkova, NJ; Boffetta, P; Astashevsky, SV; Mukeria, AF; Zaridze, DG. (1996). Mortality in a cohort of Russian fertilizer workers. Scand J Work Environ Health 22: 27-33.
- Burgess, JL; Kurzius-Spencer, M; O'Rourke, MK; Littau, SR; Roberge, J; Meza-Montenegro, MM; Gutiérrez-Millán, LE; Harris, RB. (2013). Environmental arsenic exposure and serum matrix metalloproteinase-9. J Expo Sci Environ Epidemiol 23: 163-169. <u>http://dx.doi.org/10.1038/jes.2012.107</u>
- Casale, T; Rosati, MV; Ciarrocca, M; Samperi, I; Andreozzi, G; Schifano, MP; Capozzella, A; Pimpinella, B; <u>Tomei, G; Caciari, T; Tomei, F.</u> (2013). Assessment of liver function in two groups of outdoor workers exposed to arsenic. Int Arch Occup Environ Health. <u>http://dx.doi.org/10.1007/s00420-013-0914-5</u>
- <u>Chakraborti, D; Mukherjee, SC; Pati, S; Sengupta, MK; Rahman, MM; Chowdhury, UK; Lodh, D; Chanda, CR;</u> <u>Chakraborti, AK; Basu, GK.</u> (2003). Arsenic groundwater contamination in Middle Ganga Plain, Bihar, India: a future danger? Environ Health Perspect 111: 1194-1201. <u>http://dx.doi.org/10.1289/ehp.5966</u>
- <u>Chakraborti, D; Rahman, MM; Murrill, M; Das, R; Siddayya; Patil, SG; Sarkar, A; Dadapeer, HJ; Yendigeri, S;</u> <u>Ahmed, R; Das, KK.</u> (2013). Environmental arsenic contamination and its health effects in a historic gold mining area of the Mangalur greenstone belt of Northeastern Karnataka, India. J Hazard Mater 262: 10481055. <u>http://dx.doi.org/10.1016/j.jhazmat.2012.10.002</u>
- <u>Chattopadhyay, BP; Mukherjee, AK; Gangopadhyay, PK; Alam, J; Roychowdhury, A.</u> (2010). Respiratory effect related to exposure of different concentrations of arsenic in drinking water in West Bengal, India. J Environ Sci Eng 52: 147-154.
- Chen, CJ; Chiou, HY; Chiang, MH; Lin, LJ; Tai, TY. (1996). Dose-response relationship between ischemic heart disease mortality and long-term arsenic exposure. Arterioscler Thromb Vasc Biol 16: 504-510.
- Chen, CJ; Chuang, YC; You, SL; Lin, TM; Wu, HY. (1986). A retrospective study on malignant neoplasms of bladder, lung and liver in blackfoot disease endemic area in Taiwan. Br J Cancer 53: 399-405. http://dx.doi.org/10.1038/bjc.1986.65
- Chen, CJ; Hsueh, YM; Lai, MS; Shyu, MP; Chen, SY; Wu, MM; Kuo, TL; Tai, TY. (1995). Increased prevalence of hypertension and long-term arsenic exposure. Hypertension 25: 53-60.
- Chen, CJ; Wu, MM; Lee, SS; Wang, JD; Cheng, SH; Wu, HY. (1988). Atherogenicity and carcinogenicity of high-arsenic artesian well water. Multiple risk factors and related malignant neoplasms of blackfoot disease. Arterioscler Thromb Vasc Biol 8: 452-460.
- <u>Chen, CL; Chiou, HY; Hsu, LI; Hsueh, YM; Wu, MM; Chen, CJ.</u> (2010a). Ingested arsenic, characteristics of well water consumption and risk of different histological types of lung cancer in northeastern Taiwan. Environ Res 110: 455-462. <u>http://dx.doi.org/10.1016/j.envres.2009.08.010</u>
- Chen, CL; Hsu, LI; Chiou, HY; Hsueh, YM; Chen, SY; Wu, MM; Chen, CJ; Group, BDS. (2004). Ingested arsenic, cigarette smoking, and lung cancer risk: A follow-up study in arseniasis-endemic areas in Taiwan. JAMA 292: 2984-2990. http://dx.doi.org/10.1001/jama.292.24.2984
- <u>Chen, JW; Chen, HY; Li, WF; Liou, SH; Chen, CJ; Wu, JH; Wang, SL.</u> (2011a). The association between total urinary arsenic concentration and renal dysfunction in a community-based population from central Taiwan. Chemosphere 84: 17-24. <u>http://dx.doi.org/10.1016/j.chemosphere.2011.02.091</u>
- Chen, JW; Wang, SL; Wang, YH; Sun, CW; Huang, YL; Chen, CJ; Li, WF. (2012a). Arsenic methylation, GSTO1 polymorphisms, and metabolic syndrome in an arseniasis endemic area of southwestern Taiwan. Chemosphere 88: 432-438. <u>http://dx.doi.org/10.1016/j.chemosphere.2012.02.059</u>
- <u>Chen, SC; Chen, CC; Kuo, CY; Huang, CH; Lin, CH; Lu, ZY; Chen, YY; Lee, HS; Wong, RH.</u> (2012b). Elevated risk of hypertension induced by arsenic exposure in Taiwanese rural residents: Possible effects of manganese superoxide dismutase (MnSOD) and 8-oxoguanine DNA glycosylase (OGG1) genes. Arch Toxicol 86: 869-878. <u>http://dx.doi.org/10.1007/s00204-011-0797-8</u>

- <u>Chen, Y; Ahsan, H; Slavkovich, V; Peltier, GL; Gluskin, RT; Parvez, F; Liu, X; Graziano, JH.</u> (2010b). No association between arsenic exposure from drinking water and diabetes mellitus: a cross-sectional study in Bangladesh. Environ Health Perspect 118: 1299-1305. <u>http://dx.doi.org/10.1289/ehp.0901559</u>
- <u>Chen, Y; Factor-Litvak, P; Howe, GR; Graziano, JH; Brandt-Rauf, P; Parvez, F; van Geen, A; Ahsan, H.</u> (2007a). Arsenic exposure from drinking water, dietary intakes of B vitamins and folate, and risk of high blood pressure in Bangladesh: A population-based, cross-sectional study. Am J Epidemiol 165: 541-552. <u>http://dx.doi.org/10.1093/aje/kwk037</u>
- <u>Chen, Y; Graziano, JH; Parvez, F; Hussain, I; Momotaj, H; van Geen, A; Howe, GR; Ahsan, H.</u> (2006a).
 Modification of risk of arsenic-induced skin lesions by sunlight exposure, smoking, and occupational exposures in Bangladesh. Epidemiology 17: 459-467. <u>http://dx.doi.org/10.1097/01.ede.0000220554.50837.7f</u>
- <u>Chen, Y; Graziano, JH; Parvez, F; Liu, M; Slavkovich, V; Kalra, T; Argos, M; Islam, T; Ahmed, A; Rakibuz-Zaman, M; Hasan, R; Sarwar, G; Levy, D; van Geen, A; Ahsan, H. (2011b). Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study. B M J (Online) 342: d2431. <u>http://dx.doi.org/10.1136/bmj.d2431</u></u>
- <u>Chen, Y; Hakim, ME; Parvez, F; Islam, T; Rahman, AM; Ahsan, H.</u> (2006b). Arsenic exposure from drinkingwater and carotid artery intima-medial thickness in healthy young adults in Bangladesh. J Health Popul Nutr 24: 253-257.
- <u>Chen, Y; Hall, M; Graziano, JH; Slavkovich, V; van Geen, A; Parvez, F; Ahsan, H.</u> (2007b). A prospective study of blood selenium levels and the risk of arsenic-related premalignant skin lesions. Cancer Epidemiol Biomarkers Prev 16: 207-213. <u>http://dx.doi.org/10.1158/1055-9965.EPI-06-0581</u>
- <u>Chen, Y; Parvez, F; Liu, M; Pesola, GR; Gamble, MV; Slavkovich, V; Islam, T; Ahmed, A; Hasan, R; Graziano, JH; Ahsan, H.</u> (2011c). Association between arsenic exposure from drinking water and proteinuria: results from the Health Effects of Arsenic Longitudinal Study. Int J Epidemiol. <u>http://dx.doi.org/10.1093/ije/dyr022</u>
- <u>Chen, Y; Wu, F; Graziano, JH; Parvez, F; Liu, M; Paul, RR; Shaheen, I; Sarwar, G; Ahmed, A; Islam, T; Slavkovich, V; Rundek, T; Demmer, RT; Desvarieux, M; Ahsan, H.</u> (2013a). Arsenic exposure from drinking water, arsenic methylation capacity, and carotid intima-media thickness in Bangladesh. Am J Epidemiol 178: 372-381. <u>http://dx.doi.org/10.1093/aje/kwt001</u>
- <u>Chen, Y; Wu, F; Parvez, F; Ahmed, A; Eunus, M; McClintock, TR; Patwary, TI; Islam, T; Ghosal, AK; Islam, S;</u> <u>Hasan, R; Levy, D; Sarwar, G; Slavkovich, V; van Geen, A; Graziano, JH; Ahsan, H.</u> (2013b). Arsenic exposure from drinking water and QT-interval prolongation: results from the health effects of arsenic longitudinal study. Environ Health Perspect 121: 427-432. <u>http://dx.doi.org/10.1289/ehp.1205197</u>
- Chen, YC; Guo, YL; Su, HJ; Hsueh, YM; Smith, TJ; Ryan, LM; Lee, MS; Chao, SC; Lee, JY; Christiani, DC. (2003). Arsenic methylation and skin cancer risk in southwestern Taiwan. J Occup Environ Med 45: 241-248. <u>http://dx.doi.org/10.1097/01.jom.0000058336.05741.e8</u>
- Chiou, HY; Hsueh, YM; Liaw, KF; Horng, SF; Chiang, MH; Pu, YS; Lin, JS; Huang, CH; Chen, CJ. (1995). Incidence of internal cancers and ingested inorganic arsenic: A seven-year follow-up study in Taiwan. Cancer Res 55: 1296-1300.
- <u>Chiou, HY; Huang, WI; Su, CL; Chang, SF; Hsu, YH; Chen, CJ.</u> (1997). Dose-response relationship between prevalence of cerebrovascular disease and ingested inorganic arsenic. Stroke 28: 1717-1723. http://dx.doi.org/10.1161/01.STR.28.9.1717
- <u>Chiou, HY; Wang, IH; Hsueh, YM; Chiou, ST; Chou, YL; Teh, HW; Chen, CJ.</u> (2001). Arsenic exposure, null genotypes of glutathione S-transferase M1, T1 and P1 and risk of carotid atherosclerosis among residents in the Lanyang Basin of Taiwan. In WR Chappell; CO Abernathy; RL Calderon (Eds.), Arsenic exposure and health effects IV (pp. 207-219). Amsterdam, The Netherlands: Elsevier Science.

- <u>Chiou, JM; Wang, SL; Chen, CJ; Deng, CR; Lin, W; Tai, TY.</u> (2005). Arsenic ingestion and increased microvascular disease risk: Observations from the south-western arseniasis-endemic area in Taiwan. Int J Epidemiol 34: 936-943. <u>http://dx.doi.org/10.1093/ije/dyi108</u>
- Chung, CJ; Huang, YL; Huang, YK; Wu, MM; Chen, SY; Hsueh, YM; Chen, CJ. (2012). Urinary arsenic profiles and the risks of cancer mortality: A population-based 20-year follow-up study in arseniasis-endemic areas in Taiwan. Environ Res 122: 25-30. <u>http://dx.doi.org/10.1016/j.envres.2012.11.007</u>
- Ciarrocca, M; Tomei, F; Caciari, T; Cetica, C; Andrè, JC; Fiaschetti, M; Schifano, MP; Scala, B; Scimitto, L; <u>Tomei, G; Sancini, A.</u> (2012). Exposure to arsenic in urban and rural areas and effects on thyroid hormones. Inhal Toxicol 24: 589-598. <u>http://dx.doi.org/10.3109/08958378.2012.703251</u>
- <u>Cordova, E; Valenzuela, O; Sánchez-Peña, L; Escamilla-Guerrero, G; Hernández-Zavala, A; Orozco, L; Razo, LD.</u> (2013). Nuclear factor erythroid 2-related factor gene variants and susceptibility of arsenic-related skin lesions. Hum Exp Toxicol. <u>http://dx.doi.org/10.1177/0960327113506234</u>
- Coronado-González, JA; Del Razo, LM; García-Vargas, G; Sanmiguel-Salazar, F; Escobedo-De la Peña, J. (2007). Inorganic arsenic exposure and type 2 diabetes mellitus in Mexico. Environ Res 104: 383-389. http://dx.doi.org/10.1016/j.envres.2007.03.004
- Cuzick, J; Sasieni, P; Evans, S. (1992). Ingested arsenic, keratoses, and bladder cancer. Am J Epidemiol 136: 417-421.
- <u>D'Errico, A; Pasian, S; Baratti, A; Zanelli, R; Alfonzo, S; Gilardi, L; Beatrice, F; Bena, A; Costa, G.</u> (2009). A case-control study on occupational risk factors for sino-nasal cancer. Occup Environ Med 66: 448-455. http://dx.doi.org/10.1136/oem.2008.041277
- Das, N; Paul, S; Chatterjee, D; Banerjee, N; Majumder, NS; Sarma, N; Sau, TJ; Basu, S; Banerjee, S; Majumder, P; Bandyopadhyay, AK; States, JC; Giri, AK. (2012). Arsenic exposure through drinking water increases the risk of liver and cardiovascular diseases in the population of West Bengal, India. BMC Public Health 12: 639. http://dx.doi.org/10.1186/1471-2458-12-639
- Dauphiné, DC; Ferreccio, C; Guntur, S; Yuan, Y; Hammond, SK; Balmes, J; Smith, AH; Steinmaus, C. (2011). Lung function in adults following in utero and childhood exposure to arsenic in drinking water: preliminary findings. Int Arch Occup Environ Health. <u>http://dx.doi.org/10.1007/s00420-010-0591-6</u>
- Dauphiné, DC; Smith, AH; Yuan, Y; Balmes, JR; Bates, MN; Steinmaus, C. (2013). Case-control study of arsenic in drinking water and lung cancer in California and Nevada. Int J Environ Res Public Health 10: 3310-3324. <u>http://dx.doi.org/10.3390/ijerph10083310</u>
- De, BK; Majumdar, D; Sen, S; Guru, S; Kundu, S. (2004). Pulmonary involvement in chronic arsenic poisoning from drinking contaminated ground-water. J Assoc Physicians India 52: 395-400.
- Del Razo, LM; García-Vargas, GG; Valenzuela, OL; Castellanos, EH; Sánchez-Peña, LC; Currier, JM; Drobná, Z; Loomis, D; Stýblo, M. (2011). Exposure to arsenic in drinking water is associated with increased prevalence of diabetes: a cross-sectional study in the Zimapán and Lagunera regions in Mexico. Environ Health 10: 73. <u>http://dx.doi.org/10.1186/1476-069X-10-73</u>
- Drobná, Z; Del Razo, LM; García-Vargas, GG; Sánchez-Peña, LC; Barrera-Hernández, A; Stýblo, M; Loomis, D. (2013). Environmental exposure to arsenic, AS3MT polymorphism and prevalence of diabetes in Mexico. J Expo Sci Environ Epidemiol 23: 151-155. <u>http://dx.doi.org/10.1038/jes.2012.103</u>
- Enterline, PE; Day, R; Marsh, GM. (1995). Cancers related to exposure to arsenic at a copper smelter. Occup Environ Med 52: 28-32.
- Enterline, PE; Marsh, GM. (1982). Cancer among workers exposed to arsenic and other substances in a copper smelter. Am J Epidemiol 116: 895-911.

- Enterline, PE; Marsh, GM; Esmen, NA; Henderson, VL; Callahan, CM; Paik, M. (1987). Some effects of cigarette smoking, arsenic, and SO2 on mortality among US copper smelter workers. J Occup Med 29: 831-838.
- Eom, SY; Lee, YC; Yim, DH; Lee, CH; Kim, YD; Choi, BS; Park, CH; Yu, SD; Kim, DS; Park, JD; Kim, H. (2011). Effects of low-level arsenic exposure on urinary N-acetyl-β-D-glucosaminidase activity. Hum Exp Toxicol 30: 1885-1891. http://dx.doi.org/10.1177/0960327111402239
- Ettinger, AS; Zota, AR; Cj Amarasiriwardena, CJ; Hopkins, MR; Schwartz, J; Hu, H; Wright, RO. (2009). Maternal arsenic exposure and impaired glucose tolerance during pregnancy. Environ Health Perspect 117: 1059-1064. <u>http://dx.doi.org/10.1289/ehp0800533</u>
- Farzan, SF; Korrick, S; Li, Z; Enelow, R; Gandolfi, AJ; Madan, J; Nadeau, K; Karagas, MR. (2013). In utero arsenic exposure and infant infection in a United States cohort: A prospective study. Environ Res 126: 24-30. http://dx.doi.org/10.1016/j.envres.2013.05.001
- Fatmi, Z; Abbasi, IN; Ahmed, M; Kazi, A; Kayama, F. (2013). Burden of skin lesions of arsenicosis at higher exposure through groundwater of taluka Gambat district Khairpur, Pakistan: a cross-sectional survey. Environ Geochem Health 35: 341-346. <u>http://dx.doi.org/10.1007/s10653-012-9498-3</u>
- Fatmi, Z; Azam, I; Ahmed, F; Kazi, A; Gill, AB; Kadir, MM; Ahmed, M; Ara, N; Janjua, NZ; Mitigation, CGA. (2009). Health burden of skin lesions at low arsenic exposure through groundwater in Pakistan. Is river the source? Environ Res 109: 575-581. <u>http://dx.doi.org/10.1016/j.envres.2009.04.002</u>
- Feldman, RG; Niles, CA; Kelly-Hayes, M; Sax, DS; Dixon, WJ; Thompson, DJ; Landau, E. (1979). Peripheral neuropathy in arsenic smelter workers. Neurology 29: 939-944. <u>http://dx.doi.org/10.1212/WNL.29.7.939</u>
- Feng, H; Gao, Y; Zhao, L; Wei, Y; Li, Y; Wei, W; Wu, Y; Sun, D. (2013). Biomarkers of renal toxicity caused by exposure to arsenic in drinking water. Environ Toxicol Pharmacol 35: 495-501. <u>http://dx.doi.org/10.1016/j.etap.2013.02.010</u>
- Ferreccio, C; González, C; Milosavjlevic, V; Marshall, G; Sancha, AM; Smith, AH. (2000). Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology 11: 673-679. http://dx.doi.org/10.1097/00001648-200011000-00010
- Ferreccio, C; González Psych, C; Milosavjlevic Stat, V; Marshall Gredis, G; Sancha, AM. (1998). Lung cancer and arsenic exposure in drinking water: a case-control study in northern Chile. Cad Saude Publica 14 Suppl 3: 193-198.
- Ferreccio, C; Smith, AH; Durán, V; Barlaro, T; Benítez, H; Valdés, R; Aguirre, JJ; Moore, LE; Acevedo, J; Vásquez, MI; Pérez, L; Yuan, Y; Liaw, J; Cantor, KP; Steinmaus, C. (2013a). Case-control study of arsenic in drinking water and kidney cancer in uniquely exposed Northern Chile. Am J Epidemiol 178: 813-818. http://dx.doi.org/10.1093/aje/kwt059
- Ferreccio, C; Yuan, Y; Calle, J; Benítez, H; Parra, RL; Acevedo, J; Smith, AH; Liaw, J; Steinmaus, C. (2013b). Arsenic, tobacco smoke, and occupation: associations of multiple agents with lung and bladder cancer. Epidemiology 24: 898-905. <u>http://dx.doi.org/10.1097/EDE.0b013e31829e3e03</u>
- Fujino, Y; Guo, X; Liu, J; You, L; Miyatake, M; Yoshimura, T; 1, JIMAPJSG. (2004). Mental health burden amongst inhabitants of an arsenic-affected area in Inner Mongolia, China. Soc Sci Med 59: 1969-1973. <u>http://dx.doi.org/10.1016/j.socscimed.2004.02.031</u>
- García-Esquinas, E; Pollan, M; Umans, JG; Francesconi, KA; Goessler, W; Guallar, E; Howard, B; Farley, J; Best, LG; Navas-Acien, A. (2013). Arsenic exposure and cancer mortality in a US-based prospective cohort: the strong heart study. Cancer Epidemiol Biomarkers Prev 22: 1944-1953. <u>http://dx.doi.org/10.1158/1055-9965.EPI-13-0234-T</u>
- García-Vargas, GG; Del Razo, LM; Cebrián, ME; Albores, A; Ostrosky-Wegman, P; Montero, R; Gonsebatt, ME; Lim, CK; De Matteis, F. (1994). Altered urinary porphyrin excretion in a human population chronically exposed to arsenic in Mexico. Hum Exp Toxicol 13: 839-847.

These draft development materials are for review purposes only and do not constitute Agency policy.April 20144-46Draft: Do Not Cite or Quote

- Garland, M; Morris, JS; Colditz, GA; Stampfer, MJ; Spate, VL; Baskett, CK; Rosner, B; Speizer, FE; Willett, <u>WC; Hunter, DJ.</u> (1996). Toenail trace element levels and breast cancer: a prospective study. Am J Epidemiol 144: 653-660.
- <u>Ghosh, A.</u> (2013). Evaluation of chronic arsenic poisoning due to consumption of contaminated ground water in West Bengal, India. IJPM 4: 976-979.
- <u>Ghosh, P; Banerjee, M; De Chaudhuri, S; Chowdhury, R; Das, JK; Mukherjee, A; Sarkar, AK; Mondal, L;</u> <u>Baidya, K; Sau, TJ; Banerjee, A; Basu, A; Chaudhuri, K; Ray, K; Giri, AK.</u> (2007). Comparison of health effects between individuals with and without skin lesions in the population exposed to arsenic through drinking water in West Bengal, India. J Expo Sci Environ Epidemiol 17: 215-223. <u>http://dx.doi.org/10.1038/sj.jes.7500510</u>
- <u>Gilbert-Diamond, D; Li, Z; Perry, AE; Spencer, SK; Gandolfi, AJ; Karagas, MR.</u> (2013). A population-based case-control study of urinary arsenic species and squamous cell carcinoma in New Hampshire, USA. Environ Health Perspect 121: 11541160. <u>http://dx.doi.org/10.1289/ehp.1206178</u>
- Gong, G; Hargrave, KA; Hobson, V; Spallholz, J; Boylan, M; Lefforge, D; O'Bryant, SE. (2011). Low-level groundwater arsenic exposure impacts cognition: a project FRONTIER study. J Environ Health 74: 16-22.
- Gong, G; O'Bryant, SE. (2012). Low-level arsenic exposure, AS3MT gene polymorphism and cardiovascular diseases in rural Texas counties. Environ Res 113: 52-57. http://dx.doi.org/10.1016/j.envres.2012.01.003
- <u>Gribble, MO; Howard, BV; Umans, JG; Shara, NM; Francesconi, KA; Goessler, W; Crainiceanu, CM;</u> <u>Silbergeld, EK; Guallar, E; Navas-Acien, A.</u> (2012). Arsenic exposure, diabetes prevalence, and diabetes control in the strong heart study. Am J Epidemiol 176: 865-874. <u>http://dx.doi.org/10.1093/aje/kws153</u>
- <u>Grimsrud, TK; Berge, SR; Haldorsen, T; Andersen, A.</u> (2005). Can lung cancer risk among nickel refinery workers be explained by occupational exposures other than nickel? Epidemiology 16: 146-154. <u>http://dx.doi.org/10.1097/01.ede.0000152902.48916.d7</u>
- <u>Guha Mazumder, D; Purkayastha, I; Ghose, A; Mistry, G; Saha, C; Nandy, AK; Das, A; Majumdar, KK.</u> (2012). Hypertension in chronic arsenic exposure: A case control study in West Bengal. J Environ Sci Health A Tox Hazard Subst Environ Eng 47: 1514-1520. <u>http://dx.doi.org/10.1080/10934529.2012.680329</u>
- Guo, JX; Hu, L; Yand, PZ; Tanabe, K; Miyatalre, M; Chen, Y. (2007). Chronic arsenic poisoning in drinking water in Inner Mongolia and its associated health effects. J Environ Sci Health A Tox Hazard Subst Environ Eng 42: 1853-1858. <u>http://dx.doi.org/10.1080/10934520701566918</u>
- <u>Guo, X; Fujino, Y; Ye, X; Liu, J; Yoshimura, T; Group, JIMAPS.</u> (2006a). Association between multi-level inorganic arsenic exposure from drinking water and skin lesions in China. Int J Environ Res Public Health 3: 262-267.
- Guo, X; Liu, Z; Huang, C; You, L. (2006b). Levels of arsenic in drinking-water and cutaneous lesions in Inner Mongolia. J Health Popul Nutr 24: 214-220.
- <u>Hafeman, DM; Ahsan, H; Louis, ED; Siddique, AB; Slavkovich, V; Cheng, Z; van Geen, A; Graziano, JH.</u>
 (2005). Association between arsenic exposure and a measure of subclinical sensory neuropathy in
 Bangladesh. J Occup Environ Med 47: 778-784. <u>http://dx.doi.org/10.1097/01.jom.0000169089.54549.db</u>
- Halatek, T; Sinczuk-Walczak, H; Rabieh, S; Wasowicz, W. (2009). Association between occupational exposure to arsenic and neurological, respiratory and renal effects. Toxicol Appl Pharmacol 239: 193-199. http://dx.doi.org/10.1016/j.taap.2009.04.022
- Hall, M; Chen, Y; Ahsan, H; Slavkovich, V; van Geen, A; Parvez, F; Graziano, J. (2006). Blood arsenic as a biomarker of arsenic exposure: Results from a prospective study. Toxicology 225: 225-233. http://dx.doi.org/10.1016/j.tox.2006.06.010

- Haque, R; Mazumder, DNG; Samanta, S; Ghosh, N; Kalman, D; Smith, MM; Mitra, S; Santra, A; Lahiri, S; Das, S; De, BK; Smith, AH. (2003). Arsenic in drinking water and skin lesions: Dose-response data from West Bengal, India. Epidemiology 14: 174-182. <u>http://dx.doi.org/10.1097/01.EDE.0000040361.55051.54</u>
- Hashim, JH; Radzi, RS; Aljunid, SM; Nur, AM; Ismail, A; Baguma, D; Sthiannopkao, S; Phan, K; Wong, MH; Sao, V; Yasin, MS. (2013). Hair arsenic levels and prevalence of arsenicosis in three Cambodian provinces. Sci Total Environ 463-464: 1210-1216. <u>http://dx.doi.org/10.1016/j.scitotenv.2013.04.084</u>
- <u>Hawkesworth, S: Wagatsuma, Y: Kippler, M: Fulford, AJ: Arifeen, SE: Persson, LA: Moore, SE: Vahter, M.</u> (2013). Early exposure to toxic metals has a limited effect on blood pressure or kidney function in later childhood, rural Bangladesh. Int J Epidemiol 42: 176-185. <u>http://dx.doi.org/10.1093/ije/dys215</u>
- Heck, JE; Andrew, AS; Onega, T; Rigas, JR; Jackson, BP; Karagas, MR; Duell, EJ. (2009). Lung cancer in a U.S. population with low to moderate arsenic exposure. Environ Health Perspect 117: 1718-1723. http://dx.doi.org/10.1289/ehp.0900566
- Heck, JE; Chen, Y; Grann, VR; Slavkovich, V; Parvez, F; Ahsan, H. (2008). Arsenic exposure and anemia in Bangladesh: A population-based study. J Occup Environ Med 50: 80-87. http://dx.doi.org/10.1097/JOM.0b013e31815ae9d4
- <u>Hernández-Zavala, A; Del Razo, LM; García-Vargas, GG; Aguilar, C; Borja, VH; Albores, A; Cebrián, ME.</u> (1999). Altered activity of heme biosynthesis pathway enzymes in individuals chronically exposed to arsenic in Mexico. Arch Toxicol 73: 90-95.
- Hertz-Picciotto, I; Arrighi, HM; Hu, SW. (2000). Does arsenic exposure increase the risk for circulatory disease? Am J Epidemiol 151: 174-181.
- Hon, KL; Lui, H; Wang, SS; Lam, HS; Leung, TF. (2012). Fish consumption, fish atopy and related heavy metals in childhood eczema. Iran J Allergy Asthma Immunol 11: 230-235. <u>http://dx.doi.org/011.03/ijaai.230235</u>
- Hopenhayn, C; Bush, HM; Bingcang, A; Hertz-Picciotto, I. (2006). Association between arsenic exposure from drinking water and anemia during pregnancy. J Occup Environ Med 48: 635-643. <u>http://dx.doi.org/10.1097/01.jom.0000205457.44750.9f</u>
- <u>Hsieh, FI; Hwang, TS; Hsieh, YC; Lo, HC; Su, CT; Hsu, HS; Chiou, HY; Chen, CJ.</u> (2008a). Risk of erectile dysfunction induced by arsenic exposure through well water consumption in Taiwan. Environ Health Perspect 116: 532-536. <u>http://dx.doi.org/10.1289/ehp.10930</u>
- Hsieh, YC; Hsieh, FI; Lien, LM; Chou, YL; Chiou, HY; Chen, CJ. (2008b). Risk of carotid atherosclerosis associated with genetic polymorphisms of apolipoprotein E and inflammatory genes among arsenic exposed residents in Taiwan. Toxicol Appl Pharmacol 227: 1-7. <u>http://dx.doi.org/10.1016/j.taap.2007.10.013</u>
- Hsu, LI; Chen, GS; Lee, CH; Yang, TY; Chen, YH; Wang, YH; Hsueh, YM; Chiou, HY; Wu, MM; Chen, CJ. (2013a). Use of arsenic-induced palmoplantar hyperkeratosis and skin cancers to predict risk of subsequent internal malignancy. Am J Epidemiol 177: 202-212. <u>http://dx.doi.org/10.1093/aje/kws369</u>
- Hsu, LI; Wang, YH; Chiou, HY; Wu, MM; Yang, TY; Chen, YH; Tseng, CH; Chen, CJ. (2013b). The association of diabetes mellitus with subsequent internal cancers in the arsenic-exposed area of Taiwan. J Asian Earth Sci 73: 452-459. <u>http://dx.doi.org/10.1016/j.jseaes.2013.04.048</u>
- <u>Hsueh, YM; Cheng, GS; Wu, MM; Yu, HS; Kuo, TL; Chen, CJ.</u> (1995). Multiple risk factors associated with arsenic-induced skin cancer: effects of chronic liver disease and malnutritional status. Br J Cancer 71: 109-114. <u>http://dx.doi.org/10.1038/bjc.1995.22</u>
- <u>Hsueh, YM; Chiou, HY; Huang, YL; Wu, WL; Huang, CC; Yang, MH; Lue, LC; Chen, GS; Chen, CJ.</u> (1997). Serum beta-carotene level, arsenic methylation capability, and incidence of skin cancer. Cancer Epidemiol Biomarkers Prev 6: 589-596.

These draft development materials are for review purposes only and do not constitute Agency policy.April 20144-48Draft: Do Not Cite or Quote

- <u>Hsueh, YM; Wu, WL; Huang, YL; Chiou, HY; Tseng, CH; Chen, CJ.</u> (1998). Low serum carotene level and increased risk of ischemic heart disease related to long-term arsenic exposure. Atherosclerosis 141: 249-257. <u>http://dx.doi.org/10.1016/S0021-9150(98)00178-6</u>
- Hu, SW; Hertz-Picciotto, I; Siemiatycki, J. (1999). When to be skeptical of negative studies: pitfalls in evaluating occupational risks using population-based case-control studies. Can J Public Health 90: 138-142.
- <u>Huang, CY; Chu, JS; Pu, YS; Yang, HY; Wu, CC; Chung, CJ; Hsueh, YM.</u> (2011). Effect of urinary total arsenic level and estimated glomerular filtration rate on the risk of renal cell carcinoma in a low arsenic exposure area. J Urol 185: 2040-2044. <u>http://dx.doi.org/10.1016/j.juro.2011.01.079</u>
- Huang, CY; Su, CT; Chung, CJ; Pu, YS; Chu, JS; Yang, HY; Wu, CC; Hsueh, YM. (2012). Urinary total arsenic and 8-hydroxydeoxyguanosine are associated with renal cell carcinoma in an area without obvious arsenic exposure. Toxicol Appl Pharmacol 262: 349-354. <u>http://dx.doi.org/10.1016/j.taap.2012.05.013</u>
- <u>Huang, YK; Tseng, CH; Huang, YL; Yang, MH; Chen, CJ; Hsueh, YM.</u> (2007). Arsenic methylation capability and hypertension risk in subjects living in arseniasis-hyperendemic areas in southwestern Taiwan. Toxicol Appl Pharmacol 218: 135-142. <u>http://dx.doi.org/10.1016/j.taap.2006.10.022</u>
- <u>Huang, YL; Hsueh, YM; Huang, YK; Yip, PK; Yang, MH; Chen, CJ.</u> (2009). Urinary arsenic methylation capability and carotid atherosclerosis risk in subjects living in arsenicosis-hyperendemic areas in southwestern Taiwan. Sci Total Environ 407: 2608-2614. <u>http://dx.doi.org/10.1016/j.scitotenv.2008.12.061</u>
- <u>Ihrig, MM; Shalat, SL; Baynes, C.</u> (1998). A hospital-based case-control study of stillbirths and environmental exposure to arsenic using an atmospheric dispersion model linked to a geographical information system. Epidemiology 9: 290-294. <u>http://dx.doi.org/10.1097/00001648-199805000-00013</u>
- Infante-Rivard, C; Olson, E; Jacques, L; Ayotte, P. (2001). Drinking water contaminants and childhood leukemia. Epidemiology 12: 13-19. <u>http://dx.doi.org/10.1097/00001648-200101000-00004</u>
- Islam, K; Haque, A; Karim, R; Fajol, A; Hossain, E; Salam, KA; Ali, N; Saud, ZA; Rahman, M; Rahman, M; Karim, R; Sultana, P; Hossain, M; Akhand, AA; Mandal, A; Miyataka, H; Himeno, S; Hossain, K. (2011). Dose-response relationship between arsenic exposure and the serum enzymes for liver function tests in the individuals exposed to arsenic: a cross sectional study in Bangladesh. Environ Health 10: 64. http://dx.doi.org/10.1186/1476-069X-10-64
- Islam, LN; Nabi, AHM, N; Rahman, MM; Zahid, MSH. (2007). Association of respiratory complications and elevated serum immunoglobulins with drinking water arsenic toxicity in human. J Environ Sci Health A Tox Hazard Subst Environ Eng 42: 1807-1814. <u>http://dx.doi.org/10.1080/10934520701566777</u>
- Islam, MR; Khan, I; Attia, J; Hassan, SMN; McEvoy, M; D'Este, C; Azim, S; Akhter, A; Akter, S; Shahidullah, SM; Milton, AH. (2012a). Association between hypertension and chronic arsenic exposure in drinking water: a cross-sectional study in Bangladesh. Int J Environ Res Public Health 9: 4522-4536. http://dx.doi.org/10.3390/ijerph9124522
- Islam, R; Khan, I; Hassan, SN; McEvoy, M; D'Este, C; Attia, J; Peel, R; Sultana, M; Akter, S; Milton, AH. (2012b). Association between type 2 diabetes and chronic arsenic exposure in drinking water: a cross sectional study in Bangladesh. Environ Health 11: 38. <u>http://dx.doi.org/10.1186/1476-069X-11-38</u>
- James, KA; Marshall, JA; Hokanson, JE; Meliker, JR; Zerbe, GO; Byers, TE. (2013). A case-cohort study examining lifetime exposure to inorganic arsenic in drinking water and diabetes mellitus. Environ Res. http://dx.doi.org/10.1016/j.envres.2013.02.005
- Jarup, L; Pershagen, G; Wall, S. (1989). Cumulative arsenic exposure and lung cancer in smelter workers: a dose-response study. Am J Ind Med 15: 31-41. <u>http://dx.doi.org/10.1002/ajim.4700150105</u>
- Jayatilake, N; Mendis, S; Maheepala, P; Mehta, FR; Team, aobotCNRP. (2013). Chronic kidney disease of uncertain aetiology: Prevalence and causative factors in a developing country. BMC Nephrol 14: 180. <u>http://dx.doi.org/10.1186/1471-2369-14-180</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 20144-49Draft: Do Not Cite or Quote

- Jensen, GE; Hansen, ML. (1998). Occupational arsenic exposure and glycosylated haemoglobin. Analyst 123: 77-80. <u>http://dx.doi.org/10.1039/a705699k</u>
- Jones, MR; Tellez-Plaza, M; Sharrett, AR; Guallar, E; Navas-Acien, A. (2011). Urine arsenic and hypertension in US adults: The 2003-2008 National Health and Nutrition Examination Survey. Epidemiology 22: 153-161. http://dx.doi.org/10.1097/EDE.0b013e318207fdf2
- Josyula, AB; Poplin, GS; Kurzius-Spencer, M; McClellen, HE; Kopplin, MJ; Sturup, S; Lantz, RC; Burgess, JL. (2006). Environmental arsenic exposure and sputum metalloproteinase concentrations. Environ Res 102: 283-290. <u>http://dx.doi.org/10.1016/j.envres.2006.01.003</u>
- Jovanovic, D; Rasic-Milutinovic, Z; Paunovic, K; Jakovljevic, B; Plavsic, S; Milosevic, J. (2013). Low levels of arsenic in drinking water and type 2 diabetes in Middle Banat region, Serbia. Int J Hyg Environ Health 216: 50-55. <u>http://dx.doi.org/10.1016/j.ijheh.2012.01.001</u>
- Karagas, MR; Stukel, TA; Morris, JS; Tosteson, TD; Weiss, JE; Spencer, SK; Greenberg, ER. (2001). Skin cancer risk in relation to toenail arsenic concentrations in a US population-based case-control study. Am J Epidemiol 153: 559-565. <u>http://dx.doi.org/10.1093/aje/153.6.559</u>
- Karim, MR; Rahman, M; Islam, K; Mamun, AA; Hossain, S; Hossain, E; Aziz, A; Yeasmin, F; Agarwal, S; Hossain, MI; Saud, ZA; Nikkon, F; Hossain, M; Mandal, A; Jenkins, RO; Haris, PI; Miyataka, H; Himeno, S; Hossain, K. (2013). Increases in oxidized low density lipoprotein and other inflammatory and adhesion molecules with a concomitant decrease in high density lipoprotein in the individuals exposed to arsenic in Bangladesh. Toxicol Sci. <u>http://dx.doi.org/10.1093/toxsci/kft130</u>
- Khlifi, R; Olmedo, P; Gil, F; Feki-Tounsi, M; Hammami, B; Rebai, A; Hamza-Chaffai, A. (2014). Risk of laryngeal and nasopharyngeal cancer associated with arsenic and cadmium in the Tunisian population. Environ Sci Pollut Res Int 21: 2032-2042. <u>http://dx.doi.org/10.1007/s11356-013-2105-z</u>
- Kim, NH; Mason, CC; Nelson, RG; Afton, SE; Essader, AS; Medlin, JE; Levine, KE; Hoppin, JA; Lin, C; Knowler, WC; Sandler, DP. (2013). Arsenic Exposure and Incidence of Type 2 Diabetes in Southwestern American Indians. Am J Epidemiol. <u>http://dx.doi.org/10.1093/aje/kws329</u>
- <u>Kim, Y; Lee, BK.</u> (2011). Association between urinary arsenic and diabetes mellitus in the Korean general population according to KNHANES 2008. Sci Total Environ 409: 4054-4062. <u>http://dx.doi.org/10.1016/j.scitotenv.2011.06.003</u>
- Knobeloch, LM; Zierold, KM; Anderson, HA. (2006). Association of arsenic-contaminated drinking-water with prevalence of skin cancer in Wisconsin's Fox River Valley. J Health Popul Nutr 24: 206-213.
- Kreiss, K; Zack, MM; Feldman, RG; Niles, CA; Chirico-Post, J; Sax, DS; Landrigan, PJ; Boyd, MH; Cox, DH. (1983). Neurologic evaluation of a population exposed to arsenic in Alaskan well water. Arch Environ Health 38: 116-121.
- Kreuzer, M; Straif, K; Marsh, JW; Dufey, F; Grosche, B; Nosske, D; Sogl, M. (2012). Occupational dust and radiation exposure and mortality from stomach cancer among German uranium miners, 1946-2003. Occup Environ Med 69: 217-223. <u>http://dx.doi.org/10.1136/oemed-2011-100051</u>
- Kunrath, J; Gurzau, E; Gurzau, A; Goessler, W; Gelmann, ER; Thach, TT; Mccarty, KM; Yeckel, CW. (2013). Blood pressure hyperreactivity: an early cardiovascular risk in normotensive men exposed to low-tomoderate inorganic arsenic in drinking water. J Hypertens 31: 361-369. <u>http://dx.doi.org/10.1097/HJH.0b013e32835c175f</u>
- Kurttio, P; Komulainen, H; Hakala, E; Kahelin, H; Pekkanen, J. (1998). Urinary excretion of arsenic species after exposure to arsenic present in drinking water. Arch Environ Contam Toxicol 34: 297-305.
- Kurttio, P; Pukkala, E; Kahelin, H; Auvinen, A; Pekkanen, J. (1999). Arsenic concentrations in well water and risk of bladder and kidney cancer in Finland. Environ Health Perspect 107: 705-710. http://dx.doi.org/10.1289/ehp.99107705

These draft development materials are for review purposes only and do not constitute Agency policy.April 20144-50Draft: Do Not Cite or Quote

- Kwok, RK; Kaufmann, RB; Jakariya, M. (2006). Arsenic in drinking-water and reproductive health outcomes: A study of participants in the Bangladesh integrated nutrition programme. J Health Popul Nutr 24: 190-205.
- Kwok, RK; Mendola, P; Liu, ZY; Savitz, DA; Heiss, G; Ling, HL; Xia, Y; Lobdell, D; Zeng, D; Thorp, JM, Jr; Creason, JP; Mumford, JL. (2007). Drinking water arsenic exposure and blood pressure in healthy women of reproductive age in Inner Mongolia, China. Toxicol Appl Pharmacol 222: 337-343. http://dx.doi.org/10.1016/j.taap.2007.04.003
- Lagerkvist, B; Linderholm, H; Nordberg, GF. (1986). Vasospastic tendency and Raynaud's phenomenon in smelter workers exposed to arsenic. Environ Res 39: 465-474. <u>http://dx.doi.org/10.1016/S0013-9351(86)80070-6</u>
- Lagerkvist, BEA; Linderholm, H; Nordberg, GF. (1988). Arsenic and Raynaud's phenomenon: Vasospastic tendency and excretion of arsenic in smelter workers before and after the summer vacation. Int Arch Occup Environ Health 60: 361-364. <u>http://dx.doi.org/10.1007/BF00405671</u>
- Lagerkvist, BJ; Zetterlund, B. (1994). Assessment of exposure to arsenic among smelter workers: A five-year follow-up. Am J Ind Med 25: 477-488. <u>http://dx.doi.org/10.1002/ajim.4700250403</u>
- Lai, MS; Hsueh, YM; Chen, CJ; Shyu, MP; Chen, SY; Kuo, TL; Wu, MM; Tai, TY. (1994). Ingested inorganic arsenic and prevalence of diabetes mellitus. Am J Epidemiol 139: 484-492.
- Lamm, SH; Luo, ZD; Bo, FB; Zhang, GY; Zhang, YM; Wilson, R; Byrd, DM; Lai, S; Li, FX; Polkanov, M; <u>Tong, Y; Loo, L; Tucker, SB;</u> (IMCAP), atIMCAP. (2007). An epidemiologic study of arsenic-related skin disorders and skin cancer and the consumption of arsenic-contaminated well Waters in Huhhot, Inner Mongolia, China. Hum Ecol Risk Assess 13: 713-746. <u>http://dx.doi.org/10.1080/10807030701456528</u>
- Lee-Feldstein, A. (1989). A comparison of several measures of exposure to arsenic: matched case-control study of copper smelter employees. Am J Epidemiol 129: 112-124.
- Leonardi, G; Vahter, M; Clemens, F; Goessler, W; Gurzau, E; Hemminki, K; Hough, R; Koppova, K; Kumar, R; <u>Rudnai, P; Surdu, S; Fletcher, T.</u> (2012). Inorganic arsenic and Basal cell carcinoma in areas of Hungary, Romania, and Slovakia: A case-control study. Environ Health Perspect 120: 721-726. <u>http://dx.doi.org/10.1289/ehp.1103534</u>

Lewis, DR; Southwick, JW; Ouellet-Hellstrom, R; Rench, J; Calderon, RL. (1999). Drinking water arsenic in Utah: A cohort mortality study. Environ Health Perspect 107: 359-365. http://dx.doi.org/10.1289/ehp.99107359

- Li, WF; Sun, CW; Cheng, TJ; Chang, KH; Chen, CJ; Wang, SL. (2009). Risk of carotid atherosclerosis is associated with low serum paraoxonase (PON1) activity among arsenic exposed residents in Southwestern Taiwan. Toxicol Appl Pharmacol 236: 246-253. http://dx.doi.org/10.1016/j.taap.2009.01.019
- Li, X; Li, B; Xi, S; Zheng, Q; Lv, X; Sun, G. (2013a). Prolonged environmental exposure of arsenic through drinking water on the risk of hypertension and type 2 diabetes. Environ Sci Pollut Res Int 20: 8151-8161. http://dx.doi.org/10.1007/s11356-013-1768-9
- Li, X; Li, B; Xi, S; Zheng, Q; Wang, D; Sun, G. (2013b). Association of urinary monomethylated arsenic concentration and risk of hypertension: a cross-sectional study from arsenic contaminated areas in northwestern China. Environ Health 12: 37. <u>http://dx.doi.org/10.1186/1476-069X-12-37</u>
- Li, Y; Xia, Y; He, L; Ning, Z; Wu, K; Zhao, B; Le, XC; Kwok, R; Schmitt, M; Wade, T; Mumford, J; Otto, D. (2006). Neurosensory effects of chronic exposure to arsenic via drinking water in Inner Mongolia: I. signs, symptoms and pinprick testing. J Water Health 4: 29-37. <u>http://dx.doi.org/10.2166/wh.2005.022</u>

Liao, YT; Chen, CJ; Li, WF; Hsu, LY; Tsai, LY; Huang, YL; Sun, CW; Chen, WJ; Wang, SL. (2012). Elevated lactate dehydrogenase activity and increased cardiovascular mortality in the arsenic-endemic areas of southwestern Taiwan. Toxicol Appl Pharmacol. <u>http://dx.doi.org/10.1016/j.taap.2012.04.028</u>

- Liao, YT; Li, WF; Chen, CJ; Prineas, RJ; Chen, WJ; Zhang, ZM; Sun, CW; Wang, SL. (2009). Synergistic effect of polymorphisms of paraoxonase gene cluster and arsenic exposure on electrocardiogram abnormality. Toxicol Appl Pharmacol 239: 178-183. http://dx.doi.org/10.1016/j.taap.2008.12.017
- Lilis, R; Valciukas, JA; Malkin, J; Weber, JP. (1985). Effects of low-level lead and arsenic exposure on copper smelter workers. Arch Environ Health 40: 38-47. <u>http://dx.doi.org/10.1080/00039896.1985.10545887</u>
- Lin, W; Wang, SL; Wu, HJ; Chang, KH; Yeh, P; Chen, CJ; Guo, HR. (2008). Associations between arsenic in drinking water and pterygium in southwestern Taiwan. Environ Health Perspect 116: 952-955. http://dx.doi.org/10.1289/ehp.11111
- Lindberg, AL; Rahman, M; Persson, LA; Vahter, M. (2008). The risk of arsenic induced skin lesions in Bangladeshi men and women is affected by arsenic metabolism and the age at first exposure. Toxicol Appl Pharmacol 230: 9-16. http://dx.doi.org/10.1016/j.taap.2008.02.001
- Lindberg, AL; Sohel, N; Rahman, M; Persson, LA; Vahter, M. (2010). Impact of smoking and chewing tobacco on arsenic-induced skin lesions. Environ Health Perspect 118: 533-538. http://dx.doi.org/10.1289/ehp.0900728
- Liu, FF; Wang, JP; Zheng, YJ; Ng, JC. (2013). Biomarkers for the evaluation of population health status 16 years after the intervention of arsenic-contaminated groundwater in Xinjiang, China. J Hazard Mater 262: 1159-1166. <u>http://dx.doi.org/10.1016/j.jhazmat.2013.03.058</u>
- Lu, JN: Chen, CJ. (1991). Prevalence of hepatitis B surface antigen carrier status among residents in the endemic area of chronic arsenicism in Taiwan. Anticancer Res 11: 229-233.
- Lubin, JH; Moore, LE; Fraumeni, JF; Cantor, KP. (2008). Respiratory cancer and inhaled inorganic arsenic in copper smelters workers: A linear relationship with cumulative exposure that increases with concentration. Environ Health Perspect 116: 1661-1665. <u>http://dx.doi.org/10.1289/ehp.11515</u>
- Lubin, JH; Pottern, LM; Blot, WJ; Tokudome, S; Stone, BJ; Fraumeni, JF, Jr. (1981). Respiratory cancer among copper smelter workers: Recent mortality statistics. J Occup Med 23: 779-784. http://dx.doi.org/10.1097/00043764-198111000-00014
- Lubin, JH; Pottern, LM; Stone, BJ; Fraumeni, JF. (2000). Respiratory cancer in a cohort of copper smelter workers: Results from more than 50 years of follow-up. Am J Epidemiol 151: 554-565.
- Mackenzie, CJ; Kyle, JH. (1984). Two examples of environmental problems occurring in remote sparsely populated areas. Ann Acad Med Singapore 13: 237-246.
- Maden, N; Singh, A; Smith, LS; Maharjan, M; Shrestha, S. (2011). Factors associated with arsenicosis and arsenic exposure status in Nepal: Implications from community based study. J Community Health 36: 76-82. http://dx.doi.org/10.1007/s10900-010-9282-1
- Maharjan, M; Watanabe, C; Ahmad, SA; Ohtsuka, R. (2005). Arsenic contamination in drinking water and skin manifestations in lowland Nepal: The first community-based survey. Am J Trop Med Hyg 73: 477-479.
- Maharjan, M; Watanabe, C; Ahmad, SA; Umezaki, M; Ohtsuka, R. (2007). Mutual interaction between nutritional status and chronic arsenic toxicity due to groundwater contamination in an area of Terai, lowland Nepal. J Epidemiol Community Health 61: 389-394. <u>http://dx.doi.org/10.1136/jech.2005.045062</u>
- Maiti, S; Chattopadhyay, S; Deb, B; Samanta, T; Maji, G; Pan, B; Ghosh, A; Ghosh, D. (2012). Antioxidant and metabolic impairment result in DNA damage in arsenic-exposed individuals with severe dermatological manifestations in Eastern India. Environ Toxicol 27. <u>http://dx.doi.org/10.1002/tox.20647</u>
- Majumdar, KK; Guha Mazumder, DN; Ghose, N; Ghose, A; Lahiri, S. (2009). Systemic manifestations in chronic arsenic toxicity in absence of skin lesions in West Bengal. Indian J Med Res 129: 75-82.
- Makris, KC; Christophi, CA; Paisi, M; Ettinger, AS. (2012). A preliminary assessment of low level arsenic exposure and diabetes mellitus in Cyprus. BMC Public Health. <u>http://dx.doi.org/10.1186/1471-2458-12-334</u>

- Mao, G; Guo, X; Kang, R; Ren, C; Yang, Z; Sun, Y; Zhang, C; Zhang, X; Zhang, H; Yang, W. (2010). Prevalence of disability in an arsenic exposure area in Inner Mongolia, China. Chemosphere 80: 978-981. http://dx.doi.org/10.1016/j.chemosphere.2010.05.040
- Marsh, GM; Esmen, NA; Buchanich, JM; Youk, AO. (2009). Mortality patterns among workers exposed to arsenic, cadmium, and other substances in a copper smelter. Am J Ind Med 52: 633-644. http://dx.doi.org/10.1002/ajim.20714
- Mazumder, DN; Steinmaus, C; Bhattacharya, P; von Ehrenstein, OS; Ghosh, N; Gotway, M; Sil, A; Balmes, JR; Haque, R; Hira-Smith, MM; Smith, AH. (2005). Bronchiectasis in persons with skin lesions resulting from arsenic in drinking water. Epidemiology 16: 760-765. <u>http://dx.doi.org/10.1097/01.ede.0000181637.10978.e6</u>
- Mazumder, DNG; Deb, D; Biswas, A; Saha, C; Nandy, A; Ganguly, B; Ghose, A; Bhattacharya, K; Majumdar, KK. (2013). Evaluation of dietary arsenic exposure and its biomarkers: A case study of West Bengal, India. J Environ Sci Health A Tox Hazard Subst Environ Eng 48: 896-904. http://dx.doi.org/10.1080/10934529.2013.761495
- <u>Mazumder, DNG; Haque, R; Ghosh, N; De, BK; Santra, A; Chakraborti, D; Smith, AH.</u> (2000). Arsenic in drinking water and the prevalence of respiratory effects in West Bengal, India. Int J Epidemiol 29: 1047-1052. <u>http://dx.doi.org/10.1093/ije/29.6.1047</u>
- Mazumder, DNG; Haque, R; Ghosh, N; De, BK; Santra, A; Chakraborty, D; Smith, AH. (1998). Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal, India. Int J Epidemiol 27: 871-877. http://dx.doi.org/10.1093/ije/27.5.871
- McCarty, KM; Houseman, EA; Quamruzzaman, Q; Rahman, M; Mahiuddin, G; Smith, T; Ryan, L; Christiani, DC. (2006). The impact of diet and betel nut use on skin lesions associated with drinking-water arsenic in Pabna, Bangladesh. Environ Health Perspect 114: 334-340. <u>http://dx.doi.org/10.1289/ehp.7916</u>
- McDonald, C; Hoque, R; Huda, N; Cherry, N. (2007). Risk of arsenic-related skin lesions in Bangladeshi villages at relatively low exposure: A report from Gonoshasthaya Kendra. Bull World Health Organ 85: 668-673. http://dx.doi.org/10.1590/S0042-96862007000900011
- Melkonian, S; Argos, M; Pierce, BL; Chen, Y; Islam, T; Ahmed, A; Syed, EH; Parvez, F; Graziano, J; Rathouz,
 PJ; Ahsan, H. (2011). A prospective study of the synergistic effects of arsenic exposure and smoking, sun exposure, fertilizer use, and pesticide use on risk of premalignant skin lesions in Bangladeshi men. Am J Epidemiol 173: 183-191. http://dx.doi.org/10.1093/aje/kwq357
- Milton, AH; Hasan, Z; Rahman, A; Rahman, M. (2001). Chronic arsenic poisoning and respiratory effects in Bangladesh. J Occup Health 43: 136-140. <u>http://dx.doi.org/10.1539/joh.43.136</u>
- Milton, AH; Rahman, M. (2002). Respiratory effects and arsenic contaminated well water in Bangladesh. Int J Environ Health Res 12: 175-179. <u>http://dx.doi.org/10.1080/09603120220129346</u>
- Milton, AH; Smith, W; Rahman, B; Hasan, Z; Kulsum, U; Dear, K; Rakibuddin, M; Ali, A. (2005). Chronic arsenic exposure and adverse pregnancy outcomes in Bangladesh. Epidemiology 16: 82-86. http://dx.doi.org/10.1097/01.ede.0000147105.94041.e6
- Mitra, AK; Bose, BK; Kabir, H; Das, BK; Hussain, M. (2002). Arsenic-related health problems among hospital patients in southern Bangladesh. J Health Popul Nutr 20: 198-204.
- Moon, KA; Guallar, E; Umans, JG; Devereux, RB; Best, LG; Francesconi, KA; Goessler, W; Pollak, J; Silbergeld, EK; Howard, BV; Navas-Acien, A. (2013). Association between exposure to low to moderate arsenic levels and incident cardiovascular disease: A prospective cohort study. Ann Intern Med 159: 649-659. http://dx.doi.org/10.7326/0003-4819-159-10-201311190-00719
- Moore, SE; Prentice, AM; Wagatsuma, Y; Fulford, AJC; Collinson, AC; Raqib, R; Vahter, M; Persson, LA; <u>Arifeen, SE.</u> (2009). Early-life nutritional and environmental determinants of thymic size in infants born in rural Bangladesh. Acta Paediatr 98: 1168-1175. <u>http://dx.doi.org/10.1111/j.1651-2227.2009.01292.x</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 20144-53Draft: Do Not Cite or Quote

- Mordukhovich, I; Wright, RO; Amarasiriwardena, C; Baja, E; Baccarelli, A; Suh, H; Sparrow, D; Vokonas, P; Schwartz, J. (2009). Association between low-level environmental arsenic exposure and QT interval duration in a general population study. Am J Epidemiol 170: 739-746. <u>http://dx.doi.org/10.1093/aje/kwp191</u>
- Mosaferi, M; Yunesian, M; Dastgiri, S; Mesdaghinia, A; Esmailnasab, N. (2008). Prevalence of skin lesions and exposure to arsenic in drinking water in Iran. Sci Total Environ 390: 69-76. http://dx.doi.org/10.1016/j.scitotenv.2007.09.035
- Mostafa, M; Cherry, N. (2013). Arsenic in drinking water and renal cancers in rural Bangladesh. Occup Environ Med 70: 768-773. <u>http://dx.doi.org/10.1136/oemed-2013-101443</u>
- Mostafa, MG; McDonald, JC; Cherry, NM. (2008). Lung cancer and exposure to arsenic in rural Bangladesh. Occup Environ Med 65: 765-768. <u>http://dx.doi.org/10.1136/oem.2007.037895</u>
- Mukherjee, SC; Saha, KC; Pati, S; Dutta, RN; Rahman, MM; Sengupta, MK; Ahamed, S; Lodh, D; Das, B;
 Hossain, MA; Nayak, B; Mukherjee, A; Chakraborti, D; Dulta, SK; Palit, SK; Kaies, I; Barua, AK; Asad,
 KA. (2005). Murshidabad--one of the nine groundwater arsenic-affected districts of West Bengal, India. Part
 II: Dermatological, neurological, and obstetric findings. Clin Toxicol 43: 835-848.
 http://dx.doi.org/10.1080/15563650500357495
- Mumford, JL; Wu, K; Xia, Y; Kwok, R; Yang, Z; Foster, J; Sanders, WE. (2007). Chronic arsenic exposure and cardiac repolarization abnormalities with QT interval prolongation in a population-based study. Environ Health Perspect 115: 690-694. <u>http://dx.doi.org/10.1289/ehp.9686</u>
- Nabi, AH; Rahman, MM; Islam, LN. (2005). Evaluation of biochemical changes in chronic arsenic poisoning among Bangladeshi patients. Int J Environ Res Public Health 2: 385-393.
- <u>Nafees, AA; Kazi, A; Fatmi, Z; Irfan, M; Ali, A; Kayama, F.</u> (2011). Lung function decrement with arsenic exposure to drinking groundwater along River Indus: a comparative cross-sectional study. Environ Geochem Health 33: 203-216. <u>http://dx.doi.org/10.1007/s10653-010-9333-7</u>
- <u>Nakadaira, H; Endoh, K; Katagiri, M; Yamamoto, M.</u> (2002). Elevated mortality from lung cancer associated with arsenic exposure for a limited duration. J Occup Environ Med 44: 291-299. <u>http://dx.doi.org/10.1097/00043764-200203000-00017</u>
- Navas-Acien, A; Silbergeld, EK; Pastor-Barriuso, R; Guallar, E. (2008). Arsenic exposure and prevalence of type 2 diabetes in US adults. JAMA 300: 814-822. http://dx.doi.org/10.1001/jama.300.7.814
- <u>Navas-Acien, A; Silbergeld, EK; Pastor-Barriuso, R; Guallar, E.</u> (2009). Rejoinder: Arsenic exposure and prevalence of type 2 diabetes: updated findings from the National Health Nutrition and Examination Survey, 2003-2006 [Comment]. Epidemiology 20: 816-820. <u>http://dx.doi.org/10.1097/EDE.0b013e3181afef88</u>
- Ng, JC; Wang, JP; Zheng, B; Zhai, C; Maddalena, R; Liu, F; Moore, MR. (2005). Urinary porphyrins as biomarkers for arsenic exposure among susceptible populations in Guizhou province, China. Toxicol Appl Pharmacol 206: 176-184. <u>http://dx.doi.org/10.1016/j.taap.2004.09.021</u>
- Nizam, S; Kato, M; Yatsuya, H; Khalequzzaman, M; Ohnuma, S; Naito, H; Nakajima, T. (2013). Differences in urinary arsenic metabolites between diabetic and non-diabetic subjects in Bangladesh. Int J Environ Res Public Health 10: 1006-1019. <u>http://dx.doi.org/10.3390/ijerph10031006</u>
- <u>O'Bryant, SE; Edwards, M; Menon, CV; Gong, G; Barber, R.</u> (2011). Long-term low-level arsenic exposure is associated with poorer neuropsychological functioning: a Project FRONTIER study. Int J Environ Res Public Health 8: 861-874. <u>http://dx.doi.org/10.3390/ijerph8030861</u>
- Ojajarvi, IA; Partanen, TJ; Ahlbom, A; Boffetta, P; Hakulinen, T; Jourenkova, N; Kauppinen, TP; Kogevinas, M; Porta, M; Vainio, HU; Weiderpass, E; Wesseling, CH. (2000). Occupational exposures and pancreatic cancer: a meta-analysis. Occup Environ Med 57: 316-324. <u>http://dx.doi.org/10.1136/oem.57.5.316</u>

- Osorio-Yáñez, C; Ayllon-Vergara, JC; Aguilar-Madrid, G; Arreola-Mendoza, L; Hernández-Castellanos, E; Barrera-Hernández, A; De Vizcaya-Ruiz, A; Del Razo, LM. (2013). Carotid intima-media thickness and plasma asymmetric dimethylarginine in Mexican children exposed to inorganic arsenic. Environ Health Perspect 121: 1090-1096. <u>http://dx.doi.org/10.1289/ehp.1205994</u>
- Otto, D; He, L; Xia, Y; Li, Y; Wu, K; Ning, Z; Zhao, B; Hudnell, HK; Kwok, R; Mumford, J; Geller, A; Wade, <u>T.</u> (2006). Neurosensory effects of chronic exposure to arsenic via drinking water in Inner Mongolia: II. Vibrotactile and visual function. J Water Health 4: 39-48.
- Otto, D; Xia, Y; Li, Y; Wu, K; He, L; Telech, J; Hundell, H; Prah, J; Mumford, J; Wade, T. (2007). Neurosensory effects of chronic human exposure to arsenic associated with body burden and environmental measures. Hum Exp Toxicol 26: 169-177. <u>http://dx.doi.org/10.1177/0960327107070561</u>
- Palaneeswari, MS; Rajan, PMAS; Silambanan, S; Jothimalar, S. (2013). Blood arsenic and cadmium concentrations in end-stage renal disease patients who were on maintenance haemodialysis. Journal of Clinical and Diagnostic Research 7: 809-813. <u>http://dx.doi.org/10.7860/JCDR/2013/5351.2945</u>
- Pan, WC; Seow, WJ; Kile, ML; Hoffman, EB; Quamruzzaman, Q; Rahman, M; Mahiuddin, G; Mostofa, G; Lu, Q; Christiani, DC. (2013). Association of low to moderate levels of arsenic exposure with risk of type 2 diabetes in Bangladesh. Am J Epidemiol 178: 1563-1570. <u>http://dx.doi.org/10.1093/aje/kwt195</u>
- Park, JH; Lee, DW; Park, KS; Joung, H. (2014). Serum trace metal levels in Alzheimer's disease and normal control groups. Am J Alzheimers Dis Other Demen 29: 76-83. <u>http://dx.doi.org/10.1177/1533317513506778</u>
- Parvez, F; Chen, Y; Brandt-Rauf, PW; Bernard, A; Dumont, X; Slavkovich, V; Argos, M; D'Armiento, J; Foronjy, R; Hasan, MR; Eunus, HE; Graziano, JH; Ahsan, H. (2008). Nonmalignant respiratory effects of chronic arsenic exposure from drinking water among never-smokers in Bangladesh. Environ Health Perspect 116: 190-195. <u>http://dx.doi.org/10.1289/ehp.9507</u>
- Parvez, F; Chen, Y; Brandt-Rauf, PW; Slavkovich, V; Islam, T; Ahmed, A; Argos, M; Hassan, R; Yunus, M; Haque, SE; Balac, O; Graziano, JH; Ahsan, H. (2010). A prospective study of respiratory symptoms associated with chronic arsenic exposure in Bangladesh: findings from the Health Effects of Arsenic Longitudinal Study (HEALS). Thorax 65: 528-533. <u>http://dx.doi.org/10.1136/thx.2009.119347</u>
- Parvez, F; Chen, Y; Yunus, M; Olopade, C; Segers, S; Slavkovich, V; Argos, M; Hasan, R; Ahmed, A; Islam, T; Akter, MM; Graziano, JH; Ahsan, H. (2013). Arsenic exposure and impaired lung function. Findings from a large population-based prospective cohort study. Am J Respir Crit Care Med 188: 813-819. <u>http://dx.doi.org/10.1164/rccm.201212-2282OC</u>
- Paul, S; Das, N; Bhattacharjee, P; Banerjee, M; Das, JK; Sarma, N; Sarkar, A; Bandyopadhyay, AK; Sau, TJ; Basu, S; Banerjee, S; Majumder, P; Giri, AK. (2013). Arsenic-induced toxicity and carcinogenicity: a twowave cross-sectional study in arsenicosis individuals in West Bengal, India. J Expo Sci Environ Epidemiol 23: 156-162. <u>http://dx.doi.org/10.1038/jes.2012.91</u>
- Pavittranon, S; Sripaoraya, K; Ramchuen, S; Kachamatch, S; Puttaprug, W; Pamornpusirikul, N; Thaicharuen, S; Rujiwanitchkul, S; Walueng, W. (2003). Laboratory case identification of arsenic in Ronpibul village, Thailand (2000-2002). J Environ Sci Health A Tox Hazard Subst Environ Eng 38: 213-221. http://dx.doi.org/10.1081/ESE-120016890
- Pei, Q; Ma, N; Zhang, J; Xu, W; Li, Y; Ma, Z; Li, Y; Tian, F; Zhang, W; Mu, J; Li, Y; Wang, D; Liu, H; Yang, M; Ma, C; Yun, F. (2013). Oxidative DNA damage of peripheral blood polymorphonuclear leukocytes, selectively induced by chronic arsenic exposure, is associated with extent of arsenic-related skin lesions. Toxicol Appl Pharmacol 266: 143-149. <u>http://dx.doi.org/10.1016/j.taap.2012.10.031</u>
- <u>Perry, K; Bowler, RG; Buckell, HM; Druett, HA; Schilling, RSF.</u> (1948). Studies in the incidence of cancer in a factory handling inorganic compounds of arsenic: II. Clinical and environmental investigations. Br J Ind Med 5: 6-15.

- <u>Pesch, B; Ranft, U; Jakubis, P; Nieuwenhuijsen, MJ; Hergemöller, A; Unfried, K; Jakubis, M; Miskovic, P; Keegan, T; Group, atES.</u> (2002). Environmental arsenic exposure from a coal-burning power plant as a potential risk factor for nonmelanoma skin carcinoma: results from a case-control study in the district of Prievidza, Slovakia. Am J Epidemiol 155: 798-809. <u>http://dx.doi.org/10.1093/aje/155.9.798</u>
- <u>Pesola, GR; Parvez, F; Chen, Y; Ahmed, A; Hasan, R; Ahsan, H.</u> (2012). Arsenic exposure from drinking water and dyspnoea risk in Araihazar, Bangladesh: a population-based study. Eur Respir J. <u>http://dx.doi.org/10.1183/09031936.00042611</u>
- Pi, J; Yamauchi, H; Sun, G; Yoshida, T; Aikawa, H; Fujimoto, W; Iso, H; Cui, R; Waalkes, MP; Kumagai, Y. (2005). Vascular dysfunction in patients with chronic arsenosis can be reversed by reduction of arsenic exposure. Environ Health Perspect 113: 339-341. <u>http://dx.doi.org/10.1289/ehp.7471</u>
- Pierce, BL; Argos, M; Chen, Y; Melkonian, S; Parvez, F; Islam, T; Ahmed, A; Hasan, R; Rathouz, PJ; Ahsan, H. (2011). Arsenic exposure, dietary patterns, and skin lesion risk in Bangladesh: A prospective study. Am J Epidemiol 173: 345-354. <u>http://dx.doi.org/10.1093/aje/kwq366</u>
- Pinto, SS; Enterline, PE; Henderson, V; Varner, MO. (1977). Mortality experience in relation to a measured arsenic trioxide exposure. Environ Health Perspect 19: 127-130. http://dx.doi.org/10.2307/3428462
- Pinto, SS; Henderson, V; Enterline, PE. (1978). Mortality experience of arsenic-exposed workers. Arch Environ Health 33: 325-331.
- Pollack, AZ; Louis, GM; Chen, Z; Peterson, CM; Sundaram, R; Croughan, MS; Sun, L; Hediger, ML; Stanford, JB; Varner, MW; Palmer, CD; Steuerwald, AJ; Parsons, PJ. (2013). Trace elements and endometriosis: The ENDO study. Reprod Toxicol 42: 41-48. <u>http://dx.doi.org/10.1016/j.reprotox.2013.05.009</u>
- Rahman, A; Persson, LÅ; Nermell, B; El Arifeen, S; Ekström, EC; Smith, AH; Vahter, M. (2010). Arsenic exposure and risk of spontaneous abortion, stillbirth, and infant mortality. Epidemiology 21: 797-804. http://dx.doi.org/10.1097/EDE.0b013e3181f56a0d
- <u>Rahman, A; Vahter, M; Ekström, EC; Persson, LA.</u> (2011). Arsenic exposure in pregnancy increases the risk of lower respiratory tract infection and diarrhea during infancy in Bangladesh. Environ Health Perspect 119: 719-724. <u>http://dx.doi.org/10.1289/ehp.1002265</u>
- <u>Rahman, M; Axelson, A.</u> (2001). Arsenic ingestion and health effects in Bangladesh: Epidemiological observations. In WR Chappell; CO Abernathy; RL Calderon (Eds.), Arsenic exposure and health effects IV (pp. 193-199). Amsterdam, The Netherlands: Elsevier Science.
- Rahman, M; Axelson, O. (1995). Diabetes mellitus and arsenic exposure: A second look at case-control data from a Swedish copper smelter. Occup Environ Med 52: 773-774. <u>http://dx.doi.org/10.1136/oem.52.11.773</u>
- Rahman, M; Sohel, N; Yunus, M; Chowdhury, ME; Hore, SK; Zaman, K; Bhuiya, A; Streatfield, PK. (2013). Increased childhood mortality and arsenic in drinking water in Matlab, Bangladesh: a population-based cohort study. PLoS ONE 8: e55014. <u>http://dx.doi.org/10.1371/journal.pone.0055014</u>
- Rahman, M; Tondel, M; Ahmad, SA; Axelson, O. (1998). Diabetes mellitus associated with arsenic exposure in Bangladesh. Am J Epidemiol 148: 198-203.
- Rahman, M; Tondel, M; Ahmad, SA; Chowdhury, IA; Faruquee, MH; Axelson, O. (1999a). Hypertension and arsenic exposure in Bangladesh. Hypertension 33: 74-78. <u>http://dx.doi.org/10.1161/01.HYP.33.1.74</u>
- Rahman, M; Tondel, M; Chowdhury, IA; Axelson, O. (1999b). Relations between exposure to arsenic, skin lesions, and glucosuria. Occup Environ Med 56: 277-281. <u>http://dx.doi.org/10.1136/oem.56.4.277</u>
- Rahman, M; Vahter, M; Sohel, N; Yunus, M; Wahed, MA; Streatfield, PK; Ekström, EC; Persson, LA. (2006). Arsenic exposure and age and sex-specific risk for skin lesions: A population-based case-referent study in Bangladesh. Environ Health Perspect 114: 1847-1852. <u>http://dx.doi.org/10.1289/ehp.9207</u>
- Rahman, M; Wingren, G; Axelson, O. (1996). Diabetes mellitus among Swedish art glass workers -- an effect of arsenic exposure? Scand J Work Environ Health 22: 146-149. <u>http://dx.doi.org/10.5271/sjweh.123</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 20144-56Draft: Do Not Cite or Quote

- <u>Ranft, U; Miskovic, P; Pesch, B; Jakubis, P; Fabianova, E; Keegan, T; Hergemöller, A; Jakubis, M;</u>
 <u>Nieuwenhuijsen, MJ; Group, ES.</u> (2003). Association between arsenic exposure from a coal-burning power plant and urinary arsenic concentrations in Prievidza District, Slovakia. Environ Health Perspect 111: 889-894. http://dx.doi.org/10.1289/ehp.5838
- Raqib, R; Ahmed, S; Sultana, R; Wagatsuma, Y; Mondal, D; Hoque, AM; Nermell, B; Yunus, M; Roy, S; Persson, LA; Arifeen, SE; Moore, S; Vahter, M. (2009). Effects of in utero arsenic exposure on child immunity and morbidity in rural Bangladesh. Toxicol Lett 185: 197-202. http://dx.doi.org/10.1016/j.toxlet.2009.01.001
- <u>Rhee, SY; Hwang, YC; Woo, JT; Chin, SO; Chon, S; Kim, YS.</u> (2013). Arsenic exposure and prevalence of diabetes mellitus in Korean adults. J Korean Med Sci 28: 861-868. <u>http://dx.doi.org/10.3346/jkms.2013.28.6.861</u>
- Rosado, JL; Ronquillo, D; Kordas, K; Rojas, O; Alatorre, J; Lopez, P; Garcia-Vargas, G; Caamano, MDC; Cebrian, ME; Stoltzfus, RJ. (2007). Arsenic exposure and cognitive performance in Mexican schoolchildren. Environ Health Perspect 115: 1371-1375. http://dx.doi.org/10.1289/ehp.9961
- Rosales-Castillo, JA; Acosta-Saavedra, LC; Torres, R; Ochoa-Fierro, J; Borja-Aburto, VH; Lopez-Carrillo, L; Garcia-Vargas, GG; Gurrola, GB; Cebrian, ME; Calderón-Aranda, ES. (2004). Arsenic exposure and human papillomavirus response in non-melanoma skin cancer Mexican patients: a pilot study. Int Arch Occup Environ Health 77: 418-423. <u>http://dx.doi.org/10.1007/s00420-004-0527-0</u>
- <u>Saha, A; Chowdhury, MI; Nazim, M; Alam, MM; Ahmed, T; Hossain, MB; Hore, SK; Sultana, GN;</u>
 <u>Svennerholm, AM; Qadri, F.</u> (2013). Vaccine specific immune response to an inactivated oral cholera vaccine and EPI vaccines in a high and low arsenic area in Bangladeshi children. Vaccine 31: 647-652. http://dx.doi.org/10.1016/j.vaccine.2012.11.049
- Sawada, N; Iwasaki, M; Inoue, M; Takachi, R; Sasazuki, S; Yamaji, T; Shimazu, T; Tsugane, S. (2013). Dietary arsenic intake and subsequent risk of cancer: The Japan Public Health Center-based (JPHC) prospective study. Cancer Causes Control 24: 1403-1415. <u>http://dx.doi.org/10.1007/s10552-013-0220-2</u>
- Schäfer, T; Heinrich, J; Wjst, M; Krause, C; Adam, H; Ring, J; Wichmann, HE. (1999). Indoor risk factors for atopic eczema in school children from East Germany. Environ Res 81: 151-158. <u>http://dx.doi.org/10.1006/enrs.1999.3964</u>
- See, LC; Chiou, HY; Lee, JS; Hsueh, YM; Lin, SM; Tu, MC; Yang, ML; Chen, CJ. (2007). Dose-response relationship between ingested arsenic and cataracts among residents in Southwestern Taiwan. J Environ Sci Health A Tox Hazard Subst Environ Eng 42: 1843-1851. <u>http://dx.doi.org/10.1080/10934520701566884</u>
- Sen, J; Chaudhuri, ABD. (2008). Arsenic exposure through drinking water and its effect on pregnancy outcome in Bengali women. Arh Hig Rada Toksikol 59: 271-275. <u>http://dx.doi.org/10.2478/10004-1254-59-2008-1871</u>
- Sengupta, M; Deb, I; Sharma, GD; Kar, KK. (2013). Human sperm and other seminal constituents in male infertile patients from arsenic and cadmium rich areas of Southern Assam. Sys Biol Reprod Med 59: 199-209. <u>http://dx.doi.org/10.3109/19396368.2013.783143</u>
- Seow, WJ; Pan, WC; Kile, ML; Baccarelli, AA; Quamruzzaman, Q; Rahman, M; Mahiuddin, G; Mostofa, G;
 Lin, X; Christiani, DC. (2012). Arsenic reduction in drinking water and improvement in skin lesions: a follow-up study in Bangladesh. Environ Health Perspect 120: 1733-1738. http://dx.doi.org/10.1289/ehp.1205381
- Shen, H; Xu, W; Zhang, J; Chen, M; Martin, FL; Xia, Y; Liu, L; Dong, S; Zhu, YG. (2013). Urinary metabolic biomarkers link oxidative stress indicators associated with general arsenic exposure to male infertility in a Han Chinese population. Environ Sci Technol 47: 88438851. <u>http://dx.doi.org/10.1021/es402025n</u>

- Shiue, I. (2013). Association of urinary arsenic, heavy metal, and phthalate concentrations with food allergy in adults: National Health and Nutrition Examination Survey, 2005-2006 [Letter]. Ann Allergy Asthma Immunol 111: 421-423. <u>http://dx.doi.org/10.1016/j.anai.2013.08.006</u>
- Sińczuk-Walczak, H; Szymczak, M; Hałatek, T. (2010). Effects of occupational exposure to arsenic on the nervous system: clinical and neurophysiological studies. Int J Occup Med Environ Health 23: 347-355. http://dx.doi.org/10.2478/v10001-010-0034-3
- Smith, AH; Arroyo, AP; Mazumder, DN; Kosnett, MJ; Hernandez, AL; Beeris, M; Smith, MM; Moore, LE. (2000). Arsenic-induced skin lesions among Atacameño people in Northern Chile despite good nutrition and centuries of exposure. Environ Health Perspect 108: 617-620.
- Smith, AH; Marshall, G; Yuan, Y; Liaw, J; Ferreccio, C; Steinmaus, C. (2011). Evidence from Chile that arsenic in drinking water may increase mortality from pulmonary tuberculosis. Am J Epidemiol 173: 414-420. http://dx.doi.org/10.1093/aje/kwq383
- Smith, AH; Yunus, M; Khan, AF; Ercumen, A; Yuan, Y; Smith, MH; Liaw, J; Balmes, J; von Ehrenstein, O; Raqib, R; Kalman, D; Alam, DS; Streatfield, PK; Steinmaus, C. (2013). Chronic respiratory symptoms in children following in utero and early life exposure to arsenic in drinking water in Bangladesh. Int J Epidemiol 42: 1077-1086. <u>http://dx.doi.org/10.1093/ije/dyt120</u>
- Sobel, W; Bond, GG; Skowronski, BJ; Brownson, PJ; Cook, RR. (1987). A soft tissue sarcoma case control study in a large multi-chemical manufacturing facility. Chemosphere 16: 2095-2099. http://dx.doi.org/10.1016/0045-6535(87)90214-1
- Sohel, N; Persson, LA; Rahman, M; Streatfield, PK; Yunus, M; Ekström, EC; Vahter, M. (2009). Arsenic in drinking water and adult mortality: a population-based cohort study in rural Bangladesh. Epidemiology 20: 824-830. <u>http://dx.doi.org/10.1097/EDE.0b013e3181bb56ec</u>
- Sorahan, T. (2009). Lung cancer mortality in arsenic-exposed workers from a cadmium recovery plant. Occup Med (Lond) 59: 264-266. <u>http://dx.doi.org/10.1093/occmed/kqp046</u>
- Steinmaus, C; Yuan, Y; Smith, AH. (2009). Low-level population exposure to inorganic arsenic in the United States and diabetes mellitus: a reanalysis. Epidemiology 20: 807-815. http://dx.doi.org/10.1097/EDE.0b013e3181b0fd29
- Steinmaus, CM; Ferreccio, C; Acevedo Romo, J; Yuan, Y; Cortes, S; Marshall, G; Moore, LE; Balmes, J. R.; Liaw, J; Golden, T; Smith, AH. (2013). Drinking water arsenic in northern Chile: high cancer risks 40 years after exposure cessation. Cancer Epidemiol Biomarkers Prev 22: 623-630. <u>http://dx.doi.org/10.1158/1055-9965.EPI-12-1190</u>
- Surdu, S; Fitzgerald, EF; Bloom, MS; Boscoe, FP; Carpenter, DO; Haase, RF; Gurzau, E; Rudnai, P; Koppova, K; Févotte, J; Vahter, M; Leonardi, G; Goessler, W; Kumar, R; Fletcher, T. (2013). Occupational exposure to arsenic and risk of non-melanoma skin cancer in a multinational European study. Int J Cancer. <u>http://dx.doi.org/10.1002/ijc.28216</u>
- Syed, EH; Melkonian, S; Poudel, KC; Yasuoka, J; Otsuka, K; Ahmed, A; Islam, T; Parvez, F; Slavkovich, V; Graziano, JH; Ahsan, H; Jimba, M. (2013). Arsenic exposure and oral cavity lesions in Bangladesh. J Occup Environ Med 55: 59-66. <u>http://dx.doi.org/10.1097/JOM.0b013e31826bb686</u>
- Syed, EH; Poudel, KC; Sakisaka, K; Yasuoka, J; Ahsan, H; Jimba, M. (2012). Quality of life and mental health status of arsenic-affected patients in a Bangladeshi population. J Health Popul Nutr 30: 262-269.
- <u>Taylor, PR; Qiao, YL; Schatzkin, A; Yao, SX; Lubin, J; Mao, BL; Rao, JY; McAdams, M; Xuan, XZ; Li, JY.</u> (1989). Relation of arsenic exposure to lung cancer among tin miners in Yunnan Province, China. Br J Ind Med 46: 881-886.

- <u>'T Mannetje, A; Bencko, V; Brennan, P; Zaridze, D; Szeszenia-Dabrowska, N; Rudnai, P; Lissowska, J;</u> <u>Fabiánová, E; Cassidy, A; Mates, D; Foretova, L; Janout, V; Fevotte, J; Fletcher, T; Boffetta, P.</u> (2011). Occupational exposure to metal compounds and lung cancer. Results from a multi-center case-control study in Central/Eastern Europe and UK. Cancer Causes Control 22: 1669-1680. <u>http://dx.doi.org/10.1007/s10552-011-9843-3</u>
- Tondel, M; Rahman, M; Magnuson, A; Chowdhury, IA; Faruquee, MH; Ahmad, SA. (1999). The relationship of arsenic levels in drinking water and the prevalence rate of skin lesions in Bangladesh. Environ Health Perspect 107: 727-729. http://dx.doi.org/10.2307/3434658
- Tseng, CH; Chong, CK; Chen, CJ; Tai, TY. (1996). Dose-response relationship between peripheral vascular disease and ingested inorganic arsenic among residents in blackfoot disease endemic villages in Taiwan. Atherosclerosis 120: 125-133. <u>http://dx.doi.org/10.1016/0021-9150(95)05693-9</u>
- Tseng, CH; Chong, CK; Chen, CJ; Tai, TY. (1997). Lipid profile and peripheral vascular disease in arseniasishyperendemic villages in Taiwan. Angiology 48: 321-335. <u>http://dx.doi.org/10.1177/000331979704800405</u>
- <u>Tseng, CH; Chong, CK; Tseng, CP; Hsueh, YM; Chiou, HY; Tseng, CC; Chen, CJ.</u> (2003). Long-term arsenic exposure and ischemic heart disease in arseniasis-hyperendemic villages in Taiwan. Toxicol Lett 137: 15-21. http://dx.doi.org/10.1016/S0378-4274(02)00377-6
- Tseng, CH; Tai, TY; Chong, CK; Tseng, CP; Lai, MS; Lin, BJ; Chiou, HY; Hsueh, YM; Hsu, KH; Chen, CJ. (2000). Long-term arsenic exposure and incidence of non-insulin-dependent diabetes mellitus: a cohort study in arseniasis-hyperendemic villages in Taiwan. Environ Health Perspect 108: 847-851. http://dx.doi.org/10.1289/ehp.00108847
- Tseng, HP; Wang, YH; Wu, MM; The, HW; Chiou, HY; Chen, CJ. (2006). Association between chronic exposure to arsenic and slow nerve conduction velocity among adolescents in Taiwan. J Health Popul Nutr 24: 182-189.
- Tsuda, T; Babazono, A; Yamamoto, E; Kurumatani, N; Mino, Y; Ogawa, T; Kishi, Y; Aoyama, H. (1995). Ingested arsenic and internal cancer: A historical cohort study followed for 33 years. Am J Epidemiol 141: 198-209.
- Valentine, JL; Bennett, RG; Borok, ME; Faraji, B. (1991). Environmental arsenic and skin toxicity. In B Molčilović (Ed.), Trace elements in man and animals 7 (pp. 383-384). Zagreb, Yugoslavia: Institute for Medical Research and Occupational Health, University of Zagreb.
- <u>Valenzuela, OL; Borja-Aburto, VH; Garcia-Vargas, GG; Cruz-Gonzalez, MB; Garcia-Montalvo, EA; Calderon-Aranda, ES; Del Razo, LM.</u> (2005). Urinary trivalent methylated arsenic species in a population chronically exposed to inorganic arsenic. Environ Health Perspect 113: 250-254. <u>http://dx.doi.org/10.1289/ehp.7519</u>
- Von Ehrenstein, OS; Guha Mazumder, DN; Hira-Smith, M; Ghosh, N; Yuan, Y; Windham, G; Ghosh, A; Haque, R; Lahiri, S; Kalman, D; Das, S; Smith, AH. (2006). Pregnancy outcomes, infant mortality, and arsenic in drinking water in West Bengal, India. Am J Epidemiol 163: 662-669. http://dx.doi.org/10.1093/aje/kwj089
- Von Ehrenstein, OS; Mazumder, DN; Yuan, Y; Samanta, S; Balmes, J; Sil, A; Ghosh, N; Hira-Smith, M; Haque, <u>R; Purushothamam, R; Lahiri, S; Das, S; Smith, AH.</u> (2005). Decrements in lung function related to arsenic in drinking water in West Bengal, India. Am J Epidemiol 162: 533-541. <u>http://dx.doi.org/10.1093/aje/kwi236</u>
- Wade, TJ; Xia, Y; Wu, K; Li, Y; Ning, Z; Le, XC; Lu, X; Feng, Y; He, X; Mumford, JL. (2009). Increased mortality associated with well-water arsenic exposure in Inner Mongolia, China. Int J Environ Res Public Health 6: 1107-1123. <u>http://dx.doi.org/10.3390/ijerph6031107</u>
- Wadhwa, SK; Kazi, TG; Chandio, AA; Afridi, HI; Kolachi, NF; Khan, S; Kandhro, GA; Nasreen, S; Shah, AQ; Baig, JA. (2011a). Comparative study of liver cancer patients in arsenic exposed and non-exposed areas of Pakistan. Biol Trace Elem Res 144: 86-96. <u>http://dx.doi.org/10.1007/s12011-011-9036-7</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 20144-59Draft: Do Not Cite or Quote

- Wadhwa, SK; Kazi, TG; Kolachi, NF; Afridi, HI; Khan, S; Chandio, AA; Shah, AQ; Kandhro, GA; Nasreen, S. (2011b). Case-control study of male cancer patients exposed to arsenic-contaminated drinking water and tobacco smoke with relation to non-exposed cancer patients. Hum Exp Toxicol 30: 2013-2022. http://dx.doi.org/10.1177/0960327111408154
- Wang, CH; Chen, CL; Hsiao, CK; Chiang, FT; Hsu, LI; Chiou, HY; Hsueh, YM; Wu, MM; Chen, CJ. (2009). Increased risk of QT prolongation associated with atherosclerotic diseases in arseniasis-endemic area in southwestern coast of Taiwan. Toxicol Appl Pharmacol 239: 320-324. http://dx.doi.org/10.1016/j.taap.2009.06.017
- Wang, CH; Chen, CL; Hsiao, CK; Chiang, FT; Hsu, LI; Chiou, HY; Hsueh, YM; Wu, MM; Chen, CJ. (2010). Arsenic-induced QT dispersion is associated with atherosclerotic diseases and predicts long-term cardiovascular mortality in subjects with previous exposure to arsenic: A 17-Year follow-up study. Cardiovasc Toxicol 10: 17-26. <u>http://dx.doi.org/10.1007/s12012-009-9059-x</u>
- Wang, CH; Jeng, JS; Yip, PK; Chen, CL; Hsu, LI; Hsueh, YM; Chiou, HY; Wu, MM; Chen, CJ. (2002). Biological gradient between long-term arsenic exposure and carotid atherosclerosis. Circulation 105: 1804-1809. http://dx.doi.org/10.1161/01.CIR.0000015862.64816.B2
- Wang, SL; Li, WF; Chen, CJ; Huang, YL; Chen, JW; Chang, KH; Tsai, LY; Chou, KM. (2011). Hypertension incidence after tap-water implementation: a 13-year follow-up study in the arseniasis-endemic area of southwestern Taiwan. Sci Total Environ 409: 4528-4535. <u>http://dx.doi.org/10.1016/j.scitotenv.2011.07.058</u>
- Wang, YH; Wu, MM; Hong, CT; Lien, LM; Hsieh, YC; Tseng, HP; Chang, SF; Su, CL; Chiou, HY; Chen, CJ. (2007). Effects of arsenic exposure and genetic polymorphisms of p53, glutathione S-transferase M1, T1, and P1 on the risk of carotid atherosclerosis in Taiwan. Atherosclerosis 192: 305-312. http://dx.doi.org/10.1016/j.atherosclerosis.2006.07.029
- Welch, K; Higgins, I; Oh, M; Burchfiel, C. (1982). Arsenic exposure, smoking, and respiratory cancer in copper smelter workers. Arch Environ Occup Health 37: 325-335.
- Wu, F; Jasmine, F; Kibriya, MG; Liu, M; Wójcik, O; Parvez, F; Rahaman, R; Roy, S; Paul-Brutus, R; Segers, S;
 <u>Slavkovich, V; Islam, T; Levy, D; Mey, JL; van Geen, A; Graziano, JH; Ahsan, H; Chen, Y.</u> (2012).
 Association Between Arsenic Exposure From Drinking Water and Plasma Levels of Cardiovascular Markers.
 Am J Epidemiol. <u>http://dx.doi.org/10.1093/aje/kwr464</u>
- Wu, MM; Chiou, HY; Hsueh, YM; Hong, CT; Su, CL; Chang, SF; Huang, WL; Wang, HT; Wang, YH; Hsieh, YC; Chen, CJ. (2006). Effect of plasma homocysteine level and urinary monomethylarsonic acid on the risk of arsenic-associated carotid atherosclerosis. Toxicol Appl Pharmacol 216: 168-175. <u>http://dx.doi.org/10.1016/j.taap.2006.05.005</u>
- Wu, MM; Chiou, HY; Lee, TC; Chen, CL; Hsu, LI; Wang, YH; Huang, WL; Hsieh, YC; Yang, TY; Lee, CY; Yip, PK; Wang, CH; Hsueh, YM; Chen, CJ. (2010). GT-repeat polymorphism in the heme oxygenase-1 gene promoter and the risk of carotid atherosclerosis related to arsenic exposure. J Biomed Sci 17: 70. <u>http://dx.doi.org/10.1186/1423-0127-17-70</u>
- Xia, Y; Wade, TJ; Wu, K; Li, Y; Ning, Z; Le, XC; He, X; Chen, B; Feng, Y; Mumford, JL. (2009). Well water arsenic exposure, arsenic induced skin-lesions and self-reported morbidity in Inner Mongolia. Int J Environ Res Public Health 6: 1010-1025. <u>http://dx.doi.org/10.3390/ijerph6031010</u>
- Xu, W; Bao, H; Liu, F; Liu, L; Zhu, YG; She, J; Dong, S; Cai, M; Li, L; Li, C; Shen, H. (2012). Environmental exposure to arsenic may reduce human semen quality: associations derived from a Chinese cross-sectional study. Environ Health. <u>http://dx.doi.org/10.1186/1476-069X-11-46</u>
- <u>Yildiz, A; Karaca, M; Biceroglu, S; Nalbantcilar, MT; Coskun, U; Arik, F; Aliyev, F; Yiginer, O; Turkoglu, C.</u> (2008). Effect of chronic arsenic exposure from drinking waters on the QT interval and transmural dispersion of repolarization. J Int Med Res 36: 471-478.

These draft development materials are for review purposes only and do not constitute Agency policy.April 20144-60Draft: Do Not Cite or Quote

- Yuan, Y; Marshall, G; Ferreccio, C; Steinmaus, C; Liaw, J; Bates, M; Smith, AH. (2010). Kidney cancer mortality: Fifty-year latency patterns related to arsenic exposure. Epidemiology 21: 103-108. http://dx.doi.org/10.1097/EDE.0b013e3181c21e46
- Zhang, C; Mao, G; He, S; Yang, Z; Yang, W; Zhang, X; Qiu, W; Ta, N; Cao, L; Yang, H; Guo, X. (2013). Relationship between long-term exposure to low-level arsenic in drinking water and the prevalence of abnormal blood pressure. J Hazard Mater. <u>http://dx.doi.org/10.1016/j.jhazmat.2012.09.045</u>
- Zierold, KM; Knobeloch, L; Anderson, H. (2004). Prevalence of chronic diseases in adults exposed to arseniccontaminated drinking water. Am J Public Health 94: 1936-1937. <u>http://dx.doi.org/10.2105/ajph.94.11.1936</u>

5 EVIDENCE TABLES FOR INORGANIC ARSENIC EPIDEMIOLOGIC STUDIES

1

2

3

4

Epidemiologic studies were limited to inorganic exposure where possible. However, measurements of asenic in urine may include inorganic arsenic, as well as arsenic metabolites. In general, biomarkers of exposure for arsenic represent total arsenic, and arsenic in drinking water represents inorganic arsenic.

5.1 Summary of Observational Epidemiology Studies for Health Effect Category: Bladder Effects

Summary	of Observational Epidemiology Studies for H	ealth Effect Cat	egory: B	ladder Eff	ects	
Reference and Study Design	Exposure Measures					
Baastrup et al. (2008)	Exposure Surrogate: drinking water	Outcome: bladder cancer cumulative arsenic exposure, mg				
Study Type: cohort (prospective)	Exposure Description: cumulative arsenic exposure and time-weighted average arsenic concentrations calculated for	Exp. Level continuous Stat Meth	<u>n</u> NR nod: Cox	<u>IRR</u> 1 regressior	<u>(CI)</u> 0.98, 1.04 1	
Location: Denmark (Copenhagen and Aarhus)	individuals based on residential address and history from Central Population Registry combined with measurement data from nearest water utility as recorded by Geological Survey of					
Population: Danish Cancer Registry population (adults)	Denmark and Greenland (1987-2004)					
n exposed: 56,378	Population-Level Exposure: not available					
n total: 57,053	Exposure Surrogate: drinking water	Outcome: bladder cancer				
		time-weighte	d averag	je arsenic	exposure, μg/L	
	Exposure Description: time-weighted	Exp. Level	<u>n</u>	<u>IRR</u>	<u>(CI)</u>	
	and cumulative arsenic concentrations	continuous	NR	1.01	0.93, 1.11	
	calculated for individuals based on	Stat Meth	od: Cox	regressior	ı	
	residential address and history from					
	Central Population Registry combined					
	with measurement data from nearest					
	water utility as recorded by Geological Survey of Denmark and Greenland (1987-					

Defense and Child	of Observational Epidemiology Studies for H					
Reference and Study	Exposure Measures		ŀ	Results		
Design	2004)					
	2004)					
	Population-Level Exposure:					
	0.7 μg/L median					
Bates et al. (1995)	Exposure Surrogate: drinking water	Outcome: bla	adder car	ncer		
					iects (quartiles),	
		mg	isenic uo	se - un subj	eets (quui tiles)	
Study Type: case-	Exposure Description: cumulative arsenic	Exp. Level	n	<u>adjOR</u>	<u>(CI)</u>	
control	dose estimated from historical arsenic	<19	<u>n</u> NR	<u>aujon</u> 1	<u>(Ci)</u> n/a	
	levels in public drinking water collected	-			-	
ocation: United States	1978-1979 combined with lifetime	19-<33	NR	1.56	0.8, 3.2	
Utah)	residential history and drinking water	33-<53	NR	0.95	0.4, 2.0	
	source at each residence	≥ 53	NR	1.41	0.7, 2.9	
		Stat Met	hod: Unc	onditional ı	multiple logistic	
Population: National	Population-Level Exposure:	regressi	on analys	sis		
Bladder Cancer Survey	19-53 mg range		. ,			
Utah adult respondents		cumulative a		se - ever sn	nokers	
ikely exposed to higher		(quartiles), m	-		(
han average arsenic in		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
Irinking water		<19	NR	1	n/a	
cases: 117		19-<33	NR	3.33	1.0, 10.8	
o control: 266		33-<53	NR	1.93	0.6, 6.2	
		≥ 53	NR	3.32	1.1, 10.3	
		Stat Met	hod: Unc	onditional r	multiple logistic	
		regressi	on analys	sis		
	Exposure Surrogate: urine	Outcome: bladder cancer				
	Exposure surrogate: unite	urine arsenic			20 years	
		exposure) (qu		•	-	
	Exposure Description: estimated arsenic		-			
	concentration in urine based on historic	Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>	
	arsenic levels in public drinking water	<8	NR	1	n/a	
	collected 1978-1979 combined with	8-<10	NR	1.27	0.4, 3.6	
	lifetime residential history, drinking	10-<13	NR	1.26	0.4, 3.6	
	water source at each residence, and ratio	≥ 13	NR	3.07	1.1, 8.4	
	of water to total liquid intake				multiple logistic	
		regressi	on analys	sis		
	Population-Level Exposure:					
	8-74 (mg/L) x yr. range	urine arsenic		•	•	
		exposure) (qu	uartiles),			
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		<8	NR	1	n/a	
		8-<10	NR	1.14	0.6, 2.3	
		10-<13	NR	1.16	0.5, 2.4	
		≥ 13	NR	1.59	0.8, 3.3	
		Stat Met	hod: Unc	onditional r	nultiple logistic	

Reference and Study Design	Exposure Measures						
			urine arsenic concentration (10-19 years				
		exposure, subjects reported to have					
			smoked) (quartiles), (mg/L) x yr.				
		<u>Exp. Level</u>	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>		
		<8	NR	1	n/a		
		8-<10	NR	1.36	0.5, 3.9		
		10-<13	NR	1.57	0.5, 4.5		
		≥ 13	NR	2.92	1.1, 8.0		
			thod: Unc ion analy:		multiple logist		
		exposure, su	urine arsenic concentration (30-39 years exposure, subjects reported to have ever				
		smoked) (quartiles), (mg/L) x yr.					
		Exp. Level <8	<u>n</u> NR	<u>adjOR</u> 1	<u>(CI)</u> n/a		
		<8 8-<10	NR	1.86	0.4 <i>,</i> 9.7		
		10-<13	NR	1.80	0.4, 9.7		
		≥ 13	NR	8.7	0.3, 7.4 1.7, 44		
		Stat Me		onditional ı	multiple logist		
		urine arseni (quartiles), (r.			
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>		
		<33	NR	1	n/a		
		33-<53	NR	0.69	0.3, 1.5		
		53-<74	NR	0.54	0.3, 1.2		
		≥ 74	NR	1	0.5, 2.1		
			thod: Unc ion analy:		multiple logist		
		urine arsenio (quartiles), (r smokers)		
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>		
		<33	NR	1	n/a		
		33-<53	NR	1.95	0.7, 5.6		
		53-<74	NR	1.21	0.4, 3.7		
		≥ 74	NR	1.41	0.5, 4.3		
			thod: Unc ion analy:		multiple logist		
<u>ates et al. (2004)</u>	Exposure Surrogate: drinking water	Outcome: bl	adder car	ncer			
		arsenic conc	entration	(excluding	proxy wells)		

These draft development materials are for review purposes only and do not constitute Agency policy. April 2014 5-3 Draft: Do Not Cite or Quote

	of Observational Epidemiology Studies for I	lealth Effect Ca			cts	
Reference and Study	Exposure Measures		I	Results		
Design		0.50	ND			
control	water concentration estimated for 6-40	0-50	NR	1	n/a	
	years prior to interview based on	51-100	NR	1.11	0.3, 3.7	
Location: Argentina	samples collected from wells near	101-200	NR	0.81	0.3, 2.0	
(Cordoba Province)	individual's current and past residences	>200	NR	0.28	0.1, 1.4	
		Stat Met	hod: Mul	tivariate co	nditional logistic	
	Population-Level Exposure:	regress	ion			
Population:	164 μg/L mean					
Argentinians living in		consumption of well water over				
region with high		smokers only	<i>ι,</i> μg/L			
arsenic water		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
concentrations		No	NR	1	n/a	
n cases: 114		Yes	NR	2.54	1.0, 6.4	
n control: 114		Stat Met	hod: Mul	tivariate un	conditional	
		logistic	regressio	n (adjusted	for highest daily	
		number of cigarettes ever smoked)				
<u>Chen et al. (2010b)</u>	Exposure Surrogate: drinking water	Outcome: all	urinary	ancer		
		arsenic conce			for un/l	
Study Type: cohort	Exposure Description: arsenic	Exp. Level	<u>n</u>	adjRR	<u>(CI)</u>	
prospective)	concentrations in well water estimated	<10	5	1	n/a	
	based on concentration measurements	10-49.9	8	1.66	0.53, 5.21	
Location: Taiwan	from 3,901 samples from 4,584 houses	50-99.9	5	2.42	0.69, 8.54	
region not available	(85.1% of total households)	100-299.9	8	4.13	1.32, 12.9	
egion not available		≥ 300	11	7.8	2.64, 23.1	
	Population-Level Exposure:	Unknown	8	3.4	1.05, 11.0	
Population: adult	0.15-3,000 μg/L range	Stat Met	hod: Cox	proportion	al hazard	
residents of arseniasis-	0.13 5,000 µg/ L tulige	regressi	ion mode	I		
endemic area in northeast		Outcome: ur	othelial c	arcinoma		
n exposed: 5,798		arsenic conce	entration	in well wa	ter. µa/L	
n reference: 2,288		Exp. Level	<u>n</u>	adjRR	<u>(CI)</u>	
n total: 8,086		<10	3	<u>aajiiii</u> 1	n/a	
1 (0(d). 0,000		10-49.9	6	1.85		
					0.45, 7.61	
		50-99.9	3	2.19	0.43, 11.1	
		100-299.9	7	5.5	1.39, 21.8	
		≥ 300	10	10.8	2.90, 40.3	
		Unknown	7	4.34	1.06, 17.7	
				proportion	al hazard	
		regressi	ion mode	I		
	Exposure Surrogate: drinking water	Outcome: all	urinary	cancer		
		cumulative a	rsenic ex	posure con	centration, μg/L	
	Exposure Description: concentration in	year				
	well water measured in samples from	Exp. Level	<u>n</u>	<u>adjRR</u>	<u>(CI)</u>	
	85.1% of total households; cumulative	<400	NR	1	n/a	
	,	400-<1,000	NR	1.11	0.27, 4.54	

-	of Observational Epidemiology Studies for H	ealth Effect Cat			cts
Reference and Study	Exposure Measures		R	lesults	
Design					
	exposure estimated based on self-	1,000-<5,000	NR	2.33	0.86, 6.36
	reported duration of well water	5,000-	NR	3.77	1.13, 12.6
	consumption and concentration at	<10,000			
	current residence when actual	≥ 10,000	NR	7.49	2.70, 20.8
	concentrations not available	unknown	NR	2.98	0.99, 8.95
		Stat Meth	al hazard		
	Population-Level Exposure:	regressio	n model		
	0.15-3,000 µg/L-year range				
		Outcome: uro	thelial ca	arcinoma	
		cumulative ar	senic exp	oosure con	centration, μg/L
		year			
		Exp. Level	<u>n</u>	<u>adjRR</u>	<u>(CI)</u>
		<400	NR	1	n/a
		400-<1,000	NR	1.35	0.22, 8.25
		1,000-<5,000	NR	3.2	0.85, 12.1
		5,000-	NR	6.93	1.62, 29.5
		<10,000			,
		≥ 10,000	NR	12.6	3.40, 46.8
		unknown	NR	4.65	1.16, 18.7
					-
		Stat Method: method not available			
<u>Chiou et al. (1995)</u>	Exposure Surrogate: drinking water	Outcome: blac	cer		
		average arsenic concentration in well wat			
Study Type: cohort	Exposure Description: individual	mg/L			-
(prospective)	exposure estimated using median arsenic	Exp. Level	<u>n</u>	<u>adjRR</u>	<u>(CI)</u>
(prospective)	levels in artesian well water in each	≤ 0.05	6	1	n/a
	village combined with residential history	0.05-0.70	7	1.8	0.6, 5.3
Location: Taiwan	information gathered during individual	>0.71	7	3.3	1.0, 11.1
(Southwestern coast of	interviews	unknown	9	1.2	0.4, 3.4
Taiwan [Peimen,			-	proportion	
Hsuechia, Putai, and		regressio			
Ichu townships])	Population-Level Exposure:	10510	in anarys	15	
	0.78 mg/L median	cumulative wo	ater arse	nic exposu	re, mg/L-yr
Population: BFD		Exp. Level	<u>n</u>	adjRR	<u>(CI)</u>
patients and healthy		0	NR	1	n/a
residents in arseniasis-		0.1-19.9	NR	1.57	0.44, 5.55
endemic townships		>20	NR	3.58	1.05, 12.19
n exposed: 263		Unknown	NR	1.25	0.38, 4.12
n reference: 2,293				proportion	-
n total: 2,556		regressio			
11 total: 2,550		regressio	in unury 5	15	
<u>Chiou et al. (2001a)</u>	Exposure Surrogate: drinking water	Outcome: can	cer of ur	inary orga	ns
		arsenic concer	ntration	in well wa	ter, μg/L
Study Type: cohort	Exposure Description: well water	Exp. Level	<u>n</u>	<u>RR</u>	<u>(CI)</u>
(prospective)	samples collected and analyzed from	0-10.0	3	1	n/a
(p. 00pcouve)	samples concerce and analyzed nom	10.1-50.0	3		0.3, 8.4

Summary o	of Observational Epidemiology Studies for H	ealth Effect Cat	egory: B	ladder Effe	cts	
Reference and Study	Exposure Measures			lesults		
Design						
	3,901 (85.1%) households during home	50.1-100.0	2	2.3	0.4, 14.1	
Location: Taiwan	interview	>100.0	7	4.9	1.2, 20.0	
(Lanyang Basin)				proportion	al hazards	
	Population-Level Exposure:	regressio	n analys	is		
Population: residents	0.15-3,590 μg/L range	Outcome: trar	nsitional	cell carcin	oma	
of arseniasis-endemic		arsenic concer	ntration	in well wat	ter, μg/L	
area of northeastern		Exp. Level	<u>n</u>	<u>RR</u>	<u>(CI)</u>	
Taiwan consuming well		0-10.0	1	1	n/a	
water		10.1-50.0	1	1.9	0.1, 32.2	
n exposed: 8,102		50.1-100.0	2	8.1	0.7, 98.2	
n total: 8,102		>100.0	5	15.1	1.7, 138.5	
				proportion	-	
		regressio				
<u>Chung et al. (2011)</u>	Exposure Surrogate: urine	Outcome: urothelial carcinoma				
		inorganic arsenic percentage (tertiles), μg/g-				
Study Type: case-	Exposure Description: spot urine	creatinine	•	2 .		
control	analyzed; total arsenic = sum of As(III),	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
control	As(V), MMA(V), and DMA(V); relative	<2.86	44	1	n/a	
	proportion of urinary arsenic species	2.86 - 6.03	52	- 1.61	0.91, 2.84	
Location: Taiwan	calculated by dividing each arsenic	≥ 6.03	74	1.15	0.66, 2	
(Taipei)	species level by total arsenic				regression	
					-0	
Population: males and	Population-Level Exposure:	total arsenic c	oncentro	ation (terti	les), μg/g-	
females with urothelial	26.02 μg/g-creatinine mean	creatinine				
carcinoma identified at		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
hospital; controls from		<12.15	13	1	n/a	
same area with no prior		12.15 - 22.10	36	2.8	1.26, 6.21	
cancer history; most		>22.1	121	6.71	3.14, 14.35	
consumed tap water		Stat Meth	od: mult	iple logisti	regression	
n cases: 170 n control: 402						
<u>Chung et al. (2012)</u>	Exposure Surrogate: drinking water	Outcome: blac	dor can	cor		
Chang Ct an (2012)	Laposure Surrogate: armiting water	cumulative wa			re (tertiles)	
Study Type: cohort	Exposure Description: cumulative arsenic	μg/L-year		e exposu		
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
(prospective)	exposure assessment determined by duration of artesian well water use,	<9.1	<u>1</u>	<u>aajon</u> 1	n/a	
	history or residence, and historical data;	9.1-19.5	18	12.91	1.71, 97.59	
Location: Taiwan	cumulative arsenic exposure derived to	≥ 19.5	19	7.74	0.97, 61.51	
(Homei, Fuhsin,	reflect long-term arsenic exposure derived to				al hazard model	
Hsinming)		Stat wieth		μομοιτιση	ai nazaru mouel	
	median well water arsenic (population level exposure reported here) x duration					
Population: residents	of use					
of arseniasis-endemic						

Summary	of Observational Epidemiology Studies for H	lealth Effect Cat	tegory: E	Bladder Effe	ects	
Reference and Study	Exposure Measures			Results		
Design						
areas	Population-Level Exposure:					
n total: 1,563	9.1-19.5 μg/L-year range					
	Exposure Surrogate: drinking water	Outcome: bladder cancer				
					ition (tertiles),	
	Fundation Descriptions information on	mg/L	a urseni	c concentre	tion (terthes),	
	Exposure Description: information on	Exp. Level	n	<u>HR</u>	<u>(CI)</u>	
	median arsenic level in artesian well	<0.05	<u>n</u> 1	1	n/a	
	water of each village acquired from	0.05-0.71	15	4.35	0.56, 33.52	
	previous studies carried out in the early	≥ 0.71	22	7.22	0.95, 55.04	
	1960s (<u>Lai et al., 1994</u>); some study				al hazard model	
	subjects had moved from one village to	Stat Weti	iou. cox	μοροιτιοι	iai nazaru mouei	
	another, and there were differences in					
	arsenic concentrations between villages					
	Population-Level Exposure:					
	0.7-0.93 mg/L range					
	Exposure Surrogate: urine	Outcome: bladder cancer				
		percent DMA in total urinary arsen		enic		
	Exposure Description: urine samples of	concentration (tertiles), %				
	1,078 subjects collected at time of	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
	recruitment; all arsenic assays performed	≥ 85.8	5	1	n/a	
	within 6 months of sample collection	76.13-85.8	4	0.7	0.19, 2.62	
		<76.13	19	3.05	1.11, 8.37	
	Population-Level Exposure:	Stat Meth	nod: Cox	proportion	al hazard model	
	not available	norcont in orc		onic in tota	al urinary arsenic	
		concentration				
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		<4.22	4	1	n/a	
		4.22-7.86	10	2.42	0.75, 7.79	
		≥ 7.86	14	3.53	1.16, 10.77	
		Stat Meth	nod: Cox	proportion	al hazard model	
		percent MMA	in total	urinarv ar	senic	
		concentration		-		
		Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>	
		<8.34	7	1	n/a	
		8.34-15.31	4	0.57	0.17, 1.95	
		≥ 15.31	17	1.77	0.72, 4.36	
		Stat Meth	nod: Cox	proportior	al hazard model	
<u>Chung et al. (2013)</u>	Exposure Surrogate: urine	Outcome: uri	nary car	cinoma		
		percent DMA			enic	
Study Types		concentration		-	Cine	
Study Type: case-	Exposure Description: spot urine	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		LAP. LEVEL	<u></u>	aujun		

These draft development materials are for review purposes only and do not constitute Agency policy. April 2014 Draft: Do Not Cite or Quote 5-7

Summary of	of Observational Epidemiology Studies for H	lealth Effect Cat	egory: B	ladder Effe	cts
Reference and Study Design	Exposure Measures			Results	
control	samples collected at time of recruitment from each individual; detection limits for As(III), DMA(V), MMA(V), and As(V) were	≥ 91.76 83.56-91.76 <83.56	NR NR NR	1 2.01 3.23	n/a 1.22, 2.32 2, 5.21
Location: Taiwan (Taipei)	0.02, 0.08, 0.05, and 0.07 µg/L, respectively	Stat Meth	nod: Mul	tivariate log	gistic regression
Population: hospital	Population-Level Exposure:	concentration			urinary arsenic
patients with urothelial carcinoma	12.81-23.3 μg/L range	<u>Exp. Level</u> <2.76	<u>n</u> NR	<u>adjOR</u> 1	<u>(CI)</u> n/a
n cases: 191 n control: 364		2.76-5.86 ≥ 5.86	NR NR	1.07 2.36	0.66, 1.74 1.53, 3.66
		Stat Meth	nod: Mul	tivariate log	gistic regression
		percent MMA concentration		-	enic
		Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>
		<3.36	NR	1	n/a
		3.36-9.13	NR NR	0.91 1.76	0.57, 1.45
		≥ 9.13 NR 1.76 1.15, 2.7 Stat Method: Multivariate logistic regres total urinary arsenic concentration (tertiles) μg/L			1.15, 2.71 gistic regression
					on (tertiles),
		<u>Exp. Level</u> <12.81	<u>n</u> NR	<u>adjOR</u> 1	<u>(CI)</u> n/a
		12.81-23.3	NR	1.64	0.95, 2.82
		≥ 23.3 Stat Meth	NR nod: Mul [.]	4.63 tivariate log	2.80, 7.65 gistic regression
Feki-Tounsi et al.	Exposure Surrogate: blood	Outcome: bla	dder can	icer	
<u>(2013)</u>		blood arsenic	concent	ration, µg/	L
Study Type: case- control	Exposure Description: arsenic concentrations in blood assessed from whole-blood samples, before hospitalization; subjects grouped for	Exp. Level 0.15-0.70 0.70-167.00 Stat Meth	<u>n</u> NR NR nod: Mul [:]	adjOR 0.18 2.44 tiple logistio	(CI) 0.01, 2.95 1.11, 5.35 c regression
Location: Tunisia (central and southern Tunisia)	analysis above and below median value (0.70 µg/L)				
Population: male patients of hospital urology department	Population-Level Exposure: 4.98 μg/L mean 14.6SD				
with symptoms of bladder cancer or benign diseases					

Reference and Study Exposure Measures				Health Effect Category: Bladder Effects Results				
Design								
n cases: 86								
n control: 196								
Ferreccio et al. (2013b)	Exposure Surrogate: drinking water	Outcome: bla	adder ca	ncer				
		water arsenie	c concen	tration - ne	ver smoker, µg/			
Study Type: case-	Exposure Description: lifetime arsenic	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>			
control	exposure estimated by linking subject's	<11	6	1	n/a			
	residence with water arsenic	>355	19	8.9	3.0, 26			
	concentration	Stat Met	hod: Und	conditional l				
Location: Chile		regressi						
(Regions I and II,			•					
Northern Chile)	Population-Level Exposure:	water arsenie	c concen	tration - sm	oked >10			
	0-800 μg/L range	cigarettes/do	ay, μq/L					
Population: residents		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>			
with bladder or lung		<11 never	6	1	n/a			
0		smoker	Ū	-	ii, a			
cancer in area formerly		<11	14	4.1	1.3, 13			
having arsenic-				23	-			
contaminated drinking		>355	33		8.2, 66			
water		Stat Method: Unconditional logistic						
n cases: 538		regressi	on					
n control: 640								
<u>Hsu et al. (2013a)</u>	Exposure Surrogate: drinking water	Outcome: ur						
		cumulative arsenic exposure, mg/L - yr						
Study Type: cohort	Exposure Description: lifetime	Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>			
(prospective)	cumulative arsenic exposure estimated	<1.0	NR	1	n/a			
, i ,	using median arsenic concentration in	1.0-19.9	NR	1.43	0.76, 2.68			
	village well where study subject lived and	≥ 20	NR	2.97	1.58, 5.60			
Location: Taiwan	duration of exposure; arsenic	missing	NR	1.21	0.70, 2.69			
(Peimen, Hsuechia,	concentrations in wells obtained from 2	-			analysis with			
Putai, Ichu townships)	investigations examining more than			covariates				
	38,565 wells across Taiwan; lifetime	time-de	pendent	covariates				
Population: 3 separate	cumulative arsenic exposure (CAE)							
subcohorts of residents	,							
of an arseniasis-	estimated using median arsenic concentration in village well where study							
endemic area	subject lived and duration of exposure							
n exposed: 1,075								
n reference: 535	Population-Level Exposure:							
n total: 2,447	1-20 mg/L - yr range							
<u>Huang et al. (2008b)</u>	Exposure Surrogate: urine	Outcome: ur	othelial o	ancer				
		total urinary	arsenic (quartiles),	ug/g-creatinine			
Study Type: case-	Exposure Description: single spot arsenic	Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>			
control	measurement evaluated, including	<13.09	NR	1	n/a			
control		13.10-20.29	NR	1.48	0.69, 3.12			
	speciation, for each individual	20.30-30.59		3.22				
Location: Taiwan		20.30-30.59 ≥ 30.60	NR		1.62, 6.27			
Location. Taiwan			NR	6.26	3.21, 12.22			

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-9Draft: Do Not Cite or Quote

Summary of Observational Epidemiology Studies for Health Effect Category: Bladder Effects Reference and Study Exposure Measures Results Design Population-Level Exposure: Stat Method: Logistic regression 13.09-30.6 μg/g-creatinine range Stat Method: Logistic regression

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

Design						
region not available	Population-Level Exposure: 13.09-30.6 μg/g-creatinine range	Stat Met	hod: Log	istic regres	sion	
Population: hospital						
patients with or						
without urothelial						
carcinomas						
n cases: 171						
n control: 488						
<u>Huang et al. (2008a)</u>	Exposure Surrogate: drinking water	Outcome: ur	othelial o	arcinoma		
		-	nic conce	entration i	n well water,	
Study Type: cohort	Exposure Description: arsenic levels in	mg/L				
(prospective)	well water collected in studies conducted	Exp. Level	<u>n</u>	<u>RR</u>	<u>(CI)</u>	
	in the 1960s, assigned based on self-	0-0.4	1	1	n/a	
Lesstien, Taiwan	reported information on residential	0.41-0.7	14	5.2	0.7, 39.8	
Location: Taiwan	history	0.71-0.9	9	6.7	0.8, 53.4	
(southwest [Putai		≥ 0.9	7	6.5	0.8, 53.1	
township of Chiayi County])	Population-Level Exposure:	Stat Met	hod: Cox	proportio	nal hazards model	
county])	0-0.9 mg/L range					
Population: adult	Exposure Surrogate: drinking water	Outcome: ur	Outcome: urothelial carcinoma			
residents in selected		cumulative a	rsenic ex	posure ind	lex, mg/L-yr	
villages	Exposure Description: cumulative arsenic	Exp. Level	<u>n</u>	RR	<u>(CI)</u>	
n exposed: 573	exposure determined using self-reported	0	0	1	n/a	
n reference: 138	information on residential history and	0.1-11.9	2	NR	n/a	
n total: 965	duration of consuming high-arsenic	12-19.9	9	4.6	1.0, 21.8	
	artesian well water; arsenic levels in well	≥ 20	20	7.9	1.7, 37.9	
	water collected in previous studies conducted in the 1960s				nal hazards model	
	Population-Level Exposure: 0-20 mg/L-yr range					
	Exposure Surrogate: urine	Outcome: ur	othelial o	arcinoma		
		inorganic uri	-	-		
	Exposure Description: urinary arsenic	Exp. Level	<u>n</u>	<u>RR</u>	<u>(CI)</u>	
	concentration, including speciation,	<4.29	NR	1	n/a	
	measured from single sample for each	4.29-8.02	NR	1.4	0.6, 3.4	
	individual	≥ 8.02	NR	1.4	0.5, 3.6	
		Stat Met	hod: Cox	proportio	nal hazards model	
	Population-Level Exposure: 4.29-8.02 % range					
Karagas et al. (2004)	Exposure Surrogate: toenails	Outcome: bla	adder car	ncer		
		toenail arsen			ala	
		Exp. Level		-		
			<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-10Draft: Do Not Cite or Quote

Summary o	of Observational Epidemiology Studies for H	ealth Effect Cat	egory: B	ladder Effe	ects	
Reference and Study Design	Exposure Measures			Results		
Study Type: case- control Location: United States (NH) Population: adult residents with bladder cancer consuming water from private wells containing arsenic and public water systems n cases: 383	concentration measured from clean samples Population-Level Exposure: 0.009-2.484 μg/g range		-	-	n/a 0.96, 1.96 0.74, 1.58 0.66, 1.63 0.71, 2.49 0.11, 1.50 0.63, 2.90 sion with log ic exposure	
n control: 641 Kurttio et al. (1999)	Exposure Surrogate: drinking water	Outcome: blad				
<u></u>		drinking water arsenic concentration, $\mu g/L$				
Study Type: case- control Location: Finland region not available Population: register-	Exposure Description: arsenic concentration measured in well-water samples collected Jul-Nov 1996 from locations where individuals lived from 1967-1980 Population-Level Exposure:		n <u>adjRR</u> (CI) NR 1 n/a NR 1.53 0.75, 3 NR 2.44 1.11, 5 lethod: Linear modeling after log			
based cohort of Finnish	Exposure Surrogate: drinking water	Outcome: blac	aladder cancer			
based cohort of Finnish people living outside municipal water system from 1967-1980; 61 bladder cancer cases, 49 kidney cancer cases n cases: 49 n control: 275	Exposure Surrogate: Uniting water Exposure Description: cumulative arsenic dose calculated based on duration of exposure as reported in questionnaire and sampled arsenic concentration in well water; if questionnaire data not available, assumed mean value from the reference cohort for consumption; arsenic concentration in drinking water before and after well-water use was considered null Population-Level Exposure: 0.8 mg median	<0.5 NR 1 n/a 0.5-2.0 NR 1.61 0.74, ≥ 2.0 NR 1.5 0.71, Stat Method: Linear modeling after log		n/a 0.74, 3.54 0.71, 3.15		
	Exposure Surrogate: drinking water	Outcome: blac	dder can	icer		
		daily dose of a	irsenic,	ug/day		

Reference and Study	Exposure Measures	r Health Effect Category: Bladder Effects Results				
		Results				
Design	Exposure Description: daily dose of arsenic estimated from sampled arsenic concentration in well water (collected and measured 1996 from locations where individuals lived from 1967-1980) and reported consumption of well water from the 1970s; if questionnaire data not available assumed mean value from the reference cohort for consumption; arsenic concentration in drinking water before and after well-water use considered null	Exp. Level <0.2 0.2-1.0 ≥ 1.0 Stat Meth transform		<u>adjRR</u> 1 1.34 1.84 ar modelin	(<u>CI)</u> n/a 0.66, 2.69 0.84, 4.03 g after log	
	Population-Level Exposure: 0.2 μg/day median					
<u>Lewis et al. (1999)</u>	Exposure Surrogate: drinking water	Outcome: bladder and other urinary organs cancer				
Study Type: cohort	Exposure Description: arsenic	cumulative arsenic exposure (females), ppb-yea			nales), ppb-year	
(retrospective)	concentrations in drinking water	Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>	
	determined from Utah state records and	<1,000	NR	1.18	n/a	
	an EPA study; arsenic exposure index	1,000-4,999	NR	NR	n/a	
Location: United States	score calculated individually based on	≥ 5,000	NR	1.1	n/a	
(Millard County, Utah)	number of years residence in each	Stat Method: standardized mortality ratios				
Population: deceased	community and median drinking water arsenic concentration in community	r cumulative arsenic exposure (males), ppl			ales), ppb-years	
male and female		Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>	
members of Latter-day		<1,000	NR	0.36	n/a	
Saints church wards	Population-Level Exposure:	1,000-4,999	NR	NR	n/a	
	3.5-620 ppb-years range	≥ 5,000	NR	0.95	n/a	
n exposed: 2,203 n total: 2,203					nortality ratios	
Meliker et al. (2010)	Exposure Surrogate: drinking water	Outcome: bladder cancer				
		time-weighted average (TWA) arsenic				
Study Type: case-	Exposure Description: lifetime exposure	concentration, μg/L				
control	to arsenic calculated from measures at	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
control	current residence and modeled	continuous	NR	1.05	0.92, 1.20	
	estimates for past residences based on	(per 5 μg/L			-	
Location: United States	historical sources	increase)				
(Southeastern Michigan		<1	NR	1	n/a	
[11 counties])		1-10	NR	0.84	0.63, 1.12	
	Population-Level Exposure:	>10	NR	1.1	0.65, 1.86	
Population: residents	1-10 μg/L range			onditional		
in study area with					usted analyses	
bladder cancer	Exposure Surrogate: drinking water	Outcome: bla	مامامه محب			

Summary o	ealth Effect Cat	egory: Bl	ladder Effe	cts	
Reference and Study Design	Exposure Measures	Results			
diagnosed between 2000 and 2004 plus controls n cases: 411 n control: 566	Exposure Description: lifetime exposure to arsenic estimated using measures at current residence and modeled estimates for past residence using historical sources Population-Level Exposure: 1-10 μg/day range		g/day), µ n NR NR NR NR od: Uncc	adjOR adjOR 1.01 1 0.83 1.01 2001	<u>(CI)</u> 0.92, 1.12 n/a 0.62, 1.11 0.62, 1.64
Michaud et al. (2004)	Exposure Surrogate: toenails	Outcome: blac	der can	cer	
Study Type: case- control (nested) Location: Finland (southwest) Population: cohort of Finnish male smokers aged 50–69 years enrolled in Alpha- Tocopherol, Beta- Carotene Cancer Prevention Study n cases: 280 n control: 293	Exposure Description: intact and pulverized toenails cleaned prior to analysis for arsenic; detection limit varied across samples due to contamination and samples with nondetectable arsenic and high detection limits >0.09 μg/g excluded (51/331 cases, 38/331 controls) Population-Level Exposure: 0.05-0.161 μg/g range	regressio toenail arsenia <u>Exp. Level</u> <0.050 0.050-0.105 0.106-0.161 >0.161	g/g n NR NR NR NR NR od: Uncc n c concent NR NR NR NR NR NR Od: Uncc	adjOR 1 1.1 0.93 1.38 1.14 ponditional le	<pre>(CI) n/a 0.73, 1.64 0.56, 1.54 0.68, 2.80 0.52, 2.51 ogistic artiles), μg/g (CI) n/a 0.68, 1.74 0.71, 1.8 0.7, 1.81</pre>
<u>Pu et al. (2007)</u>	Exposure Surrogate: urine	Outcome: urothelial carcinoma			
Study Type: case- control Location: Taiwan	Exposure Description: single spot urine arsenic measurement analyzed and inorganic arsenic and its metabolites quantified; exposure groups divided in	urinary arsenia creatinine Exp. Level ≤ 15.4 15.5-26.4 >26.4	n 24 44 109	tration (ter adjOR 1 1.6 3.2	rtiles), μg/g- (Cl) n/a 0.8, 3.0 1.8, 5.9

-	of Observational Epidemiology Studies for H				
Reference and Study	Exposure Measures	Results			
Design	tertiles based on urinary arsenic	Stat Mat	had: Mul	tiplo logisti	rograssion
(Taipei)	measured in control population	Stat Method: Multiple logistic regressio			regression
Population: adult					
urothelial carcinoma	Population-Level Exposure:				
(UC) patients and non-	15.4-26.4 μg/g-creatinine range				
UC patients in area					
where maximum					
contaminant level for					
arsenic in public water					
reduced from 50 µg/L					
to 10 μg/L in 2000					
n cases: 177					
n control: 313					
<u>Sawada et al. (2013)</u>	Exposure Surrogate: diet	Outcome: bla	adder car	ncer	
		inorganic ars	enic inta	ke (females	; quartiles),
Study Type: cohort	Exposure Description: detailed	μg/day			
(prospective)	questionnaire on food intake/frequency;	Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>
	average arsenic concentrations in food	40.6	6	1	n/a
Leasting lanan (lucto	items obtained from the literature;	53.7	10	1.96	0.7, 5.53
L ocation: Japan (Iwate, Akita, Nagano,	arsenic intake calculated by multiplying	62.6	10	2.06	0.72, 5.87
Okinawa, Tokyo,	average arsenic concentration in each	105.7	7	1.54	0.5, 4.73
Ibaraki, Niigata, Kochi,	item by quantity consumed	Stat Method: Multivariate regression inorganic arsenic intake (males; quartiles),			
Nagasaki, Osaka)					
	Population-Level Exposure:	μg/day			quui tiics),
Population: adults in	170 μg/day mean, 88.3-253.2 μg/day	Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>
Japan Public Health	range	40.5	<u></u> 28	1	n/a
Center (JPHC)		54.7	41	- 1.45	0.89, 2.37
Prospective Study		63.5	26	0.89	0.51, 1.55
cohort		99.1	46	1.56	0.95, 2.55
n total: 90,378		Stat Method: Multivariate regression			
Steinmaus et al. (2003)	Exposure Surrogate: drinking water	Outcome: bladder cancer			
		cumulative a			-
Study Type: case-	Exposure Description: cumulative arsenic	water (mg), 4	40-year la		
control	exposure for each subject determined	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
	using residence-specific water arsenic	<6.4	153	1	n/a
Location: United States	measurements from historical and recent	6.4 - 82.8	9	1.63	0.64, 4.13
(Kings County, CA; 7	records combined with residential	>82.8	19	1.4	0.73, 2.70
counties western NV)	history and self-reported intake	Stat Method: Cochran-Armitage test usin category means			age test using
counties western wy	information; analysis methods not				
	described				
Population: adult residents from counties with historically high	Population-Level Exposure:				

-	of Observational Epidemiology Studies for I				LIS
Reference and Study Design	Exposure Measures	Results			
drinking water arsenic					
and nearby counties					
n cases: 181 n control: 328					
Steinmaus et al. (2013)	Exposure Surrogate: drinking water	Outcome: blac	lder car	ncer	
		cumulative ars	senic co	ncentration	: all years
Study Type: case-	Exposure Description: drinking water	(quartiles), μg,			, an years
control	arsenic concentrations for each city or	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
control	town in the study area collected from	<1,578	34	1	n/a
	government agencies, research studies,	1,578-4,876	33	0.86	0.49, 1.52
Location: Chile	and water suppliers; subjects self-	4,877-12,841	78	2.97	1.76, 5.02
(Antofagasta)	reported daily water intake	>12,841	87	5.27	2.86, 9.70
		,		onditional l	-
Population: residents		regressio			OBISTIC
with lung cancer or	Population-Level Exposure:	168163510			
bladder cancer who	1,578-12,841 μg/L - yr range	cumulative ars	senic co	ncentration	: before 1971
were formerly exposed		(quartiles), μg,			-
to high arsenic levels in		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
drinking water		<372	34	1	n/a
-		372-2,464	32	1.03	0.59, 1.8
n cases: 538 n control: 640		2,465–10,319	78	3.4	2.05, 5.65
		>10,319	88	6.33	3.54, 11.32
		-		onditional l	-
		regressio			-8.01.0
		cumulative arsenic intake: all years	nrs (quartiles),		
		ug			
		Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>
		<2,438	31	1	n/a
		2,438-8,214	42	1.14	0.65, 1.99
		8,215-19,093	58	2.58	1.46, 4.56
		>19,093	101	7.9	4.45, 14.01
				onditional l	ogistic
		regression			
		cumulative ars	enic in	take: before	2 1971
		(quartiles), ug			
		Exp. Level	<u>n</u> 25	adjOR 1	<u>(CI)</u> n (n
		<576	35	1	n/a
		576-4,429	34	1.11	0.64, 1.94
		4,430–14,347		2.99	1.80, 4.97
		>14,347	92	6.82	3.92, 11.87
				onditional l	ogistic
		regressio	n		
		1			

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-15Draft: Do Not Cite or Quote

Reference and Study	Exposure Measures	niology Studies for Health Effect Category: Bladder Effects Neasures Results			
, Design	·				
		(quartiles), μg/L			
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
		<26	33	1	n/a
		26-79	33	0.92	0.52, 1.61
		80-197	71	2.62	1.53, 4.50
		>197	95	6	3.38, 10.64
		Stat Method: Unconditional logistic regression			
		lifetime average arsenic concentration: befor 1971 (quartiles), μg/L			
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
		<11	<u></u> 28	1	n/a
		11-90	37	1.36	0.78, 2.37
		91-335	78	3.87	2.25, 6.64
		>335	89	6.5	3.69, 11.43
		Stat Method: Unconditional logistic regression			
		lifetime daily average arsenic intake: all years (quartiles), μg/day			
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
		>41	32	1	n/a
		41-136	39	1.08	0.62, 1.87
		137-307	64	3.06	1.75, 5.35
		>307	97	5.85	3.41, 10.05
		Stat Met regress		conditional l	ogistic
		lifetime daily average arsenic intake: before 1971 (quartiles), μg/day			
		Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>
		<21	31	1	n/a
		21-159	35	1.21	0.69, 2.11
		160-525	70	3.15	1.84, 5.38
		>525	96	6.76	3.97, 11.51
		Stat Met regress	thod: Und	conditional l	-
uda et al. (1995)	Exposure Surrogate: drinking water	Outcome: urinary cancer			
		arsenic conc	entration	in well wa	ter in 1959, pj
udy Type: cohort	Exposure Description: arsenic in well	Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>
etrospective)	water measured in 1959 (the end of the	<0.05	0	0	0, 12.50
. ,	exposure period) in 34 wells; 20 area	0.05-0.99	0	0	0, 47.05
	wells had no documented levels of	≥1	3	31.18	8.82, 91.75
ocation: Japan Jamiki-cho)	arsenic so authors inferred that arsenic	Stat Met	thod: Cox	proportion	al hazard

Summary of Observational Epidemiology Studies for Health Effect Category: Bladder Effects					
Reference and Study	Exposure Measures	Results			
Design					
Population: adults and	levels were undetectable or very low; concentration assigned based on residence in 1959				
children living near factory producing	residence in 1959				
arsenic trisulfide	Population-Level Exposure:				
n exposed: 189 n reference: 254	0.05-1 ppm range				
n total: 443					
<u>Wu et al. (2012a)</u>	Exposure Surrogate: urine	Outcome: urothelial carcinoma			
		total urinary arsenic, μg/g-creatinine			
Study Type: case-	Exposure Description: single spot urine	Exp. Level <u>n</u> <u>adjOR</u> (CI)			
control	sample collected from each participant at	≤11.38 14 1 n/a			
	time of recruitment; total arsenic	>11.38 57 4.24 1.92, 9.33			
Location: Taiwan	exposure calculated as sum of inorganic	Stat Method: Multivariate logistic regression; linear trend test			
region not available	arsenic (As[III] + As(V), MMA, and DMA) and normalized against urinary creatinine levels; LOD for As(III), DMA(V), MMA(V),				
Population: urothelial	and $As(V) = 0.02, 0.06, 0.07, and 0.10$				
cancer patients at	µg/L, respectively				
National Taiwan					
University Hospital	Denulation Lough Evenenues				
diagnosed 2007-2009	Population-Level Exposure: not available				
and controls receiving					
health examinations at					
one of two Taipei					
hospitals					
n cases: 137 n control: 137					
Wu et al. (2013)	Exposure Surrogate: urine	Outcome: urothelial carcinoma (UC)			
<u>wu et al. (2015)</u>	Exposure surrogate. unite				
		total arsenic for each SD (14.45 μg/g-creatinine) increase, IL-8 TA genotype, μg/g-creatinine			
Study Type: case-	Exposure Description: 50 mL sample of				
control	spot urine collected at recruitment; recovery rate for arsenic species ranged	<u>Exp. Level n adjOR (CI)</u> continuous NR 1.46 1.15, 1.85			
	from 93.8% to 102.2%	Stat Method: Multivariate logistic regression			
Location: Taiwan,					
Province Of China	Denulation Lovel Function	total arsenic for each SD (14.45 μg/g-creatinine)			
(Taipei)	Population-Level Exposure: 11.74-20.94 μg/g-creatinine range	increase, IL-8 TT genotype, $\mu g/g$ -creatinine			
	11.7 - 20.3 + μg/g-cieatinine range	Exp. Level <u>n</u> adjOR (CI)			
Population: hospital		continuous 188 1.75 1.45, 2.11			
patients with urothelial		Stat Method: Multivariate logistic regression			
carcinoma		total arsenic for each SD (14.45 μg/g-creatinine)			
n cases: 300		increase, TNF-alpha GG genotype, μg/g-			
n control: 594		creatinine			
		<u>Exp. Level n adjOR (CI)</u>			

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-17Draft: Do Not Cite or Quote

Summary of Observational Epidemiology Studies for Health Effect Category: Bladder Effects								
Reference and Study	Exposure Measures	Results						
Design								
		continuous	249	1.73	1.48, 2.03			
		Stat Method: Multivariate logistic regression						
		urinary total	urinary total arsenic, μg/g-creatinine					
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>			
		≤ 11.74	44	1	n/a			
		11.74 to	63	1.42	0.9, 2.25			
		20.94	20.94					
		>20.94	192	4.13	2.69, 6.35			
		Stat Met	hod: Mul	tivariate log	gistic regression			

--: not reported; n: number of cases (when presented in Results column)

5.1.1 References for Summary of Observational Epidemiology Studies for Health Effect Category: Bladder Effects

- Baastrup, R; Sørensen, M; Balstrøm, T; Frederiksen, K; Larsen, CL; Tjønneland, A; Overvad, K; Raaschou-<u>Nielsen, O.</u> (2008). Arsenic in drinking-water and risk for cancer in Denmark. Environ Health Perspect 116: 231-237. <u>http://dx.doi.org/10.1289/ehp.10623</u>
- Bates, MN; Rey, OA; Biggs, ML; Hopenhayn, C; Moore, LE; Kalman, D; Steinmaus, C; Smith, AH. (2004). Case-control study of bladder cancer and exposure to arsenic in Argentina. Am J Epidemiol 159: 381-389. http://dx.doi.org/10.1093/aje/kwh054
- Bates, MN; Smith, AH; Cantor, KP. (1995). Case-control study of bladder cancer and arsenic in drinking water. Am J Epidemiol 141: 523-530.
- Chen, CL; Chiou, HY; Hsu, LI; Hsueh, YM; Wu, MM; Wang, YH; Chen, CJ. (2010). Arsenic in drinking water and risk of urinary tract cancer: A follow-up study from northeastern Taiwan. Cancer Epidemiol Biomarkers Prev 19: 101-110. <u>http://dx.doi.org/10.1158/1055-9965.EPI-09-0333</u>
- <u>Chiou, HY; Chiou, ST; Hsu, YH; Chou, YL; Tseng, CH; Wei, ML; Chen, CJ.</u> (2001). Incidence of transitional cell carcinoma and arsenic in drinking water: A follow-up study of 8,102 residents in an arseniasis-endemic area in northeastern Taiwan. Am J Epidemiol 153: 411-418. <u>http://dx.doi.org/10.1093/aje/153.5.411</u>
- Chiou, HY; Hsueh, YM; Liaw, KF; Horng, SF; Chiang, MH; Pu, YS; Lin, JS; Huang, CH; Chen, CJ. (1995). Incidence of internal cancers and ingested inorganic arsenic: A seven-year follow-up study in Taiwan. Cancer Res 55: 1296-1300.
- <u>Chung, CJ; Huang, CY; Pu, YS; Shiue, HS; Su, CT; Hsueh, YM.</u> (2013). The effect of cigarette smoke and arsenic exposure on urothelial carcinoma risk is modified by glutathione S-transferase M1 gene null genotype. Toxicol Appl Pharmacol 266: 254-259. <u>http://dx.doi.org/10.1016/j.taap.2012.11.005</u>
- Chung, CJ; Huang, YL; Huang, YK; Wu, MM; Chen, SY; Hsueh, YM; Chen, CJ. (2012). Urinary arsenic profiles and the risks of cancer mortality: A population-based 20-year follow-up study in arseniasis-endemic areas in Taiwan. Environ Res 122: 25-30. <u>http://dx.doi.org/10.1016/j.envres.2012.11.007</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-18Draft: Do Not Cite or Quote

- Chung, CJ; Pu, YS; Chen, YT; Su, CT; Wu, CC; Shiue, HS; Huang, CY; Hsueh, YM. (2011). Protective effects of plasma alpha-tocopherols on the risk of inorganic arsenic-related urothelial carcinoma. Sci Total Environ 409: 1039-1045. <u>http://dx.doi.org/10.1016/j.scitotenv.2010.11.037</u>
- <u>Feki-Tounsi, M; Olmedo, P; Gil, F; Khlifi, R; Mhiri, MN; Rebai, A; Hamza-Chaffai, A.</u> (2013). Low-level arsenic exposure is associated with bladder cancer risk and cigarette smoking: a case-control study among men in Tunisia. Environ Sci Pollut Res Int. <u>http://dx.doi.org/10.1007/s11356-012-1335-9</u>
- Ferreccio, C; Yuan, Y; Calle, J; Benítez, H; Parra, RL; Acevedo, J; Smith, AH; Liaw, J; Steinmaus, C. (2013). Arsenic, tobacco smoke, and occupation: associations of multiple agents with lung and bladder cancer. Epidemiology 24: 898-905. <u>http://dx.doi.org/10.1097/EDE.0b013e31829e3e03</u>
- Hsu, LI; Chen, GS; Lee, CH; Yang, TY; Chen, YH; Wang, YH; Hsueh, YM; Chiou, HY; Wu, MM; Chen, CJ. (2013). Use of arsenic-induced palmoplantar hyperkeratosis and skin cancers to predict risk of subsequent internal malignancy. Am J Epidemiol 177: 202-212. <u>http://dx.doi.org/10.1093/aje/kws369</u>
- <u>Huang, YK; Huang, YL; Hsueh, YM; Yang, MH; Wu, MM; Chen, SY; Hsu, LI; Chen, CJ.</u> (2008a). Arsenic exposure, urinary arsenic speciation, and the incidence of urothelial carcinoma: a twelve-year follow-up study. Cancer Causes Control 19: 829-839. <u>http://dx.doi.org/10.1007/s10552-008-9146-5</u>
- <u>Huang, YK; Pu, YS; Chung, CJ; Shiue, HS; Yang, MH; Chen, CJ; Hsueh, YM.</u> (2008b). Plasma folate level, urinary arsenic methylation profiles, and urothelial carcinoma susceptibility. Food Chem Toxicol 46: 929-938. <u>http://dx.doi.org/10.1016/j.fct.2007.10.017</u>
- <u>Karagas, MR; Tosteson, TD; Morris, JS; Demidenko, E; Mott, LA; Heaney, J; Schned, A.</u> (2004). Incidence of transitional cell carcinoma of the bladder and arsenic exposure in New Hampshire. Cancer Causes Control 15: 465-472. <u>http://dx.doi.org/10.1023/B:CACO.0000036452.55199.a3</u>
- Kurttio, P; Pukkala, E; Kahelin, H; Auvinen, A; Pekkanen, J. (1999). Arsenic concentrations in well water and risk of bladder and kidney cancer in Finland. Environ Health Perspect 107: 705-710. http://dx.doi.org/10.1289/ehp.99107705
- Lai, MS; Hsueh, YM; Chen, CJ; Shyu, MP; Chen, SY; Kuo, TL; Wu, MM; Tai, TY. (1994). Ingested inorganic arsenic and prevalence of diabetes mellitus. Am J Epidemiol 139: 484-492.
- Lewis, DR; Southwick, JW; Ouellet-Hellstrom, R; Rench, J; Calderon, RL. (1999). Drinking water arsenic in Utah: A cohort mortality study. Environ Health Perspect 107: 359-365. http://dx.doi.org/10.1289/ehp.99107359
- Meliker, JR; Slotnick, MJ; Avruskin, GA; Schottenfeld, D; Jacquez, GM; Wilson, ML; Goovaerts, P; Franzblau,
 <u>A</u>; Nriagu, JO. (2010). Lifetime exposure to arsenic in drinking water and bladder cancer: a population-based case-control study in Michigan, USA. Cancer Causes Control 21: 745-757. http://dx.doi.org/10.1007/s10552-010-9503-z
- Michaud, DS; Wright, ME; Cantor, KP; Taylor, PR; Virtamo, J; Albanes, D. (2004). Arsenic concentrations in prediagnostic toenails and the risk of bladder cancer in a cohort study of male smokers. Am J Epidemiol 160: 853-859. <u>http://dx.doi.org/10.1093/aje/kwh295</u>
- Pu, YS; Yang, SM; Huang, YK; Chung, CJ; Huang, SK; Chiu, AW; Yang, MH; Chen, CJ; Hsueh, YM. (2007). Urinary arsenic profile affects the risk of urothelial carcinoma even at low arsenic exposure. Toxicol Appl Pharmacol 218: 99-106. <u>http://dx.doi.org/10.1016/j.taap.2006.09.021</u>
- Sawada, N; Iwasaki, M; Inoue, M; Takachi, R; Sasazuki, S; Yamaji, T; Shimazu, T; Tsugane, S. (2013). Dietary arsenic intake and subsequent risk of cancer: The Japan Public Health Center-based (JPHC) prospective study. Cancer Causes Control 24: 1403-1415. <u>http://dx.doi.org/10.1007/s10552-013-0220-2</u>
- Steinmaus, C; Yuan, Y; Bates, MN; Smith, AH. (2003). Case-control study of bladder cancer and drinking water arsenic in the western United States. Am J Epidemiol 158: 1193-1201. http://dx.doi.org/10.1093/aje/kwg281

- Steinmaus, CM; Ferreccio, C; Acevedo Romo, J; Yuan, Y; Cortes, S; Marshall, G; Moore, LE; Balmes, J. R.; Liaw, J; Golden, T; Smith, AH. (2013). Drinking water arsenic in northern Chile: high cancer risks 40 years after exposure cessation. Cancer Epidemiol Biomarkers Prev 22: 623-630. <u>http://dx.doi.org/10.1158/1055-9965.EPI-12-1190</u>
- Tsuda, T; Babazono, A; Yamamoto, E; Kurumatani, N; Mino, Y; Ogawa, T; Kishi, Y; Aoyama, H. (1995). Ingested arsenic and internal cancer: A historical cohort study followed for 33 years. Am J Epidemiol 141: 198-209.
- <u>Wu, CC; Huang, YK; Chung, CJ; Huang, CY; Pu, YS; Shiue, HS; Lai, LA; Lin, YC; Su, CT; Hsueh, YM.</u>
 (2013). Polymorphism of inflammatory genes and arsenic methylation capacity are associated with urothelial carcinoma. Toxicol Appl Pharmacol 272: 30-36. <u>http://dx.doi.org/10.1016/j.taap.2013.05.019</u>
- Wu, CC; Su, CT; Lee, HL; Chung, CJ; Huang, CY; Pu, YS; Lin, P; Hsueh, YM. (2012). Joint effect of arsenic methylation profile and NNK metabolites on urothelial carcinoma. J Urol 188: 1701-1705. http://dx.doi.org/10.1016/j.juro.2012.07.025

1

2

5.2 Summary of Observational Epidemiology Studies for Health Effect Category: Cardiovascular Disease

Reference and Study Design	Exposure Measures	Results			
<u>Bosnjak et al. (2008)</u>	Exposure Surrogate: urine	Outcome: markers of cardiovascular disease (serum total bilirubin, antibodies to Hsp60 and folate)			
Study Type: cross- sectional Location: Croatia	Exposure Description: urinary arsenic concentration measured from single sample for each individual	<i>urinary arsenic concentration, μg/g-creatinine</i> non-significant outcomes include: BMI, B9, Hsp60 Hsp70, Hsp70 antibodies, glucose, bilirubin, CRP,			
(Andrijasevci)	Population-Level Exposure: 627.72 μg/g-creatinine mean, 199.5-	total cholesterol, HDL cholesterol, LDL cholestero triglycerides, homocysteine			
Population: adult residents of village with history of higher than average arsenic in drinking water	1,206.29 μg/g-creatinine range				
n cases: n/a n control: n/a					
<u>Burgess et al. (2013)</u>	Exposure Surrogate: drinking water	Outcome: matrix metalloproteinase 9			
		drinking water arsenic concentration, μ g/L			
Study Type: cross-	Exposure Description: drinking water	Exp. Level <u>n</u> <u>corr</u> (CI)			
sectional	arsenic concentration determined from	<u>coeff</u> drinking NR 0.135 n/a			
	self-reported usage of all water sources consumed for drinking weighted by	drinking NR 0.135 n/a water total			
Location: United	frequency of use of each source; arsenic	arsenic			
States, Mexico (Arizona, Sonora)	levels measured from all reported drinking water sources	Stat Method: multivariable linear mixed model			
Population: adult residents of communities with relatively high drinking	Population-Level Exposure: 7.65 μg/L geo mean, 6.8-8.63 μg/L 95% Cl lower				
water arsenic levels	Exposure Surrogate: drinking water	Outcome: matrix metalloproteinase 9			
n cases: 377		drinking water arsenic intake, μg/day			
n control: n/a	Exposure Description: drinking water	Exp. Level <u>n</u> <u>corr</u> (CI)			
	arsenic intake calculated as the drinking	<u>coeff</u>			
	water arsenic concentration multiplied	drinking NR 0.072 n/a water intake			
	by the average volume of drinking water consumed daily	Stat Method: multivariable linear mixed			

Summary of O	bservational Epidemiology Studies for Healt	h Effect Category: Cardiovascular Disease
Reference and Study Design	Exposure Measures	Results
	Population-Level Exposure: 2.47 μg/day geo mean, 1.99-3.07 μg/day 95% Cl lower	model
	Exposure Surrogate: urine	Outcome: matrix metalloproteinase 9
		urinary arsenic sum of species, μg/L
	Exposure Description: urinary arsenic sum of species calculated as the sum of As(III), As(V), MMA(V), and DMA(V)	Exp. Level n corr (Cl) coeff urinary total NR 0.121 n/a
	Population-Level Exposure: 18.44 μg/L geo mean, 18.86-20.17 μg/L 95% CI lower	arsenic Stat Method: multivariable linear mixed model
<u>Chen et al. (2013a)</u>	Exposure Surrogate: drinking water	Outcome: carotid intima-media thickness (cIMT)
		baseline well water arsenic concentration, μ g/L
Study Type: cross- sectional	Exposure Description: at baseline, water samples from 10,971 tube wells collected and analyzed for total arsenic	Exp. LevelnadjBeta(Cl)continuousNR5.1-0.2, 10.3Stat Method: multiple linear regression
Location : Bangladesh (Araihazar)	Population-Level Exposure: 81.1 µg/L mean	
Population: Health	Exposure Surrogate: urine	Outcome: carotid intima-media thickness (cIMT)
Effects of Arsenic Longitudinal Study (HEALS) participants	Exposure Description: spot urine samples collected at baseline and at all	baseline urinary arsenic concentration, μg/g- creatinine Exp. Level <u>n adjBeta</u> (CI)
n cases: n/a n control: n/a	follow-up visits; total arsenic concentration measured	continuous NR 11.7 1.8, 21.6 Stat Method: multiple linear regression
	Population-Level Exposure: 259.5 μg/g-creatinine mean	
<u>Chen et al. (2012b)</u>	Exposure Surrogate: urine	Outcome: hypertension
Study Type: cross-	Exposure Description: spot morning	urinary arsenic concentration (quartiles), μg/g- creatinine
sectional	urine samples collected into polypropylene containers throughout	Exp. Level n adjOR (Cl) Q1 (<1.4)
Location: Taiwan, Province Of China	study period	Q2 (1.4-4.3) 32 2.1 1.0, 4.4 Q3 (4.3-8.0) 24 1.2 0.6, 2.6 Q4 (5.20) 27 2 1.4, 6.2
(Nantou County)	Population-Level Exposure: 7.7 μg/g-creatinine mean 14.8SD	Q4 (>8.0) 37 3 1.4, 6.3 Stat Method: unconditional logistic regression
Population: rural		Outcome: MnSOD and OGG1 genotyping
residents of Taiwan n cases: n/a		urinary arsenic concentration (quartiles), μg/g- creatinine

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-22Draft: Do Not Cite or Quote

Summary of O	bservational Epidemiology Studies for Healt	h Effect Category: Cardiovascular Disease				
Reference and Study Design	Exposure Measures	Results				
n control: n/a		arsenic not significantly associated with MnSOD and OGG1 genotyping				
		Outcome: other biochemical parameters (i.e., triglyceride, cholesterol, uric acid)				
		<i>urinary arsenic concentration (quartiles), μg/g-creatinine</i> significant ORs for ≥ 150 mg/dl triglyceride and ≥ 200 mg/dl cholesterol; otherwise not significant				
<u>Chen et al. (1996)</u>	Exposure Surrogate: drinking water	Outcome: ischemic heart disease (ISHD)				
Study Type: cohort (prospective) Location: Taiwan (Southwest coast: Peimen, Hsuechia, Putai, Ichu, Yensui, Hsiaying townships)	Exposure Description: cumulative arsenic exposure calculated as the drinking water arsenic concentration multiplied by self-reported years living in a particular village and added across individual's lifetime; arsenic levels in well water collected in previous studies conducted in the 1960s	cumulative water arsenic exposure, mg/L - yr Exp. Level n adjRR (Cl) 0 NR 1 n/a 0.1-9.9 NR 2.2 9.46, 10.16 10.0-19.9 NR 3.33 0.83, 13.45 ≥ 20.0 NR 4.9 1.36, 17.68 Stat Method: Cox proportional-hazards regression analysis				
Population: adults and children living in	Population-Level Exposure: 0.01-1.75 mg/L - yr range					
arseniasis-endemic	Exposure Surrogate: drinking water	Outcome: ischemic heart disease (ISHD)				
townships		drinking water arsenic concentration, mg/L				
n exposed: 263 n reference: 2,293 n total: 2,556	Exposure Description: drinking water arsenic concentrations determined using self-reported information on residential history; arsenic levels in well water collected in previous studies conducted in the 1960s	Exp. LevelnadjRR(CI)0NR1n/a0.01-0.50NR2.8n/a≥ 0.51NR4.1n/aStat Method: Cox proportional-hazards regression analysis				
	Population-Level Exposure: 0.01-1.75 mg/L range					
<u>Chen et al. (2006b)</u>	Exposure Surrogate: drinking water	Outcome: carotid artery intima-medial thickness (IMT) >0.75 mm				
Study Type: cohort (prospective) Location: Bangladesh	Exposure Description: at baseline, samples of water collected from 5,967 contiguous wells in the study area	baseline well arsenic (tertiles), μg/LExp. LevelnadjOR(Cl)0.5-1141n/a12-14431.10.2, 6.3145-43962.10.4, 10.5				
(Araihazar)	Population-Level Exposure: 0.5-439 μg/L range	Stat Method: unconditional logistic regression model				
Population: healthy,	Exposure Surrogate: drinking water	Outcome: carotid artery intima-medial thickness				

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-23Draft: Do Not Cite or Quote

Summary of O	Summary of Observational Epidemiology Studies for Health Effect Category: Cardiovascular Disease					
Reference and Study	Exposure Measures	J J		esults		
Design	·					
normotensive		(IMT) >0.75 m	m			
individuals participating	Functions Descriptions at baseling	cumulative arsenic index at baseline (tertiles),				
in the ongoing Health	Exposure Description: at baseline,	mg	seme ma		inte (tertiles),	
Effects of Arsenic	samples of water collected from 5,967	Exp. Level	n	<u>adjOR</u>	<u>(CI)</u>	
Longitudinal Study	contiguous wells in the study area;	5.3-92.3	<u>n</u> 5	<u>aajon</u> 1	n/a	
(HEALS)	cumulative arsenic index (CAI) calculated as the product of amount of water	92.4-1,301.5	1	0.2	0.1, 1.7	
n total: 66	consumed per day (L/day), concentration	1,301.6-	7	1.6	0.4, 7.5	
	of arsenic in well(s) (g/L), and duration(s)	4,564.1	/	1.0	0.4, 7.5	
	of well usage (days)		iod: unco	nditional l	ogistic regression	
	Population-Level Exposure:					
	5.3-4,564.1 mg range					
	Exposure Surrogate: urine	Outcome: carotid artery intima-medial thickn				
		(IMT) >0.75 m	m			
	Exposure Description: samples of urine	baseline urina	ry total d	arsenic (te	rtiles), μg/L	
	collected at both baseline and follow-up visits	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		6-49	4	1	n/a	
		103-209	4	2.1	0.3, 13.1	
	Demulation Level Function	>209	5	6	0.5, 80.7	
	Population-Level Exposure: 6-209 μg/L range	Stat Method: unconditional logistic regression				
	ο-209 μg/L range	model				
<u>Chen et al. (2007b)</u>	Exposure Surrogate: drinking water	Outcome: dia	stolic hyp	pertension		
		time-weighter	d well ars	senic conce	entration, μg/L	
Study Type: cross-	Exposure Description: drinking water	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
sectional	arsenic concentration calculated from	0.1-8.0	NR	1	n/a	
	well water samples for a set of 5,966	8.1-40.8	NR	0.96	0.77, 1.20	
	contiguous wells in the area	40.9-91.0	NR	1.01	0.81, 1.25	
Location: Bangladesh		91.1-176.0	NR	0.93	0.75, 1.16	
(Araihazar)	Denulation Level Fundation	176.1-864.0	NR	0.97	0.78, 1.20	
	Population-Level Exposure:	Stat Meth	od: Linea	ar regressio	on analysis;	
Population: Health	0.1-864 μg/L range	logistic re	egression	analysis		
Effects of Arsenic		time-weighter			antinution (S.F.	
Longitudinal Study, adult participants		years of know			(2.5)	
n cases: 10,910		Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>	
n control: n/a		0.1-8.0	NR	1	n/a	
		8.1-40.8	NR	0.94	0.72, 1.22	
		40.9-91.0	NR	1.07	0.83, 1.38	
		91.1-176.0	NR	0.93	0.72, 1.20	
		176.1-864.0	NR	1	0.78, 1.28	
				ar regressio	on analysis;	
		logistic re		-		
		Outcome: gen	eral hyp	ertension		

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-24Draft: Do Not Cite or Quote

eference and Study Design	Exposure Measures	Results time-weighted well arsenic concentration, μg/l					
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>		
		0.1-8.0	NR	1	n/a		
		8.1-40.8	NR	1.1	0.90, 1.33		
		40.9-91.0	NR	1.03	0.85, 1.25		
		91.1-176.0	NR	1.01	0.83, 1.22		
		176.1-864.0	NR	1.02	0.84, 1.23		
			Stat Method: Linear regression analysis; logistic regression analysis				
		time-weighte			entration (≥ 5		
		years of know					
		Exp. Level	<u>n</u>	adjOR 1	<u>(CI)</u> n (n		
		0.1-8.0		1	n/a		
		8.1-40.8		1.06	0.84, 1.34		
		40.9-91.0 91.1-176.0	NR NR	1.12 1.03	0.89, 1.41		
		91.1-176.0 176.1-864.0	NR	1.03	0.82, 1.30 0.84, 1.31		
			tat Method: Linear regression analysis; ogistic regression analysis				
		Outcome: pul	se blood	d pressure			
		time-weighte	d well a	rsenic conc	entration. μα/		
		Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>		
		0.1-8.0	NR	1	n/a		
		8.1-40.8	NR	1.39	1.14, 1.71		
		40.9-91.0	NR	1.21	, 0.99, 1.49		
		91.1-176.0	NR	1.19	0.97, 1.45		
		176.1-864.0	NR	1.19	0.97, 1.46		
		Stat Meth	nod: Line		on analysis;		
		time-weighte	-	-	entration (≥ 5		
		years of know			•		
		Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>		
		0.1-8.0	NR	1	n/a		
		8.1-40.8	NR	1.5	1.16, 1.91		
		40.9-91.0	NR	1.34	1.04, 1.73		
		91.1-176.0	NR	1.35	1.05, 1.71		
		176.1-864.0	NR	1.24	0.97, 1.59		
				ear regression n analysis	on analysis;		
		Outcome: sys	tolic hvr	pertension			

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-25Draft: Do Not Cite or Quote

Summary of O	bservational Epidemiology Studies for Hea	Ith Effect Catego	ry: Cardi	iovascular	Disease		
Reference and Study Design	Exposure Measures	Results					
200.81		years of known level), μg/L					
		Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>		
		0.1-8.0	NR	1	n/a		
		8.1-40.8	NR	1.35	1.02, 1.77		
		40.9-91.0	NR	1.28	0.97, 1.69		
		91.1-176.0	NR	1.3	0.99, 1.72		
		176.1-864.0	NR	1.12	0.85, 1.47		
		Stat Meth	on analysis;				
		logistic regression analysis					
		time-weighte	entration, μg/L				
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>		
		0.1-8.0	NR	1	n/a		
		8.1-40.8	NR	1.39	1.10, 1.75		
		40.9-91.0	NR	1.21	0.96, 1.54		
		91.1-176.0	NR	1.28	1.01, 1.62		
		176.1-864.0	NR	1.13	0.90, 1.44		
		Stat Meth	nod: Logi	stic regress	ion analysis		
<u>Chen et al. (2011b)</u>	Exposure Surrogate: drinking water	Outcome: dea	ath from	cerebrova	scular disease		
		-	er arseni	c concentra	ition at baseline		
Study Type: cohort	Exposure Description: drinking water	μg/L					
(prospective)	arsenic concentration calculated from	Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>		
	well water samples for a set of 5,966	3.7	NR	1	n/a		
Location: Bangladesh	contiguous wells in the area	35.9	NR	1.35	0.75, 2.43		
(Araihazar)		102.5	NR	1.2	0.63, 2.27		
(/	Population-Level Exposure:	265.7	NR	1.07	0.54, 2.12		
Population: Health	99 μg/L mean	Stat Method: Cox proportional hazards regression					
Effects of Arsenic Longitudinal Study, adult participants		Outcome: dea system	ath from	disease of	circulatory		
number of subjects not reported		drinking wate μg/L	er arseni	c concentro	ition at baseline,		
		Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>		
		3.7	NR	<u>1</u>	n/a		
		35.9	NR	1.21	0.8, 1.84		
		102.5	NR	1.24	0.80, 1.93		
		265.7	NR	1.46	0.96, 2.20		
		Stat Method: Cox proportional hazard regression					
		Outcome: dea	ath from	ischemic h	eart disease		
		drinking wate μg/L	er arseni	c concentro	ition at baseline,		

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-26Draft: Do Not Cite or Quote

Reference and Study	Exposure Measures	alth Effect Category: Cardiovascular Disease Results				
Design		Kesuits				
200.8.1		Exp. Level	<u>n</u>	HR	<u>(CI)</u>	
		3.7	NR	1	n/a	
		35.9	NR	1.22	0.56, 2.65	
		102.5	NR	1.49	0.70, 3.19	
		265.7	NR	1.94	0.99, 3.84	
			hod: Cox		nal hazards	
		Outcome: death from ischemic heart disease a other forms of heart disease				
		drinking water arsenic concentration at bas μ g/L				
		Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>	
		3.7	NR	1	n/a	
		35.9	NR	1.22	0.65, 2.32	
		102.5	NR	1.35	0.71, 2.57	
		265.7	NR	1.92	1.07, 3.43	
		Stat Method: Cox proportional hazar				
		regressi	regression			
	Exposure Surrogate: urine	Outcome: de	Outcome: death from cerebrovas			
		urinary arsenic concentration at baseline, μ_0				
	Exposure Description: urinary arsenic	creatinine				
	concentration measured from single	Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>	
	baseline sample for each individual	68.5	NR	1	n/a	
		150.6	NR	0.96	0.52, 1.79	
	Population-Level Exposure:	264.9	NR	1.6	0.88, 2.90	
	$6.6-1,100 \ \mu g/g$ -creatinine range	641.5	NR	1.03	0.53, 2.03	
		Stat Met regressi		proportion	nal hazards	
		Outcome: de system	ath from	disease of	f circulatory	
		urinary arser creatinine	urinary arsenic concentration at baseline, creatinine			
		Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>	
		68.5	NR	1	n/a	
		150.6	NR	1.15	0.77, 1.72	
		264.9	NR	1.56	1.03, 2.38	
		641.5	NR	1.55	1.01, 2.37	
		Stat Method: Cox proportional hazards regression				
		Outcome: de	ath from	ischemic l	heart disease	
		Outcome: death from ischemic heart dise				

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-27Draft: Do Not Cite or Quote

Summary of O	bservational Epidemiology Studies for Healt	alth Effect Category: Cardiovascular Disease				
Reference and Study Design	Exposure Measures	Results				
		creatinine				
		Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>	
		68.5	NR	1	n/a	
		150.6	NR	1.29	0.66, 2.51	
		264.9	NR	1.47	0.72, 3.01	
		641.5	NR	1.9	0.91, 3.98	
		Stat Method: Cox proportional hazards regression				
		Outcome: death from ischemic heart diseas other forms of heart disease				
		urinary arser creatinine	nic concer	ntration at	baseline, μg/g-	
		Exp. Level	<u>n</u>	HR	<u>(CI)</u>	
		68.5	NR	1	n/a	
		150.6	NR	1.29	0.74, 2.27	
		264.9	NR	1.53	0.83, 2.82	
		641.5	NR	2.06	1.14, 3.72	
		Stat Met regressi		proportior	al hazards	
<u>Chen et al. (2013c)</u>	Exposure Surrogate: drinking water	Outcome: PR	t prolong	ation		
		well water a	rsenic cor	ncentration	n, μq/L	
Study Type: cohort	Exposure Description: at baseline, water				baseline well	
(prospective)	samples from 10,971 contiguous wells	water arsenio	c or basel	ine urinary	arsenic with PR	
(i ² i ² /	collected and analyzed for total arsenic;	prolongation	in men o	r women		
Location: Bangladesh	exposure in quartiles	Outcome: QI	RS prolon	gation		
(Araihazar)		well water a	rsenic cor	ncentration	n, μq/L	
	Population-Level Exposure:				baseline well	
Population: Health	0.1-790 μg/L range	water arsenio	c or basel	ine urinary	arsenic with QRS	
Effects of Arsenic		prolongation	in men o	r women		
Longitudinal Study		Outcome: Q	C prolon	gation		
(HEALS) participants		well water a	rsenic cor	ncentration	n (females), μg/L	
n exposed: 237		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
n reference: 1,474		continuous	NR	1.24	1.05, 1.47	
n total: 1,711		Stat Met	hod: unco	onditional	ogistic regression	
		well water arsenic concentration (females; quartiles), μg/L				
		<u>Exp. Level</u>	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		0.1-9	40	1	n/a	
		9.5-57	49	1.22	0.77, 1.93	
		58-144	35	0.89	0.54, 1.46	
		145-790	55	1.61	1.00, 2.58	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-28Draft: Do Not Cite or Quote

Reference and Study	Exposure Measures	Results Stat Method: unconditional logistic regression well water arsenic concentration (males), µg/L				
Design						
		Exp. Level continuous	<u>n</u> NR	<u>adjOR</u> 0.99	<u>(CI)</u> 0.72, 1.22	
					0.73, 1.33	
		Stat Method: unconditional logisti				
		well water ar quartiles), μg		ncentration	(males;	
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		0.1-9	<u></u> 17	1	n/a	
		9.5-57	14	0.82	0.39, 1.75	
		58-144	14	0.82	0.39, 1.75	
		145-790	14	0.85	0.40, 1.82	
					ogistic regressi	
	Exposure Surrogate: urine	Outcome: QTc prolongation				
		urinary arsen	males), μg/g-			
	Exposure Description: spot urine	creatinine			(0)	
	samples collected from 95.6, 94.5, and	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
	91.2% of original cohort participants at	continuous	NR	1.24	1.01, 1.53	
	baseline, first follow-up, and second	Stat Method: unconditional logistic regre urinary arsenic concentration (females; quartiles), µg/g-creatinine				
	follow-up visits, respectively; adjusted for					
	urinary creatinine					
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
	Population-Level Exposure:	1-101	33	<u>aajon</u> 1	n/a	
	1-4306 μg/g-creatinine range	102-187	43	1.31	0.80, 2.16	
		188-327	44	1.43	0.80, 2.10	
		328-4,306	44 51	1.43	1.00, 2.86	
					ogistic regressi	
		urinary arsen creatinine	ic conce	ntration (m	ales), μg/g-	
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		continuous	NR	0.86	0.49, 1.51	
		Stat Met	nod: unc	onditional l	ogistic regressi	
		urinary arsenic concentration (males; quartile				
		µg/g-creatini				
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		7-101	18	1	n/a	
		102-187	13	0.76	0.36, 1.63	
		188-327	14	0.83	0.39, 1.76	
		328-4,306	13	1.01	0.44, 2.36	
		Stat Met	nod: unc	onditional l	ogistic regressi	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-29Draft: Do Not Cite or Quote

Reference and Study Design	bservational Epidemiology Studies for Healt Exposure Measures	Results				
<u>Chiou et al. (1997)</u>	Exposure Surrogate: drinking water	Outcome: cerebral Infarction cumulative drinking water arsenic exposure,				
Study Type: cross-	Exposure Description: cumulative arsenic	mg/L-yr				
sectional	levels calculated based on arsenic	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
	concentration in well water and self-	<0.1	NR	1	n/a	
Location: Taiwan	reported years of use	0.1-4.9	NR	2.66	1.21, 5.83	
(Lanyang Basin)		>5.0	NR	3.39	1.42, 8.11	
	Population-Level Exposure:	Stat Met	hod: Mul	tiple logistion	c regression	
Population: adults	1-5 mg/L-yr range	Outcome: ce	rebrovas	cular diseas	e	
living in arseniasis-		cumulative d	rinkina w	vater arseni	ic exposure.	
endemic townships		mg/L-yr	5		. ,	
n cases: 8,102		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
n control: n/a		<0.1	NR	1	n/a	
		0.1-4.9	NR	2.26	1.23, 4.15	
		>5.0	NR	2.69	1.35, 5.38	
					regression	
	Exposure Surrogate: drinking water	Outcome: cerebral Infarction drinking water arsenic concentration, μg/L				
	Exposure Description: drinking water	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
	arsenic exposure calculated from single	<0.1	NR	1	n/a	
	well water sample collected from each	0.1-50	NR	3.38	1.57, 7.27	
	household	50.1-299.9	NR	4.47	2.03, 9.87	
		≥ 300	NR	6.9	2.91, 16.38	
	Population-Level Exposure:	Stat Met	hod: Mul	tiple logistio	c regression	
	0.1-300 μg/L range	Outcome: ce	rebrovas	cular diseas	e	
		drinking wat	er arseni	c concentra	tion, μg/L	
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		<0.1	NR	1	n/a	
		0.1-50	NR	2.53	1.47, 4.35	
		50.1-299.9	NR	2.78	1.55, 4.97	
		≥ 300	NR	3.6	1.83, 7.11	
		Stat Met	hod: Mul	tiple logistic	c regression	
<u>Chiou et al. (2005)</u>	Exposure Surrogate: drinking water	Outcome: mi	crovascu	lar disease		
		drinking wat	er arseni	c concentra	tion -	
Study Type: cohort	Exposure Description: drinking water					
(retrospective)	arsenic concentration as reported by the	Exp. Level	<u>n</u>	adjBeta	<u>(CI)</u>	
	National Taiwan University Group;	continuous	NR	-1.366	n/a	
Location: Taiwan (southwestern: Tainan County (Yenshui,	median concentration used as surrogate if village had multiple wells			stic regress		

Summary of O	bservational Epidemiology Studies for Healt	h Effect Catego	ory: Card	iovascular I	Disease
Reference and Study Design	Exposure Measures			Results	
Beimen, and Shuechia townships), Chiayi County (Putai and Yichu townships))	Population-Level Exposure: 0.1-0.6 mg/L range				
Population: adults and children living in arseniasis-endemic townships					
n total: 28,499					
Guha Mazumder et al.	Exposure Surrogate: drinking water	Outcome: hy	pertensi	on	
<u>(2012)</u>	Exposure Description: present and	<i>cumulative d</i> <i>mg/L - yr</i> Exp. Level	-		
Study Type: cross-	previous (if available) drinking and	0	<u>n</u> 20	<u>adjOR</u> 1	<u>(CI)</u> n/a
sectional	cooking water source samples collected for each individual; cumulative arsenic	0-4.5	37	1.65	1.02, 6.14
	exposure calculated as the drinking	>4.5	24	2.07	0.64, 6.57
Location: India (West Bengal) Population: adults and children likely exposed to higher than average arsenic in drinking water	water arsenic concentration of each well used multiplied by self-reported duration of use and added across individual's lifetime Population-Level Exposure: 0-24.98 mg/L - yr range	Stat Met	hod: mul	tivariate lo _ĝ	gistic regression
	Exposure Surrogate: hair	Outcome: hy	pertensio	on	
n cases: 208 n control: 100		hair arsenic d	-		a
	Exposure Description: arsenic	Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>
	concentration measured from a cleaned	0-0.18	12	1	n/a
	bunch of hair samples for each individual	0.19-2.0	51	1.37	0.65, 3.81
		>2.0	18	2.39	0.57, 10.00
	Population-Level Exposure: 0.06-7.51 mg/kg range	Stat Met	hod: mul	tivariate log	gistic regression
<u>Guo et al. (2007)</u>	Exposure Surrogate: drinking water	Outcome: hy	pertensi	on	
		water arseni	c concent	tration, μg/	1
Study Type: cross-	Exposure Description: arsenic samples	Exp. Level	<u>n</u>	Prev	<u>(CI)</u>
sectional	were taken from 94 water sources,	≤ 50 μg/L	NR	0.53	n/a
	including wells; detection limit not	>50 µg/L	NR	8.09	n/a
Location: Mongolia region not available	specified, but authors note reliability of the method at <10 μ g/L; arsenic exposure determined by location of village	Stat Met	hod: not	reported	
Population: residents of villages in the Hetao					

Summary of O	bservational Epidemiology Studies for Heal	th Effect Category: Cardiovascular Disease
Reference and Study Design	Exposure Measures	Results
Plain, Inner Mongolia	Population-Level Exposure:	
n cases: 680	50-1,860 µg/L range	
n control: 189		
Hawkesworth et al.	Exposure Surrogate: maternal urine	Outcome: diastolic blood pressure
<u>(2013)</u>	Exposure Description: spot urine	maternal urinary arsenic concentration (combined), mg/L
Study Type: cohort	samples from participating women	Exp. Level <u>n</u> <u>adjBeta</u> (CI)
(prospective)	collected at 8 and 30 weeks gestation;	continuous NR 2.91 0.41, 5.42
	log transformed as continuous variable	Stat Method: linear regression
Location: Bangladesh (Matlab)	for analysis; median maternal urinary arsenic was 80 μg/L (10th, 90th percentile: 24, 383 μg/L) at week 8 of	maternal urinary arsenic concentration week 30, mg/L
	gestation and 83 µg/L (10th, 90th: 26,	Exp. Level <u>n</u> adjBeta (CI)
Population: children in	415 μ g/L) at week 30	continuous NR 2.45 -0.03, 4.94
Maternal and Infant		Stat Method: linear regression
Nutrition Interventions	Population-Level Exposure:	maternal urinary arsenic concentration week 8,
in Matlab (MINIMat)	80 mg/L median	matchina annary assence concentration week o, mg/L
cohort		Exp. Level <u>n</u> <u>adjBeta</u> (CI)
n total: 2,499		continuous NR 1.75 -0.73, 4.22
		Stat Method: linear regression
		Outcome: systolic blood pressure
		maternal urinary arsenic concentration (combined), mg/L
		Exp. Level <u>n</u> <u>adjBeta</u> (CI)
		continuous NR 3.69 0.74, 6.63
		Stat Method: linear regression
		maternal urinary arsenic concentration week 30, mg/L
		Exp. Level <u>n</u> <u>adjBeta</u> (CI)
		continuous NR 3.56 0.62, 6.5
		Stat Method: linear regression
		maternal urinary arsenic concentration week 8, mg/L
		Exp. Level <u>n</u> adjBeta (CI)
		continuous NR 1.45 -1.51, 4.41
		Stat Method: linear regression
	Exposure Surrogate: urine	Outcome: diastolic blood pressure
		infant urinary arsenic concentration 18 months,
	Exposure Description: urine samples	mg/L
	collected from participating children at	Exp. Level <u>n</u> <u>adjBeta</u> (CI)
		continuous NR 2.75 -3.09, 8.59

Summary of O	bservational Epidemiology Studies for Healt	h Effect Catego	ory: Cardi	ovascular D	lisease	
Reference and Study	Exposure Measures			Results		
Design	18 months of age; log transformed as	Stat Moth	nod: line:	ar regressio	0	
	continuous variable for analysis; median	Stat Method: linear regression				
	urinary arsenic was 34 μg/L (10th, 90th	Outcome: systolic blood pressure				
	percentile: 12, 154 µg/L)	infant urinary arsenic concentration 18 month mg/L				
	Population-Level Exposure:	Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
	34 mg/L median	continuous Stat Meth	NR nod: linea	8.25 ar regressio	1.37, 15.1 n	
<u>Hsieh et al. (2008a)</u>	Exposure Surrogate: drinking water	Outcome: ere	ectile dys	function (II	EF ≤ 21)	
		drinking wate	er arsenio	concentra	tion, ppb	
Study Type: case-	Exposure Description: drinking water	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
control (nested)	arsenic concentrations determined from	≤ 50	NR	1	n/a	
	well water samples collected during	>50	NR	3	1.0, 9.2	
Location: Taiwan (Lanyang Basin	home interview	Stat Meth analysis	nod: Mul [.]	tivariable lo	gistic regression	
(arsenic-exposed	Population-Level Exposure:	Outcome: severe erectile dysfunction (IIEF ≤ 7)				
population))	0.15-3,590 ppb range	drinking water arsenic concentration, ppb				
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
Population: adult male		≤ 50	NR	1	n/a	
residents of Taiwan		>50	NR	7.5	1.8, 30.9	
from existing cohort		Stat Meth	nod: Mul	tivariable lo	gistic regression	
n cases: 129 n control: 48		analysis				
<u>Hsieh et al. (2008b)</u>	Exposure Surrogate: drinking water	Outcome: car	otid athe	erosclerosis		
Study Type: case-	Exposure Description: cumulative arsenic	cumulative dı mg/L - yr	rinking w	ater arseni	c exposure,	
control (nested)	exposure calculated based on arsenic	Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>	
control (nested)	concentration in well water and self-	<u>≤ 0.2</u>	NR	1	n/a	
	reported years of drinking well water	0.3-1	NR	1.2	0.5, 2.6	
Location: Taiwan	during successive periods of living in	≥ 1.1	NR	1.7	0.9, 3.1	
(northeastern; Lanyang Basin of Ilan County)	different villages	Stat Meth	nod: mult	tiple logistic		
Population: adults and	Population-Level Exposure: not available					
children genotyped for APOE and MCP-1	Exposure Surrogate: drinking water	Outcome: car	otid athe	erosclerosis		
n cases: 235		drinking wate				
n control: 244	Exposure Description: drinking water	Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>	
11 CONUIDI. 244	arsenic concentrations determined from	≤ 10	nr	<u>aajon</u> 1	n/a	
	well water samples collected during	10.1-50.0	NR	1.8	1.0, 3.2	
	home interview	≥ 50.1	NR	1.9	1.1, 3.1	
				tiple logistic		
					-0.000.000	

Reference and Study Design	Observational Epidemiology Studies for Health Exposure Measures	Results			
	Population-Level Exposure: 87.2 μg/L median, 43-182.2 μg/L 25th percentile				
<u>Islam et al. (2012a)</u>	Exposure Surrogate: drinking water	Outcome: dia	stolic hy	pertension	
		cumulative dr	inking v	vater arsen	ic exposure,
Study Type: cross- sectional Location: Bangladesh (Comilla, Jhenida districts) Population: adults living in unions of high arsenic contamination n cases: n/a n control: n/a	 Exposure Description: cumulative arsenic exposure calculated by multiplying arsenic concentration of single tube well measurement for each individual with self-reported duration of use; subjects grouped for analysis above and below maximum acceptable limit in drinking water in Bangladesh (50 µg/L) and as quartiles Population-Level Exposure: 10-262 µg/L range 	μg/L Exp. Level <50 ≥ 50 Stat Meth Cuzick's Outcome: incl cumulative dr μg/L Exp. Level <50 ≥ 50 Stat Meth Cuzick's Outcome: ove cumulative dr μg/L Exp. Level <50 ≥ 50 Stat Meth Cuzick's Cuzick's cumulative dr μg/L Exp. Level <50 ≥ 50 Stat Meth Cuzick's Cuzic	n 64 50 nod: Mul nonpara reased p inking w n 15 26 nod: Mul nonpara rinking w 43 23 nod: Mul nonpara rinking w 43 23 nod: Mul nonpara rinking w 43 23 nod: Mul nonpara rinking w 43 23 nod: Mul nonpara	adjOR 1 1.24 Itiple logistic metric test vater arsen adjOR 1 3.54 Itiple logistic metric test vater arsen adjOR 1 0.93 Itiple logistic metric test vater arsen adjOR 1 0.93 Itiple logistic metric test vater arsen adjOR 1 0.93 Itiple logistic metric test vater arsen adjOR 1 0.93 Itiple logistic metric test vater arsen adjOR 1 0.93	(<u>Cl</u>) n/a 0.76, 2.01 c regression, for trend ire <i>ic exposure,</i> (<u>Cl</u>) n/a 1.46, 8.57 c regression, for trend <i>ic exposure,</i> (<u>Cl</u>) n/a 0.49, 1.78 c regression, for trend <i>ic exposure</i> (<u>Cl</u>) n/a 0.49, 2.44 0.42, 2.23 c regression,
		Outcome: pul	se press	sure	
		cumulative dr (quartiles), μg	-		-
		<u>Exp. Level</u> 10-22	<u>n</u> 5	<u>adjOR</u> 1	<u>(CI)</u> n/a

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-34Draft: Do Not Cite or Quote

Summary of Observational Epidemiology Studies for Health Effect Category: Cardiovascular Disease **Reference and Study Exposure Measures** Results Design 23-32 10 3.87 1.22, 12.20 33-261 10 4.32 1.23, 15.11 ≥ 262 16 7.32 2.18, 24.60 Stat Method: Multiple logistic regression, Cuzick's nonparametric test for trend **Outcome: systolic hypertension** cumulative drinking water arsenic exposure, $\mu g/L$ Exp. Level adjOR (CI) n <50 47 1 n/a ≥ 50 30 1.11 0.61, 2.02 Stat Method: Multiple logistic regression, Cuzick's nonparametric test for trend Jensen and Hansen Exposure Surrogate: urine **Outcome: systolic blood pressure** <u>(1998)</u> urinary arsenic concentration by group, nmol/mmol creatinine **Exposure Description:** urinary arsenic Exp. Level (CI) n mean Study Type: crossconcentration determined from two unexposed 119.9 n/a sectional urine samples collected from each NR individual colleagues of NR 122.8 n/a workers Location: Denmark workers NR 127.5 n/a region not available **Population-Level Exposure:** handling As 12-80 nmol/mmol creatinine range directly **Population:** Stat Method: Kruskal-Wallis test comparing occupationally exposed mean values of systolic blood pressure adult workers n cases: 40 n control: 26 Jones et al. (2011) Exposure Surrogate: urine **Outcome:** hypertension dimethylarsinate concentration, $\mu q/L$ Exp. Level n adjOR (CI) Study Type: cross-Exposure Description: urinary arsenic per doubling 1,761 1.11 0.99, 1.24 sectional concentration measured from single of arsenic sample for each individual; subjects Stat Method: Logistic regression grouped in quartiles for analysis Location: United States region not available dimethylarsinate concentration (quartiles), $\mu q/L$ **Population-Level Exposure:** Exp. Level n adjOR (CI) 8.3 μg/L median, 4.2-17.1 μg/L 25th <2.0 415 n/a 1 **Population:** NHANES percentile 2.0-3.6 461 1.05 0.77, 1.42 2003-2008, adult >3.6-6.0 448 1.18 0.84, 1.66 participants with total >6.0 0.84, 1.83 arsenic assessed in 437 1.24 urine Stat Method: Logistic regression

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-35Draft: Do Not Cite or Quote

-	bservational Epidemiology Studies for Heal			esults	iscuse
Reference and Study Design	Exposure Measures				
n cases: 4,167		total urinary a	ırsenic co	ncentratio	n, μg/L
n control: n/a		Exp. Level	<u>n</u>	<u>adjOR</u>	(<u>CI)</u>
		per doubling of arsenic	1,761	0.98	0.86, 1.11
			od: Logis	tic regressi	on
		total urinary α μg/L	ırsenic co	oncentratio	n (quartiles),
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
		<4.2	418	1	n/a
		4.2-8.3	451	1.08	0.83, 1.40
		>8.3-17.1	446	1.3	0.94, 1.80
		>17.1	446	1.17	0.75, 1.83
				tic regressi	,
		total urinary arsenic concentration minu arsenobetaine, μg/L			n minus
		Exp. Level		adiOB	
		per doubling	<u>n</u> 1,761	<u>adjOR</u> 1.03	<u>(CI)</u> 0.94, 1.14
		of arsenic	1,701	1.03	0.94, 1.14
			od: Logis	tic regressi	on
		total urinary o arsenobetaine			n minus
		Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>
		<3.1	<u></u> 426	<u>aajon</u> 1	<u>, c., /</u> n/a
		3.1-5.8	428	1.07	0.81, 1.40
		>5.8-10.8	463	1.33	0.95, 1.85
		>10.8	432	1.33	0.88, 1.83
				tic regressi	
		Stat Meth	ou. Logis	tic regressi	UII
<u>Karim et al. (2013)</u>	Exposure Surrogate: drinking water	Outcome: C-re	eactive p	rotein (CRP)
Study Type: cross-	Exposure Description: water samples	water arsenic μg/L	concentr	ation (log-	transformed),
sectional	collected from tube wells used as	Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
	primary drinking water source for study	continuous	NR	0.139	0.084, 0.193
Location: Bangladesh	participants; no details provided on	Stat Meth	od: multi	variate line	ar regression
(North-west (Marua,	individual-level exposure characterization	water arsenic	concentr	ation (terti	iles), μα/L
Kestopur, Bheramara)		Exp. Level	<u>n</u>	mean	<u>(CI)</u>
and Chowkoli village)		0.03-13.17	NR	0.78	n/a
	Population-Level Exposure:	(non-			
Population: Residents	1.06 μg/L mean 0.04SD	endemic)			
from arsenic-endemic		0.46-69.4	NR	1.15	n/a
and non-endemic areas		76-205	NR	1.75	n/a

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-36Draft: Do Not Cite or Quote

Reference and Study Design	vational Epidemiology Studies for I Exposure Measures	Results			
of Bangladesh		Stat Met	hod: One	-Way ANOV	A followed by
n cases: 218		Stat Method: One-Way ANOVA followed by Bonferroni multicomparison test.			
n control: 106		Outcome: HD			
				tration (log-	transformed),
		μg/L			
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	-0.054	-0.068, -0.04
		Stat Met	hod: mul	tivariate line	ar regression
		water arsenio	concent	tration (terti	les), μg/L
		Exp. Level	<u>n</u>	mean	<u>(CI)</u>
		0.03-13.17	NR	42.87	n/a
		(non-			
		endemic)			
		0.46-69.4	NR	32.1	n/a
		76-205	NR	31.2	n/a
		214-546	NR	29.4	n/a
				e-Way ANOV comparison	A followed by test.
		Outcome: int (ICAM-1)	ercellula	r adhesion r	nolecule-1
		water arsenia μg/L	concent	tration (log-	transformed),
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	0.042	0.029, 0.055
		Stat Met	hod: mul	tivariate line	ar regression
		water arsenio	concent	tration (terti	les), μg/L
		Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>
		0.03-13.17	NR	371.4	n/a
		(non-			
		endemic)			
		0.46-69.4	NR	518.1	n/a
		76-205	NR	520.3	n/a
		214-546	NR	549.2	n/a
				e-Way ANOV comparison	A followed by test.
		Outcome: LD	L		
		water arsenia μg/L	concent	tration (log-	transformed),
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	-0.028	-0.045, -0.01

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-37Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures	Results				
		Stat Method: multivariate linear regression				
		water arsenie	c concent	ration (terti	iles), μg/L	
		Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>	
		0.03-13.17	NR	88.69	n/a	
		(non-				
		endemic)				
		0.46-69.4	NR	68.4	n/a	
		76-205	NR	71.8	n/a	
		214-546	NR	80.4	n/a	
		Stat Met	hod: One	-Way ANOV	A followed b	
		Bonferro	oni multi	comparison	test.	
		Outcome: ox density lipop			poprotein-lo	
		water arsenio μg/L	c concent	tration (log-	transformed)	
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		continuous	NR	0.058	0.044, 0.07	
		Stat Met	hod: mul	tivariate line	ar regression	
		Outcome: ox LDL)	idized lo	w density lip	oprotein (Ox	
		water arsenio μg/L	c concent	tration (log-	transformed)	
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		continuous	NR	0.041	0.029, 0.05	
		Stat Met	hod: mul	tivariate line	ar regression	
		water arseni	c concent	tration (terti	iles), μg/L	
		Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>	
		0.03-13.17	NR	39.7	n/a	
		(non-				
		endemic)			,	
		0.46-69.4	NR	48.9	n/a	
		76-205	NR	49	n/a	
		214-546	NR	56.5	n/a	
				-	A followed by	
		Bonferro	oni multi	comparison	test.	
		Outcome: To	tal Chole	sterol (TC)		
		water arsenia μg/L	c concent	tration (log-		
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		continuous	NR	-0.025	-0.035, -0.0	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-38Draft: Do Not Cite or Quote

Reference and Study Design	bservational Epidemiology Studies for Heal Exposure Measures	Results Stat Method: multivariate linear regression			
Design					
		Outcome: vascular cell adhesion molecule-1 (VCAM-1)			
		water arsenia μg/L	c concent	tration (log-	transformed),
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	0.036	0.023, 0.05
			hod: mul		ar regression
		water arsenio	c concent	tration (terti	iles), μg/L
		Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>
		0.03-13.17	NR	420.3	n/a
		(non-			
		endemic)			
		0.46-69.4	NR	589.7	n/a
		76-205	NR	604.1	n/a
		214-546	NR	623.7	n/a
		Stat Met	hod: One	-Way ANOV	A followed by
				comparison	
-	Exposure Surrogate: hair	Outcome: C-reactive protein (CRP))
		arsenic concentration in hair(log-transform			
	Exposure Description: hair samples	µg/g			
	collected for each study participant and	Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
	washed	continuous	NR	0.276	0.177, 0.374
		Stat Met	hod: mul	tivariate line	ear regression
	Population-Level Exposure:	arsenic conce	entration	in hair (tert	iles), μg/g
	0.61 μg/g mean 0.12SD	Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>
		0.03-1.62	NR	0.78	n/a
		(non-			
		endemic)			
		0.25-2.37	NR	1.74	n/a
		2.45-4.95	NR	1.37	n/a
		5-37.24	NR	2.64	n/a
					A followed by
		Bonferro	oni multi	comparison	test.
		Outcome: HD	L		
		arsenic conce μg/g	entration	in hair(log-	transformed),
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	-0.085	-0.11, -0.059
		Stat Mot	hod: mul	tivariata lina	ar regression

Reference and Study Design	Exposure Measures			Results	
		arsenic conce	entration	in hair (tert	iles), μg/g
		Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>
		0.03-1.62	NR	42.87	n/a
		(non-			
		endemic)			
		0.25-2.37	NR	31.1	n/a
		2.45-4.95	NR	31.3	n/a
		5-37.24	NR	30.3	n/a
					A followed by
		Bonferr	oni multi	comparison	test.
		Outcome: int (ICAM-1)	ercellula	r adhesion i	nolecule-1
			entration	in hair(log-	transformed),
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	0.091	0.068, 0.114
		Stat Met	hod: mul	tivariate line	ear regression
		arsenic conce	entration	in hair (tert	iles), μg/g
		Exp. Level	<u>n</u>	mean	<u>(CI)</u>
		0.03-1.62	NR	371.4	n/a
		(non-			
		endemic)			
		0.25-2.37	NR	548.9	n/a
		2.45-4.95	NR	519.3	n/a
		5-37.24	NR	520.5	n/a
					A followed by
		Bonferr	oni multi	comparison	test.
		Outcome: LD	L		
		arsenic conce μg/g	entration	in hair(log-	transformed),
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	-0.04	-0.078, -0.01
		Stat Met	hod: mul	tivariate line	ear regression
		arsenic conce	entration	in hair (tert	iles), μg/g
		Exp. Level	<u>n</u>	mean	<u>(CI)</u>
		0.03-1.62	NR	88.69	n/a
		(non-			
		endemic)			
		0.25-2.37	NR	70	n/a
		2.45-4.95	NR	70.2	n/a
		5-37.24	NR	80.5	n/a
					A followed by

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-40Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures			Results		
		Bonferre	Bonferroni multicomparison test.			
			Outcome: oxidized high density lipoprotein-low density lipoprotein (Ox-LDL/HDL)			
		arsenic conce μg/g	entration	in hair(log-	transformed),	
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		continuous	NR	0.1	0.074, 0.127	
		Stat Met	hod: mu	tivariate line	ar regression	
		Outcome: oxidized low density lipoprote LDL)				
		arsenic conce μg/g	entration	in hair(log-	transformed),	
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		continuous	NR	0.086	0.064, 0.108	
		Stat Met	hod: mu	tivariate line	ar regression	
		arsenic conce	ntration	in hair (tert	iles), μg/g	
		Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>	
		0.03-1.62	NR	39.7	n/a	
		(non-				
		endemic)				
		0.25-2.37	NR	44.4	n/a	
		2.45-4.95	NR	50.3	n/a	
		5-37.24	NR	59.5	n/a	
				e-Way ANOV comparison	A followed by test.	
		Outcome: To		-		
		arsenic conce μg/g	ntration	in hair(log-	transformed),	
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		continuous	NR	-0.038	-0.057, -0.02	
			hod: mul		ar regression	
		arsenic conce		-		
		Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>	
		0.03-1.62	NR	147.3	n/a	
		(non-				
		endemic)				
		0.25-2.37	NR	128.5	n/a	
		2.45-4.95	NR	122.6	n/a	
		5-37.24	NR	130.4	n/a	
		Stat Met	hod [.] One	-Way ANOV	A followed by	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-41Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures			Results		
		Bonferroni multicomparison test				
		Outcome: vascular cell adhesion molecule-1 (VCAM-1)				
		arsenic concentration in hair(log-transforme μg/g				
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		continuous	NR	0.086	0.062, 0.110	
					ear regression	
		arsenic conce	ntration	in hair (tert	iles), μα/α	
		Exp. Level	<u>n</u>	mean	<u>(CI)</u>	
		0.03-1.62	NR	420.3	n/a	
		(non-				
		endemic)				
		0.25-2.37	NR	605.1	n/a	
		2.45-4.95	NR	588.4	n/a	
		5-37.24	NR	624.2	n/a	
					A followed by	
				comparison		
-	Exposure Surrogate: nail	Outcome: C-r	Outcome: C-reactive protein (CRP)			
		arsenic concentration in nails (tertiles), μg				
	Exposure Description: nail samples	Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>	
	collected from each individual and	0.15-8.13	NR	0.78	n/a	
	washed	(non-				
		endemic)				
	Demulation Lovel Fundation	0.53-5.14	NR	1.39	n/a	
	Population-Level Exposure:	5.21-10.65	NR	1.99	n/a	
	6.65 μg/g mean	10.67-37.42	NR	2.33	n/a	
		Stat Meth	nod: One	e-Way ANOV	A followed by	
		Bonferro	oni multi	comparison	test.	
		Outcome: HD	L			
		arsenic conce		-		
		Exp. Level	<u>n</u>	mean	<u>(CI)</u>	
		0.15-8.13	NR	42.87	n/a	
		(non-				
		endemic)	ND	22.2	- 1-	
		0.53-5.14	NR	32.2	n/a	
		5.21-10.65	NR	30.3	n/a	
		10.67-37.42	NR	30.3	n/a	
				e-Way ANOV comparison	A followed by test.	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-42Draft: Do Not Cite or Quote

Reference and Study	vational Epidemiology Studies for Exposure Measures			Results	
Design		(1999)	((0000 4))		
		(ICAM-1)			
		arsenic conce	ntration	in nails (te	rtiles), μg/g
		Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>
		0.15-8.13	NR	371.4	n/a
		(non-			
		endemic)			
		0.53-5.14	NR	530.9	n/a
		5.21-10.65	NR	533.5	n/a
		10.67-37.42	NR	523.8	n/a
					VA followed b
		Bonferro	oni multi	comparisor	i test.
		Outcome: LD	L		
		arsenic concentration in nails (tertiles), μ g/g			
		Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>
		0.15-8.13	NR	88.69	n/a
		(non-			
		endemic)			
		0.53-5.14	NR	73.2	n/a
		5.21-10.65	NR	71.8	n/a
		10.67-37.42	NR	75.8	n/a
		Stat Method: One-Way ANOVA followed			
		Bonferro	oni multi	comparisor	i test.
		Outcome: oxidized low density lipoprotein (O LDL)			poprotein (O
		arsenic conce	ntration	in nails (te	rtiles), μg/g
		Exp. Level	<u>n</u>	mean	<u>(CI)</u>
		0.15-8.13	NR	39.7	n/a
		(non-			
		endemic)			
		0.53-5.14	NR	49.3	n/a
		5.21-10.65	NR	49.9	n/a
		10.67-37.42	NR	55.4	n/a
		Stat Met	nod: One		VA followed b
				comparisor	
		Outcome: To	tal Chole	sterol (TC)	
		arsenic conce	ntration	in nails (te	rtiles), μg/g
		Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>
		0.15-8.13	NR	147.3	n/a
		(non-			
		endemic)			
		0.53-5.14	NR	126.6	n/a
		5.21-10.65	NR	125.8	n/a

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-43Draft: Do Not Cite or Quote

Reference and Study Exposure Measures Results Design 129 10.67-37.42 NR n/a Stat Method: One-Way ANOVA followed by Bonferroni multicomparison test. Outcome: vascular cell adhesion molecule-1 (VCAM-1) arsenic concentration in nails (tertiles), $\mu g/g$ Exp. Level mean (CI) n 0.15-8.13 NR 420.3 n/a (nonendemic) 0.53-5.14 NR 602.1 n/a 5.21-10.65 NR 627.3 n/a 10.67-37.42 NR 589.1 n/a Stat Method: One-Way ANOVA followed by Bonferroni multicomparison test. Kim and Lee (2011) Exposure Surrogate: urine **Outcome: blood pressure** log-transformed total urinary arsenic - comb sex, µg/g-creatinine Study Type: cross-Exposure Description: urinary arsenic sectional concentration measured from single Exp. Level n adjRR (CI) hypertension NR 1 n/a sample for each individual - no Location: South Korea hypertension NR 1.07 0.982, 1.167 (national) **Population-Level Exposure:** - yes 118.4 µg/g-creatinine geo mean, 112.9-Stat Method: multiple regression 123.8 µg/g-creatinine 95% CI lower **Population: KNHANES** log-transformed total urinary arsenic - female, IV 2008, adult $\mu q/q$ -creatinine participants Exp. Level n adjRR (CI) n cases: 1,677 hypertension n/a 1 NR n control: n/a - no hypertension NR 0.994 0.865.1.144 - yes Stat Method: multiple regression log-transformed total urinary arsenic - male, µg/g-creatinine Exp. Level adjRR (CI) <u>n</u> hypertension NR 1 n/a - no hypertension NR 1.132 1.004, 1.276

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

Summary of Observational Epidemiology Studies for Health Effect Category: Cardiovascular Disease

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-44Draft: Do Not Cite or Quote

Exposure Surrogate: urine

Kim et al. (2013)

- yes

Stat Method: multiple regression

Outcome: mean systolic blood pressure

Defenses and Churd		h Effect Category: Cardiovascular Disease
Reference and Study Design	Exposure Measures	Results
		total arsenic concentration, μg/L
Study Type: case- control (nested) Location: United States (Arizona)	Exposure Description: concentrations of arsenic (total and inorganic) and metabolites measured in stored urine samples obtained at the baseline examination; adjusted for urinary creatinine	systolic blood pressure similar in cases and controls
Population: ongitudinal study participants who developed diabetes within 10 years of nitial screening n cases: 150	Population-Level Exposure: 21.1 μg/L median, 15.3-29.4 μg/L 25th percentile	
n control: 150		
<u>Kunrath et al. (2013)</u>	Exposure Surrogate: drinking water	Outcome: anticipatory stress (DBP difference from baseline)
Study Type: cross- sectional Location: Romania (Arad County)	Exposure Description: individualVexposure assessment conducted byEcollecting water samples from currentU	water arsenic exposure, μg/L Exp. Level n mean (Cl) unexposed NR 11.2 n/a exposed NR 20 n/a Stat Method: multivariate ANOVA
Population: adult men	40.2 (30.4), respectively	Outcome: anticipatory stress (SBP difference from baseline)
with normal blood pressure and low-to- moderate arsenic	Population-Level Exposure: 0.1-240 μg/L range	<i>water arsenic exposure, μg/L</i> arsenic not significantly associated with anticipatory stress
exposure from drinking water		Outcome: blood pressure (anticipatory stress recovery)
n cases: 19 n control: 16		water arsenic exposure, μg/L arsenic not significantly associated with blood pressure
		Outcome: blood pressure (anticipatory stress)
		water arsenic exposure, μg/LExp. LevelnadjOR(CI)unexposedNR1n/aexposedNR6.31.11, 35.67Stat Method: binary logistic regression
		Outcome: blood pressure (cold stress)
		water arsenic exposure, μg/L

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-45Draft: Do Not Cite or Quote

Summary of Obser Reference and Study Design	Exposure Measures	Results		
		Exp. Level <u>n adjOR (CI)</u>		
		unexposed NR 1 n/a		
		exposed NR 4.67 1.11, 19.65		
		Stat Method: binary logistic regression		
		Outcome: cold stress (DBP difference from baseline)		
		water arsenic exposure, μg/L		
		Exp. Level <u>n</u> mean (CI)		
		unexposed NR 23.2 n/a		
		exposed NR 34 n/a		
		Stat Method: multivariate ANOVA		
		Outcome: cold stress (SBP difference from baseline)		
		water arsenic exposure, μg/L		
		Exp. Level <u>n</u> <u>mean</u> (CI)		
		unexposed NR 20.6 n/a		
		exposed NR 38.5 n/a		
		Stat Method: multivariate ANOVA		
		Outcome: recovery from anticipatory stress (I difference from baseline)		
		water arsenic exposure, μg/L		
		Exp. Level <u>n</u> <u>mean</u> (CI)		
		unexposed NR 10.5 n/a		
		exposed NR 20.9 n/a		
		Stat Method: multivariate ANOVA		
		Outcome: recovery from anticipatory stress (S difference from baseline)		
		water arsenic exposure, µg/L		
		arsenic not significantly associated with recover from anticipatory stress		
		Outcome: recovery from cold stress (DBP difference from baseline)		
		water arsenic exposure, µg/L		
		Exp. Level <u>n</u> <u>mean</u> (CI)		
		unexposed NR 10.3 n/a		
		exposed NR 19.6 n/a		
		Stat Method: multivariate ANOVA		
		Outcome: recovery from cold stress (SBP		

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-46Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures	th Effect Category: Cardiovascular Disease Results water arsenic exposure, μg/L			
		<u>Exp. Level</u> unexposed exposed	<u>n</u> NR NR	<u>mean</u> 1.7 16.8 tivariate AN	(<u>CI)</u> n/a n/a OVA
Kwok et al. (2007)	Exposure Surrogate: drinking water	Outcome: dia	stolic bl	ood pressur	9
Study Type: cross- sectional Location: China (Inner Mongolia (Lin He, Hanggin Houqi, and Wu Yuan counties)) Population: women with pregnancy outcome 12/1/1996- 12/31/1999 n cases: 2,808 n control: 5,982	Exposure Description: cumulative drinking water arsenic exposure assessed retrospectively by matching subjects to well water measurements from five randomly selected families in each subvillage Population-Level Exposure: 0-100 μg/L range	<i>cumulative di</i> μ <i>g/L</i> <lod 20<br="" to="">21 to 50 51 to 100 >100</lod>	rinking w n NR NR NR NR nod: Ana tolic blo	vater arsenia adjBeta 1 2.11 2.74 3.08 Iysis of cova od pressure	c exposure, (Cl) n/a 1.38, 2.84 1.55, 3.93 1.84, 4.31 riance
				lysis of cova	riance
<u>Lewis et al. (1999)</u>	Exposure Surrogate: drinking water	Outcome: all heart disease			
Study Type: cohort (retrospective) Location: United States (Millard County, Utah) Population: deceased male and female members of Latter-day Saints church wards n exposed: 2,203 n total: 2,203	Exposure Description: arsenic concentrations in drinking water determined from Utah state records and an EPA study; arsenic exposure index score calculated individually based on number of years residence in each community and median drinking water arsenic concentration in community Population-Level Exposure: 3.5-620 ppb-years range	Exp. Level <1,000 1,000-4,999 ≥ 5,000 Stat Meth OCMAP cumulative an Exp. Level <1,000 1,000-4,999 ≥ 5,000 Stat Meth	n NR NR NR nod: star adapted rsenic ex NR NR NR NR NR nod: star adapted	SMR 1.03 0.8 61 dardized mo to nonoccup posure (mal SMR 0.87 0.78 0.74 dardized mo to nonoccup	ales), ppb-yea (<u>CI)</u> n/a n/a ortality ratio; bational cohort es), ppb-years (<u>CI)</u> n/a n/a n/a ortality ratio; bational cohort

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-47Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures	Results
Design		SMR for all other heart disease unchanged from expected in males; SMR significantly increased in low exposure females only
		Outcome: aortic aneurysm
		<i>cumulative arsenic exposure, ppb-years</i> SMR for aortic aneurysm unchanged from expected in males and females
		Outcome: arteriosclerosis
		<i>cumulative arsenic exposure, ppb-years</i> SMR for arteriosclerosis unchanged from expected in males and females
		Outcome: cerebrovascular disease
		cumulative arsenic exposure (females), ppb-yeaExp. LevelnSMR(CI)<1,000
		Outcome: disease of arteries and capillaries
		<i>cumulative arsenic exposure, ppb-years</i> SMR for disease of arteries and capillaries unchanged from expected in males and females
		Outcome: hypertension without heart disease
		<i>cumulative arsenic exposure, ppb-years</i> SMR for hypertension without heart disease unchanged from expected in males and females
		Outcome: hypertensive heart disease
		<i>cumulative arsenic exposure, ppb-years</i> SMR for hypertensive heart disease significantly increased in low exposure males and medium exposure females only
		Outcome: ischemic heart disease
		cumulative arsenic exposure (females), ppb-yeaExp. LevelnSMR(CI)<1,000

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-48Draft: Do Not Cite or Quote

	bservational Epidemiology Studies for Healt	h Effect Catego	-	iovascular I Results	Disease
Reference and Study Design	Exposure Measures				
		cumulative arsenic exposure (males), ppb-y			
		Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>
		<1,000	NR	0.83	n/a
		1,000-4,999	NR	0.74	n/a
		≥ 5,000	NR	0.7	n/a
		Stat Meth			nortality ratio; upational cohort
<u>Li et al. (2013a)</u>	Exposure Surrogate: drinking water	Outcome: hyp	pertensio	on	
		water arsenic	concent	ration, µg/	1
Study Type: cross-	Exposure Description: arsenic	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
sectional	concentration of each tube well	<10	NR	NR	n/a
Sectional	measured and provided by local public	10-50	NR	1.417	0.767, 2.618
	health government; cumulative arsenic	>50	NR	1.937	1.018, 3.687
Location: China	exposure (CAE) calculated for each				c regression
(Tuoketuo County,	subject as: concentration in tube well				
Inner Mongolia)	that subject used in his/her residential				
	duration multiplied by duration of water				
Population: residents	consumption				
exposed to arsenic in					
drinking water					
n cases: n/a	Population-Level Exposure:				
n control: n/a	0-760 μg/L range				
					•
<u>Li et al. (2009)</u>	Exposure Surrogate: drinking water	Outcome: carotid artherosclerosis			
		cumulative drinking water arsenic exposure		ic exposure	
Study Type: cross-	Exposure Description: cumulative	(tertiles), mg/	′L - yr		
sectional	drinking water arsenic exposure assessed	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
	using an index of cumulative arsenic	<0.1	NR	1	n/a
Location: Taiwan	exposure based on median arsenic level	0.1-15.0	NR	2.2	0.95, 5.09
(southwestern)	in village well water and years of living in	>15.0	NR	2.74	1.34, 5.60
(southwestern)	a village (self-reported); current	Stat Meth	nod: Logi	stic regress	ion
	exposure assessed based on speciated				
Population: adult	urinary arsenic measurements (not used				
residents of arseniasis- endemic area	in association analyses)				
n cases: 142	Population-Level Exposure:				
n control: 345	0.01-15 mg/L - yr range				
	Exposure Surrogate: drinking water	Outcome: carotid artheroscleros		is	
		drinking water arsenic concentration (tertiles			-
	Exposure Description: drinking water	ppb			
	arsenic concentration obtained from	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
	previous surveys, citations provided in	<1	NR	1	n/a
					-
	study	1-700	NR	3.04	1.48, 6.24

Reference and Study Design	bservational Epidemiology Studies for Healt Exposure Measures		-	Results	
บรายา		Stat Method: Logistic regression			
	Population-Level Exposure:				
	1-700 ppb range				
<u>Li et al. (2013b)</u>	Exposure Surrogate: drinking water	Outcome: blo	od pres	sure - hypei	tension
		cumulative an	senic ex	posure, mg	/L-yr
Study Type: cross-	Exposure Description: cumulative arsenic	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
sectional	exposure estimated based on	without	NR	1	n/a
	concentration in tube wells in mg/L and	hypertension		4 750	0.000.0000
Location: China	recall of water consumption years by	hypertension	NR	1.752	0.992, 3.096
(Shanyin county of	questionnaire	Stat Meth	iod: mul	tiple logistic	c regression
Shanxi province)		cumulative an	senic ex	posure con	centration in
	Population-Level Exposure:	water (tertiles		-	
Population: residents	0-0.65 mg/L-yr range	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
of arsenic-		<0.10	29	1	n/a
contaminated areas		0.10-0.35	30	1.204	0.632, 2.292
n cases: 604		>0.35	45	1.871	1.022, 3.424
n control: n/a		Stat Meth	od: mul	tiple logisti	c regression
	Exposure Surrogate: urine	Outcome: blood pressure - hypertension			
	Exposure Description: aliquot samples	urinary inorganic arsenic concentration (ter μg/g-creatinine			tration (tertiles,
	used for each assay; speciation based on	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
	hydride generation of volatile arsines;	<7.31	51	1	n/a
	standard reference materials used; final	7.31-33.68	54	1.301	0.772, 2.192
	adjustment by concentration of	>33.68	63	1.591	0.963, 2.628
	creatinine; total arsenic calculated as	Stat Meth	od: mul	tiple logisti	c regression
	sum of inorganic arsenic, MMA, DMA;	urinary total arsenic concentration (tertiles),			<i>(</i>
	represented by species and by				on (tertiles),
	percentage	μg/g-creatinin Exp. Level		adiOP	
		<93.77	<u>n</u> 45	<u>adjOR</u> 1	<u>(CI)</u> n/a
	Population-Level Exposure:	93.77-250.61	45 52	1.085	0.641, 1.837
	93.77-250.61 μg/g-creatinine range	>250.61	71	1.648	0.999, 2.721
					regression
<u>Liao et al. (2012)</u>	Exposure Surrogate: drinking water	Outcome: car	diovascı	ular disease	mortality
		cumulative dr	inking v	vater arsen	
Study Type: cohort	Exposure Description: cumulative arsenic	concentration			
(prospective)	exposure calculated from artesian well	Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>
	water measured in the 1960s and	<14.7	NR	1	n/a
Location: Taiwan	duration of water consumption; median	>14.7	NR	1.89	0.50, 7.10
(Homei, Fusin, and	concentration in endemic area was 0.78	NR	NR	NR	n/a
Hsinming villages in	ppm prior to intervention in the 1970s,		iod: Cox	proportion	ai hazards
Putai Township)	after which concentration reduced to	analysis			

Summary of O	bservational Epidemiology Studies for Healt	h Effect Catego	rv: Cardi	ovascular	Disease
Reference and Study	Exposure Measures		-	Results	
Design	·				
ŭ	<0.01ppm				
Population: adult					
residents of previously	Population-Level Exposure:				
arseniasis-endemic	0.78 ppm-years median				
area from existing					
cohort still living in area in 2002					
n exposed: 380					
n reference: 296					
n total: 676					
<u>Moon et al. (2013)</u>	Exposure Surrogate: urine	Outcome: car			
		concentratior		-	-
Study Type: cohort	Exposure Description: arsenic species	arsenic specie	es in urin	e (quartile	s), μg/g-
(prospective)	concentrations were measured in urine;	creatinine			
	participants with arsenic species	Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>
Location: United States	concentrations below the limit of	<5.8	265	1	n/a
(AZ; ND; OK; SD)	detection (5.1% for inorganic arsenic,	5.8-9.7	297	1.11	0.93, 1.32
(A2, ND, OR, 3D)	0.8% for MMA, 0.03% for DMA, and 2.1%	9.8-15.7	291	0.97	0.80, 1.17
	for arsenobetaine), levels imputed as	>15.7	331	1.09	0.90, 1.33
Population: Strong	LOD divided by square root of 2		nod: Cox	proportior	nal hazards
Heart Study	and arsenate) and methylated arsenic	models			
participants	species (DMA and MMA) as a biomarker	Outcome: car	diovascu	lar diseas	e - mortality
n total: 3,575	to integrate inorganic arsenic exposure from multiple sources.	concentration of inorganic plus methylated			
	nom maniple sources.	arsenic specie		-	-
		creatinine	.s III uI III	e (quui the	<i>5), µg/ g</i> -
	Population-Level Exposure:	Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>
	5.8-15.7 μg/g-creatinine range	<5.8	<u></u> 86	1	n/a
		5.8-9.7	95	1.02	0.75, 1.39
		9.8-15.7	115	1.15	0.84, 1.58
		>15.7	143	1.29	0.93, 1.79
					nal hazards
		models		propertier	
		Outcome: cor	ronary he	eart diseas	e - incidence
			-		
		concentration of inorganic plus methylc arsenic species in urine (quartiles), μg/g			-
		creatinine			
		Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>
		<5.8	202	1	n/a
		5.8-9.7	206	1.03	0.84, 1.26
		9.8-15.7	197	0.88	0.70, 1.10
		>15.7	241	1.08	0.86, 1.35
		Stat Met	nod: Cox	proportior	nal hazards

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-51Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures	Results				
		models				
		Outcome: coronary heart disease - mortality				
			concentration of inorganic plus methylated arsenic species in urine (quartiles), μg/g- creatinine			
		Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>	
		<5.8	68	1	n/a	
		5.8-9.7	67	0.89	0.62, 1.27	
		9.8-15.7	87	1.06	0.74, 1.53	
		>15.7	119	1.33	0.92, 1.93	
		Stat Method: Cox proportional hazards models Outcome: stroke - incidence			al hazards	
		concentratio arsenic speci creatinine				
		Exp. Level	<u>n</u>	HR	<u>(CI)</u>	
		<5.8	55	1	n/a	
		5.8-9.7	75	1.09	0.76, 1.57	
		9.8-15.7	62	1.07	0.72, 1.60	
		>15.7	72	1.18	0.77, 1.79	
		Stat Met models		proportion	al hazards	
		Outcome: st	roke - mo	ortality		
		concentratio arsenic speci creatinine				
		Exp. Level	<u>n</u>	HR	<u>(CI)</u>	
		<5.8	6	1	n/a	
		5.8-9.7	17	1.3	0.50, 3.39	
		9.8-15.7	13	1.97	0.70, 5.55	
		>15.7	18	2.35	0.83, 6.69	
		Stat Met models		proportion	al hazards	
Mordukhovich et al. 2009)	Exposure Surrogate: toenails	Outcome: ch interval dura	-		orrected QT	
	Exposure Description: toenail samples	toenail arser	nic concer	ntration, µg	/g	
Study Type: cross-	from all 10 toes collected; samples were	Exp. Level	<u>n</u>	change	<u>(CI)</u>	
sectional	cleaned to remove contaminants and	per 0.059-	NR	2.5	0.11, 4.9	
		μg/g (IQR)			•	
ระดับกลา	cleaned to remove contaminants and then sonicated; samples digested with		INIT	2.3	0.11, 4	

Summary of Ob	servational Epidemiology Studies for Healt	h Effect Category: Cardiovascular Disease			
Reference and Study Design	Exposure Measures	Results			
Location: United States	nitric acid and diluted with deionized water Population-Level Exposure: 0.069 μg/g median, 0.052-0.11 μg/g 25th percentile	Stat Method: multivariate linear regression			
(MA)		Outcome: change in QT interval duration (milliseconds)			
Population: elderly men from Veterans Administration Normative Aging Study n cases: n/a n control: n/a		toenail arsenic concentration, μg/g Exp. Level <u>n</u> <u>change</u> (CI) per 0.059- NR 3.8 0.82, 6.8 μg/g (IQR) increase Stat Method: multivariate linear regression			
<u>Mumford et al. (2007)</u>	Exposure Surrogate: drinking water	Outcome: heart rate			
Study Type: cross- sectional	Exposure Description: samples collected from study subject's homes	well water arsenic concentration, μg/L individuals with prolonged QTc demonstrated statistical significant increase in heart rate in medium- (p=0.0194) and high-exposure (p=0.0018) groups (t-test)			
Location: China (Ba Men)	Population-Level Exposure: 0.1-690 μg/L range	Outcome: QT interval			
Population: residents of high, medium, and low exposure areas for arsenic in drinking water n cases: n/a n control: n/a		well water arsenic concentration, μg/L Exp. Level n adjOR (Cl) <lod-21< td=""> NR 1 n/a 100-300 NR 3.829 1.128, 12.993 430-690 NR 8.848 2.723, 28.748 Stat Method: binary logistic regression</lod-21<>			
Osorio-Yáñez et al.	Exposure Surrogate: urine	Outcome: cartoid intimamedia thickness (cIMT)			
(2013) Study Type: cross- sectional Location: Mexico (Zimapan region)	Exposure Description: spot urine samples were collected; reference standards were used to validate low and high concentrations of arsenic in urine Population-Level Exposure:	total arsenic concentration in urine, ng/mLExp. LevelnadjBeta(Cl)<35 ng/mL			
Population: children exposed to environmental inorganic arsenic n cases: n/a n control: n/a Rahman et al. (1999a)	74.31 ng/mL mean 57.04SD Exposure Surrogate: drinking water	Outcome: hypertension			

Reference and Study	Exposure Measures	th Effect Category: Cardiovascular Disease Results				
Design	-					
		cumulative drinking water arsenic exposure, Y/L				
Study Type: cohort (retrospective)	Exposure Description: cumulative arsenic levels calculated based on arsenic	Exp. Level	<u>n</u>	<u>PR (M-</u> <u>H)</u>	<u>(CI)</u>	
	concentration in well water and self-	0	9	<u>117</u> 1	n/a	
Location: Bangladesh	reported years of use	<1.0	13	0.8	0.3, 1.7	
(Faridpur, Nawabgong,		1.0-5.0	83	1.5	0.7, 2.9	
Jessore, and	Population-Level Exposure:	>5.0-10.0	40	2.2	1.1, 4.4	
Narayongong districts)	0-10 mg-Y/L	>10.0	40 62	3	1.5, 5.8	
				ar regressio		
Population: adults		Stat Wet	nou. Line	ai iegiessiu	mmodel	
residents of village with	Exposure Surrogate: drinking water	Outcome: hy				
history of higher than		drinking wat	er arseni			
average arsenic in	Exposure Description: drinking water	Exp. Level	<u>n</u>	<u>PR (M-</u>	<u>(CI)</u>	
drinking water based	arsenic concentrations calculated as			<u>H)</u>		
on existing surveys	time-weighted average based on levels	0	9	1	n/a	
n exposed: 1,481	obtained from existing reports	<0.5	50	1.2	0.6, 2.3	
n reference: 114		0.5 to 1.0	93	2.2	1.1, 4.3	
n total: 1,595	Population-Level Exposure:	>1.0	55	2.5	1.2, 4.9	
	0-1 mg/L range	Stat Met	hod: Line	ar regressio	on model	
Sohel et al. (2009)	Exposure Surrogate: drinking water	Outcome: cardiovascular disease deaths				
		cumulative w	tration			
Study Type: cohort	Exposure Description: cumulative	(quintiles), μ	g/L			
(prospective)	drinking water arsenic concentration	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
(based on current arsenic concentrations	<10	129	1	n/a	
	(reasonably stable over time); average	10-49	153	1.03	0.82, 1.29	
Location: Bangladesh	household exposure (used as proxy for	50-149	476	1.16	.96, 1.40	
(Matlab)	individual exposure) calculated for each	150-299	388	1.23	1.01, 1.51	
	calendar year from 1970, based on	≥ 300	152	1.37	1.07, 1.77	
Population: Health and	information obtained from the current				al hazard model	
Demographic	population present in that specific			proportion		
Surveillance System 1991-2000, adults and	household for each year					
children with						
nonaccidental deaths	Population-Level Exposure:					
1991-2000	10-300 μg/L range					
n exposed: 93,415 n total: 93,415						
Tseng et al. (1996)	Exposure Surrogate: drinking water	Outcome: pe	ripheral	vascular dis	ease	
		cumulative d				
Chudu Turo a		mg/L - yr		מנכו מושכווו	ε επροσάτε,	
Study Type: cross-	Exposure Description: cumulative arsenic	Exp. Level	n	adiOD	(CI)	
sectional	levels calculated based on arsenic	0	<u>n</u> NR	<u>adjOR</u> 1	<u>(CI)</u> n/a	
	concentration in well water and self-	÷				
		0.1-19.9	NR	2.77	0.84, 9.14	

Summary of O	bservational Epidemiology Studies for Healt	h Effect Catego	ory: Cardi	iovascular [Disease
Reference and Study Design	Exposure Measures			Results	
Location: Taiwan (Homei, Fuhsin, and Hsinming villages in Putai Township)	reported years of drinking well water during successive periods of living in different villages Population-Level Exposure:	≥ 20.0 Unknown Stat Metł	NR NR nod: Mul	4.28 1.63 tivariate log	1.26, 14.54 0.50, 5.33 gistic regression
Population: adults living in blackfoot disease-endemic township n cases: 582 n control: n/a	0-20 mg/L - yr range				
Tseng et al. (1997)	Exposure Surrogate: drinking water	Outcome: per	ripheral	vascular dis	ease
		-	rinking w	vater arsen	ic exposure, ABI
Study Type: cross- sectional Location: Taiwan (Homei, Fuhsin, and Hsinming villages in	Exposure Description: cumulative arsenic levels calculated based on arsenic concentration in well water and self- reported years of drinking well water during successive periods of living in different villages	Exp. Level 0 0.1-19.9 ≥ 20 Unknown	<u>n</u> NR NR NR NR	<u>adjOR</u> 1 3.01 5.6 1.58	(<u>CI)</u> n/a 0.84, 10.75 1.50, 20.92 0.46, 5.37 gistic regression
Putai Township) Population: adults living in blackfoot disease-endemic township	Population-Level Exposure: 0-20 mg/L - yr range				,
n cases: 533 n control: n/a					
<u>Tseng et al. (2003)</u>	Exposure Surrogate: drinking water	Outcome: isc	hemic he	eart disease	1
Study Type: cross- sectional Location: Taiwan (Homei, Fuhsin, and Hsinming villages in	Exposure Description: cumulative arsenic levels calculated based on arsenic concentration in well water and self- reported years of drinking well water during successive periods of living in different villages	cumulative di mg/L - yr Exp. Level 0 0.1-14.9 ≥ 15 Stat Meth	<u>n</u> NR NR NR	<u>adjOR</u> 1 1.6 3.6	ic exposure, (<u>CI)</u> n/a 0.48, 5.34 1.11, 11.65 gistic regression
Putai Township) Population: adults living in blackfoot disease-endemic township n cases: 462	Population-Level Exposure: 0-15 mg/L - yr range				

Reference and Study	bservational Epidemiology Studies for Hea Exposure Measures	Results				
Design						
n control: n/a						
<u>Wade et al. (2009)</u>	Exposure Surrogate: drinking water	Outcome: he	art disea	ase mortali	ty	
		drinking wat since before			ation (exposed	
Study Type: cohort (retrospective)	Exposure Description: drinking water arsenic exposure calculated from single	Exp. Level	<u>n</u>	<u>IRR</u>	<u>(CI)</u>	
retrospective)	well water sample collected from each	0-5	<u></u> 36	1	n/a	
	household; results below LOD assigned	5.1-20	12	0.75	0.37, 1.51	
Location: China (Shahai	one-half of LOD	20.1-100	37	1.28	0.79, 2.07	
village, Inner Mongolia)		100.1-300	15	1.6	0.87, 2.95	
		>300	2	5.08	1.45, 17.81	
Population: decreased	Population-Level Exposure:				oisson regressio	
nale and female adults and children living in	38 μg/L mean	model	inou. mu		0133011168163310	
village history of higher		-			ation (exposed	
than average arsenic in		since before	1995), μ <u>α</u>			
drinking water		Exp. Level	<u>n</u>	IRR	<u>(CI)</u>	
n exposed: 562		0-5	44	1	n/a	
n total: 572		5.1-20	26	1.07	0.64, 1.78	
		20.1-100	72	1.22	0.82, 1.82	
		100.1-300	17	1.55	0.88, 2.73	
		>300	2	2.47	0.50, 12.18	
		Stat Met model	hod: mu	ltivariate P	oisson regressio	
		drinking wat μg/L increas		ic concentr	ation (per 50	
		Exp. Level	<u>n</u>	IRR	<u>(CI)</u>	
		50 μg/L	NR	1.12	1.01, 1.23	
		increase			- , -	
		Stat Met model	hod: mu	ltivariate P	oisson regressio	
		Outcome: st	roke mor	rtality		
		drinking water arsenic concentration (expo since before 1990), $\mu g/L$				
		Exp. Level	<u>n</u>	IRR	<u>(CI)</u>	
		0-5	40	1	n/a	
		5.1-20	13	0.62	0.33, 1.18	
		20.1-100	20	0.65	0.38, 1.12	
		100.1-300	6	0.58	0.26, 1.29	
		>300	1	1.64	0.31, 8.77	
					oisson regressio	
		Stat Met	hod: mul	ltivariate Po ic concentr	oisson regres	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-56Draft: Do Not Cite or Quote

		Ith Effect Category: Cardiovascular Disease				
Reference and Study	Exposure Measures	Results				
Design		Eve Loval	2	IDD		
		<u>Exp. Level</u> 0-5	<u>n</u> 53	<u>IRR</u> 1	<u>(CI)</u> n/a	
		5.1-20	55 16	1 0.47	0.27, 0.84	
		20.1-100	41	0.47		
			41 7	0.51	0.34, 0.79	
		100.1-300			0.25, 1.10	
		>300	1 	1.02	0.16, 6.71	
		Stat Method: multivariate Poisson reg model				
		drinking wat μg/L increase		c concentra	ition (per 50	
		Exp. Level	<u>n</u>	IRR	<u>(CI)</u>	
		50 μg/L	NR	0.82	0.65, 1.03	
		increase				
		Stat Met model	hod: mul	tivariate Po	isson regressior	
Wang et al. (2002)	Exposure Surrogate: drinking water	Outcome: IMT ≥ 1.0mm				
		cumulative drinking water arsenic exposure, mg/L - yr				
Study Type: cohort (prospective)	Exposure Description: cumulative arsenic levels calculated based on arsenic	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
(prospective)	concentration in well water and self-	0	NR	1	n/a	
	reported years of drinking well water	0.1-19.9	NR	1.9	0.9, 4.1	
Location: Taiwan	during successive periods of living in	≥ 20	NR	2.9	1.2, 6.9	
(southwestern; Homei, Fushin, and Hsinming villages in Putai	different villages; arsenic levels in well water collected in previous studies	Stat Met		tiple logisti	c regression	
Township)	conducted in the 1960s	Outcome: pr	esence o	f plaque		
Population: adults	Population-Level Exposure: 0-20 mg/L - yr range	cumulative d mg/L - yr	rinking v	vater arsen	ic exposure,	
living in arseniasis-		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
endemic township		0	NR	1	n/a	
n exposed: 436		0.1-19.9	NR	1.2	0.4, 3.4	
n total: 436		≥ 20	NR	2.3	0.8, 6.4	
		Stat Method: multiple logistic regression (multivariate) analysis			-	
		Outcome: pr	esence o	f plaque or	IMT ≥ 1.0mm	
		cumulative d mg/L - yr	lrinking v	vater arsen	ic exposure,	
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		0	NR	1	n/a	
		0.1-19.9	NR	1.8	0.8, 3.8	
		≥ 20	NR	3.1	1.3, 7.4	
		Ctat Mat	الربص المصرا	tiple logisti		

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-57Draft: Do Not Cite or Quote

Wang et al. (2009a) Exposure Surrogate: drinking water Outcome: IMT (mm) Study Type: cross- sectional Exposure Description: lifetime cumulative arsenic exposure calculated by multiplying the median arsenic level in specific village by duration of consumption of artesian well water in that village; residential history used to sum products of concentration and consumption for the entire period when living in arseniasis- endemic townships n cases: 441 n control: 194 Outcome: IMT (mm) Population-Level Exposure: 0-20 mg/L - yr range 0.1-19.9 NR 1.3 n/a Outcome: P wave (ms) Cumulative drinking water arsenic exposu mg/L - yr Stat Method: Adjusted P for trend Outcome: P nave (ms) Cumulative drinking water arsenic exposu mg/L - yr Stat Method: Adjusted P for trend Outcome: PR interval (ms) ~0 NR 93.2 n/a 0.1-19.9 NR 92.9 n/a 0.1-19.9 NR 92.0 N	Reference and Study Design	bservational Epidemiology Studies for Healt Exposure Measures	Results			
Study Type: cross- sectionalExposure Description: lifetime cumulative arsenic exposure calculated by multiplying the median arsenic level in specific village by duration of consumption of artestian well water in that village; residential history used to sum products of concentration and consumption for the entire period when living in arseniasis- endemic townships n cases: 441 n control: 194 $Rean (CI)$ 0 0 $NR 0.84 n/a$ $0.1-19.9$ $NR 1.49 n/a$ $Stat Method: Adjusted P for trendPopulation: adultsliving in arseniasis-endemic townshipsn cases: 441n control: 194Population-Level Exposure:0.20 mg/L - yr rangeOutcome: P wave (ms)Population: Level in0.20 mg/L - yr rangemean (CI)000.1-19.9NR 92.2 n/a0.1-19.9 NR 92.2 n/a0.1-19.9 NR 92.2 n/a0.1-19.9 NR 92.2 n/a0.1-19.9 NR 10.1 n/a200NR 178.9 n/a0.1-19.9 NR 10.1 n/a200NR 178.9 n/a0.1-19.9 NR 10.1 n/a200NR 178.9 n/a0.1-19.9 NR 130.1 n/a200NR 178.9 n/a0.1-19.9 NR 33.4 n/a2000NR 178.9 n/a0.1-19.9 NR 33.4 n/a200NR 4.5 n/aStat Method: Adjusted P for trendOutcome: Prevalence of carotid plaque (%Cumulative drinking water arsenic exposumg/L - yrExp.Level n mean (CI)00$		_	(multiva	ariate) an	alysis	
Study Type: cross- sectionalExposure Description: lifetime cumulative arsenic exposure calculated by multiplying the median arsenic level in specific village by duration of consumption of artesian well water in that village; residential history used to sum products of concentration and consumption for the entire period when living in arseniasis- endemic townships $mg/L - yr$ $Exp. Levelmeann = 0.84n/aPopulation:adultsliving in arseniasis-endemic townshipsn control: 194Population-Level Exposure:0-20 mg/L - yr range0.1-19.9NR1.13n/aPopulation-level Exposure:0-20 mg/L - yr range0.20 NR92.91.71.9.9NR92.9n/a2.0NR92.91.71.9.9NR0.1-19.90.1-19.90.1-19.90.1-19.9NR1.71.78.9n/a0.1-19.9$	<u>Wang et al. (2009a)</u>	Exposure Surrogate: drinking water	Outcome: IN	IT (mm)		
sectional Lagranuitative arsenic exposure calculated by multiplying the median arsenic level in consumption of artesian well water in that village; residential history used to sum products of concentration and consumption for the entire period when living in arseniasis- endemic townships n cases: 441 n control: 194 <u>xp. Level</u> n <u>mean</u> (Cl) <i>Cl</i> <i>NR</i> 0.84 n/a 0.1-19.9 NR 1.13 n/a 20 NR 1.49 n/a Stat Method: Adjusted P for trend Population: adults living in arseniasis- endemic townships n cases: 441 n control: 194 <i>population-Level Exposure:</i> 0-20 mg/L - yr range <i>Outcome: P wave (ms) Cumulative drinking water arsenic exposu</i> <i>mg/L - yr mean</i> (Cl) <i>n</i> mean (Cl) <i>n mean</i> (Cl) <i>n n mean</i> (Cl) <i>n mean</i> (Cl) <i>multive drinking water arsenic exposum <i>mg/L - yr</i> </i>				rinking w	vater arsen	ic exposure,
Histingming vilages in Putai township)sum products of concentration and consumption for the entire period when living in arseniasis-endemic areaOutcome: P wave (ms)Consumption for the entire period when living in arseniasis- endemic townships n cases: 441 n control: 194Population-Level Exposure: 0-20 mg/L - yr rangeOutcome: P wave (ms)0-20 mg/L - yr range0-20 mg/L - yr range0-119.9 NRNR93.2 93.2 n/a0-119.9NR92.9 91.7 n/aStat Method: Adjusted P for trendOutcome: PR interval (ms)cumulative drinking water arsenic exposu mg/L - yrExp. Levelnmean(Cl) ~0NR178.9 n/aStat Method: Adjusted P for trendOutcome: Prevalence of carotid plaque (% cumulative drinking water arsenic exposu mg/L - yrExp. Levelnmean(Cl) ~0NR16.8 n/a0.1-19.9NR16.8 N/a0.1-19.9NR17.9 NR18.0 NR19.9 NR1	sectional Location: Taiwan (Homei, Fuhsin,	cumulative arsenic exposure calculated by multiplying the median arsenic level in specific village by duration of consumption of artesian well water in	~0 0.1-19.9 ≥ 20	NR NR NR	0.84 1.13 1.49	n/a n/a n/a
Population: adults living in arseniasis-endemic area cumulative drinking water arsenic exposu mg/L - yr Population-Level Exposure: 0-20 mg/L - yr range n mean (CI) ~0 NR 93.2 n/a 0.1-19.9 NR 92.9 n/a 0.1-19.9 NR 92.9 n/a 0.1-19.9 NR 92.9 n/a 0.1-19.9 NR 92.9 n/a Stat Method: Adjusted P for trend Outcome: PR interval (ms) mmg/L - yr Exp. Level n mean (CI) ~0 NR 91.7 n/a Stat Method: Adjusted P for trend Outcome: PR interval (ms) mmg/L - yr Exp. Level n mean (CI) ~0 NR 178.9 n/a 0.1-19.9 NR 180.1 n/a 20 NR 79.2 n/a Stat Method: Adjusted P for trend Outcome: Prevalence of carotid plaque (% Cumulative drinking water arsenic exposu mg/L - yr Exp. Level n mean ~0 NR 64.5 n/a <td></td> <td>sum products of concentration and</td> <td></td> <td>-</td> <td></td> <td></td>		sum products of concentration and		-		
Population: adults living in arseniasis- endemic townships n cases: 441 n control: 194 Population-Level Exposure: 0-20 mg/L - yr range 0-20 mg/L - yr range Population: Level Exposure: 0-20 mg/L - yr range 0-20 mg/L - yr range Population: Level Exposure: 0-20 mg/L - yr Exp. Level In mean (CI) Population: Level Exposure: 0-20 NR 78.9 n/a 0.1-19.9 NR 180.1 n/a ≥ 20 NR 79.2 n/a Stat Method: Adjusted P for trend Outcome: Prevalence of carotid plaque (% cumulative drinking water arsenic exposu mg/L - yr Exp. Level In mean (CI) ~0 NR 16.8 n/a 0.1-19.9 NR 33.4 n/a ≥ 20 NR 64.5 n/a Stat Method: Adjusted P for trend Outcome: Prevalence of IHD (%) cumulative drinking water arsenic exposu mg/L - yr Exp. Level In mean (CI)		-	cumulative d	rinkina v	vater arsen	ic exposure.
cumulative drinking water arsenic exposu $mg/L - yr$ $Exp. Level nnmean(CI)\sim 0NR178.9n/a0.1-19.9NR180.1n/a\geq 20NR79.2n/aStat Method: Adjusted P for trendOutcome: Prevalence of carotid plaque (%cumulative drinking water arsenic exposumg/L - yrmean(CI)\sim 0NR16.8n/a0.1-19.9NR33.4n/a\geq 20NR64.5n/aStat Method: Adjusted P for trendOutcome: Prevalence of IHD (%)cumulative drinking water arsenic exposumg/L - yrExp. LevelnmeanCutcome: Prevalence of IHD (%)cumulative drinking water arsenic exposumg/L - yrExp. LevelnmeanExp. LevelnmeanCUNR$	Population: adults living in arseniasis- endemic townships n cases: 441 n control: 194		Exp. Level ~0 0.1-19.9 ≥ 20	NR NR NR	93.2 92.9 91.7	n/a n/a n/a
cumulative drinking water arsenic exposu $mg/L - yr$ $Exp. Level nnmean(CI)\sim 0NR178.9n/a0.1-19.9NR180.1n/a\geq 20NR79.2n/aStat Method: Adjusted P for trendOutcome: Prevalence of carotid plaque (%cumulative drinking water arsenic exposumg/L - yrmean(CI)\sim 0NR16.8n/a0.1-19.9NR33.4n/a\geq 20NR64.5n/aStat Method: Adjusted P for trendOutcome: Prevalence of IHD (%)cumulative drinking water arsenic exposumg/L - yrExp. LevelnmeanCutcome: Prevalence of IHD (%)cumulative drinking water arsenic exposumg/L - yrExp. LevelnmeanExp. LevelnmeanCUNR$			Outcome: PR interval (ms)			
Exp. Levelnmean(Cl)~0NR178.9n/a0.1-19.9NR180.1n/a ≥ 20 NR79.2n/aStat Method: Adjusted P for trendOutcome: Prevalence of carotid plaque (%cumulative drinking water arsenic exposumg/L - yrExp. Levelnmean $0.1-19.9$ NR16.8n/a $0.1-19.9$ NR33.4n/a ≥ 20 NR64.5n/aStat Method: Adjusted P for trendOutcome: Prevalence of IHD (%)cumulative drinking water arsenic exposumg/L - yrExp. Levelnmean(Cl)			cumulative drinking water arsenic exposu			
cumulative drinking water arsenic exposu $mg/L - yr$ Exp. Levelnmean(Cl)~0NR16.8n/a0.1-19.9NR33.4n/a ≥ 20 NR64.5n/aStat Method: Adjusted P for trendStat Method: Adjusted P for trendOutcome: Prevalence of IHD (%)cumulative drinking water arsenic exposu $mg/L - yr$ Exp. Levelnmean(Cl)			Exp. Level ~0 0.1-19.9 ≥ 20	NR NR NR	178.9 180.1 79.2	n/a n/a n/a
$mg/L - yr$ $Exp. Level$ n $mean$ (Cl) ~0NR16.8 n/a $0.1-19.9$ NR33.4 n/a ≥ 20 NR64.5 n/a Stat Method: Adjusted P for trendOutcome: Prevalence of IHD (%)cumulative drinking water arsenic exposu $mg/L - yr$ Exp. Level n mean (Cl)			Outcome: Prevalence of carotid plaque (%)			
$ \begin{tabular}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $				lrinking w	vater arsen	ic exposure,
cumulative drinking water arsenic exposu mg/L - yr Exp. Level <u>n mean (CI)</u>			~0 0.1-19.9 ≥ 20	NR NR NR	16.8 33.4 64.5	n/a n/a n/a
mg/L - yrExp. Levelnmean(CI)			Outcome: Prevalence of IHD (%)			
Exp. Level <u>n</u> <u>mean</u> (CI)				rinking w	vater arsen	ic exposure,
0.1-19.9 NR 11.7 n/a ≥ 20 NR 25.1 n/a			Exp. Level ~0 0.1-19.9	NR NR	5.8 11.7	n/a n/a

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-58Draft: Do Not Cite or Quote

eference and Study	ational Epidemiology Studies for I Exposure Measures		Results		
Design		Stat Method: Adjusted P for trend			
		Outcome: Pr (%)	evalence	of QTc-Fric	lericia >460 ms
		cumulative d mg/L - yr	rinking v	vater arsen	ic exposure,
		Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>
		~0	NR	8.5	n/a
		0.1-19.9	NR	20.6	n/a
		≥ 20	NR	54.1	n/a
				usted P for	-
		Outcome: QI	RS duratio	on (ms)	
		cumulative d mg/L - yr	rinking v	vater arsen	ic exposure,
		Exp. Level	<u>n</u>	mean	<u>(CI)</u>
		~0	NR	87.9	n/a
		0.1-19.9	NR	86.9	n/a
		≥ 20	NR	86.7	n/a
				usted P for	-
		Outcome: Q	ſ (ms)		
		cumulative d mg/L - yr	rinking v	vater arsen	ic exposure,
		Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>
		~0	NR	415.3	n/a
		0.1-19.9	NR	435.5	n/a
		≥ 20	NR	462.4	n/a
				usted P for	-
		Outcome: Q	ſc-Bazett	(ms)	
		cumulative d mg/L - yr	rinking v	vater arsen	ic exposure,
		Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>
		~0	NR	416	n/a
		0.1-19.9	NR	436.8	n/a
		≥ 20	NR	464.7	n/a
				usted P for	-
		Outcome: Q	ſc-Frideri	cia (ms)	
		cumulative d mg/L - yr	rinking v	vater arsen	ic exposure,
		Exp. Level	<u>n</u>	mean	<u>(CI)</u>
		<u></u>	<u></u>	mean	<u>(0)</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-59Draft: Do Not Cite or Quote

Summary of Observational Epidemiology Studies for Health Effect Category: Cardiovascular Disease **Reference and Study Exposure Measures** Results Design 437.9 0.1-19.9 NR n/a ≥ 20 NR 469.7 n/a Stat Method: Adjusted P for trend **Outcome: QTc-Fridericia prolognation** cumulative drinking water arsenic exposure, mg/L - yr (CI) Exp. Level adjOR n ~0 NR 1 n/a 0.1-19.9 NR 1.0, 5.3 2.3 ≥ 20 3.1, 18.6 NR 7.6 Stat Method: Multiple logistic regression analysis Wang et al. (2011a) Exposure Surrogate: drinking water **Outcome: hypertension** cumulative drinking water arsenic exposure (tertiles), mg/L - yr Study Type: cohort **Exposure Description:** cumulative Exp. Level (CI) n <u>adjRR</u> (prospective) drinking water arsenic levels were <5.6 NR 1 n/a calculated based on arsenic concentration in well water (median of 5.6-15.6 NR 1.15 0.55, 2.40 Location: Taiwan >15.6 NR 1.18 0.50, 2.77 wells within walking distance) and self-(Homei, Fuhsin, and reported years of drinking well water Stat Method: Logistic regression Hsinming villages in during successive periods of living in Putai Township) different villages **Population:** adults **Population-Level Exposure:** living in arseniasis-930 mg/L - yr median, 5.6-15.6 mg/L - yr endemic townships range n exposed: 352 **Exposure Surrogate:** drinking water **Outcome: hypertension** n total: 352 drinking water arsenic concentration (tertiles), μg/L **Exposure Description:** drinking water Exp. Level adjRR (CI) n arsenic concentrations determined using <538 NR n/a 1 median of wells within walking distance 538-700 0.60, 2.34 and self-reported information on NR 1.18 >700 0.83 0.40, 1.74 residential history; arsenic levels in well NR water collected in previous studies Stat Method: Logistic regression conducted in the 1960s **Population-Level Exposure:** 930 μg/L median Exposure Surrogate: urine **Outcome: hypertension** speciated urinary arsenic concentration (As[V]; *tertiles*), μg/g-creatinine **Exposure Description:** urinary arsenic Exp. Level adjRR (CI) n

Reference and Study Design	Exposure Measures	Results			
Ŭ	species (As[V]) measured from sample	<1.20	NR	1	n/a
	(collected 2002-2003) for each individual	1.20-2.67	NR	1.38	0.57, 3.34
		>2.67	NR	2.43	1.01, 5.86
	Population-Level Exposure:	Stat Meth	od: Logi	stic regress	ion
	1.2-2.67 μg/g-creatinine range				
<u>Wu et al. (2006)</u>	Exposure Surrogate: drinking water	Outcome: car	otid ath	erosclerosis	5
		cumulative dr	-	vater arsen	ic exposure
Study Type: case-	Exposure Description: cumulative arsenic	(tertiles), μg/l Exp. Level	-	<u>adjOR</u>	<u>(CI)</u>
control	levels calculated based on arsenic	≤ 1.70	<u>n</u> NR	<u>aujon</u> 1	<u>n/a</u>
	concentration in well water and self-	≤ 1.70 1.71 - 4.20	NR	1 1.7	0.9, 3.2
Location: Taiwan	reported years of use	1.71 - 4.20 ≥ 4.21			0.9, 5.2 1.6, 5.3
(Lanyang Basin of Ilan			NR	2.9	,
County, northeastern	Population-Level Exposure:	Trend across	NR	1.7	1.3, 2.3
Taiwan)	1.7-4.21 μg/L-year range	tertiles Stat Moth	od. 1 :	or room	n analysia
				ar regressio	-
Population: adults	Exposure Surrogate: drinking water	Outcome: car	otid ath	erosclerosis	5
living in arseniasis- endemic township,		drinking wate μg/L	r arsenio	c concentra	tion (tertiles)
health examinations	Exposure Description: drinking water	Exp. Level	n	adiOB	
1997-1998	arsenic exposure calculated from single	≤ 50.00	<u>n</u> NR	<u>adjOR</u> 1	<u>(CI)</u> n/a
n cases: 163	well water sample collected from each	≤ 50.00 50.01 -	NR	1 1.9	0.9, 3.8
n control: 163	household	100.00	INIT	1.9	·
	Population-Level Exposure:	≥ 100.01	NR	2.6	1.3, 5.0
	50-100.01 μ g/L range	Trend across	NR	1.6	1.1, 2.1
	00 10000 pg/ 1 00000	tertiles			
		Stat Method: Linear regression analys logistic regression		on analysis;	
Wu et al. (2010)	Exposure Surrogate: drinking water	Outcome: car			
		average drink			
Study Type: case-	Exposure Description: drinking water	Exp. Level	<u>n</u>	<u>adjOR</u>	(<u>CI)</u>
control (nested)	arsenic exposure calculated from single	<u>≤ 10</u>	NR	1	n/a
	well water sample collected from each	10.1-50	NR	2.58	0.70, 9.56
	household	50.1-100	NR	2.98	1.21, 7.34
Location: Taiwan		100.1-300	NR	3.07	1.23, 7.65
(Lanyang Basin)		>300	NR	2.62	1.04, 6.60
	Population-Level Exposure:				on analysis
Population: adults	10-300 μg/L range				
iving in arseniasis-					
endemic township,					
health examinations					
1998-1999					
n cases: 250					
n control: 256					

Summary of O	oservational Epidemiology Studies for Heal	th Effect Category: Cardiovascular Disease
Reference and Study Design	Exposure Measures	Results
<u>Xia et al. (2009)</u>	Exposure Surrogate: drinking water	Outcome: cardiovascular disease
Study Type: cross- sectional	Exposure Description: arsenic concentration in drinking water; exposure calculated from single well	drinking water arsenic concentration (per 50μg/L increase) by sex, μg/LExp. LevelnadjOR(CI)continuousNR1.1n/a
Location: China (Bayingnormen, Shahai village)	water sample collected from each household Population-Level Exposure:	(males) continuous NR 0.99 n/a (females) Stat Method: logistic regression model
Population: adults and	37.94 μg/L mean	Outcome: stroke
children living in arseniasis-endemic village n cases: 11,416 n control: n/a		drinking water arsenic concentration (per 50µg/L increase) by sex, µg/LExp. LevelnadjOR(CI)continuousNR1.03n/a(males andfemales)Stat Method: logistic regression model

--: not reported; n: number of cases (when presented in Results column)

5.2.1 References for Summary of Observational Epidemiology Studies for Health Effect Category: Cardiovascular Disease

Bosnjak, Z; Cavar, S; Klapec, T; Milic, M; Klapec-Basar, M; Toman, M. (2008). Selected markers of cardiovascular disease in a population exposed to arsenic from drinking water. Environ Toxicol Pharmacol 26: 181-186. <u>http://dx.doi.org/10.1016/j.etap.2008.03.005</u>

Burgess, JL; Kurzius-Spencer, M; O'Rourke, MK; Littau, SR; Roberge, J; Meza-Montenegro, MM; Gutiérrez-Millán, LE; Harris, RB. (2013). Environmental arsenic exposure and serum matrix metalloproteinase-9. J Expo Sci Environ Epidemiol 23: 163-169. <u>http://dx.doi.org/10.1038/jes.2012.107</u>

Chen, CJ; Chiou, HY; Chiang, MH; Lin, LJ; Tai, TY. (1996). Dose-response relationship between ischemic heart disease mortality and long-term arsenic exposure. Arterioscler Thromb Vasc Biol 16: 504-510.

Chen, SC: Chen, CC; Kuo, CY; Huang, CH; Lin, CH; Lu, ZY; Chen, YY; Lee, HS; Wong, RH. (2012). Elevated risk of hypertension induced by arsenic exposure in Taiwanese rural residents: Possible effects of manganese superoxide dismutase (MnSOD) and 8-oxoguanine DNA glycosylase (OGG1) genes. Arch Toxicol 86: 869-878. http://dx.doi.org/10.1007/s00204-011-0797-8

<u>Chen, Y; Factor-Litvak, P; Howe, GR; Graziano, JH; Brandt-Rauf, P; Parvez, F; van Geen, A; Ahsan, H.</u> (2007). Arsenic exposure from drinking water, dietary intakes of B vitamins and folate, and risk of high blood pressure in Bangladesh: A population-based, cross-sectional study. Am J Epidemiol 165: 541-552. <u>http://dx.doi.org/10.1093/aje/kwk037</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-62Draft: Do Not Cite or Quote

- <u>Chen, Y; Graziano, JH; Parvez, F; Liu, M; Slavkovich, V; Kalra, T; Argos, M; Islam, T; Ahmed, A; Rakibuz-Zaman, M; Hasan, R; Sarwar, G; Levy, D; van Geen, A; Ahsan, H.</u> (2011). Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study. B M J (Online) 342: d2431. <u>http://dx.doi.org/10.1136/bmj.d2431</u>
- <u>Chen, Y; Hakim, ME; Parvez, F; Islam, T; Rahman, AM; Ahsan, H.</u> (2006). Arsenic exposure from drinkingwater and carotid artery intima-medial thickness in healthy young adults in Bangladesh. J Health Popul Nutr 24: 253-257.
- <u>Chen, Y; Wu, F; Graziano, JH; Parvez, F; Liu, M; Paul, RR; Shaheen, I; Sarwar, G; Ahmed, A; Islam, T;</u> <u>Slavkovich, V; Rundek, T; Demmer, RT; Desvarieux, M; Ahsan, H.</u> (2013a). Arsenic exposure from drinking water, arsenic methylation capacity, and carotid intima-media thickness in Bangladesh. Am J Epidemiol 178: 372-381. <u>http://dx.doi.org/10.1093/aje/kwt001</u>
- <u>Chen, Y; Wu, F; Parvez, F; Ahmed, A; Eunus, M; McClintock, TR; Patwary, TI; Islam, T; Ghosal, AK; Islam, S;</u> <u>Hasan, R; Levy, D; Sarwar, G; Slavkovich, V; van Geen, A; Graziano, JH; Ahsan, H.</u> (2013b). Arsenic exposure from drinking water and QT-interval prolongation: results from the health effects of arsenic longitudinal study. Environ Health Perspect 121: 427-432. <u>http://dx.doi.org/10.1289/ehp.1205197</u>
- <u>Chiou, HY; Huang, WI; Su, CL; Chang, SF; Hsu, YH; Chen, CJ.</u> (1997). Dose-response relationship between prevalence of cerebrovascular disease and ingested inorganic arsenic. Stroke 28: 1717-1723. <u>http://dx.doi.org/10.1161/01.STR.28.9.1717</u>
- <u>Chiou, JM; Wang, SL; Chen, CJ; Deng, CR; Lin, W; Tai, TY.</u> (2005). Arsenic ingestion and increased microvascular disease risk: Observations from the south-western arseniasis-endemic area in Taiwan. Int J Epidemiol 34: 936-943. <u>http://dx.doi.org/10.1093/ije/dyi108</u>
- <u>Guha Mazumder, D; Purkayastha, I; Ghose, A; Mistry, G; Saha, C; Nandy, AK; Das, A; Majumdar, KK.</u> (2012). Hypertension in chronic arsenic exposure: A case control study in West Bengal. J Environ Sci Health A Tox Hazard Subst Environ Eng 47: 1514-1520. <u>http://dx.doi.org/10.1080/10934529.2012.680329</u>
- <u>Guo, JX; Hu, L; Yand, PZ; Tanabe, K; Miyatalre, M; Chen, Y.</u> (2007). Chronic arsenic poisoning in drinking water in Inner Mongolia and its associated health effects. J Environ Sci Health A Tox Hazard Subst Environ Eng 42: 1853-1858. <u>http://dx.doi.org/10.1080/10934520701566918</u>
- <u>Hawkesworth, S: Wagatsuma, Y: Kippler, M: Fulford, AJ: Arifeen, SE: Persson, LA: Moore, SE: Vahter, M.</u> (2013). Early exposure to toxic metals has a limited effect on blood pressure or kidney function in later childhood, rural Bangladesh. Int J Epidemiol 42: 176-185. <u>http://dx.doi.org/10.1093/ije/dys215</u>
- <u>Hsieh, FI; Hwang, TS; Hsieh, YC; Lo, HC; Su, CT; Hsu, HS; Chiou, HY; Chen, CJ.</u> (2008a). Risk of erectile dysfunction induced by arsenic exposure through well water consumption in Taiwan. Environ Health Perspect 116: 532-536. <u>http://dx.doi.org/10.1289/ehp.10930</u>
- Hsieh, YC; Hsieh, FI; Lien, LM; Chou, YL; Chiou, HY; Chen, CJ. (2008b). Risk of carotid atherosclerosis associated with genetic polymorphisms of apolipoprotein E and inflammatory genes among arsenic exposed residents in Taiwan. Toxicol Appl Pharmacol 227: 1-7. <u>http://dx.doi.org/10.1016/j.taap.2007.10.013</u>
- Islam, MR; Khan, I; Attia, J; Hassan, SMN; McEvoy, M; D'Este, C; Azim, S; Akhter, A; Akter, S; Shahidullah, SM; Milton, AH. (2012). Association between hypertension and chronic arsenic exposure in drinking water: a cross-sectional study in Bangladesh. Int J Environ Res Public Health 9: 4522-4536. http://dx.doi.org/10.3390/ijerph9124522
- Jensen, GE; Hansen, ML. (1998). Occupational arsenic exposure and glycosylated haemoglobin. Analyst 123: 77-80. <u>http://dx.doi.org/10.1039/a705699k</u>
- Jones, MR; Tellez-Plaza, M; Sharrett, AR; Guallar, E; Navas-Acien, A. (2011). Urine arsenic and hypertension in US adults: The 2003-2008 National Health and Nutrition Examination Survey. Epidemiology 22: 153-161. http://dx.doi.org/10.1097/EDE.0b013e318207fdf2

 Karim, MR; Rahman, M; Islam, K; Mamun, AA; Hossain, S; Hossain, E; Aziz, A; Yeasmin, F; Agarwal, S; Hossain, MI; Saud, ZA; Nikkon, F; Hossain, M; Mandal, A; Jenkins, RO; Haris, PI; Miyataka, H; Himeno, S; Hossain, K. (2013). Increases in oxidized low density lipoprotein and other inflammatory and adhesion molecules with a concomitant decrease in high density lipoprotein in the individuals exposed to arsenic in Bangladesh. Toxicol Sci. http://dx.doi.org/10.1093/toxsci/kft130

Kim, NH; Mason, CC; Nelson, RG; Afton, SE; Essader, AS; Medlin, JE; Levine, KE; Hoppin, JA; Lin, C; Knowler, WC; Sandler, DP. (2013). Arsenic Exposure and Incidence of Type 2 Diabetes in Southwestern American Indians. Am J Epidemiol. http://dx.doi.org/10.1093/aje/kws329

<u>Kim, Y; Lee, BK.</u> (2011). Association between urinary arsenic and diabetes mellitus in the Korean general population according to KNHANES 2008. Sci Total Environ 409: 4054-4062. <u>http://dx.doi.org/10.1016/j.scitotenv.2011.06.003</u>

- Kunrath, J; Gurzau, E; Gurzau, A; Goessler, W; Gelmann, ER; Thach, TT; Mccarty, KM; Yeckel, CW. (2013). Blood pressure hyperreactivity: an early cardiovascular risk in normotensive men exposed to low-tomoderate inorganic arsenic in drinking water. J Hypertens 31: 361-369. http://dx.doi.org/10.1097/HJH.0b013e32835c175f
- Kwok, RK; Mendola, P; Liu, ZY; Savitz, DA; Heiss, G; Ling, HL; Xia, Y; Lobdell, D; Zeng, D; Thorp, JM, Jr; Creason, JP; Mumford, JL. (2007). Drinking water arsenic exposure and blood pressure in healthy women of reproductive age in Inner Mongolia, China. Toxicol Appl Pharmacol 222: 337-343. http://dx.doi.org/10.1016/j.taap.2007.04.003
- Lewis, DR; Southwick, JW; Ouellet-Hellstrom, R; Rench, J; Calderon, RL. (1999). Drinking water arsenic in Utah: A cohort mortality study. Environ Health Perspect 107: 359-365. http://dx.doi.org/10.1289/ehp.99107359
- Li, WF; Sun, CW; Cheng, TJ; Chang, KH; Chen, CJ; Wang, SL. (2009). Risk of carotid atherosclerosis is associated with low serum paraoxonase (PON1) activity among arsenic exposed residents in Southwestern Taiwan. Toxicol Appl Pharmacol 236: 246-253. <u>http://dx.doi.org/10.1016/j.taap.2009.01.019</u>
- Li, X; Li, B; Xi, S; Zheng, Q; Lv, X; Sun, G. (2013a). Prolonged environmental exposure of arsenic through drinking water on the risk of hypertension and type 2 diabetes. Environ Sci Pollut Res Int 20: 8151-8161. http://dx.doi.org/10.1007/s11356-013-1768-9
- Li, X; Li, B; Xi, S; Zheng, Q; Wang, D; Sun, G. (2013b). Association of urinary monomethylated arsenic concentration and risk of hypertension: a cross-sectional study from arsenic contaminated areas in northwestern China. Environ Health 12: 37. <u>http://dx.doi.org/10.1186/1476-069X-12-37</u>
- Liao, YT; Chen, CJ; Li, WF; Hsu, LY; Tsai, LY; Huang, YL; Sun, CW; Chen, WJ; Wang, SL. (2012). Elevated lactate dehydrogenase activity and increased cardiovascular mortality in the arsenic-endemic areas of southwestern Taiwan. Toxicol Appl Pharmacol. <u>http://dx.doi.org/10.1016/j.taap.2012.04.028</u>
- Moon, KA; Guallar, E; Umans, JG; Devereux, RB; Best, LG; Francesconi, KA; Goessler, W; Pollak, J; Silbergeld, EK; Howard, BV; Navas-Acien, A. (2013). Association between exposure to low to moderate arsenic levels and incident cardiovascular disease: A prospective cohort study. Ann Intern Med 159: 649-659. http://dx.doi.org/10.7326/0003-4819-159-10-201311190-00719
- Mordukhovich, I; Wright, RO; Amarasiriwardena, C; Baja, E; Baccarelli, A; Suh, H; Sparrow, D; Vokonas, P; Schwartz, J. (2009). Association between low-level environmental arsenic exposure and QT interval duration in a general population study. Am J Epidemiol 170: 739-746. <u>http://dx.doi.org/10.1093/aje/kwp191</u>
- Mumford, JL; Wu, K; Xia, Y; Kwok, R; Yang, Z; Foster, J; Sanders, WE. (2007). Chronic arsenic exposure and cardiac repolarization abnormalities with QT interval prolongation in a population-based study. Environ Health Perspect 115: 690-694. <u>http://dx.doi.org/10.1289/ehp.9686</u>

- Osorio-Yáñez, C; Ayllon-Vergara, JC; Aguilar-Madrid, G; Arreola-Mendoza, L; Hernández-Castellanos, E; Barrera-Hernández, A; De Vizcaya-Ruiz, A; Del Razo, LM. (2013). Carotid intima-media thickness and plasma asymmetric dimethylarginine in Mexican children exposed to inorganic arsenic. Environ Health Perspect 121: 1090-1096. <u>http://dx.doi.org/10.1289/ehp.1205994</u>
- Rahman, M; Tondel, M; Ahmad, SA; Chowdhury, IA; Faruquee, MH; Axelson, O. (1999). Hypertension and arsenic exposure in Bangladesh. Hypertension 33: 74-78. <u>http://dx.doi.org/10.1161/01.HYP.33.1.74</u>
- Sohel, N; Persson, LA; Rahman, M; Streatfield, PK; Yunus, M; Ekström, EC; Vahter, M. (2009). Arsenic in drinking water and adult mortality: a population-based cohort study in rural Bangladesh. Epidemiology 20: 824-830. <u>http://dx.doi.org/10.1097/EDE.0b013e3181bb56ec</u>
- <u>Tseng, CH; Chong, CK; Chen, CJ; Tai, TY.</u> (1996). Dose-response relationship between peripheral vascular disease and ingested inorganic arsenic among residents in blackfoot disease endemic villages in Taiwan. Atherosclerosis 120: 125-133. <u>http://dx.doi.org/10.1016/0021-9150(95)05693-9</u>
- Tseng, CH; Chong, CK; Chen, CJ; Tai, TY. (1997). Lipid profile and peripheral vascular disease in arseniasishyperendemic villages in Taiwan. Angiology 48: 321-335. <u>http://dx.doi.org/10.1177/000331979704800405</u>
- <u>Tseng, CH; Chong, CK; Tseng, CP; Hsueh, YM; Chiou, HY; Tseng, CC; Chen, CJ.</u> (2003). Long-term arsenic exposure and ischemic heart disease in arseniasis-hyperendemic villages in Taiwan. Toxicol Lett 137: 15-21. http://dx.doi.org/10.1016/S0378-4274(02)00377-6
- Wade, TJ; Xia, Y; Wu, K; Li, Y; Ning, Z; Le, XC; Lu, X; Feng, Y; He, X; Mumford, JL. (2009). Increased mortality associated with well-water arsenic exposure in Inner Mongolia, China. Int J Environ Res Public Health 6: 1107-1123. <u>http://dx.doi.org/10.3390/ijerph6031107</u>
- Wang, CH; Chen, CL; Hsiao, CK; Chiang, FT; Hsu, LI; Chiou, HY; Hsueh, YM; Wu, MM; Chen, CJ. (2009). Increased risk of QT prolongation associated with atherosclerotic diseases in arseniasis-endemic area in southwestern coast of Taiwan. Toxicol Appl Pharmacol 239: 320-324. http://dx.doi.org/10.1016/j.taap.2009.06.017
- Wang, CH; Jeng, JS; Yip, PK; Chen, CL; Hsu, LI; Hsueh, YM; Chiou, HY; Wu, MM; Chen, CJ. (2002). Biological gradient between long-term arsenic exposure and carotid atherosclerosis. Circulation 105: 1804-1809. http://dx.doi.org/10.1161/01.CIR.0000015862.64816.B2
- Wang, SL; Li, WF; Chen, CJ; Huang, YL; Chen, JW; Chang, KH; Tsai, LY; Chou, KM. (2011). Hypertension incidence after tap-water implementation: a 13-year follow-up study in the arseniasis-endemic area of southwestern Taiwan. Sci Total Environ 409: 4528-4535. <u>http://dx.doi.org/10.1016/j.scitotenv.2011.07.058</u>
- <u>Wu, MM; Chiou, HY; Hsueh, YM; Hong, CT; Su, CL; Chang, SF; Huang, WL; Wang, HT; Wang, YH; Hsieh,</u> <u>YC; Chen, CJ.</u> (2006). Effect of plasma homocysteine level and urinary monomethylarsonic acid on the risk of arsenic-associated carotid atherosclerosis. Toxicol Appl Pharmacol 216: 168-175. <u>http://dx.doi.org/10.1016/j.taap.2006.05.005</u>
- Wu, MM; Chiou, HY; Lee, TC; Chen, CL; Hsu, LI; Wang, YH; Huang, WL; Hsieh, YC; Yang, TY; Lee, CY; Yip, PK; Wang, CH; Hsueh, YM; Chen, CJ. (2010). GT-repeat polymorphism in the heme oxygenase-1 gene promoter and the risk of carotid atherosclerosis related to arsenic exposure. J Biomed Sci 17: 70. http://dx.doi.org/10.1186/1423-0127-17-70
- Xia, Y; Wade, TJ; Wu, K; Li, Y; Ning, Z; Le, XC; He, X; Chen, B; Feng, Y; Mumford, JL. (2009). Well water arsenic exposure, arsenic induced skin-lesions and self-reported morbidity in Inner Mongolia. Int J Environ Res Public Health 6: 1010-1025. <u>http://dx.doi.org/10.3390/ijerph6031010</u>

1 2

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-65Draft: Do Not Cite or Quote

5.3 Summary of Observational Epidemiology Studies for Health Effect Category: Clinical Chemistry and Urinalysis

Summary of Observ	vational Epidemiology Studies for Health Eff	Effect Category: Clinical Chemistry and Urinalysis				
Reference and Study Design	Exposure Measures			esults	-	
Casale et al. (2013)	Exposure Surrogate: urine	Outcome: ALT				
Study Type: cross- sectional	Exposure Description: spot urine	<i>log total uring</i> <i>creatinine</i> <u>Exp. Level</u> continuous	<u>n</u> NR	<u>adjBeta</u> 0.374	<u>(CI)</u> n/a	
Location: Italy (Central	days in succession	Stat Meth	nod: mult	iple linear i	regression	
Italy)		Outcome: AST	Г/GOT			
Population: municipal policemen and police drivers	Population-Level Exposure: 2.6-54.7 μg/g-creatinine range	log total urinary arsenic concentration, μg/g- creatinine arsenic not significantly associated with AT/GOT Outcome: y-GT (GGT)				
n cases: n/a						
n control: n/a		log total uring creatinine arsenic not sig	-			
<u>Chen et al. (2011c)</u>	Exposure Surrogate: drinking water	Outcome: pro				
Study Type: cohort	Exposure Description: water samples	baseline well μg/L	arsenic c			
(prospective)	from all 5,966 wells in the area were	<u>Exp. Level</u> 0.1-7	<u>n</u> NR	<u>adjOR</u> 1	<u>(CI)</u> n/a	
Location: Bangladesh (Araihazar)	tested at baseline; samples below LOD reanalyzed using ICP-MS with a detection limit of 0.1 $\mu g/L$	8-39 40-91 92-179	NR NR NR NR	1.01 1.33 1.54	0.77, 1.27 0.97, 1.57 1.18, 1.89	
Population: HEALS	Population-Level Exposure: 0.1-864 μg/L range	180-864 Stat Meth	NR nod: unco	1.65 Inditional lo	1.26, 2 ogistic regression	
n total: 10,957	Exposure Surrogate: urine	Outcome: pro	teinuria			
	Exposure Description: total arsenic levels	visit, μg/L	nary arse		tration since last	
	were measured on spot urine samples	Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>	
	obtained at baseline and at each follow-	<-70	NR	0.84	0.67, 1.04	
	up visit (every 2 years)	-70 to -17	NR	0.91	0.74, 1.12	
		-16 to 15 16 to 68	NR NR	1 1.17	n/a 0.97, 1.42	
	Population-Level Exposure:	≥ 69	NR	1.43	1.17, 1.74	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-66Draft: Do Not Cite or Quote

Summary of Observ	ational Epidemiology Studies for Health Eff	ect Category: (Clinical Ch	nemistry an	d Urinalysis
Reference and Study Design	Exposure Measures				
	1-206 μg/L range	Stat Met	hod: Cox	proportion	al hazard models
		baseline urinary arsenic concentration μg/L			ration (quintiles),
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
		1-36	NR	1	n/a
		37-66	NR	1.48	1.12, 1.96
		67-114	NR	1.65	1.25, 2.16
		115-205	NR	1.53	1.16, 2.02
		≥ 206	NR	1.65	1.24, 2.20
		Stat Met	hod: unc	onditional l	ogistic regression
<u>Kim et al. (2013)</u>	Exposure Surrogate: urine	Outcome: mean albumin:creatinine ratio			
		total arsenic			
Study Type: case- control (nested)	Exposure Description: concentrations of arsenic (total and inorganic) and metabolites measured in stored urine	albumin:crea controls	itinine rat	io similar ir	i cases and
Location: United States (Arizona)	samples obtained at the baseline examination; adjusted for urinary creatinine				
Population: longitudinal study participants who developed diabetes within 10 years of initial screening	Population-Level Exposure: 21.1 μg/L median, 15.3-29.4 μg/L 25th percentile				
n cases: 150 n control: 150					

--: not reported; n: number of cases (when presented in Results column)

5.3.1 References for Summary of Observational Epidemiology Studies for Health Effect Category: Clinical Chemistry and Urinalysis

Casale, T; Rosati, MV; Ciarrocca, M; Samperi, I; Andreozzi, G; Schifano, MP; Capozzella, A; Pimpinella, B; <u>Tomei, G; Caciari, T; Tomei, F.</u> (2013). Assessment of liver function in two groups of outdoor workers exposed to arsenic. Int Arch Occup Environ Health. http://dx.doi.org/10.1007/s00420-013-0914-5

<u>Chen, Y; Parvez, F; Liu, M; Pesola, GR; Gamble, MV; Slavkovich, V; Islam, T; Ahmed, A; Hasan, R; Graziano, JH; Ahsan, H.</u> (2011). Association between arsenic exposure from drinking water and proteinuria: results from the Health Effects of Arsenic Longitudinal Study. Int J Epidemiol. <u>http://dx.doi.org/10.1093/ije/dyr022</u>

Kim, NH; Mason, CC; Nelson, RG; Afton, SE; Essader, AS; Medlin, JE; Levine, KE; Hoppin, JA; Lin, C; Knowler, WC; Sandler, DP. (2013). Arsenic Exposure and Incidence of Type 2 Diabetes in Southwestern American Indians. Am J Epidemiol. <u>http://dx.doi.org/10.1093/aje/kws329</u>

1

5.4 Summary of Observational Epidemiology Studies for Health Effect Category: Developmental Effects including Neurodevelopmental

Summary of Observ	vational Epidemiology Studies for Health Eff		Developm	nental Effe	cts including	
Reference and Study	Neurodevelopmen Exposure Measures	tal		Results		
Design <u>Calderon et al. (2001)</u>	Exposure Surrogate: urine	Outcome: concepts (similarities, compreher				
Calderon et al. (2001) Study Type: cross- sectional Location: Mexico (San Luis Potosi) Population: children attending Morales elementary school 1.5 km from smelter and comparison group attending Martinez school 7 km away n cases: 41 n control: 39	Exposure Surrogate: urine Exposure Description: first morning void samples collected; standardized to urinary creatinine; log-transformed; recovery 98 +/- 4% Population-Level Exposure: 40.28-62.91 μg/g-creatinine range	vocabulary) mean urinary creatinine Exp. Level 40.28 (Martinez) 62.91 (Morales) Stat Met calculat Outcome: IQ mean urinary creatinine Exp. Level 40.28 (Martinez) 62.91 (Morales) Stat Met calculat Outcome: IQ mean urinary creatinine Exp. Level 40.28	v arsenic <u>n</u> NR NR hod: part ion (full) v arsenic <u>n</u> NR NR NR hod: part ion	concentrat	ion, μg/g- (Cl) n/a n/a ion coefficient ion, μg/g- (Cl) n/a n/a ion coefficient	
		(Martinez) 62.91 (Morales) Stat Met	NR hod: part	-0.24 ial correlat	n/a ion coefficient	

eference and Study	Exposure Measures		I	Results		
Design		calculat	ion			
		Outcome: IQ	(verbal)			
		mean urinary creatinine	, arsenic	concentrat	ion, μg/g-	
		Exp. Level	<u>n</u>	<u>corr</u> <u>coeff</u>	<u>(CI)</u>	
		40.28 (Martinez)	NR	-0.24	n/a	
		62.91 (Morales)	NR	-0.43	n/a	
			-	tial correlat	ion coefficient	
		Outcome: kn arithmetic)	Outcome: knowledge (vocabulary, in arithmetic)			
		mean urinary creatinine	/ arsenic	concentrat	ion, μg/g-	
		<u>Exp. Level</u>	<u>n</u>	<u>corr</u> <u>coeff</u>	<u>(CI)</u>	
		40.28 (Martinez)	NR	-0.17	n/a	
		62.91 (Morales)	NR	-0.41	n/a	
		Stat Met calculat	-	tial correlat	ion coefficient	
		Outcome: se coding)	quential	(arithmetic	, digit span,	
		mean urinary creatinine	/ arsenic	concentrat	ion, μg/g-	
		<u>Exp. Level</u>	<u>n</u>	<u>corr</u> <u>coeff</u>	<u>(CI)</u>	
		40.28 (Martinez)	NR	0.2	n/a	
		62.91 (Morales)	NR	-0.31	n/a	
		Stat Met calculat		tial correlat	ion coefficient	
		Outcome: sp picture comp		ect assemb	ly, block desig	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-70Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures	Results			
		Exp. Level	<u>n</u>	<u>corr</u> <u>coeff</u>	<u>(CI)</u>
		40.28 (Martinez)	NR	0.01	n/a
		62.91 (Morales)	NR	-0.22	n/a
		Stat Meth calculati	-	ial correlatio	on coefficient
<u>Gardner et al. (2013)</u>	Exposure Surrogate: urine	Outcome: hei	ight		
		urinary arsen	ic expos	ure, μg/L	
Study Type: cohort (prospective)	Exposure Description: urinary arsenic concentration, samples collected from	<u>Exp. Level</u>	<u>n</u>	<u>adjuste</u> <u>d AR</u>	<u>(CI)</u>
Leasting Dansladach	1.5- and 5-year-old children	low (≤ 5th percentile)	NR	0	n/a
Location: Bangladesh (Matlab)	Population-Level Exposure: 35-84 μg/L range	high (≥ 95th percentile)	NR	-0.5	-1.2, 0.21
	35-84 µg/L range	Stat Method: linear regression mod			
Population: children in Maternal and Infant		Outcome: height-for-age z-score			
Nutrition Interventions in Matlab (MINIMat) cohort		<i>urinary arsenic exposure, μg/L</i> inverse association with concurrent exposure cadmium and arsenic			nt exposure to
		Outcome: pea	Outcome: peak height velocity		
		urinary arsen inverse associ cadmium and	ation wi		nt exposure to
		Outcome: peak weight velocity			
		<i>urinary arsenic exposure, μg/L</i> inverse association with concurren cadmium and arsenic		nt exposure to	
		Outcome: we	ight		
		urinary arsen	ic expos	ure, µg/L	
		Exp. Level	<u>n</u>	<u>adjuste</u> d AR	<u>(CI)</u>
		low (≤ 5th percentile)	NR	0	n/a
		high (≥ 95th percentile)	NR	-0.33	-0.60, -0.06
		Stat Meth	nod: line	ar regressio	n model
		Outcome: weight-for-age z-score			

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-71Draft: Do Not Cite or Quote

Summary of Observational Epidemiology Studies for Health Effect Category: Developmental Effects including Neurodevelopmental **Reference and Study Exposure Measures** Results Design urinary arsenic exposure, µg/L inverse association with concurrent exposure to cadmium and arsenic Guan et al. (2012) Exposure Surrogate: blood **Outcome: birth height** maternal arsenic blood concentration, µg/L Exp. Level n adjBeta (CI) Study Type: cross-Exposure Description: arsenic NR -0.1 continuous n/a sectional concentrations in maternal cubital vein Stat Method: multiple linear regression blood and infant umbilical cord vein blood collected immediately after Location: China **Outcome: birth weight** admission (mother) and after clamping (Dalian) and before delivery of the placenta maternal arsenic blood concentration, µg/L (infant); mean values of maternal and Exp. Level adjBeta (CI) n Population: 125 pairs cord blood arsenic concentrations: 6.91 continuous NR -0.02 n/a of mothers and their and 5.41 µg/L, respectively; median Stat Method: multiple linear regression infants with prenatal values: 5.30 and 3.71 µg/L, respectively exposure to arsenic **Outcome: chest circumference** n cases: n/a **Population-Level Exposure:** maternal arsenic blood concentration, $\mu q/L$ n control: n/a mean maternal blood: 6.91 µg/l; mean Exp. Level n adjBeta (CI) cord blood: 5.41 µg/l continuous NR -0.1 n/a Stat Method: multiple linear regression **Outcome: head circumference** fetal arsenic cord blood concentrations, $\mu g/L$ Exp. Level adjBeta (CI) n continuous NR -0.06 n/a Stat Method: multiple linear regression Hamadani et al. (2010) Exposure Surrogate: urine **Outcome: language comprehension** children's urinary arsenic concentration, $\mu g/L$ Exp. Level n regr (CI) Study Type: cohort Exposure Description: child's urine coeff (prospective) collected at 18 months and analyzed for continuous NR 0.25 -0.6, 1 arsenic and metabolites MMA and DMA; concentrations adjusted by specific Stat Method: multiple linear regression Location: Bangladesh analysis gravity (1.009 g/ml) (Matlab) **Outcome:** language expression **Population-Level Exposure:** Population: Children of children's urinary arsenic concentration, $\mu g/L$ 35 µg/L median, 18.2-80.8 µg/L 25th pregnant women from Exp. Level (CI) n regr percentile a MINIMat trial cohort coeff in Matlab, Bangladesh -0.001 continuous NR -0.03, 0.03 n total: 1,745 Stat Method: multiple linear regression analysis

Reference and Study Design	Exposure Measures	Results				
		Outcome: me	ental dev	velopment i	index	
		children's urii	nary ars	enic concen	tration, μg/L	
		Exp. Level	<u>n</u>	<u>regr</u> <u>coeff</u>	<u>(CI)</u>	
		continuous Stat Metl analysis	NR hod: mul	0.3 Itiple linear	-0.9, 1.5 regression	
		Outcome: psychomotor development				
		children's urii	nary ars	enic concen		
		<u>Exp. Level</u>	<u>n</u>	<u>regr</u> <u>coeff</u>	<u>(CI)</u>	
		continuous Stat Metl analysis	NR hod: mul	-0.07 Itiple linear	-1.5, 1.3 regression	
	Exposure Surrogate: urine Exposure Description: maternal urine collected at gestation weeks 8 and 30 and analyzed for total arsenic; mean of 8- and 30-week concentrations used to represent exposure; concentrations	Outcome: language comprehension				
		maternal urinary arsenic concentration, $\mu g/\mu$				
		Exp. Level continuous Stat Metl analysis	<u>n</u> NR hod: mul	<u>regr</u> <u>coeff</u> -0.3 Itiple linear	<u>(CI)</u> -1.3, 0.6 regression	
	adjusted by specific gravity (1.012 g/ml)	Outcome: language expression				
	Population-Level Exposure:	maternal urin	nary arse	enic concen	tration, μg/L	
	Population-Level Exposure: 94.4 μg/L median, 45-216 μg/L 25th percentile	Exp. Level continuous Stat Metl analysis	<u>n</u> NR nod: mul	<u>regr</u> <u>coeff</u> -0.009 Itiple linear	<u>(CI)</u> -0.04, 0.02 regression	
		Outcome: mental development index				
		<i>maternal urir</i> Exp. Level	nary arse <u>n</u>	regr	tration, μg/L <u>(CI)</u>	
		continuous Stat Metl analysis	NR hod: mul	<u>coeff</u> 0.5 ltiple linear	-0.9, 1.8 regression	
		Outcome: psy	ychomot	or develop	ment index	
		<i>maternal urir</i> <u>Exp. Level</u>	nary arse <u>n</u>	enic concen regr	tration, μg/L (Cl)	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-73Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures	Results			
Design				<u>coeff</u>	
		continuous	NR	0.3	-1.3, 1.9
		Stat Met analysis		tiple linear r	egression
Hamadani et al. (2011)	Exposure Surrogate: maternal urine	Outcome: ful	l scale IC	(FSIQ) scor	e
		maternal urin	nary arse	nic concent	ration
Study Type: cohort	Exposure Description: urinary arsenic	(gestation we	eek 30) (d	quartiles), μ	g/L
(prospective)	levels measured gestational weeks 8 and	Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>
	30 and characterized into quartiles	0-40	NR	76.7	n/a
Location: Bangladesh		41-82	NR	75.6	n/a
(Matlab)	Population-Level Exposure:	83-228	NR	74.4	n/a
(Matiab)	$80 \ \mu\text{g/L}$ median, 25-400 $\mu\text{g/L}$ 10th	>228	NR	73.9	n/a
	percentile	Stat Method: ANOVA			
Population: children in Maternal and Infant		maternal urinary arsenic concentration			
Nutrition Interventions		(gestation week 8) (quartiles), µg/L			
in Matlab (MINIMat)		Exp. Level	<u>n</u>	mean	(CI)
cohort		0-36	NR	76.6	n/a
n total: 2,260		37-39	NR	75.9	n/a
ii total. 2,200		80-206	NR	74.2	n/a
		>206	NR	74.2	n/a
		Stat Met	hod: ANC	OVA	
		log10 maternal urinary arsenic concer			oncentration
		(gestation we	eek 30; fe	emales), μg,	/L
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	-1.3	-2.4, -0.3
		Stat Met	hod: line	ar regressio	n
		log10 matern (gestation we		•	oncentration
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	0.1	-0.9, 1.1
		Stat Met	hod: line	ar regressio	
		log10 matern		•	
		(gestation we	-		
		Exp. Level	<u>n</u> NR	<u>adjBeta</u> -0.9	<u>(CI)</u> -2.0, -0.2
		continuous Stat Met		-0.9 ar regressio	•
		log10 matern		-	oncentration
		(gestation we Exp. Level	еек 8; та <u>n</u>	ales), μg/L adjBeta	<u>(CI)</u>
					11 11

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-74Draft: Do Not Cite or Quote

ference and Study	Exposure Measures		I	Results	
Design		Stat Me	thod: line	ar regressior	1
		Outcome: p (PIQ)	erforman	ce intelligen	ce quotient
		maternal ur (gestation w	-		
		Exp. Level	<u>n</u>	mean	<u>(CI)</u>
		0-40	NR	77.3	n/a
		41-82	NR	76.6	n/a
		83-228	NR	76	n/a
		>228	NR	75.2	n/a
		Stat Me	thod: ANC	OVA	
		maternal urinary arsenic concentration			
		(gestation w			
		Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>
		0-36	NR	77.6	n/a
		37-39	NR	76.1	n/a
		80-206	NR	75.2	n/a
		>206 Stat Me	NR thod: ANC	76 DVA	n/a
		Outcome: v	erbal IQ (\	/IQ) score	
		maternal ur	-		
		(gestation w	veek 30) (d	quartiles), μ	g/L
		Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>
		0-40	NR	81.5	n/a
		41-82	NR	80.2	n/a
		83-228	NR	79	n/a
		>228	NR	78.8	n/a
		Stat Me	thod: ANC	AVA	
		maternal ur (gestation v	-		
		Exp. Level	n	<u>mean</u>	<u>(CI)</u>
		0-36	nr	81.2	<u>(Ci)</u> n/a
		37-39	NR	79.5	n/a
		80-206	NR	79.3 79.1	n/a
		>206	NR	79.1	n/a
			thod: ANC		Πρα
		log10 mater	nal urinal	ry arsenic co	ncentration
		(gestation w	veek 30; fe	emales), μg/	′L
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	-1.5	-2.6, -0.4

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-75Draft: Do Not Cite or Quote

eference and Study	Exposure Measures		I	Results	
Design		Stat Method: linear regression			
		log10 maternal urinary arsenic concentra (gestation week 30; males), μg/L			ncentration
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	0.06	-1.0, 1.1
		Stat Meth	nod: line	ar regression	,
		log10 maternal urinary arsenic concentro (gestation week 8; females), μg/L			
		Exp. Level	<u>n</u>	adjBeta	<u>(CI)</u>
		continuous	NR	-1.2	-2.4, -0.06
		Stat Method: linear regressi			,
		log10 matern	al urinaı	y arsenic co	ncentration
		(gestation we	ek 8; ma	ales), μg/L	
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	-0.6	-1.7, 0.5
		Stat Method: linear regression			
	Exposure Surrogate: urine	Outcome: full scale IQ (FSIQ) score			9
		urinary arsen	ic concei	ntration (at 2	1.5 years)
	Exposure Description: urinary arsenic	(quartiles), μ	g/L		
	levels measured in children at 1.5 and 5	Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>
	years and characterized into quartiles;	0-17	NR	77.1	n/a
	collected during home interviews;	18-35	NR	74.9	n/a
	median urinary As: 35 µg/L and 51 µg/L	36-80	NR	74.1	n/a
	at 1.5 and 5 years, respectively	>80	NR	74.3	n/a
		Stat Meth	nod: ANC	OVA	
	Population-Level Exposure: 0-120 μg/L range	urinary arsen (quartiles), μο		ntration (at	5 years)
		Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>
		0-29	NR	76.6	n/a
		30-50	NR	75.6	n/a
		51-120	NR	74.1	n/a
		>120	NR	74.3	n/a
		Stat Method: ANOVA			
		log10 urinary females), μg/		concentratic	on (at 1.5 ye
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	-0.7	-1.9, 0.4
		Stat Moth	nod line	ar regressior	`

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-76Draft: Do Not Cite or Quote

Reference and Study	Exposure Measures		I	Results	
Design		females), μg/	<i>'</i> 1		
		Exp. Level		<u>adjBeta</u>	<u>(CI)</u>
		continuous	<u>n</u> NR	-1.4	-2.7, -0.1
				ar regression	
		log10 urinary arsenic concentration (at 1.			
		males), μg/L			
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	-0.5	-1.6, 0.6
		Stat Meth	nod: line	ar regression	ı
		log10 urinary males), μg/L	arsenic	concentratio	on (at 5 year
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	0.7	-0.5, 1.8
		Stat Meth	nod: line	ar regression	
		Outcome: per (PIQ)	rforman	e intelligen	ce quotient
		urinary arsen (quartiles), μα		ntration (at	1.5 years)
		Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>
		0-17	NR	78	n/a
		18-35	NR	76.2	n/a
		36-80	NR	75.5	n/a
		>80	NR	75.7	n/a
		Stat Meth	nod: ANC	OVA	
		-	urinary arsenic concentration (at 5 years)		
		(quartiles), μ <u>α</u>			
		Exp. Level 0-29	<u>n</u> NR	<u>mean</u> 77.2	<u>(CI)</u> n/a
		30-50	NR	77.2 76.6	n/a
		51-120	NR	75.6	n/a
		>120	NR	75.0	n/a
		Stat Meth			ii/a
		Outcome: ver	bal IQ (\	/IQ) score	
		urinary arsen (quartiles), μ <u>α</u>		ntration (at	1.5 years)
		Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>
		0-17	NR	78	n/a
		18-35	NR	76.2	n/a
		36-80	NR	75.5	n/a
		>80	NR	75.7	n/a

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-77Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures			Results		
0		Stat Method: ANOVA				
		urinary arsenic c (quartiles), µg/L		c concentration (at 5 years) /L		
		Exp. Level	<u>n</u>	mean	<u>(CI)</u>	
		0-29	NR	81.6	n/a	
		30-50	NR	80.1	n/a	
		51-120	NR	78.8	n/a	
		>120	NR	78.8	n/a	
		Stat Meth	nod: ANC	OVA		
		log10 urinary females), μg/		concentrati	on (at 1.5 yea	
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		continuous	NR	-0.9	-2.1, 0.4	
		Stat Meth	hod: line	ar regressio	n	
		log10 urinary females), μg/		concentrati	on (at 5 years	
		<u>Exp. Level</u>	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		continuous	NR	-2.4	-3.8, -1.1	
		Stat Method: linear regression				
		log10 urinary males), μg/L	arsenic	concentrati	on (at 1.5 yea	
		<u>Exp. Level</u>	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		continuous	NR	-1	-2.1, 0.16	
		Stat Meth	nod: line	ar regressio	n	
		log10 urinary males), μg/L	arsenic	concentrati	on (at 5 years)	
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		continuous	NR	0.5	-0.7, 1.7	
		Stat Meth	nod: line	ar regressio	n	
lopenhayn et al.	Exposure Surrogate: drinking water	Outcome: bir	th weigh	nt		
<u>2003)</u>		drinking wate residence, μg		c concentra	tion by city of	
tudu Tura a a haut	Exposure Description: drinking water	Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
tudy Type: cohort	samples collected in three households	Valparaiso	<u>II</u> NR	NR	<u>(C)</u> n/a	
prospective)	per city; water samples verified with local	Antofagasta	NR	-57	-123, 9	
	water company historical data; consistent exposure in each city verified	-			riance; unclea	
ocation: Chile	using spot urine samples of subgroup of			re adjusted		
Antofagasta and alparaiso)	19 women per city	analysis				
	Population-Level Exposure:					
	· -penation actor anyound	1				

Poforonco and Study	Neurodevelopmental Exposure Measures Results				
Reference and Study Design	-	Results			
Population: pregnant women aged 18 to 45 years enrolled at local clinics	0.5-40 μg/L range				
n exposed: 424 n reference: 420 n total: 844					
<u>Huyck et al. (2007)</u>	Exposure Surrogate: hair	Outcome: birth weight			
Study Type: cohort (prospective)	Exposure Description: arsenic concentration in hair; samples collected	arsenic concentration in maternal hair at firstvisit, μg/gExp. LevelnadjOR(CI)continuousNR0.40.12, 1.35			
Location: Bangladesh (Sirajdikhan Upazila of the Munshiganj	using titanium nitride scissors; stored in paper envelopes; rinsed; external	Stat Method: logistic regression			
	contamination of samples removed by sonication	arsenic concentration in maternal hair within 2 weeks after birth, $\mu g/g$			
District) Population: pregnant	Population-Level Exposure: 0.09-3.28 μg/g range	Exp. LevelnadjOR(Cl)continuousNR0.450.1, 2.04Stat Method: logistic regression			
women in proximity to Sirajdikhan Community Clinic n total: 49		arsenic concentration in maternal hair at firstvisit, μg/gExp. LevelnadjBeta(Cl)continuousNR-193.5n/a			
		Stat Method: multivariate linear regression			
	Exposure Surrogate: toenails	Outcome: birth weight			
	Exposure Description: arsenic	arsenic concentration in maternal nail at first visit, $\mu g/g$			
	concentration in toenails; samples collected using titanium nitride scissors; stored in paper envelopes; rinsed; external contamination of samples removed by sonication	Exp. LevelnadjOR(CI)continuousNR0.830.48, 1.42Stat Method: logistic regression			
	Population-Level Exposure: 0.19-8.04 μg/g range				
<u>Jin et al. (2013)</u>	Exposure Surrogate: placenta	Outcome: neural tube defects: anencephaly and spina bifida			
Study Type: case- control	Exposure Description: arsenic levels in placentas collected upon delivery/pregnancy termination	arsenic concentration in placental samples, ng/g $Exp. Level$ n $adjOR$ (CI) ≤ 8.93 NRNRn/a			

Summary of Obser	vational Epidemiology Studies for Health Eff Neurodevelopmen	fect Category: Developmental Effects including tal
Reference and Study Design	Exposure Measures	Results
Location: China (rural area of Shanxi Province)	Population-Level Exposure: 8.93 ng/g median	Stat Method: multivariate logistic regression analyses
Population: Chinese women living in study area with newborns diagnosed with neural tube defects		
n cases: 80 n control: 50		
<u>Khan et al. (2012)</u>	Exposure Surrogate: drinking water	Outcome: Bangla language score
Study Type: cross- sectional	Exposure Description: arsenic concentration in well-water samples from each child's home	water arsenic (dichotomized), μg/LExp. LevelnadjBeta(CI)dichotomizedNR-1.71-4.77, 1.34Stat Method: spline regression models
Location: Bangladesh		Outcome: English language score
(Araihazar (Haizadi, Uchitpur, and Khagkanda unions)) Population: Children	Population-Level Exposure: 119.5 μg/L mean 147.5SD	water arsenic (dichotomized), μg/LExp. LevelnadjBeta(CI)dichotomizedNR-0.73-4.32, 2.86Stat Method: spline regression models
enrolled in ongoing		Outcome: math score
school intervention study at 14 elementary schools n cases: n/a		water arsenic (dichotomized), μg/LExp. LevelnadjBeta(CI)dichotomizedNR0.56-2.98, 4.10
n control: n/a		Stat Method: spline regression models
Kippler et al. (2012)	Exposure Surrogate: urine	Outcome: abdominal circumference
Study Type: cross- sectional Location: Bangladesh (Matlab)	Exposure Description: individual urine samples collected at gestational weeks 8 (range 6-14 weeks) and 30 (range 24-40 weeks); one sample below LOD	log transformed urinary arsenic concentration,μg/LExp. LevelnadjBeta(Cl)continuousNR0.022-0.024, 0.069Stat Method: mixed effect linear regression,log transformed
(Watlab)	Population-Level Exposure:	Outcome: biparietal diameter
Population: pregnant women and their children enrolled in	160 μg/L mean	log transformed urinary arsenic concentration, μg/L
Maternal and Infant Nutrition Interventions		Exp. Level n adjBeta (Cl) continuous NR -0.012 -0.047, 0.024 Stat Method: mixed effect linear regression,

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-80Draft: Do Not Cite or Quote

Reference and Study	Exposure Measures		Res	ults	
Design of Matlab (MINIMat)		log transfe	ormed		
visited monthly by					
community health		Outcome: fem	ur length		
research worker		log transforme	d urinary d	arsenic c	oncentration,
n cases: n/a		μg/L			
n control: n/a		Exp. Level		adjBeta	<u>(CI)</u>
		continuous		-0.0089	-0.044, 0.027
		log transfe		effect line	ear regression,
		Outcome: head	d circumfe	rence	
		log transforme μg/L	d urinary o	arsenic c	oncentration,
		Exp. Level	<u>n</u>	adjBeta	<u>(CI)</u>
		continuous	NR	-0.0082	-0.047, 0.031
		Stat Metho log transfo		effect line	ear regression,
		Outcome: occipito-frontal diameter			
		log transforme μg/L	d urinary o	arsenic c	oncentration,
		Exp. Level	<u>n</u>	adjBeta	<u>(CI)</u>
		continuous	NR	-0.01	-0.045, 0.025
		Stat Metho log transfe		effect line	ear regression,
Kwok et al. (2006)	Exposure Surrogate: drinking water	Outcome: birth	n defects		
		drinking water	arsenic co	oncentrat	ion, ppb
Study Type: cross-	Exposure Description: water samples	Exp. Level		adjOR	<u>(CI)</u>
sectional	collected during in-home interview from	continuous	NR	1.005	1.001, 1.010
	main drinking water source used during	Stat Metho	od: multiva	riate logi	stic regression
Location: Bangladesh	pregnancy	drinking water	arsenic co	oncentrat	ion, ppb
(Faridpur district		Exp. Level	<u>n</u>	Prev	<u>(CI)</u>
(Faridpur Sadar upazila) and Chandpur district	Population-Level Exposure: 0.5-668 ppb range	≤ 10		0.6	n/a
(Matlab and Shahrasti	0.5-000 hhn railfe	11-50		0.4	n/a
upazilas))		51-100		0.5	n/a
		101-200		0.2	n/a
Develotions 11		201-300		0.4	n/a
Population: residents of 261 highly arsenic-		>300 Stat Metho		1.7 ence	n/a
contaminated villages		Outcome: low	birth weig	ht	
n cases: n/a					

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-81Draft: Do Not Cite or Quote

Reference and Study	Exposure Measures		F	Results	
Design		Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>
		continuous	NR	0.999	0.997, 1.000
					gistic regression
		drinking wate	er arsenie	c concentra	tion, ppb
		Exp. Level	<u>n</u>	Prev	<u>(CI)</u>
		≤ 10	40	12.3	n/a
		11-50	18	7.8	n/a
		51-100	17	7.8	n/a
		101-200	44	8.8	n/a
		201-300	53	10.7	n/a
		>300	22	9.3	n/a
		Stat Metl			
		Outcome: stu	come: stunting		
		drinking wate	er arsenie	c concentra	tion, ppb
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
		continuous	NR	1	1.00, 1.001
		Stat Met	hod: mult	tivariate log	istic regressio
		drinking wate	er arsenie	c concentra	tion, ppb
		Exp. Level	<u>n</u>	Prev	<u>(CI)</u>
		≤ 10	146	44.8	n/a
		11-50	102	44.3	n/a
		51-100	89	40.6	n/a
		101-200	256	51.3	n/a
		201-300	265	53.4	n/a
		>300	146	61.9	n/a
		Stat Metl	hod: prev	alence	
		Outcome: un	der-weig	ht	
		drinking wate	er arsenie		
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
		continuous	NR	1	0.999, 1.00
		Stat Met	hod: mult	tivariate log	sistic regressio
		drinking wate			
		Exp. Level	<u>n</u>	Prev	<u>(CI)</u>
		≤ 10	126	38.7	n/a
		11-50	86	37.4	n/a
		51-100	88	40.2	n/a
		101-200	227	45.5	n/a
		201-300	223	45	n/a
		>300	124	52.5	n/a

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-82Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures	Results				
Ŭ		Stat Me	thod: prev	valence		
<u>Milton et al. (2005)</u>	Exposure Surrogate: drinking water	Outcome: ne	eonatal d	eath		
		drinking wat	ter arseni	c concentra	rtion, μg/L	
Study Type: cross-	Exposure Description: single well-water	<u>Exp. Level</u>	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
sectional	measurement used to characterize	≤ 50	16	1	n/a	
	chronic arsenic exposure; arsenic	>50	70	1.8	0.9, 3.5	
Location: Bangladesh	concentrations recorded as zero replaced	51-100	12	2.7	1.1, 6.73	
(Comilla, Chandpur,	with 30 μg/L	>100	58	1.7	0.8, 3.3	
and Chuadanga		Stat Met	thod: logi	stic regress	ion analysis	
districts)	Population-Level Exposure:					
,	279 μg/L mean 355SD					
Population: women						
living in study area with						
\geq 1 prior pregnancy						
n cases: n/a						
n control: n/a						
Nahar et al. (2014)	Exposure Surrogate: drinking water	Outcome: in	telligence	e auotient (IO) nercentil	
		Outcome: intelligence quotient (IC water arsenic concentration, µg/L				
Chudu Tuno, cross	Evenesure Description, water complex	Exp. Level	<u>n</u>	mean	<u>(CI)</u>	
Study Type: cross- sectional	Exposure Description: water samples from each respondent's tube well	0.8-10	NR	52.2	<u>(ci/</u> n/a	
Sectional	collected; half the detection limit used as	11-50	NR	43.4	n/a	
	the value for nondetects	51-100	NR	44	n/a	
Location: Bangladesh		>100	NR	40.7	n/a	
(Sonargaon thana)					A, ANCOVA	
	Population-Level Exposure:			way Altov		
Population:	71.7 μg/L mean	Outcome: so	ocial comp	petence (SC	c) score	
adolescents from highly		water arsen	ic concent	tration, μg/	1	
arsenic-contaminated		Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>	
area		0.8-10	NR	38.6	n/a	
n cases: n/a		11-50	NR	37.6	n/a	
n control: n/a		51-100	NR	36.1	n/a	
		>100	NR	35.9	n/a	
		Stat Me	thod: one	-way ANOV	'A, ANCOVA	
	Exposure Surrogate: urine	Outcome: in	telligence	e quotient (IQ) percentile	
		urinary arse	nic concei	ntration, μ <u>α</u>	g/L	
	Exposure Description: spot urine	Exp. Level	<u>n</u>	mean	<u>(CI)</u>	
	samples collected for measurement of	1-137	NR	50.5	n/a	
	As; half the detection limit used as the	138-400	NR	40.6	n/a	
	1	1			,	
	value for nondetects	401-1,312	NR	40.9	n/a	

Reference and Study Design	Exposure Measures	omental Results			
	Population-Level Exposure:	Outcome: social competence (SC) score urinary arsenic concentration, μg/L			
	205.3 μg/L mean				
		Exp. Level <u>n</u> <u>mean</u>	<u>(CI)</u>		
		1-137 NR 39	n/a		
		138-400 NR 35.2	n/a		
		401-1,312 NR 34.7	n/a		
		Stat Method: one-way ANOVA,	ANCOVA		
<u>Parvez et al. (2011)</u>	Exposure Surrogate: blood	Outcome: body coordination			
		blood arsenic concentration, μ g/L			
Study Type: cross-	Exposure Description: venous whole	Exp. Level <u>n</u> <u>adjBeta</u>	<u>(CI)</u>		
sectional	blood samples collected at field clinic and	continuous NR -1.61	-2.70, -0.51		
	analyzed for Pb, Mn, Se, and As	Stat Method: linear regression, log			
Location: Bangladesh	concentrations	transformed			
(Araihazar)		Outcome: fine manual control			
	Population-Level Exposure:	blood arsenic concentration, μg/L			
Population: children 8-	4.8 μg/L mean 3.2SD	<u>Exp. Level n adjBeta</u>	<u>(CI)</u>		
11 years old living in		continuous NR -1.68	<u>-3.19, -0.18</u>		
households within the		Stat Method: linear regression,	-		
HEALS cohort of		transformed	108		
villages					
n cases: n/a		Outcome: manual coordination			
n control: n/a		blood arsenic concentration, $\mu g/L$			
		Exp. Level <u>n</u> <u>adjBeta</u>	<u>(CI)</u>		
		continuous NR -0.49	-1.73, 0.76		
		Stat Method: linear regression,	log		
		transformed			
		Outcome: strength and agility blood arsenic concentration, µg/L			
		Exp. Level <u>n</u> <u>adjBeta</u>	<u>(CI)</u>		
		continuous NR 0.15	-0.57, 0.86		
		Stat Method: linear regression,			
		transformed			
		Outcome: total motor composite			
		blood arsenic concentration, μg/L			
		Exp. Level <u>n</u> <u>adjBeta</u>	<u>(CI)</u>		
		continuous NR -3.63	-6.72, -0.54		
		Stat Method: linear regression,	log		
		transformed			

Reference and Study Design	Exposure Measures	Results			
	Exposure Surrogate: drinking water	Outcome: body coordination			
	Exposure Description: water samples collected from wells of use and analyzed for As and Mn concentrations	drinking water arsenic concentration, μ g/L			
		Exp. LevelnadjBeta(CI)continuousNR-0.43-0.77, -0.06Stat Method:linear regression, log			
		transformed			
	Population-Level Exposure:	Outcome: fine manual control			
	43.3 μg/L mean 73.6SD	drinking water arsenic concentration, μg/L			
		Exp. LevelnadjBeta(Cl)continuousNR-0.54-1.03, -0.05Stat Method: linear regression, log transformed			
		Outcome: manual coordination			
		drinking water arsenic concentration, μg/L			
		Exp. LevelnadjBeta(CI)continuousNR-0.15-0.52, 0.30Stat Method:linear regression, logtransformed			
		Outcome: strength and agility			
		drinking water arsenic concentration, μg/LExp. LevelnadjBeta(Cl)continuousNR-0.11-0.28, 0.18Stat Method: linear regression, logtransformed			
		Outcome: total motor composite			
		drinking water arsenic concentration, μg/LExp. LevelnadjBeta(Cl)continuousNR-1.18-2.13, -0.10Stat Method: linear regression, logtransformed			
	Exposure Surrogate: toenails	Outcome: body coordination			
	Exposure Description: toenails collected from individuals and cleaned prior to analysis	toenail arsenic concentration, μg/g <u>Exp. Level n adjBeta (CI)</u> continuous NR -1.86 -2.83, -0.89 Stat Method: linear regression, log transformed			

Reference and Study Design	Exposure Measures	Results				
	5.9 µg/g mean 6.3SD	toenail arsenic concentration, μg/g Exp. Level n adjBeta (Cl) continuous NR -0.84 -2.20, 0.50 Stat Method: linear regression, log transformed				
		Outcome: manual coordination				
		toenail arsenic concentration, μg/g Exp. Level n adjBeta (Cl) continuous NR -0.68 -1.80, 0.4 Stat Method: linear regression, log transformed				
		Outcome: strength and agility				
		toenail arsenic concentration, μg/gExp. LevelnadjBeta(Cl)continuousNR-0.38-1.02, 0.25Stat Method: linear regression, logtransformed				
		Outcome: total motor composite				
		toenail arsenic concentration, μg/gExp. LevelnadjBeta(Cl)continuousNR-3.77-6.52, -1.03Stat Method: linear regression, logtransformed				
	Exposure Surrogate: urine	Outcome: body coordination				
	Exposure Description: urine samples collected and analyzed for urinary As concentrations Population-Level Exposure: 246.5 g creatinine/L mean 183.9SD	creatinine adjusted urinary arsenic concentration, g creatinine/L Exp. Level n adjBeta (Cl) continuous NR -1.6 -2.61, -0.6 Stat Method: linear regression, log transformed transformed urinary arsenic concentration, µg/L Exp. Level n adjBeta (Cl) continuous (Cl) -2.67, -0.6 Stat Method: linear regression, log				
		transformed				
		Outcome: fine manual control				

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-86Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures	Results		
		Exp. LevelnadjBeta(Cl)continuousNR-0.88-2.28,Stat Method: linear regression, log	0.51	
		transformed		
		urinary arsenic concentration, μg/L		
		Exp. Level <u>n</u> <u>adjBeta</u> (CI)		
		continuous NR -1.03 -2.45,	0.39	
		Stat Method: linear regression, log transformed	og	
		Outcome: manual coordination		
		creatinine adjusted urinary arsenic concentration, g creatinine/L		
		Exp. Level <u>n</u> adjBeta (CI)		
		continuous NR -0.76 -1.91,	0.38	
		Stat Method: linear regression, log transformed		
		urinary arsenic concentration, μg/L Exp. Level <u>n</u> <u>adjBeta</u> (Cl)		
		continuous NR -0.73 -1.89,	0.44	
		Stat Method: linear regression, log transformed		
		Outcome: strength and agility		
		creatinine adjusted urinary arsenic concentration, g creatinine/L		
		Exp. Level <u>n</u> adjBeta (CI)		
		continuous NR -0.16 -0.83,	0.49	
		Stat Method: linear regression, log transformed		
		urinary arsenic concentration, μg/L		
		Exp. Level <u>n</u> adjBeta (CI)	_	
		continuous NR -0.19 -0.86,	0.48	
		Stat Method: linear regression, log transformed		
		Outcome: total motor composite		
		creatinine adjusted urinary arsenic concentration, g creatinine/L		
		Exp. Level <u>n</u> <u>adjBeta</u> (CI)		
		continuous NR -3.42 -6.27,	-0.5	
		Stat Method: linear regression, log		

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-87Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures	ntal Results transformed					
200181	+						
		urinary arset Exp. Level continuous Stat Met transfo	<u>n</u> NR thod: linea	atration, μg adjBeta -3.59 ar regressio	<u>(CI)</u> -6.50, -0.68		
<u>Rahman et al. (2007)</u>	Exposure Surrogate: drinking water	Outcome: fetal loss					
Rahman et al. (2007) Study Type: cohort (prospective) Location: Bangladesh (Matlab) Population: residents with pregnancies between 1991-2000 n total: 29,134	Exposure Surrogate: drinking water Exposure Description: arsenic concentrations in all functioning tube wells for each household sampled; exposure stratified by quintiles Population-Level Exposure: 239 µg/L mean	(quintiles), μ Exp. Level <10 10-166 167-276 277-408 ≥ 409 Stat Met Outcome: in arsenic wate (quintiles), μ Exp. Level <10 10-163 164-275 276-408 ≥ 409	g/L <u>n</u> 464 453 488 528 511 thod: logis fant deatl er concent g/L <u>n</u> 229 269 282 308 285	RR 1 0.98 1.05 1.14 1.1 stic regressi	owing birth (Cl) n/a 0.95, 1.35 1, 1.42 1.08, 1.53 1, 1.41		
		Outcome: ne	eonatal de	eath	sion		
		arsenic wate (quintiles), µ	er concent		owing birth		
		Exp. Level <10 10-163	<u>n</u> NR NR	<u>RR</u> 1 1.11	<u>(CI)</u> n/a 0.89, 1.38		
		164-275 276-408	NR NR	1.18 1.17	0.95, 1.47 0.94, 1.46		
		≥ 409 Stat Met	NR thod: logis	1.21 stic regressi	0.98, 1.50 ion		
			Outcome: postneonatal death <i>arsenic water concentration following birth</i>				

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-88Draft: Do Not Cite or Quote

Summary of Obser	vational Epidemiology Studies for Health Eff Neurodevelopmen)evelopm	nental Effect	s including
Reference and Study Design	Exposure Measures	Results			
0		Exp. Level <10 10-163 164-275 276-408 ≥ 409	n NR NR NR NR NR	adjRR 1 1.22 1.26 1.55 1.22	<u>(CI)</u> n/a 0.91, 1.63 0.94, 1.69 1.17, 2.05 0.91, 1.63
<u>Rahman et al. (2009)</u>	Exposure Surrogate: urine	Stat Method: logistic regression Outcome: birth length			
Study Type: cohort (prospective) Location: Bangladesh	Exposure Description: urinary arsenic concentrations in samples obtained during gestation; calculated as the sum of inorganic arsenic and methylated	urinary arsen Exp. Level continuous Stat Met	ic concer <u>n</u> NR	ntration, μg, <u>adjBeta</u> -0.06 t-squared lir	/L (<u>CI)</u> n/a near regression
(Matlab)	metabolites and adjusted by specific gravity; concentration reported as	Outcome: birth weight			
Population: residents pregnant between 2001-2003 and their newborn children n total: 1,578	average of GW 8 and 30 Population-Level Exposure: 160 μg/L mean 163SD		<u>n</u> NR	adjBeta -1.68 t-squared lir	/L (CI) n/a near regression
		Outcome: chest circumference			
		(beta co	<u>n</u> NR hod: leas efficient)	<u>adjBeta</u> -0.14 t-squared lir	/L (<u>CI)</u> n/a near regression
		Outcome: head circumference			
			<u>n</u> NR	<u>adjBeta</u> -0.05 t-squared lir	/ L (<u>CI)</u> n/a near regression
<u>Rahman et al. (2010)</u>	Exposure Surrogate: urine	Outcome: infant death			
Study Type: cohort (prospective)	Exposure Description: urine samples collected at ~approx gestation week 8 and gestation week 30; samples adjusted	average uring μg/L Exp. Level <38	ary arsen <u>n</u> 3	ic concentro <u>HR</u> 1	ntion (quintiles), (<u>Cl)</u> n/a
Location: Bangladesh (Matlab)	by specific gravity rather than creatinine; urine levels divided into quintiles	39-67 68-133 134-267	6 6 7	1.78 1.83 2.29	0.44, 7.16 0.45, 7.35 0.58, 9.05

Summary of Obser	vational Epidemiology Studies for Health Ef Neurodevelopmer	ffect Category: Developmental Effects including ntal			
Reference and Study Design	Exposure Measures	Results			
Population: pregnant women enrolled in the Maternal and Infant Nutrition Intervention in Matlab study (MINIMat) n total: 1,725	Population-Level Exposure: 38-2,019 μg/L range	268-2,019 14 5.01 1.41, 17.84 Stat Method: Cox proportional hazard models			
Rocha-Amador et al.	Exposure Surrogate: drinking water	Outcome: full IQ			
(2007) Study Type: cross- sectional	Exposure Description: arsenic concentration in tap and bottled water sampled at each individual's home on same day as outcome evaluations	Iog transformed arsenic concentration in water,μg/LExp. LevelnadjBeta(CI)continuousNR-6.15n/aStat Method: multiple linear regression			
Location: Mexico		Outcome: Performance IQ			
(Moctezuma, Salitral, and 5 de Febrero communities) Population: children in rural communities exposed to range of arsenic drinking water levels n cases: n/a n control: n/a	Population-Level Exposure: not available	log transformed arsenic concentration in water, μg/L Exp. Level n continuous NR -4.3 Stat Method: multiple linear regression Outcome: Verbal IQ log transformed arsenic concentration in water, μg/L Exp. Level n adjBeta (Cl) continuous NR -6.4 n/a Stat Method: multiple linear regression			
	Exposure Surrogate: urine	Outcome: full IQ			
	Exposure Description: arsenic concentrations in urine collected same day as neuropsychological evaluations; arsenic level adjusted for urinary creatinine Population-Level Exposure: not available	log transformed urinary arsenic concentration, μg/g-creatinine Exp. Level n adjBeta (Cl) continuous NR -5.72 n/a Stat Method: multiple linear regression Outcome: Performance IQ log transformed urinary arsenic concentration, μg/g-creatinine Log transformed urinary arsenic concentration,			
		<u>Exp. Level n adjBeta (CI)</u> continuous NR -4.19 n/a Stat Method: multiple linear regression			

Reference and Study Design	Exposure Measures	Results Outcome: Verbal IQ				
		log transformed urinary arsenic concentratic μg/g-creatinine				
Roy et al. (2011)		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		continuous Stat Met	NR hod: mul	-5.5 tiple linear r	n/a egression	
	Exposure Surrogate: urine	Outcome: AD			-8	
<u>,,,</u>		total urinary			n (quartiles)	
Study Type: cross	Exposure Description: total urinany	μg/L		Sincentratio	, (Yuui tiics),	
Study Type: cross- sectional	Exposure Description: total urinary arsenic measured as the sum inorganic	Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
SECTIONAL	arsenic and all arsenic metabolites	7.7-35.9	NR	NR	n/a	
	(MMA, DMA); first morning urine	36-55.2	NR	1.8	-0.7, 4.3	
Location: Mexico	samples collected after an overnight fast;	55.3-75.6	NR	2.2	-0.3, 4.6	
(Torreon)	exposure stratified by quartiles	75.7-215.9	NR	2.1	-0.4, 4.7	
				ar regression		
Population: first-grade children attending school near a metal	Population-Level Exposure: 55.2 μg/L median	total urinary arsenic concentration (quartiles) μg/L				
foundry		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
-		7.7-35.9	NR	1	n/a	
n cases: n/a n control: n/a		36-55.2	NR	1.4	, 0.6, 3.2	
		55.3-75.6	NR	2.4	1.1, 4.9	
		75.7-215.9	NR	1.9	0.9, 4.3	
		Stat Method: logistic regression, behavior modeled as a categorical variable (T-scor <65 vs. T-score ≥ 65)				
		Outcome: co	gnitive p	roblems		
		total urinary μg/L	arsenic c	oncentratio	n (quartiles),	
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		7.7-35.9	NR	NR	n/a	
		36-55.2	NR	1.6	-1.1, 4.3	
		55.3-75.6	NR	2.7	-0.05, 5.4	
		75.7-215.9	NR	2.6	-0.2, 5.4	
		Stat Met	hod: line	ar regressior	ı	
		total urinary arsenic concentration (quartiles				
		μ g/L Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		7.7-35.9	<u></u> NR	1	n/a	
		36-55.2	NR	1.3	0.6, 2.6	
		55.3-75.6	NR	1.4	0.7, 2.7	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-91Draft: Do Not Cite or Quote

eference and Study	Exposure Measures		I	Results	
Design		75.7-215.9	NR	1.5	0.8, 3.1
					-
			-	-	on, behavior iable (T-score
			u as a cat T-score ≥	-	
		Outcome: hyperactive behavior total urinary arsenic concentration (quartile μg/L			
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		7.7-35.9	NR	NR	n/a
		36-55.2	NR	1.8	-0.9, 4.6
		55.3-75.6	NR	1.6	-1.2, 4.3
		75.7-215.9	NR	2.1	-0.7, 4.9
		Stat Method: linear regression			
		total urinary arsenic concentration (quar μg/L			n (quartiles)
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
		7.7-35.9	NR	1	n/a
		36-55.2	NR	1.4	0.7, 2.7
		55.3-75.6	NR	1.6	0.8, 3.2
		75.7-215.9	NR	1.4	0.7, 2.9
		Stat Met	hod: logi	stic regressio	on, behavior
				-	iable (T-scor
		<65 vs.	T-score ≥	65)	
		Outcome: op	positiona	al behavior	
		total urinary μg/L	arsenic c	oncentratio	n (quartiles)
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		7.7-35.9	NR	NR	n/a
		36-55.2	NR	3.1	0.01, 6.1
		55.3-75.6	NR	2.5	-0.5, 5.6
		75.7-215.9	NR	2.1	-1.1, 5.2
		Stat Met	hod: line	ar regressior	ו
		total urinary arsenic concentration (quartile			n (quartiles)
		μg/L	n	adiOP	(CI)
		Exp. Level	<u>n</u> NR	adjOR 1	<u>(CI)</u> n/a
		7.7-35.9		1	n/a 1044
		36-55.2		2.1	1.0, 4.4
		55.3-75.6 75.7-215.9	NR NR	1.8 2	0.9, 3.8
				_	1.0, 4.3
			-	stic regressio egorical vari	on, beha

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-92Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures	Results				
		<65 vs.	T-score ≥	65)		
<u>Saha et al. (2012)</u>	Exposure Surrogate: urine	Outcome: att age	ained le	ngth (cm) at	18 months of	
Study Type: cohort (prospective)	Exposure Description: maternal urine samples collected 8 or 30 weeks of	child urinary μg/L	arsenic c	oncentratio	n (quintiles),	
(p. cop con c)	pregnancy; urine samples collected from	Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
	children at 18 months of age; arsenic	2.4-16	NR	1	n/a	
Location: Bangladesh	exposure stratified by quintiles	16-26	NR	0.16	-0.21, 0.53	
Matlab)		26-46	NR	-0.28	-0.65, 0.093	
		46-96	NR	-0.024	-0.39, 0.35	
Population: infants	Population-Level Exposure:	96-937	NR	0.18	-0.20, 0.55	
born in a population-	66.8 μg/L mean, 87.7SD, 11.7-159 μg/L 10th percentile	Stat Method: multivariate logistic regressio				
based intervention trial n rural area		Outcome: attained length (cm) at 24 months or age				
n total: 2,372		child urinary arsenic concentration (quintiles),				
		μg/L				
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		2.4-16	NR	1	n/a	
		16-26	NR	0.16	-0.25, 0.57	
		26-46	NR	-0.18	-0.59, 0.23	
		46-96	NR	-0.26	-0.67, 0.15	
		96-937	NR	-0.013	-0.43, 0.40	
					stic regressio	
		maternal urii (quintiles), μ	-	nic concentr	ation	
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		1.2-33	NR	1	n/a	
		33-57	NR	-0.098	-0.53, 0.34	
		57-115	NR	-0.22	-0.65, 0.22	
		116-245	NR	-0.15	-0.59, 0.28	
		246-1,611	NR	0.29	-0.15, 0.73	
					stic regressio	
		Outcome: at	ained le	ngth (cm) at	3 months of	
		age				
		maternal urii (quintiles), μ	-	nic concentr	ation	
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		1.2-33	NR	1	n/a	
		33-57	NR	0.21	-0.13, 0.56	
		57-115	NR	-0.067	-0.41, 0.28	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-93Draft: Do Not Cite or Quote

ence and Study	Exposure Measures		F	Results	
Design		116-245	NR	0.094	-0.27, 0.45
		246-1,611	NR	0.26	-0.096, 0.62
					stic regressio
		Outcome: at	tained we	eight (kg) at	18 months o
		child urinary arsenic concentration (quintiles μg/L			n (quintiles),
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		2.4-16	NR	1	n/a
		16-26	NR	-0.097	-0.23, 0.03
		26-46	NR	-0.18	-0.32, -0.04
		46-96	NR	-0.19	-0.33, -0.57
		96-937	NR	-0.059	-0.20, 0.07
		Stat Met			stic regressio
		Outcome: attained weight (kg) at 24 mor age			24 months o
		child urinary μg/L	arsenic c	oncentratio	n (quintiles),
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		2.4-16	NR	1	n/a
		16-26	NR	-0.027	-0.18, 0.12
		26-46	NR	-0.13	-0.28, 0.01
		46-96	NR	-0.082	-0.23, 0.06
		96-937	NR	0.005	-0.14, 0.16
		Stat Met	hod: mul	tivariate logi	stic regressic
		maternal uri (quintiles), μ	-	nic concenti	ation
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		1.2-33	NR	1	n/a
		33-57	NR	-0.015	-0.17, 0.14
		57-115	NR	-0.092	-0.25, 0.06
		116-245	NR	-0.06	-0.22, 0.094
		246-1,611	NR	0.044	-0.11, 0.20
		Stat Met	hod: mul	tivariate logi	stic regressic
		Outcome: attained weight (kg) at 3 months age			3 months of
		maternal uri (quintiles), μ	-	nic concenti	ation
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		1.2-33	NR	1	n/a

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-94Draft: Do Not Cite or Quote

Reference and Study	Neurodevelopmen Exposure Measures	Results					
Design				esuits			
		33-57	NR	0.11	0.006, 0.21		
		57-115	NR	-0.017	-0.12, 0.086		
		116-245	NR	0.089	-0.019, 0.20		
		246-1,611	NR	0.078	-0.028, 0.18		
		Stat Meth	nod: mult	ivariate log	istic regressior		
ofail et al. (2009)	Exposure Surrogate: urine	Outcome: "Co	over" Pro	blem Solvir	ng Test		
		mothers' urine	ary arser	nic (mean o	f gestation		
tudy Type: cohort	Exposure Description: spot urine	week 8 and 30	0), μg/L				
prospective)	samples collected from mothers at home	Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>		
	at time of pregnancy testing (on average	continuous	NR	0.4	-0.4, 1.3		
ocation: Bangladesh	gestational week 8) and at clinic (during	Stat Meth	nod: mult	iple regress	sion		
Matlab)	30th gestational week); arsenic concentrations adjusted for variation in	Outcome: "Su	ipport" P	roblem Sol	Solving Test		
	urine dilution by specific gravity	mothers' urine	ary arser	nic (mean o	f gestation		
Population: MINIMat		week 8 and 30	0), μg/L				
tudy cohort	Population-Level Exposure:	Exp. Level	<u>n</u>	adjBeta	<u>(CI)</u>		
1 total: 1,799	82.5 μg/L median	continuous	NR	-0.6	-1.5, 0.4		
		Stat Meth	nod: mult	iple regress	sion		
		Outcome: Psychomotor Development Ind		nent Index (PI			
		mothers' urin	-	nic (mean o	f gestation		
		week 8 and 30	0), μg/L				
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>		
		continuous	NR	0.9	-0.9, 2.7		
		Stat Meth	nod: mult	iple regress	sion		
īsai et al. (2003)	Exposure Surrogate: drinking water	Outcome: continuous performance test			ce test		
		cumulative ar	senic exp	oosure, ppn	1		
itudy Type: cross-	Exposure Description: individual	Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>		
ectional	cumulated arsenic exposure for exposed	-	NR	0	n/a		
	individuals calculated from household	2,047.7–	NR	95.32	n/a		
eestion: Taiwon /llan	arsenic concentration in well water,	43,882.13					
ocation: Taiwan (Ilan county: Chiaohsi,	duration of drinking well water, and	64,377.79–	NR	35.26	n/a		
ounty: Chiaonsi, huangwei, Wuchieh,	averaged water intake per day; Taiwan	2,419,950					
•	Environmental Protection Agency	Stat Meth	nod: mult	iple linear r	egression		
nd Tungshan ownships)	reported mean tap water arsenic						
ownampa)	concentrations in control area <1 ppb, so	cumulative ar	senic exp	posure, ppn			
	control arsenic exposure omitted	Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>		
opulation:	because levels too low to be calculated	-	NR	443.81	n/a		
dolescents with	accurately	2,047.7–	NR	535.7	n/a		
		43,882.13					
hronic exposure to							
chronic exposure to arsenic in drinking	Population-Level Exposure:	64,377.79–	NR	480.61	n/a		

Reference and Study Design	Exposure Measures	Results			
water	2,047.7-2,419,950 ppm range	Stat Method: one-way ANOVA, Scheffe's tes			, Scheffe's test
n cases: 49 n control: 60		Outcome: pa	ttern me	mory	
		cumulative a	rsenic ex	posure, ppm]
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		-	NR	0	n/a
		2,047.7– 43,882.13	NR	470.06	n/a
		64,377.79– 2,419,950	NR	965.92	n/a
		Stat Met	nod: mul	tiple linear r	egression
		cumulative a	rsenic ex	posure, ppm	1
		Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>
		-	NR	4972.24	n/a
		2,047.7–	NR	5437.05	n/a
		43,882.13			
		64,377.79–	NR	5961.03	n/a
		2,419,950			
		Stat Method: one-way ANOVA, Scheffe's tes			
		Outcome: switching attention			
		cumulative a	rsenic ex		
		<u>Exp. Level</u>	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		-	NR	0	n/a
		2,047.7–	NR	184.09	n/a
		43,882.13			
		64,377.79-	NR	234.78	n/a
		2,419,950			
		Stat Met	noa: mui	tiple linear r	egression
		cumulative a			
		Exp. Level	<u>n</u>	mean	<u>(CI)</u>
		-	NR	635.11	n/a
		2,047.7-	NR	801.6	n/a
		43,882.13	ND	061 10	n/2
		64,377.79-	NR	861.13	n/a
		2,419,950 Stat Met	nod: one	-way ANOVA	, Scheffe's test
		Outcome: syr	nbol digi	t	
		cumulative a			,
		Exp. Level	<u>n</u>	adjBeta	<u>(CI)</u>
			<u></u> NR	0	n/a

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-96Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures		F	Results			
DCSIGI		2,047.7– 43,882.13	NR	7.02	n/a		
		64,377.79– 2,419,950	NR	15.97	n/a		
		Stat Method: multiple linear regression					
		cumulative a	rsenic ex	posure, ppi	n		
		Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>		
		-	NR	223.44	n/a		
		2,047.7– 43,882.13	NR	230.6	n/a		
		64,377.79– 2,419,950	NR	242.56	n/a		
		Stat Method: one-way ANOVA, Scheffe's tes					
Vall et al. (2012)	Exposure Surrogate: meconium	Outcome: birth weight					
		arsenic concentration in meconium, ppb					
Study Type: cross-	Exposure Description: neonatal	Exp. Level	<u>n</u>	<u>OR</u>	<u>(CI)</u>		
sectional	meconium collected from infant's diaper	arsenic	NR	1	1.00, 1.02		
		detected					
Lesstian, Chain	Denulation Lough Fundation	arsenic non-	NR	NR	n/a		
Location: Spain (Tenerife)	Population-Level Exposure: 6.79 ppb mean 1.05SD	detected Stat Met	nod: odd	ratio; chi-s	quare		
Population: Mother-		Outcome: cra	nial peri	meter			
child pairs in study area		arsenic conce	ntration	in meconiu	um nnh		
n cases: n/a					associated wit		
n control: n/a		arsenic in me		significantiy	associated wit		
		Outcome: ges		age at birt	h		
		_		-			
		arsenic conce					
		gestational ag associated wi					
		Outcome: ler					
		arsenic conce	ntration	in meconiu	ım, ppb		
					with arsenic ir		
		meconium	,				
		Outcome: pre	Outcome: prematurity				
		arsenic conce	ntration	in meconiu	ım, ppb		
		prematurity r arsenic in me	-	cantly asso	ciated with		
Von Ehrenstein et al.	Exposure Surrogate: drinking water	Outcome: inf	ant mort	ality			
Von Einenstein et al.							

Defense and Church	Neurodevelopmen				
Reference and Study Design	Exposure Measures	Results			
U	Exposure Description: water samples	Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>
Study Type, cross	collected from tube wells used at least 6	0-49	13	1	n/a
Study Type: cross-	months since first pregnancy; past	50-199	2	0.82	0.13, 5.25
sectional	arsenic concentration measurements	≥ 200	4	1.33	0.43, 4.04
	used when wells were closed	Stat Met	hod: logi		on based on
Location: India (West	used when wens were closed	method of generalized estimating Outcome: neonatal death			
Bengal)	Population-Level Exposure:				
Population: women	0-200 μg/L range	arsenic conce	entration	in drinkina	water. µa/L
residing in 21 villages of		Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>
West Bengal, India.		0-49	5	1	n/a
		50-199	1	1.21	0.09, 15.4
n cases: n/a		≥ 200	4	2.81	0.09, 13.4
n control: n/a					
		Stat Method: logistic regression ba method of generalized estimating			
	Fundanuna Cumpanatas duinkina unatan	Outcome: block design			
<u>von Ehrenstein et al.</u> (2007)	Exposure Surrogate: drinking water				ntration in
<u> </u>	Exposure Description: samples from all	average pregnancy arsenic concentration in drinking water, μg/L			
Study Type: cross-	tube wells used by participants for at	Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
sectional	least 6 months collected; population-	<10	NR	1	n/a
sectional	level exposure represents average	10-49	NR	-0.09	-0.34, 0.17
	lifetime water exposure; peak exposure	50-99	NR	0.12	-0.25, 0.49
Location: India (West	$(147 + /- 322 \mu g/L)$ was highest known	≥ 100	NR	-0.01	-0.26, 0.23
Bengal)	annual average water concentration of			ar regressio	-
Denvilations shildren of	arsenic ingested by a child; prenatal	average pregnancy arsenic concentration in			ntration in
Population: children of	arsenic exposure based on the mother's	average pregnancy arsenic concentration in drinking water (per 100 μ g/L), μ g/L			
women participating in	drinking water arsenic exposure during	Exp. Level	n	<u>adjBeta</u>	<u>(CI)</u>
pregnancy outcomes	pregnancy	continuous	<u>n</u> NR		<u>(CI)</u> -0.05, 0.02
associated with arsenic				-0.02	-
in drinking water study	Population-Level Exposure:	Stat Met	noa: line	ar regressio	1
n cases: n/a n control: n/a	59 μg/L mean, 133SD, 1-870 μg/L range	peak lifetime	e arsenic (concentratio	on in drinking
		water, µg/L			
		Exp. Level	<u>n</u>	adjBeta	<u>(CI)</u>
		<10	NR	1	n/a
		10-49	NR	-0.01	-0.25, 0.23
		50-99	NR	0.05	-0.33, 0.44
		≥ 100	NR	-0.02	-0.23, 0.22
		Stat Met	hod: line	ar regressio	n
		peak lifetime	arsenic	concentratio	on in drinking
		water (per 10			5
		Exp. Level	<u>n</u>	adjBeta	<u>(CI)</u>
		continuous	NR	0.02	-0.02, 0.05

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-98Draft: Do Not Cite or Quote

eference and Study Design	Exposure Measures		I	Results				
		Stat Met	hod: line	ar regressior	1			
		Outcome: co	ding					
		average preg drinking wat		rsenic conce	ncentration in			
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>			
		<10	NR	1	n/a			
		10-49	NR	-0.13	-0.48, 0.21			
		50-99	NR	-0.08	-0.51, 0.36			
		≥ 100	NR	0.031	-0.21, 0.27			
		Stat Met	hod: line	ar regressior	-			
		average preg drinking wat	-					
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>			
		continuous	NR	0.01	-0.03, 0.04			
		Stat Met	hod: line	ar regressior	۱ 			
		peak lifetime water, μg/L	arsenic	concentratio	on in drinking			
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>			
		<10	NR	1	n/a			
		10-49	NR	-0.14	-0.47, 0.20			
		50-99	NR	-0.03	-0.48, 0.43			
		≥ 100	NR	-0.13	-0.37, 0.11			
		Stat Met	hod: line	ar regressior	ו			
		peak lifetime water (per 10			on in drinking			
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>			
		continuous	NR	0.01	-0.02, 0.04			
		Stat Met	hod: line	ar regressior	1			
		Outcome: co	lored pro	ogressive ma	trices			
		average preg drinking wat	-					
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>			
		<10	NR	1	n/a			
		10-49	NR	-0.08	-0.36, 0.20			
		50-99	NR	-0.07	-0.38, 0.24			
		≥ 100	NR	-0.07	-0.30, 0.17			
		Stat Met	hod: line	ar regressior	ı			

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-99Draft: Do Not Cite or Quote

eference and Study Design	Exposure Measures		I	Results		
Design		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		continuous	NR	0	-0.03, 0.03	
		Stat Meth	nod: line	ar regression	า	
		peak lifetime water, µg/L	arsenic	concentratio	ı in drinking	
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		<10	NR	1	n/a	
		10-49	NR	-0.02	-0.28, 0.24	
		50-99	NR	-0.29	-0.57, -0.02	
		≥ 100	NR	-0.02	-0.28, 0.24	
				ar regression	-	
		peak lifetime water (per 10			on in drinking	
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		continuous	NR	0.01	-0.02, 0.04	
		Stat Method: linear regression		า		
		Outcome: dig	Outcome: digit span			
		average pregnancy arsenic conco drinking water, μg/L		entration in		
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		<10	NR	1	n/a	
		10-49	NR	0.08	-0.24, 0.40	
		50-99	NR	0.09	-0.36, 0.54	
		≥ 100	NR	-0.06	-0.30, 0.19	
				ar regression	-	
		average preg drinking wate	-			
		Exp. Level				
		continuous	NR	0.01	-0.02, 0.04	
		Stat Meth	nod: line	ar regression		
		peak lifetime water, µg/L	arsenic	concentratio	on in drinking	
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		<10	NR	1	n/a	
		10-49	NR	0.08	-0.24, 0.40	
		50-99	NR	-0.15	-0.54, 0.23	
		≥ 100	NR	-0.08	-0.32, 0.17	
		Stat Method: linear regression				

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-100Draft: Do Not Cite or Quote

ference and Study Design	Exposure Measures			Results	
Design		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	0.02	-0.01, 0.05
		Stat Met	hod: line	ar regressio	า
		Outcome: full scale			
		average preg drinking wat		senic conce	ntration in
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		<10	NR	1	n/a
		10-49	NR	-0.047	-0.38, 0.28
		50-99	NR	-0.007	-0.36, 0.34
		≥ 100	NR	-0.002	-0.24, 0.24
		Stat Met	hod: line	ar regressio	า
		average preg drinking wat	-		
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	0.01	-0.02, 0.03
		Stat Met	hod: line	ar regressio	ı
		peak lifetime water, μg/L	arsenic	concentratio	on in drinking
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		<10	NR	1	n/a
		10-49	NR	0.006	-0.31, 0.33
		50-99	NR	-0.16	-0.56, 0.23
		≥ 100	NR	-0.06	-0.30, 0.18
				ar regression	
		peak lifetime water (per 10			on in drinkin
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	-0.02	-0.02, 0.05
		Stat Met	hod: line	ar regressio	า
		Outcome: ob	ject asse	mbly	
		average pregnancy arsenic concentration in drinking water, $\mu g/L$			
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		<10	NR	1	n/a
		10-49	NR	0.079	-0.31, 0.47
		50-99	NR	0.12	-0.28, 0.51
		≥ 100	NR	0.12	-0.09, 0.42
				ar regression	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-101Draft: Do Not Cite or Quote

Reference and Study	Neurodevelop Exposure Measures			Results	
Design					
		average pregnancy arsenic concer			
		drinking wat	ter (per 1	00 μg/L), μg	/L
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	0.02	-0.01, 0.06
		Stat Me	thod: line	ar regressio	n
		peak lifetime water, μg/L	e arsenic	concentratio	on in drinking
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		<10	NR	1	n/a
		10-49	NR	0.16	-0.23, 0.55
		50-99	NR	0.014	-0.43, 0.46
		≥ 100	NR	0.06	-0.18, 0.31
				ar regressio	-
		peak lifetime water (per 1			on in drinking
		Exp. Level	<u>n</u>	adjBeta	<u>(CI)</u>
		continuous	nr	0.02	-0.02, 0.06
				ar regressio	
		Outcome: pegboard			
		average pre	gnancy a	rsenic conce	ntration in
		drinking wat	ter, μg/L		
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		<10	NR	1	n/a
		10-49	NR	-0.18	-0.44, 0.09
		50-99	NR	0.09	-0.29 <i>,</i> 0.48
		≥ 100	NR	-0.03	-0.23, 0.17
		Stat Me	thod: line	ar regressio	
		average pre drinking wat			
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	0	-0.02, 0.03
		Stat Me	thod: line	ar regressio	n
		peak lifetime arsenic concentration in drinking water, μg/L			
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		<10	NR	1	n/a
		10-49	NR	-0.1	-0.39, 0.19
		50-99	NR	0.13	-0.27, 0.53
		≥ 100	NR	0.06	-0.14, 0.26
				ar regressio	

eference and Study	Exposure Measures		ſ	Results	
Design		peak lifetime arsenic concentration water (per 100 μg/L), μg/L		on in drinking	
		Exp. Level	<u>n</u>	adjBeta	<u>(CI)</u>
		continuous	NR	0.01	-0.02, 0.003
				ar regression	
		Outcome: pic	ture con	pletion	
		average preg drinking wate		senic conce	ntration in
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		<10	NR	1	n/a
		10-49	NR	0.08	-0.24, 0.40
		50-99	NR	-0.25	-0.58, 0.09
		≥ 100	NR	-0.06	-0.29, 0.17
		Stat Met	nod: line	ar regression	
		average preg drinking wate	-		
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	-0.01	-0.04, 0.02
		Stat Metl	nod: line	ar regression	า
		peak lifetime water, μg/L	arsenic (-
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		<10	NR	1	n/a
		10-49	NR	0.12	-0.19, 0.43
		50-99	NR	-0.45	-0.84, -0.07
		≥ 100	NR	-0.09	-0.33, 0.14
		Stat Met	nod: line	ar regression	ו
		peak lifetime water (per 10		μg/L	
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	0	-0.03, 0.04
				ar regression	1
		Outcome: tot			
		average preg drinking wate			
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		<10	NR	1	n/a
		10-49	NR	0.03	-0.24, 0.31
		50-99	NR	0.32	-0.04, 0.69
		≥ 100	NR	-0.05	-0.30, 0.19

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-103Draft: Do Not Cite or Quote

Reference and Study	Exposure Measures		I	Results		
Design		Stat Met	hod: line	ar regressior	1	
			average pregnancy arsenic concentration in drinking water (per 100 μg/L), μg/L			
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		continuous Stat Met	NR hod:line	-0.03 ar regressior	-0.07, 0.01	
		peak lifetime water, μg/L		-		
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		<10	NR	1	n/a	
		10-49	NR	0.11	-0.19, 0.41	
		50-99	NR	0.28	-0.08, 0.64	
		≥ 100	NR	-0.03	-0.27, 0.21	
		Stat Met	hod: line	ar regressior	1	
		peak lifetime water (per 10	00 μg/L),	μg/L		
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		continuous Stat Met	NR hod: line:	-0.03 ar regressior	-0.05 <i>,</i> 0 1	
		Outcome: vo				
		average preg drinking wate		senic conce	ntration in	
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		<10	NR	1	n/a	
		10-49	NR	-0.23	-0.54, 0.08	
		50-99	NR	-0.036	-0.40, 0.33	
		≥ 100 Stat Met	NR hod: line	-0.08 ar regressior	-0.26, 0.53 1	
		average preg				
		drinking wate	er (per 10	00 µg/L), µg,	/L	
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		continuous Stat Met	NR hod: line	0.01 ar regressior	-0.03 <i>,</i> 0.06	
		peak lifetime		_		
		water, µg/L	arsenic			
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		<10	NR	1	n/a	
		10-49	NR	-0.17	-0.48, 0.14	
		50-99	NR	-0.23	-0.59, 0.12	
		≥ 100	NR	-0.05	-0.29, 0.20	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-104Draft: Do Not Cite or Quote

eference and Study Design	Exposure Measures	Results Stat Method: linear regression peak lifetime arsenic concentration in drinking water (per 100 μg/L), μg/L			
Design					
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous Stat Meth	NR od: line	0.01 ar regressior	-0.02 <i>,</i> 0.04 1
	Exposure Surrogate: urine	Outcome: blo			
		child urinary a			n (per 100
	Exposure Description: child urine	μg/L), μg/L			
	samples collected during physical	Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
	examination and stratified in tertiles	continuous	NR	-0.02	-0.2, 0.2
	(tertile concentration data not reported)	Stat Method: linear regression			1
	Population-Level Exposure:	child urinary arsenic concentration (tertile μg/L			
	78 μg/L mean, 61SD, 2-375 μg/L range	Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		~<44.2 -	NR	1	n/a
		<43.6			
		~ >43.6 -	NR	0.076	-0.16, 0.31
		<82.6 and ~			
		>44.2-<86.1			
		~ >82.6 and ~	NR	-0.085	-0.34, 0.17
		>86.1 Stat Moth	od: lino	or rogrossion	
		Stat Method: linear regression			
		Outcome: cod	-		
		child urinary α μg/L), μg/L	irsenic c	oncentratio	n (per 100
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	-0.06	-0.2, 0.09
		Stat Meth	od: line	ar regressior	ı
		child urinary α μg/L	irsenic c	oncentratio	n (tertiles),
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		~ <44.2 -	NR	1	n/a
		<43.6			
		~ >43.6 -	NR	-0.14	-0.37, 0.10
		<82.6 and ~			-
		>44.2-<86.1			
		~ >82.6 and ~	NR	-0.13	-0.38, 0.12
		>86.1			
		Stat Meth	od: line	ar regressior	า

Reference and Study Design	Exposure Measures		Results		
		Outcome: colored progressive matrices			
		child urinary a μg/L), μg/L	rsenic c	oncentratio	n (per 100
		Exp. Level continuous	<u>n</u> NR	<u>adjBeta</u> -0.07	<u>(CI)</u> -0.2, 0.07
				ar regressior	
		child urinary a μg/L	rsenic c	oncentratio	n (tertiles),
		<u>Exp. Level</u> ~ <44.2 -	<u>n</u> NR	<u>adjBeta</u> 1	<u>(CI)</u> n/a
		<43.6 ~ >43.6 - <82.6 and ~	NR	0.0009	-0.22, 0.23
		>44.2-<86.1 ~>82.6 and ~ >86.1	NR	-0.12	-0.36, 0.11
			od: line	ar regressior	ı
		Outcome: digit span			
		child urinary a μg/L), μg/L	rsenic c	oncentratio	n (per 100
		Exp. Level continuous	<u>n</u> NR od: line	<u>adjBeta</u> 0.04 ar regressior	<u>(CI)</u> -0.1, 0.2
		child urinary a μg/L	rsenic c	oncentratio	n (tertiles),
		<u>Exp. Level</u> ~ <44.2 - <43.6	<u>n</u> NR	<u>adjBeta</u> 1	<u>(CI)</u> n/a
		~ >43.6 - <82.6 and ~ >44.2-<86.1	NR	-0.04	-0.30, 0.22
		~ >82.6 and ~ >86.1	NR	-0.0004	-0.27, 0.27
				ar regressior	1
		Outcome: full			
		child urinary a μg/L), μg/L			
		Exp. Level continuous Stat Meth	<u>n</u> NR	<u>adjBeta</u> -0.07	<u>(CI)</u> -0.2, 0.09

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-106Draft: Do Not Cite or Quote

Reference and Study	Exposure Measures		F	Results	
Design		child urinary arsenic concentration (tertiles),			
		μg/L			(((())))
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		~ <44.2 -	NR	1	n/a
		<43.6		-	
		~ >43.6 -	NR	-0.11	-0.34, 0.12
		<82.6 and ~			
		>44.2-<86.1			
		~ >82.6 and ~	NR	-0.2	-0.44, 0.03
		>86.1			- ,
			od: linea	ar regressior	I
		Outcome: obje	ect asse	mbly	
		child urinary a μg/L), μg/L	rsenic c	oncentratio	n (per 100
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	-0.07	-0.2, 0.1
		Stat Metho	od: linea	ar regressior	l
		child urinary arsenic concentration (tertiles), μg/L			
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		~ <44.2 -	NR	1	n/a
		<43.6			
		~ >43.6 -	NR	-0.16	-0.34, 0.06
		<82.6 and ~			
		>44.2-<86.1			
		~ >82.6 and ~	NR	-0.24	-0.49, 0.01
		>86.1			
		Stat Metho	od: linea	ar regression	I
		Outcome: pegl	board		
		child urinary a μg/L), μg/L	rsenic c	oncentratio	n (per 100
		<u>Exp. Level</u>	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	0.04	-0.1, 0.2
		Stat Metho	od: linea	ar regressior	I
		child urinary a μg/L	rsenic c	oncentratio	n (tertiles),
		Exp. Level	<u>n</u>	adjBeta	<u>(CI)</u>
		~ <44.2 -	NR	1	<u>n/a</u>
		<43.6			
		~ >43.6 -	NR	0.15	-0.07, 0.36
		<82.6 and ~	· · · •		,

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-107Draft: Do Not Cite or Quote

eference and Study	Exposure Measures	omental	I	Results	
Design					
		>44.2-<86.1		0.00	0 4 4 0 2 2
		~ >82.6 and ~	NR	0.09	-0.14, 0.32
		>86.1			
		Stat Meth	od: line	ar regressior	1
		Outcome: pict	ure con	npletion	
		child urinary d	irsenic c	concentratio	n (per 100
		μg/L), μg/L			
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	-0.1	-0.3, 0.04
		Stat Meth	od: line	ar regressior	-
		child urinary o	irsenic c	concentratio	n (tertiles),
		μg/L			
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		~ <44.2 -	NR	1	n/a
		<43.6			
		~ >43.6 -	NR	-0.15	-0.34, 0.09
		<82.6 and ~			
		>44.2-<86.1			
		~ >82.6 and ~	NR	-0.26	-0.51, -0.02
		>86.1			
		Stat Meth	od: line	ar regressior	ı
		Outcome: tota	al sente	nce recall	
		child urinary o	ırsenic c	concentratio	n (per 100
		μg/L), μg/L			
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	0.04	-0.1, 0.2
		Stat Meth	od: line	ar regressior	ı
		child urinary o	ırsenic c	concentratio	n (tertiles),
		μg/L	n	adiData	
		Exp. Level	<u>n</u>	adjBeta	<u>(CI)</u> n (n
		~ <44.2 -	NR	1	n/a
		<43.6		0.22	0.00 0.00
		~ >43.6 -	NR	0.23	0.02, 0.44
		<82.6 and ~ >44.2-<86.1			
		~ >82.6 and ~	NR	0.13	-0.09, 0.35
		>86.1			
		Stat Meth	od: line	ar regressior	1
		Outcome: voc	abularv	,	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-108Draft: Do Not Cite or Quote

Reference and Study	Exposure Measures	Results			
Design					
		μg/L), μg/L			()
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	-0.09	-0.3, 0.07
		Stat Meth	od: linea	r regression	
		child urinary a	ırsenic co	oncentration	n (tertiles),
		μ g/L Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		~ <44.2 -	NR	<u>aajbeta</u> 1	<u>n/a</u>
		<43.6	INIX	T	Π/a
		~>43.6 -	NR	-0.14	0 27 0 10
		<82.6 and ~	INK	-0.14	-0.37, 0.10
		>44.2-<86.1			
		~>82.6 and ~	NR	-0.28	
		>82.6 and	NK	-0.28	-0.55, -0.008
			od: linea	r regression	
Wasserman et al.	Exposure Surrogate: drinking water	Outcome: full scale raw score drinking water arsenic concentration, µg/L			
<u>2004)</u>					
	Exposure Description: arsenic	<u>Exp. Level</u>	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
Study Type: cross-	concentrations in 196 tube wells used for	continuous	NR	-1.64	n/a
sectional	drinking water at each residence;	Stat Meth	od: linea	r regression	analysis
	exposure levels split into quartiles	4.1.1.1.1			
Location: Bangladesh		drinking wate μg/L	r arsenic	concentrat	ion (quartiles)
(Araihazar)	Population-Level Exposure:	Exp. Level	n	<u>adjBeta</u>	<u>(CI)</u>
, , , , , , , , , , , , , , , , , , , ,	117.8 μg/L mean 145.2SD	0.1 - 5.5	<u>n</u> NR	NR	n/a
		5.6 - 50.0			-
Population: children 10			NR	NR	n/a
years old residing in		50.1 - 176	NR	-7.8	n/a
villages within the		177 - 790	NR	-11.3	n/a
HEALS cohort		Stat Meth	od: linea	r regression	analysis
n cases: n/a n control: n/a		Outcome: per	formance	e raw score	
		drinking wate			
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	-1.45	n/a
		Stat Meth	od: linea	r regression	analysis
		drinking wate μg/L	r arsenic	concentrat	ion (quartiles <u>)</u>
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		0.1 - 5.5	NR	NR	<u>n/a</u>
		5.6 - 50.0	NR	NR	n/a
					111.14
		50.1 - 176	NR	-7.3	n/a

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-109Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures	Results Stat Method: linear regression analysis Outcome: verbal raw score			
Design					
		drinking water arsenic concentration, μ g/L			
		<u>Exp. Level n adjBeta (CI)</u>			
		continuous NR -0.19 n/a			
		Stat Method: linear regression analysis			
		drinking water arsenic concentration (quartile μg/L			
		Exp. Level <u>n</u> adjBeta (CI)			
		0.1 - 5.5 NR NR n/a			
		5.6 - 50.0 NR NR n/a			
		50.1 - 176 NR NR n/a			
		177 - 790 NR -1.6 n/a			
		Stat Method: linear regression analysis			
	Exposure Surrogate: urine	Outcome: full scale raw score			
		urinary arsenic concentration, μg/L			
	Exposure Description: arsenic	Exp. Level <u>n</u> <u>adjBeta</u> <u>(CI)</u>			
	concentration in urine, adjusted for	continuous NR -2.9 n/a			
	urinary creatinine levels	Stat Method: linear regression analysis			
	Population-Level Exposure:	Outcome: performance raw score			
	116.6 µg/L mean 148.8SD	urinary arsenic concentration, μg/L			
		Exp. Level <u>n</u> <u>adjBeta</u> (CI)			
		continuous NR -2.2 n/a			
		Stat Method: linear regression analysis			
		Outcome: verbal raw score			
		urinary arsenic concentration, μg/L			
		Exp. Level <u>n</u> <u>adjBeta</u> (CI)			
		continuous NR -0.7 n/a			
		Stat Method: linear regression analysis			
Vasserman et al.	Exposure Surrogate: drinking water	Outcome: full scale raw score			
<u>(2007)</u>		drinking water arsenic concentration, μ g/L			
	Exposure Description: water samples	Exp. Level <u>n</u> <u>adjBeta</u> (CI)			
itudy Type: cross-	from each home collected during survey	continuous NR -1.06 n/a			
ectional	of all wells in study region;	Stat Method: linear regression analysis			
ocation: Bangladesh	Population-Level Exposure:	Outcome: performance raw score			
Araihazar)	120.1 µg/L mean 134.4SD	drinking water arsenic concentration, μg/L			
,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Exp. Level <u>n</u> adjBeta (CI)			

Reference and Study Design	Exposure Measures	Results		
Population: 6-year-old		continuous NR -0.48 n/a Stat Method: linear regression analysis		
children of parents enrolled in the HEALS		Outcome: processing speed raw score		
n cases: n/a n control: n/a		drinking water arsenic concentration, μg/L Exp. Level <u>n</u> adjBeta (CI)		
		continuous NR -0.54 n/a Stat Method: linear regression analysis		
		Outcome: verbal raw score		
		drinking water arsenic concentration, μg/LExp. LevelnadjBeta(CI)continuousNR-0.18n/aStat Method: linear regression analysis		
	Exposure Surrogate: urine	Outcome: full scale raw score		
	Exposure Description: each child provided urine specimens for measurement of urinary As; levels of As	urinary arsenic concentration, μg/g-creatinineExp. LevelnadjBeta(CI)continuousNR-1.78n/aStat Method: linear regression analysis		
	in urine adjusted for urinary creatinine levels	Outcome: performance raw score		
	Population-Level Exposure: 110.7 μg/g-creatinine mean 132.8SD	urinary arsenic concentration, μg/g-creatinineExp. LevelnadjBeta(Cl)continuousNR-0.81n/aStat Method: linear regression analysis		
		Outcome: processing speed raw score		
		urinary arsenic concentration, μg/g-creatinineExp. LevelnadjBeta(Cl)continuousNR-0.93n/aStat Method: linear regression analysis		
		Outcome: verbal raw score		
		urinary arsenic concentration, μg/g-creatinineExp. LevelnadjBeta(Cl)continuousNR-0.16n/aStat Method: linear regression analysis		
Wasserman et al. (2011)	Exposure Surrogate: blood	Outcome: general intellectual ability (full-scale		
(2011)	Exposure Description: venous whole	blood arsenic concentration, μg/L Exp. Level <u>n</u> <u>adjBeta</u> (CI)		

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-111Draft: Do Not Cite or Quote

	Neurodevelopme	ILdi			
Reference and Study Design	Exposure Measures	Results			
Study Type: cross- sectional	blood samples collected at a field clinic and analyzed for Pb, Mn, Se, and As	continuous NR -3.8 n/a Stat Method: linear regression			
		Outcome: perceptual reasoning			
Location: Bangladesh	Population-Level Exposure: 4.81 μg/L mean 3.22SD	blood arsenic concentration, $\mu g/L$			
(Araihazar)	4.01 µg/ 2 mean 5.2250	Exp. Level <u>n</u> <u>adjBeta</u> (CI)			
		continuous NR -1.13 n/a			
Population: children 8-		Stat Method: linear regression			
11 years old living in households within the		Outcome: processing speed			
HEALS cohort of villages		blood arsenic concentration, μg/L			
-		<u>Exp. Level n adjBeta (CI)</u>			
n cases: n/a		continuous NR -0.27 n/a			
n control: n/a		Stat Method: linear regression			
		Outcome: verbal comprehension			
		blood arsenic concentration, μg/L			
		Exp. Level <u>n</u> <u>adiBeta</u> (CI)			
		continuous NR -1.49 n/a			
		Stat Method: linear regression			
		Outcome: working memory			
		blood arsenic concentration, μg/L			
		Exp. Level <u>n</u> <u>adjBeta</u> (CI)			
		continuous NR -0.91 n/a			
		Stat Method: linear regression			
<u>Wright et al. (2006)</u>	Exposure Surrogate: hair	Outcome: CELF-3			
		hair arsenic levels, ppb			
Study Type: cross-	Exposure Description: hair samples	no significant association between any CELF-	3 test		
sectional	cleaned by sonication, rinsed and dried	scores and hair As levels			
Sectional	cleaned by somethon, mised and arrea	Outcome: children's category test			
Location: United States	Population-Level Exposure:	hair arsenic levels, ppb			
(OK)	not available	no significant association between children's			
		category test scores and hair As levels			
Population: school-age		Outcome: CVLT-C: list A			
children residing near hazardous waste site		hair arsenic levels, ppb			
		Exp. Level <u>n</u> <u>adjBeta</u> (CI)			
n cases: n/a		continuous NR -0.26 n/a			
n control: n/a		Stat Method: unspecified			

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-112Draft: Do Not Cite or Quote

Reference and Study	Exposure Measures	Results
Design		hair arsenic levels, ppb no significant association between any CVLT-C other than list A test scores and hair As levels; significant Mn-by-As interaction for scores
		Outcome: full-Scale IQ
		hair arsenic levels, ppbExp. LevelnadjBeta(CI)continuousNR-0.44n/aStat Method: mutivariate linear regression
		Outcome: parent ratings of children on CADS-IN BRIEF tests
		<i>hair arsenic levels, ppb</i> no significant association between parent rating and arsenic
		Outcome: performance IQ
		hair arsenic levels, ppbExp. LevelnadjBeta(CI)continuousNR-0.27n/aStat Method: scatterplot slope
		Outcome: teacher ratings of children on CADS- BRIEF, BASC tests
		<i>hair arsenic levels, ppb</i> no significant association between teacher ratin and arsenic
		Outcome: verbal IQ
		hair arsenic levels, ppbExp. LevelnadjBeta(CI)continuousNR-0.51n/aStat Method: mutivariate linear regression
		Outcome: WRAML
		<i>hair arsenic levels, ppb</i> no significant association between any WRAML test scores and hair As levels; significant Mn-by- interaction for scores on WRAML story memory
		Outcome: WRAVMA
		<i>hair arsenic levels, ppb</i> no significant association between any WRAVMA test scores and hair As levels

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-113Draft: Do Not Cite or Quote

--: not reported; n: number of cases (when presented in Results column)

5.4.1 References Summary of Observational Epidemiology Studies for Health Effect Category: Developmental Effects including Neurodevelopmental

- Calderon, J; Navarro, ME; Jimenez-Capdeville, ME; Santos-Diaz, MA; Golden, A; Rodriguez-Leyva, I; Borja-Aburto, V; Diaz-Barriga, F. (2001). Exposure to arsenic and lead and neuropsychological development in Mexican children. Environ Res 85: 69-76. <u>http://dx.doi.org/10.1006/enrs.2000.4106</u>
- <u>Gardner, RM; Kippler, M; Tofail, F; Bottai, M; Hamadani, J; Grandér, M; Nermell, B; Palm, B; Rasmussen,</u> <u>KM; Vahter, M.</u> (2013). Environmental exposure to metals and children's growth to age 5 years: a prospective cohort study. Am J Epidemiol 177: 1356-1367. <u>http://dx.doi.org/10.1093/aje/kws437</u>
- <u>Guan, H; Piao, F; Zhang, X; Li, X; Li, Q; Xu, L; Kitamura, F; Yokoyama, K.</u> (2012). Prenatal Exposure to Arsenic and Its Effects on Fetal Development in the General Population of Dalian. Biol Trace Elem Res. <u>http://dx.doi.org/10.1007/s12011-012-9396-7</u>
- <u>Hamadani, JD; Grantham-Mcgregor, SM; Tofail, F; Nermell, B; Fängström, B; Huda, SN; Yesmin, S; Rahman, M; Vera-Hernández, M; Arifeen, SE; Vahter, M.</u> (2010). Pre- and postnatal arsenic exposure and child development at 18 months of age: a cohort study in rural Bangladesh. Int J Epidemiol 39: 1206-1216. http://dx.doi.org/10.1093/ije/dyp369
- <u>Hamadani, JD; Tofail, F; Nermell, B; Gardner, R; Shiraji, S; Bottai, M; Arifeen, SE; Huda, SN; Vahter, M.</u> (2011). Critical windows of exposure for arsenic-associated impairment of cognitive function in pre-school girls and boys: a population-based cohort study. Int J Epidemiol 40: 1593-1604. <u>http://dx.doi.org/10.1093/ije/dyr176</u>
- Hopenhayn, C; Ferreccio, C; Browning, SR; Huang, B; Peralta, C; Gibb, H; Hertz-Picciotto, I. (2003). Arsenic exposure from drinking water and birth weight. Epidemiology 14: 593-602. http://dx.doi.org/10.1097/01.ede.0000072104.65240.69
- Huyck, KL; Kile, ML; Mahiuddin, G; Quamruzzaman, Q; Rahman, M; Breton, CV; Dobson, CB; Frelich, J; Hoffman, E; Yousuf, J; Afroz, S; Islam, S; Christiani, DC. (2007). Maternal arsenic exposure associated with low birth weight in Bangladesh. J Occup Environ Med 49: 1097-1104. http://dx.doi.org/10.1097/JOM.0b013e3181566ba0
- Jin, L; Zhang, L; Li, Z; Liu, JM; Ye, R; Ren, A. (2013). Placental concentrations of mercury, lead, cadmium, and arsenic and the risk of neural tube defects in a Chinese population. Reprod Toxicol 35: 25-31. http://dx.doi.org/10.1016/j.reprotox.2012.10.015
- Khan, K; Wasserman, GA; Liu, X; Ahmed, E; Parvez, F; Slavkovich, V; Levy, D; Mey, J; van Geen, A; Graziano, JH; Factor-Litvak, P. (2012). Manganese exposure from drinking water and children's academic achievement. Neurotoxicology 33: 91-97. <u>http://dx.doi.org/10.1016/j.neuro.2011.12.002</u>
- <u>Kippler, M; Wagatsuma, Y; Rahman, A; Nermell, B; Persson, LÅ; Raqib, R; Vahter, M.</u> (2012). Environmental exposure to arsenic and cadmium during pregnancy and fetal size: A longitudinal study in rural Bangladesh. Reprod Toxicol 34: 504-511. <u>http://dx.doi.org/10.1016/j.reprotox.2012.08.002</u>

Kwok, RK; Kaufmann, RB; Jakariya, M. (2006). Arsenic in drinking-water and reproductive health outcomes: A study of participants in the Bangladesh integrated nutrition programme. J Health Popul Nutr 24: 190-205.

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-114Draft: Do Not Cite or Quote

- Milton, AH; Smith, W; Rahman, B; Hasan, Z; Kulsum, U; Dear, K; Rakibuddin, M; Ali, A. (2005). Chronic arsenic exposure and adverse pregnancy outcomes in Bangladesh. Epidemiology 16: 82-86. http://dx.doi.org/10.1097/01.ede.0000147105.94041.e6
- <u>Nahar, MN; Inaoka, T; Fujimura, M; Watanabe, C; Shimizu, H; Tasnim, S; Sultana, N.</u> (2014). Arsenic contamination in groundwater and its effects on adolescent intelligence and social competence in Bangladesh with special reference to daily drinking/cooking water intake. Environ Health Prev Med 19: 151-158. <u>http://dx.doi.org/10.1007/s12199-013-0369-z</u>
- Parvez, F; Wasserman, GA; Factor-Litvak, P; Liu, X; Slavkovich, V; Siddique, AB; Sultana, R; Sultana, R; Islam, T; Levy, D; Mey, JL; van Geen, A; Khan, K; Kline, J; Ahsan, H; Graziano, JH. (2011). Arsenic exposure and motor function among children in Bangladesh. Environ Health Perspect 119: 1665-1670. http://dx.doi.org/10.1289/ehp.1103548
- Rahman, A; Persson, LÅ; Nermell, B; El Arifeen, S; Ekström, EC; Smith, AH; Vahter, M. (2010). Arsenic exposure and risk of spontaneous abortion, stillbirth, and infant mortality. Epidemiology 21: 797-804. http://dx.doi.org/10.1097/EDE.0b013e3181f56a0d
- Rahman, A; Vahter, M; Ekström, EC; Rahman, M; Golam Mustafa, AH; Wahed, MA; Yunus, M; Persson, LA. (2007). Association of arsenic exposure during pregnancy with fetal loss and infant death: A cohort study in Bangladesh. Am J Epidemiol 165: 1389-1396. <u>http://dx.doi.org/10.1093/aje/kwm025</u>
- Rahman, A; Vahter, M; Smith, AH; Nermell, B; Yunus, M; El Arifeen, S; Persson, LA; Ekström, EC. (2009). Arsenic exposure during pregnancy and size at birth: a prospective cohort study in Bangladesh. Am J Epidemiol 169: 304-312. <u>http://dx.doi.org/10.1093/aje/kwn332</u>
- Rocha-Amador, D; Navarro, ME; Carrizales, L; Morales, R; Calderon, J. (2007). Disminución de la inteligencia en niños y exposición al fl úor y arsénico en el agua potable. Cad Saude Publica 23: S579-587. http://dx.doi.org/10.1590/S0102-311X2007001600018
- Roy, A: Kordas, K: Lopez, P: Rosado, JL; Cebrian, ME: Vargas, GG: Ronquillo, D: Stoltzfus, RJ. (2011). Association between arsenic exposure and behavior among first-graders from Torreón, Mexico. Environ Res 111: 670-676. http://dx.doi.org/10.1016/j.envres.2011.03.003
- Saha, KK; Engström, A; Hamadani, JD; Tofail, F; Rasmussen, KM; Vahter, M. (2012). Pre- and Postnatal Arsenic Exposure and Body Size to Two Years of Age: a Cohort Study in Rural Bangladesh. Environ Health Perspect. <u>http://dx.doi.org/10.1289/ehp.1003378</u>
- <u>Tofail, F; Vahter, M; Hamadani, JD; Nermell, B; Huda, SN; Yunus, M; Rahman, M; Grantham-McGregor, SM.</u> (2009). Effect of arsenic exposure during pregnancy on infant development at 7 months in rural Matlab, Bangladesh. Environ Health Perspect 117: 288-293. <u>http://dx.doi.org/10.1289/ehp.11670</u>
- Tsai, SY; Chou, HY; The, HW; Chen, CM; Chen, CJ. (2003). The effects of chronic arsenic exposure from drinking water on the neurobehavioral development in adolescence. Neurotoxicology 24: 747-753. http://dx.doi.org/10.1016/S0161-813X(03)00029-9
- Vall, O; Gómez-Culebras, M; Garcia-Algar, O; Joya, X; Velez, D; Rodríguez-Carrasco, E; Puig, C. (2012). Assessment of prenatal exposure to arsenic in Tenerife Island. PLoS ONE 7: e50463. <u>http://dx.doi.org/10.1371/journal.pone.0050463</u>
- Von Ehrenstein, OS; Guha Mazumder, DN; Hira-Smith, M; Ghosh, N; Yuan, Y; Windham, G; Ghosh, A; Haque, R; Lahiri, S; Kalman, D; Das, S; Smith, AH. (2006). Pregnancy outcomes, infant mortality, and arsenic in drinking water in West Bengal, India. Am J Epidemiol 163: 662-669. <u>http://dx.doi.org/10.1093/aje/kwj089</u>

von Ehrenstein, OS; Poddar, S; Yuan, Y; Mazumder, DG; Eskenazi, B; Basu, A; Hira-Smith, M; Ghosh, N; Lahiri, S; Haque, R; Ghosh, A; Kalman, D; Das, S; Smith, AH. (2007). Children's intellectual function in relation to arsenic exposure. Epidemiology 18: 44-51. http://dx.doi.org/10.1097/01.ede.0000248900.65613.a9

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-115Draft: Do Not Cite or Quote

- Wasserman, GA; Liu, X; Parvez, F; Ahsan, H; Factor-Litvak, P; van Geen, A; Slavkovich, V; Lolacono, NJ; Cheng, Z; Hussain, I; Momotaj, H; Graziano, JH. (2004). Water arsenic exposure and children's intellectual function in Araihazar, Bangladesh. Environ Health Perspect 112: 1329-1333. http://dx.doi.org/10.1289/ehp.6964
- Wasserman, GA; Liu, X; Parvez, F; Factor-Litvak, P; Ahsan, H; Levy, D; Kline, J; van Geen, A; Mey, J; Slavkovich, V; Siddique, AB; Islam, T; Graziano, JH. (2011). Arsenic and manganese exposure and children's intellectual function. Neurotoxicology 32: 450-457. <u>http://dx.doi.org/10.1016/j.neuro.2011.03.009</u>
- Wasserman, GA; Liu, XH; Parvez, F; Ahsan, H; Factor-Litvak, P; Kline, J; Van Geen, A; Slavkovich, V; Lolacono, NJ; Levy, D; Cheng, ZQ; Graziano, JH. (2007). Water arsenic exposure and intellectual function in 6-year-old children in Araihazar, Bangladesh. Environ Health Perspect 115: 285-289. http://dx.doi.org/10.1289/ehp.9501
- Wright, RO; Amarasiriwardena, C; Woolf, AD; Jim, R; Bellinger, DC. (2006). Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. Neurotoxicology 27: 210-216. http://dx.doi.org/10.1016/j.neuro.2005.10.001

5.5 Summary of Observational Epidemiology Studies for Health Effect Category: Digestive System Effects

Summary of Ob	servational Epidemiology Studies for Health	n Effect Catego	ry: Diges	tive Systen	n Effects	
Reference and Study	Exposure Measures			Results		
Design						
<u>Amaral et al. (2012)</u>	Exposure Surrogate: toenails	Outcome: exocrine pancreatic cancer toenail arsenic concentration (quartiles), μg/g				
Study Type: case-	Exposure Description: toenail arsenic	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
control	concentration measured from clean	≤ 0.0518	34	1	n/a	
	samples	0.0519-	21	0.81	n/a	
Location: Spain		0.0709				
(Mediterranean coast)	Population-Level Exposure:	0.0710-	23	1.22	n/a	
(meanen anean coust)	$0-0.75 \ \mu g/g range$	0.1061				
		>0.1061	35	2.02	n/a	
Population: PANKRAS II		Stat Met	hod: logi	stic regress	ion	
Study 1992-1995,						
adults participants with						
exocrine pancreatic						
cancer						
n cases: 118						
n control: 399						
<u>Baastrup et al. (2008)</u>	Exposure Surrogate: drinking water	Outcome: co	lorectal	cancer		
		cumulative a	rsenic ex	posure, mg	1	
Study Type: cohort	Exposure Description: cumulative arsenic	Exp. Level	<u>n</u>	<u>IRR</u>	<u>(CI)</u>	
(prospective)	exposure and time-weighted average	continuous	NR	0.98	0.96, 1.01	
	arsenic concentrations calculated for	Stat Met	hod: Cox	regression		
Location: Denmark	individuals based on residential address					
(Copenhagen and	and history from Central Population					
Aarhus)	Registry combined with measurement					
, and a g	data from nearest water utility as					
	recorded by Geological Survey of					
Population: Danish	Denmark and Greenland (1987-2004)					
Cancer Registry						
population (adults)	Population-Level Exposure:					
n exposed: 56,378	not available					
n total: 57,053	Exposure Surrogate: drinking water	Outcome: colorectal cancer				
		time-weighte	d avera	ge arsenic e	exposure, μg/L	
	Exposure Description: time-weighted	Exp. Level	n	IRR	<u>(CI)</u>	
	and cumulative arsenic concentrations	continuous	NR	0.97	0.90, 1.05	
	calculated for individuals based on	Stat Met		regression	-	
	residential address and history from			0		
	Central Population Registry combined					

Summary of Ob	servational Epidemiology Studies for Health	n Effect Category: Digestive System Effects
Reference and Study Design	Exposure Measures	Results
	with measurement data from nearest water utility as recorded by Geological Survey of Denmark and Greenland (1987- 2004) Population-Level Exposure: 0.7 μg/L median	
<u>Farzan et al. (2013)</u>	Exposure Surrogate: urine	Outcome: acute gastrointestinal symptoms, conditions, illnesses
Study Type: cohort (prospective) Location: United States (NH) Population: 4 month old infants born to pregnant women 18-45 years old in New Hampshire, USA n total: 214	Exposure Description: mothers provided spot urine sample upon enrollment (24- 28 weeks gestation); samples that registered below the detection limit assigned a value equal to the detection limit divided by the square root of two; total urinary As calculated as the sum of inorganic As (As[III] and As[V]) and metabolic products MMA(V) and DMA(V), excluding arsenobetaine Population-Level Exposure: 6 μg/L mean 7.5SD	maternal urinary As (In transformed; categorized by 4 infection descriptions), μg/LExp. LevelnRR(CI)continuous:211.21.7, 2.0at least oneinfection1.21.7, 2.0at least oneinfectioncontinuous:101.9continuous:101.90.9, 3.9infection1.90.9, 3.9infectionat least oneat least onecontinuous:101.90.9, 3.9infectionat least oneat least onelasting 2 orat least oneat least onemore daysat least oneat least onecontinuous:63.50.8, 15.4infectionat least oneat least onewith aabat least onephysicianat least oneat least onevisitcontinuous:1NRcontinuous:1NRn/ainfectionat least oneat least onetreated withbbat least oneprescriptionat Method: logistic regressionb
<u>García-Esquinas et al.</u> (2013)	Exposure Surrogate: urine	Outcome: colon and rectal cancer
Study Type: cohort (prospective)	Exposure Description: individual urine samples collected and analyzed for arsenic speciation	urinary arsenic concentration, μg/g-creatinineno significant association between arsenic andcolon or rectal cancerOutcome: esophagus and stomach cancerurinary arsenic concentration, μg/g-creatinine
Location: United States (AZ; ND; OK; SD) Population: Strong Heart Study participants	Population-Level Exposure: 9.7 μg/g-creatinine median, 5.8-15.6 μg/g-creatinine 25th percentile	Exp. LevelnHR(CI)80th vs. 20thNR1.090.45, 2.66percentilesStat Method: Cox proportional hazard models; log transformed
n total: 3,935		

Summary of Ob	servational Epidemiology Studies for Health	n Effect Categor	v: Diges	tive Syster	n Effects
Reference and Study	Exposure Measures			Results	
Design					
	Exposure Surrogate: drinking water	Outcome: col	00 0000		
<u>Hsu et al. (2013b)</u>	exposure surrogate: urinking water				
		arsenic conce	•		
Study Type: cohort	Exposure Description: SW population:	diabetes mellitus vs. diabetes mellitus subjec			
(prospective)	median arsenic level of several wells	μg/L			
	shared in a village derived from two	Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>
Location: Taiwan (SW:	surveys; NE population: arsenic level of	non-DM w/	NR	1	n/a
•	well water samples collected during	As <500			
Peimen, Hsuechia, Ichu,	home interviews	DM w/ As	NR	1.6	1.00, 2.57
and Putai Townships;		<500			
NE: Chiaohsi,		non-DM w/	NR	1	n/a
Chuangwei, Wuchieh,	Population-Level Exposure:	As ≥ 500			
and Tungshan	10-500 μg/L range	DM w/ As	NR	2.09	1.41, 9.14
Townships)		≥ 500			
Denulation, residents		Stat Meth	nod: Cox	regression	analysis
Population: residents of an arseniasis-		Outcome: rec	tal canco	er	
endemic area with and without skin lesions n total: 9,525					iter (non- ellitus subjects),
11 total. 9,525		μg/L			(
		Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>
		non-DM w/	NR	1	n/a
		As <500			
		DM w/ As	NR	1.75	1.01, 3.05
		<500			
		non-DM w/	NR	1	n/a
		As ≥ 500			
		DM w/ As	NR	1.34	0.35, 5.04
		≥ 500			
		Stat Meth	nod: Cox	regression	analysis
Lowis et al. (1000)	Fun course Course actes duinking suctors				
<u>Lewis et al. (1999)</u>	Exposure Surrogate: drinking water	Outcome: dig cancer	estive of	rgans and	peritoneum
Study Type: cohort	Exposure Description: arsenic	cumulative ar	rsenic ex	posure (fe	males), ppb-years
(retrospective)	concentrations in drinking water	Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>
	determined from Utah state records and	<1,000	NR	1.11	n/a
	an EPA study; arsenic exposure index	1,000-4,999	NR	0.2	n/a
Location: United States	score calculated individually based on	1,000-4,555 ≥ 5,000	NR	0.2	n/a
(Millard County, Utah)	number of years residence in each				
	community and median drinking water	Stat Method: standardized mortality ratio			
Population: deceased	arsenic concentration in community	cumulative arsenic exposure (males), ppb-years			
male and female		Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>
members of Latter-day		<1,000	NR	0.57	n/a
Saints church wards	Population-Level Exposure:	1,000-4,999	NR	0.87	n/a
	3.5-620 ppb-years range	1,000-4,555 ≥ 5,000	NR	0.73	n/a
n exposed: 2,203					nortality ratios
n total: 2,203		Stat Weth	iou. stdf	iuai uizeu fi	nontailly ratios

Reference and Study Design	Exposure Measures					
		Outcome: large intestine cancer				
		cumulative ar	senic ex	posure (fer	nales), ppb-year	
		Exp. Level	<u>n</u>	SMR	<u>(CI)</u>	
		<1,000	NR	1.23	n/a	
		1,000-4,999	NR	NR	n/a	
		≥ 5,000	NR	0.91	n/a	
		Stat Meth	nod: star	ndardized m	nortality ratios	
		cumulative ar	senic ex	posure (ma	iles), ppb-years	
		Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>	
		<1,000	NR	0.79	n/a	
		1,000-4,999	NR	0.45	n/a	
		≥ 5,000	NR	0.35	n/a	
		Stat Meth	nod: star	ndardized m	nortality ratios	
		Outcome: stomach cancer				
					nales), ppb-year	
		Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>	
		<1,000	NR	1	n/a	
		1,000-4,999	NR	0.4	n/a	
		≥ 5,000	NR	0.7 de relie e d. m	n/a	
		Stat Metr	iou: star	idardized fr	nortality ratios	
		cumulative ar	senic ex	posure (ma	iles), ppb-years	
		Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>	
		<1,000	NR	0.67	n/a	
		1,000-4,999	NR	0.85	n/a	
		≥ 5,000	NR	1.2	n/a	
		Stat Meth	nod: star	ndardized m	nortality ratios	
<u>Rahman et al. (2011)</u>	Exposure Surrogate: maternal urine	Outcome: dia	rrhea			
		maternal urin	ary arse	enic concen	tration	
Study Type: cohort	Exposure Description: maternal urinary	(quintiles), μg	/L			
(prospective)	arsenic concentration measured from	Exp. Level	<u>n</u>	<u>adjRR</u>	<u>(CI)</u>	
	urine samples collected at gestation	<39	NR	1	n/a	
Location: Bangladesh	weeks 8 and 30; arsenic exposure	39-64	NR	0.99	0.83, 1.19	
(Matlab)	calculated as sum of inorganic arsenic	65-132	NR	0.96	0.80, 1.15	
(and its methylated metabolites (MMA	133-261	NR	1.25	1.05, 1.48	
	and DMA) and the average of exposure	≥ 261	NR	1.2	1.01, 1.43	
Population: MINIMat	at gestation weeks 8 and 30; samples	Stat Meth	nod: Pois	sson regress	sion	
Study, mother-infant pairs	<lod larger="" reanalyzed="" using="" volume;<br="">groups are quintiles</lod>					
n total: 1,552						
	Population-Level Exposure:					
	159 μg/L mean 163SD					

Reference and Study Design	Exposure Measures	h Effect Category: Digestive System Effects Results				
Sawada et al. (2013)	Exposure Surrogate: diet	Outcome: colorectal cancer				
Study Type: cohort (prospective)	Exposure Description: detailed questionnaire on food intake/frequency;	arsenic concentration in diet, μg/dayarsenic not significantly associated with colored				
() /	average arsenic concentrations in food items obtained from the literature; arsenic intake calculated by multiplying	Outcome: stomach cancer				
Location: Japan (Iwate, Akita, Nagano,		inorganic arse μg/day	enic intal	ke (females	; quartiles),	
Okinawa, Tokyo, Ibaraki, Niigata, Kochi, Nagasaki, Osaka)	item by quantity consumed	<u>Exp. Level</u> 40.6 53.7	<u>n</u> 65 61	<u>HR</u> 1 0.82	<u>(CI)</u> n/a 0.57, 1.16	
Population: adults in	Population-Level Exposure:	62.6 105.7	74 73	0.93 0.92	0.66, 1.3 0.65, 1.29	
Japan Public Health		Stat Meth	nod: Mul	tivariate re	gression	
Center (JPHC) Prospective Study cohort		inorganic arse μg/day	enic intal	ke (males; i	quartiles),	
n total: 90,378		<u>Exp. Level</u> 40.5	<u>n</u> 164	<u>HR</u> 1	<u>(CI)</u> n/a	
		54.7 63.5	188 166	1.02 0.88	0.83, 1.26 0.7, 1.1	
		99.1 Stat Meth	168 nod: Mul ⁻	0.89 tivariate reg	0.71, 1.11 gression	
<u>Syed et al. (2013)</u>	Exposure Surrogate: urine	Outcome: lesions of the gums				
Study Type: cross-	Exposure Description: urinary arsenic	urinary arsen creatinine	ic concer	ntration (te	rtiles), μg/g-	
sectional Location: Bangladesh (Araihazar)	concentration measured from single spot sample for each individual	Exp. Level 7-134.0 134.1-286.0 286.1-5,000 Stat Meth regressio		<u>adjOR</u> 1 2.01 2.9 tinomial mu	<u>(CI)</u> n/a 0.75, 5.4 1.11, 7.54 ıltivariate	
Population: Health Effects of Arsenic		Outcome: lesi	ions of th	ne lips		
Longitudinal Study, adult participants		urinary arsenic concentration (tertiles), μ creatinine			rtiles), μg/g-	
n cases: n/a n control: n/a		Exp. Level 7-134.0 134.1-286.0 286.1-5,000		<u>adjOR</u> 1 2.34 2.68 tinomial mu	<u>(CI)</u> n/a 0.60, 10.63 0.67, 4.24 Iltivariate	
		Outcome: lesi	ons of th	ne tongue		

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-121Draft: Do Not Cite or Quote

Summary of Ob	servational Epidemiology Studies for Healt	h Effect Categor	y: Diges	tive System	Effects
Reference and Study Design	Exposure Measures				
		urinary arsenic concentration (tertiles), μ creatinine			
		Exp. Level 7-134.0 134.1-286.0 286.1-5,000		<u>adjOR</u> 1 1.61 2.79 tinomial mu	<u>(CI)</u> n/a 0.84, 3.08 1.51, 5.15 ultivariate
<u>Tsuda et al. (1995)</u>	Exposure Surrogate: drinking water	Outcome: colon cancer arsenic concentration in well water in 1959,			
Study Type: cohort (retrospective) Location: Japan (Namiki-cho)	Exposure Description: arsenic in well water measured in 1959 (the end of the exposure period) in 34 wells; 20 area wells had no documented levels of arsenic so authors inferred that arsenic levels were undetectable or very low;	Exp. Level <0.05 0.05-0.99 ≥ 1 Stat Meth	<u>n</u> 2 0 0 nod: Cox	SMR 2.98 0 0 proportion	(<u>CI)</u> 0.53, 10.89 0, 22.14 0, 17.11 al hazard
Population: adults and children living near factory producing arsenic trisulfide n exposed: 189 n reference: 254 n total: 443	Population-Level Exposure: 0.05-1 ppm range				

--: not reported; n: number of cases (when presented in Results column)

5.5.1 References for Summary of Observational Epidemiology Studies for Health Effect Category: Digestive System Effects

<u>Amaral, AFS; Porta, M; Silverman, DT; Milne, RL; Kogevinas, M; Rothman, N; Cantor, KP; Jackson, BP;</u> <u>Pumarega, JA; López, T; Carrato, A; Guarner, L; Real, FX; Malats, N.</u> (2012). Pancreatic cancer risk and levels of trace elements. Gut 61: 1583-1588. <u>http://dx.doi.org/10.1136/gutjnl-2011-301086</u>

Baastrup, R; Sørensen, M; Balstrøm, T; Frederiksen, K; Larsen, CL; Tjønneland, A; Overvad, K; Raaschou-<u>Nielsen, O.</u> (2008). Arsenic in drinking-water and risk for cancer in Denmark. Environ Health Perspect 116: 231-237. <u>http://dx.doi.org/10.1289/ehp.10623</u>

Farzan, SF; Korrick, S; Li, Z; Enelow, R; Gandolfi, AJ; Madan, J; Nadeau, K; Karagas, MR. (2013). In utero arsenic exposure and infant infection in a United States cohort: A prospective study. Environ Res 126: 24-30. http://dx.doi.org/10.1016/j.envres.2013.05.001

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-122Draft: Do Not Cite or Quote

- García-Esquinas, E; Pollan, M; Umans, JG; Francesconi, KA; Goessler, W; Guallar, E; Howard, B; Farley, J; Best, LG; Navas-Acien, A. (2013). Arsenic exposure and cancer mortality in a US-based prospective cohort: the strong heart study. Cancer Epidemiol Biomarkers Prev 22: 1944-1953. <u>http://dx.doi.org/10.1158/1055-9965.EPI-13-0234-T</u>
- Hsu, LI; Wang, YH; Chiou, HY; Wu, MM; Yang, TY; Chen, YH; Tseng, CH; Chen, CJ. (2013). The association of diabetes mellitus with subsequent internal cancers in the arsenic-exposed area of Taiwan. J Asian Earth Sci 73: 452-459. <u>http://dx.doi.org/10.1016/j.jseaes.2013.04.048</u>
- Lewis, DR; Southwick, JW; Ouellet-Hellstrom, R; Rench, J; Calderon, RL. (1999). Drinking water arsenic in Utah: A cohort mortality study. Environ Health Perspect 107: 359-365. http://dx.doi.org/10.1289/ehp.99107359
- <u>Rahman, A; Vahter, M; Ekström, EC; Persson, LA.</u> (2011). Arsenic exposure in pregnancy increases the risk of lower respiratory tract infection and diarrhea during infancy in Bangladesh. Environ Health Perspect 119: 719-724. <u>http://dx.doi.org/10.1289/ehp.1002265</u>
- Sawada, N; Iwasaki, M; Inoue, M; Takachi, R; Sasazuki, S; Yamaji, T; Shimazu, T; Tsugane, S. (2013). Dietary arsenic intake and subsequent risk of cancer: The Japan Public Health Center-based (JPHC) prospective study. Cancer Causes Control 24: 1403-1415. <u>http://dx.doi.org/10.1007/s10552-013-0220-2</u>
- Syed, EH; Melkonian, S; Poudel, KC; Yasuoka, J; Otsuka, K; Ahmed, A; Islam, T; Parvez, F; Slavkovich, V; Graziano, JH; Ahsan, H; Jimba, M. (2013). Arsenic exposure and oral cavity lesions in Bangladesh. J Occup Environ Med 55: 59-66. <u>http://dx.doi.org/10.1097/JOM.0b013e31826bb686</u>
- Tsuda, T; Babazono, A; Yamamoto, E; Kurumatani, N; Mino, Y; Ogawa, T; Kishi, Y; Aoyama, H. (1995). Ingested arsenic and internal cancer: A historical cohort study followed for 33 years. Am J Epidemiol 141: 198-209.

5.6 Summary of Observational Epidemiology Studies for Health Effect Category: Endocrine system effects including Diabetes

Summary of Observa	tional Epidemiology Studies for Health Effe	ct Category: En	docrine	System Effe	cts including
Diabetes Reference and Study Exposure Measures Results					
Design					
<u>Chen et al. (2012a)</u>	Exposure Surrogate: drinking water	Outcome: me	syndrome (I	(MetS)	
		cumulative arsenic exposure (CAE), mg/L - yr			
Study Type: cohort (prospective) Location: Taiwan (Putai)	Exposure Description: cumulative arsenic exposure defined as the sum of the products, derived by multiplying the arsenic concentration in well water by the duration of water consumption during consecutive periods of living at different villages	Exp. Level <12.6 12.6-18.9 >18.9	<u>n</u> NR NR NR	adjOR 1 1.01 1.73	(<u>CI)</u> n/a 0.48, 1.89 0.72, 4.19 c regression
Population: subjects from community-based cohort from an arseniasis endemic area	Population-Level Exposure: 700-930 mg/L - yr range				
with a high prevalence	Exposure Surrogate: drinking water	Outcome: metabolic syndrome (Me			
of black foot disease		well water arsenic concentration (tertiles), $\mu g/r$			
n exposed: 111 n reference: 136 n total: 247	Exposure Description: information on artesian well water usage collected for each participant Population-Level Exposure:	Exp. Level <700 700-767.65 >767.65 Stat Met	<u>n</u> NR NR NR hod: mul	<u>adjOR</u> 1 1.25 1.24 tiple logistic	(<u>CI)</u> n/a 0.66, 2.39 0.65, 2.37 c regression
	700-930 μg/L range	<i>syndrome sta</i> Exp. Level no MetS with MetS	ntus, μg/π <u>n</u> NR NR		<i>by metabolic</i> (<u>CI)</u> n/a n/a
<u>Chen et al. (2010c)</u>	Exposure Surrogate: drinking water	Outcome: dia	abetes		
Study Type: cross- sectional	Exposure Description: drinking water arsenic TWA concentration calculated	drinking water arsenic level (TWA): Model 1 (j population) (quintiles), μg/L Exp. Level n 0.1-8.0 NR 1			
Location: Bangladesh (Araihazar)	from well water samples for a set of 5,966 contiguous wells in the area based on drinking duration; subjects grouped for analysis in quintiles	8.1-41.0 41.2-91.7 91.8-176.1	NR NR NR	1.28 1.2 0.95	.85, 1.91 .80, 1.81 .61, 1.47

Reference and Study	Exposure Measures		Results				
Design		176.2-864.0	NR	1.08	.71, 1.65		
					-		
Population: Health	Population-Level Exposure:		Stat Method: Unconditional logistic regress				
Effects of Arsenic Longitudinal Study,	0.1-864 μg/L range	-	drinking water arsenic level (TWA): Model 2 (ΒΙ <20) (quintiles), μg/L				
adult participants		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>		
n cases: 11,319		0.1-8.0	NR	<u>aajon</u> 1	n/a		
n control: n/a		8.1-41.0	NR	1.74	.86, 3.49		
··· · · , ·		41.2-91.7	NR	1.35	.65, 2.79		
		91.8-176.1	NR	0.83	.03, 2.79 .37, 1.87		
				0.85			
		176.2-864.0	NR		.28, 1.56		
		regressi		onditional l	ogistic		
		drinking wate ≥ 20) (quintile		-	A): Model 2 (BN		
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>		
		0.1-8.0	NR	1	n/a		
		8.1-41.0	NR	1.02	.63, 1.67		
		41.2-91.7	NR	1.01	.62, 1.65		
		91.8-176.1	NR	0.86	.51, 1.42		
		176.2-864.0	NR	1.13	.70, 1.82		
				onditional l			
		regressi			0810010		
		drinking wate population) (A): Model 2 (full		
		Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>		
		0.1-8.0	NR	1	n/a		
		8.1-41.0	NR	1.35	.9, 2.02		
		41.2-91.7	NR	1.24	.82, 1.87		
		91.8-176.1	NR	0.96	0.62, 1.49		
		176.2-864.0	NR	1.11	.73, 1.69		
				onditional l			
		regressi			08.000		
	Exposure Surrogate: urine	Outcome: dia	Outcome: diabetes				
			urinary arsenic concentration: Model 1 (full population) (quintiles), μg/L				
	Exposure Description: urinary arsenic	Exp. Level		adjOR	<u>(CI)</u>		
	concentration measured from single	1-36	<u>n</u> NR	<u>aujok</u> 1	<u>(Cl)</u> n/a		
	baseline sample for each individual						
		37-66		1.29	0.87, 1.91		
	Population-Level Exposure:	67-114		0.99	0.65, 1.50		
	1-205 μg/L range				0.59, 1.39		
		115-204 ≥ 205	NR NR	0.9 0.87	0.59, 1.3 0.56, 1.3		

Docign	Exposure Measures	Results				
Design		Stat Met	Stat Method: Unconditional logistic			
		regress				
		urinary arsei			odel 2 (BMI <	
		only) (quintil			<i>i</i> =	
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		1-36	NR	1	n/a	
		37-66	NR	1.53	.75, 3.12	
		67-114	NR	1.11	.52, 2.34	
		115-204	NR	0.51	.20, 1.27	
		≥ 205	NR	0.7	.30, 1.60	
		Stat Met regress		onditional l	ogistic	
		-	urinary arsenic concentration: Model 2 (Β only) (quintiles), μg/L			
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		1-36	NR	1	n/a	
		37-66	NR	1.16	.72, 1.87	
		67-114	NR	1.01	.61, 1.68	
		115-204	NR	1.14	.7, 1.87	
		≥ 205	NR	1.06	.62, 1.8	
			hod: Unc	onditional l		
		urinary arser population)			odel 2 (full	
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		1-36	NR	1	n/a	
		37-66	NR	1.29	.87, 1.91	
		67-114	NR	1.05	.69, 1.59	
		115-204	NR	0.94	.61, 1.44	
		≥ 205	NR	0.93	.59, 1.45	
		Stat Met regress		onditional l	-	
		-	urinary arsenic concentration: Model 3 (BMI only) (quintiles), μg/L			
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		1-36	NR	<u>aujon</u> 1	n/a	
		37-66	NR	1.62	.79, 3.34	
		67-114	NR	1.02	.56, 2.69	
		115-204	NR	0.59	.22, 1.55	
		113 204	1.111	0.00	, 1	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-126Draft: Do Not Cite or Quote

Reference and Study	Diabetes	Results				
Design	Exposure Measures		I	results		
		regression				
		urinary arser only) (quintil		ntration: M	odel 3 (BMI ≥ 20	
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		1-36	NR	1	n/a	
		37-66	NR	1.35	.83, 2.21	
		67-114	NR	1.17	.69, 1.98	
		115-204	NR	1.46	.85, 2.51	
		≥ 205	NR	1.41	.77, 2.59	
		Stat Met	hod: Unc	onditional l	ogistic	
		regression				
		urinary arser population) (
		<u>Exp. Level</u>	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		1-36	NR	1	n/a	
		37-66	NR	1.44	.97, 2.17	
		67-114	NR	1.2	.77, 1.85	
		115-204	NR	1.16	.73, 1.85	
		≥ 205	NR	1.22	.73, 2.03	
		Stat Met	hod: Unc	onditional l	ogistic	
		regressi	on			
<u>Chen et al. (2011a)</u>	Exposure Surrogate: urine	Outcome: diabetes mellitus				
		urinary arser	nic concer	ntration, µg	/g-creatinine	
Study Type: cross-	Exposure Description: urinary arsenic	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
sectional	concentration measured from spot	=<35	NR	1	n/a	
	sample for each individual; results below	>35-75	NR	1.95	0.56, 2.66	
Leasting Triung	LOD assigned one-half of LOD	>75-200	NR	2.08	1.05, 3.69	
Location: Taiwan		>200	NR	2.22	1.21, 4.09	
(Changhua County (central Taiwan))	Population-Level Exposure: 85.13 μg/g-creatinine median	Stat Met	Method: Multivariate logistic regress	gistic regression		
Population: adult residents of village with history of higher than average arsenic in drinking water						
n cases: 910						
n control: 133 <u>Coronado-González et</u>	Exposure Surrogate: urine	Outcome: Ty	pe 2 diab	etes mellit	us	
<u>al. (2007)</u>		urinary arser	nic concer	ntration (50		
	Exposure Description: urinary arsenic	tertiles), μg/	y-creatin	me		

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-127Draft: Do Not Cite or Quote

	Diabetes					
Reference and Study Design	Exposure Measures		I	Results		
Study Type: case-	concentration measured from spot	<50	NR	1	n/a	
control	sample for each individual; subjects	50-100	NR	1.41	0.57, 3.47	
	grouped for analysis in tertiles	>100	NR	2.35	0.94, 5.91	
		Stat Me	thod: mul	tivariate ar	alysis model	
Location: Mexico	Population-Level Exposure:			al logistic r	-	
(Coahuila)	35-104 μg/g-creatinine range	urinary arse	nic concei	ntration (A	CGIH cutoff	
Population: adult		tertiles), μg/	'g-creatin	ine		
residents of arseniasis-		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
endemic region		<35	NR	1	n/a	
n cases: 200		35-100	NR	1.58	0.83, 3.02	
n control: 200		>100	NR	2.45	1.27, 4.73	
		Stat Me	thod: mul	tivariate ar	alysis model	
		with ur	condition	al logistic r	egression	
		urinary arse controls), μg			ertiles in	
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		<63.5	NR	1	n/a	
		63.5-104	NR	2.16	1.23, 3.79	
		>104	NR	2.84	1.64, 4.92	
				tivariate ar Ial logistic r	alysis model egression	
		urinary arse tertiles), μg/		-	on (50 μg/g cutoff	
		Exp. Level	-	<u>OR</u>	<u>(CI)</u>	
		<50	<u>n</u> NR	<u>01(</u> 1	n/a	
		50-100	NR	1.56	0.81, 3.03	
		>100	NR	2.45	1.27, 4.80	
					alysis model	
				al logistic r		
		urinary arse tertiles), μg/		•	CGIH cutoff	
		Exp. Level	<u>n</u>	<u>OR</u>	<u>(CI)</u>	
		<35	NR	1	n/a	
		35-100	NR	1.12	0.44, 2.97	
		>100	NR	1.95	0.75, 5.20	
					alysis model	
				al logistic r		
		urinary arse			ertiles in	
		controls), μg	/g-creati	nine		
		Exp. Level	<u>n</u>	<u>OR</u>	<u>(CI)</u>	
		<63.5	NR	1	n/a	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-128Draft: Do Not Cite or Quote

Reference and Study	Exposure Measures		R	esults	
Design				1.94 2.65 ivariate ana al logistic re	1.11, 3.41 1.54, 4.58 alysis model egression
Del Razo et al. (2011)	Exposure Surrogate: drinking water	Outcome: dia			
 Del Razo et al. (2011) Study Type: cross- sectional Location: Mexico (Zimapan and Lagunera) Population: residents of arsenicosis-endemic areas of Mexico n cases: n/a n control: n/a 	Exposure Description: each subject provided a sample of water used for drinking; cumulative exposure estimated from measurements of current and historical concentrations of inorganic arsenic in drinking water and duration of exposure; estimates generated for 1993- 2008 period and for 5-year segments 1993-1997, 1998-2002, and 2003-2007 Population-Level Exposure: 0-6.73 ppm-years range	cumulative in concentration Exp. Level cumulative exposure 1993-2008 cumulative exposure 2003-2007 cumulative exposure 1998-2002 cumulative exposure 1993-1997 Stat Meth	n drinki n NR NR NR	-	opm-years (Cl) 0.77, 1.39 0.9, 14.19 0.41, 2.37 0.52, 1.48
	Exposure Surrogate: drinking water	Outcome: diabetes mellitus			
	Exposure Description: each subject provided a sample of water used for drinking; mean inorganic arsenic concentrations in drinking water: 77.3 and 39.2 for diabetic and non-diabetic subpopulations, respectively	concentration water, ppb Exp. Level current concentratio n NR Stat Meth	n NR NR	anic arseni adjOR 1.13 NR tical regres	<u>(CI)</u> 1.05, 1.22 n/a
	Population-Level Exposure:	Outcome: fasting plasma insulin (FPI)			
	3.1-215.2 ppb range	concentration water (log-tra Exp. Level continuous Stat Meth transform Outcome: hor insulin resista	nsforme <u>n</u> NR nod: linea nation meostatio	d), ppb adjBeta -2.084 r regression c model ass	<u>(CI)</u> -2.72, -1.448 n, with log-

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-129Draft: Do Not Cite or Quote

Summary of Observ	ational Epidemiology Studies for Health Effe Diabetes	ect Category: Endocrine System Effects including				
Reference and Study Design	Exposure Measures	Results				
		Exp. LevelnadjBeta(Cl)continuousNR-1.641-2.358, -0.924Stat Method: linear regression, with log- transformation				
	Exposure Surrogate: urine	Outcome: diabetes mellitus				
	Exposure Description: spot urine sample collected from each subject during the medical exam; concentrations of inorganic arsenic and methylated metabolites measured to assess inorganic arsenic metabolism Population-Level Exposure: 2.3-233.7 ng/mL range	urinary total arsenic concentration, ng/mL Exp. Level n adjOR (Cl) urinary tAs NR 1.12 0.78, 1.62 Stat Method: logistic regression Outcome: fasting plasma insulin (FPI)				
		urinary total arsenic concentration (log- transformed), ng/mL				
		Exp. LevelnadjBeta(Cl)continuousNR-5.313-8.068, -2.559Stat Method: linear regression, with log- transformation				
		Outcome: homeostatic model assessment - insulin resistance (HOMA-IR)				
		urinary total arsenic concentration (log- transformed), ng/mL				
		Exp. LevelnadjBeta(CI)continuousNR-4.538-7.514, -1.562Stat Method: linear regression, with log- transformation				
Ettinger et al. (2009)	Exposure Surrogate: blood	Outcome: impaired glucose tolerance				
Study Type: cohort (prospective)	Exposure Description: whole-blood arsenic concentration determined from blood samples collected at delivery;	blood arsenic concentration (IQR), μg/LExp. LevelnadjOR(Cl)1.2NR1.650.521.52, 1.79Stat Method: Multivariate logistic regression				
Location: United States	grouped for analysis in quartiles	blood arsenic concentration (quartile), μg/L				
(Tar Creek Superfund site, Ottawa County, OK)	Population-Level Exposure: 1.7 μg/L geo mean 1.5SD	Exp. Level n adjOR (Cl) 0.23-0.92 NR 1 n/a 0.93-1.39 NR 1.02 0.39, 2.69 1.4-2.08 NR 2.65 1.12, 6.36				
Population: pregnant women living near		2.09-24.07 NR 2.79 1.13, 6.87 Stat Method: Multivariate logistic regression				
Superfund site	Exposure Surrogate: hair	Outcome: impaired glucose tolerance				
n exposed: 399		hair arsenic concentration (IQR), ng/g				

Reference and Study	Exposure Measures		Results				
Design							
n reference: 133	Exposure Description: hair arsenic	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>		
total: 532	concentration determined from hair	15.3	NR	2.32	0.52, 10.39		
	samples collected at delivery from	Stat Method: Multivariate logistic regressio					
	population subset with chemically	hair arsenic co	oncentro	ntion (auart	ile). na/a		
	untreated hair; grouped for analysis in	Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>		
	quartiles	1.1-8.81	NR	1	n/a		
		8.93-13.11	NR	3.97	0.62, 25.37		
	Population-Level Exposure:	13.26-24.12	NR	5.77	0.98, 33.88		
	27.4 ng/g geo mean	24.22-724.41	NR	4.2	0.74, 23.86		
					gistic regression		
iarcía-Esquinas et al.	Exposure Surrogate: urine	Outcome: par	croatic	cancor			
<u>2013)</u>	Exposure surrogate. unite			cancer ntration, μg/g-creatinine			
	Fundamenta Descriptions in dividual sub-	Exp. Level		HR	<u>(CI)</u>		
	Exposure Description: individual urine	80th vs. 20th	<u>n</u> 25	2.46	<u>(C)</u> 1.09, 5.58		
Study Type: cohort (prospective)	samples collected and analyzed for	percentiles	25	2.40	1.09, 5.56		
prospective)	arsenic speciation		od. Cov	proportion	al bazard		
		Stat Method: Cox proportional hazard models; log transformed					
ocation: United States	Population-Level Exposure:	models,		sionneu			
AZ; ND; OK; SD)	9.7 μg/g-creatinine median, 5.8-15.6						
	μ g/g-creatinine 25th percentile						
opulation: Strong							
leart Study							
leart Study participants							
leart Study participants h total: 3,935	Exposure Surrogate: urine	Outcome: dia	betes				
leart Study participants h total: 3,935	Exposure Surrogate: urine	Outcome: dia		ntration, μg	ı/L		
leart Study participants total: 3,935 fribble et al. (2012)		-		n tration, μg adjPR	1/L (<u>CI)</u>		
leart Study participants total: 3,935 Gribble et al. (2012) tudy Type: cross-	Exposure Description: urinary arsenic	urinary arseni	c concer		-		
leart Study participants total: 3,935 Gribble et al. (2012) tudy Type: cross-	Exposure Description: urinary arsenic concentration measured from spot	<i>urinary arseni</i> Exp. Level	c concer <u>n</u>	<u>adjPR</u>	<u>(CI)</u>		
leart Study participants n total: 3,935 Gribble et al. (2012) Study Type: cross- ectional	Exposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects	<i>urinary arseni</i> Exp. Level 25th	c concer <u>n</u>	<u>adjPR</u>	<u>(CI)</u>		
Heart Study participants In total: 3,935 Study Type: cross- sectional Socation: United States	Exposure Description: urinary arsenic concentration measured from spot	<i>urinary arseni</i> Exp. Level 25th percentile	<i>c concer</i> <u>n</u> NR	<u>adjPR</u> 1	<u>(CI)</u> n/a		
Heart Study participants In total: 3,935 Gribble et al. (2012) Study Type: cross- sectional Cocation: United States Arizona; Oklahoma;	Exposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in quartiles	urinary arseni Exp. Level 25th percentile 75th percentile	c concer <u>n</u> NR NR	<u>adjPR</u> 1 1.14	<u>(CI)</u> n/a		
Heart Study barticipants in total: 3,935 Gribble et al. (2012) Study Type: cross- ectional Cocation: United States Arizona; Oklahoma; North Dakota; South	Exposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in quartiles Population-Level Exposure:	urinary arseni Exp. Level 25th percentile 75th percentile Stat Meth	<i>c concer <u>n</u> NR NR NR od: Pois</i>	adjPR 1 1.14 son regress	(<u>CI)</u> n/a 1.08, 1.20 ion models		
Heart Study barticipants in total: 3,935 Gribble et al. (2012) Grudy Type: cross- sectional Cocation: United States Arizona; Oklahoma; North Dakota; South	Exposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in quartiles Population-Level Exposure: 14.1 μg/L median, 7.9-24.2 μg/L 25th	urinary arseni Exp. Level 25th percentile 75th percentile Stat Meth urinary arseni	<i>c concer</i> <u>n</u> NR NR od: Pois	adjPR 1 1.14 son regress	(<u>Cl)</u> n/a 1.08, 1.20 ion models partiles), μg/L		
Heart Study barticipants in total: 3,935 Gribble et al. (2012) Study Type: cross- ectional Socation: United States Arizona; Oklahoma; North Dakota; South Dakota)	Exposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in quartiles Population-Level Exposure:	urinary arseni Exp. Level 25th percentile 75th percentile Stat Meth urinary arseni Exp. Level	<i>c concer</i> <u>n</u> NR NR od: Pois <i>c concer</i> <u>n</u>	adjPR 1 1.14 son regress htration (qu adjPR	(<u>Cl)</u> n/a 1.08, 1.20 ion models nartiles), μg/L (<u>Cl)</u>		
Heart Study barticipants in total: 3,935 Gribble et al. (2012) Study Type: cross- ectional Cocation: United States Arizona; Oklahoma; North Dakota; South Dakota) Population: Strong	Exposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in quartiles Population-Level Exposure: 14.1 μg/L median, 7.9-24.2 μg/L 25th	urinary arseni Exp. Level 25th percentile 75th percentile Stat Meth urinary arseni Exp. Level <7.9	<i>c concer</i> <u>n</u> NR NR dod: Pois <i>c concer</i> <u>n</u> 413	adjPR 1 1.14 son regress ntration (qu adjPR 1	(<u>Cl)</u> n/a 1.08, 1.20 ion models partiles), μg/L (<u>Cl)</u> n/a		
Aeart Study barticipants in total: 3,935 Gribble et al. (2012) Grudy Type: cross- ectional Cocation: United States Arizona; Oklahoma; North Dakota; South Dakota) Population: Strong Heart Study, adults	Exposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in quartiles Population-Level Exposure: 14.1 μg/L median, 7.9-24.2 μg/L 25th	urinary arseniExp. Level25thpercentile75thpercentileStat Methurinary arseniExp. Level<7.9	c concer <u>n</u> NR NR NR NR dod: Pois c concer <u>n</u> 413 492	adjPR 1 1.14 son regress ntration (qu adjPR 1 1.15	(<u>CI</u>) n/a 1.08, 1.20 ion models tartiles), μg/L (<u>CI)</u> n/a 1.04, 1.27		
leart Study larticipants total: 3,935 inibble et al. (2012) tudy Type: cross- ectional ocation: United States Arizona; Oklahoma; lorth Dakota; South bakota) Population: Strong leart Study, adults with stored urine	Exposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in quartiles Population-Level Exposure: 14.1 μg/L median, 7.9-24.2 μg/L 25th	urinary arseni Exp. Level 25th percentile 75th percentile Stat Meth urinary arseni Exp. Level <7.9 7.9 - 14.1 14.1 - 24.2	<i>c concer</i> <u>n</u> NR NR od: Pois <i>c concer</i> <u>n</u> 413 492 503	adjPR 1 1.14 son regress ntration (qu adjPR 1 1.15 1.21	(<u>Cl</u>) n/a 1.08, 1.20 ion models partiles), μg/L (<u>Cl</u>) n/a 1.04, 1.27 1.08, 1.34		
Heart Study participants in total: 3,935 Fribble et al. (2012) Fudy Type: cross- fectional focation: United States Arizona; Oklahoma; North Dakota; South Dakota) Population: Strong Heart Study, adults with stored urine	Exposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in quartiles Population-Level Exposure: 14.1 μg/L median, 7.9-24.2 μg/L 25th	urinary arseni Exp. Level 25th percentile 75th percentile Stat Meth urinary arseni Exp. Level <7.9 7.9 - 14.1 14.1 - 24.2 >24.2	<i>c concer</i> <u>n</u> NR NR od: Pois <i>c concer</i> <u>n</u> 413 492 503 531	adjPR 1 1.14 son regress ntration (qu adjPR 1 1.15 1.21 1.28	(<u>Cl</u>) n/a 1.08, 1.20 ion models nartiles), μg/L (<u>Cl</u>) n/a 1.04, 1.27 1.08, 1.34 1.14, 1.44		
Aleart Study barticipants in total: 3,935 Gribble et al. (2012) Study Type: cross- sectional Cocation: United States Arizona; Oklahoma; North Dakota; South Dakota) Population: Strong Heart Study, adults with stored urine mamples available	Exposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in quartiles Population-Level Exposure: 14.1 μg/L median, 7.9-24.2 μg/L 25th	urinary arseni Exp. Level 25th percentile 75th percentile Stat Meth urinary arseni Exp. Level <7.9 7.9 - 14.1 14.1 - 24.2 >24.2	<i>c concer</i> <u>n</u> NR NR od: Pois <i>c concer</i> <u>n</u> 413 492 503 531	adjPR 1 1.14 son regress ntration (qu adjPR 1 1.15 1.21 1.28	(<u>Cl</u>) n/a 1.08, 1.20 ion models partiles), μg/L (<u>Cl</u>) n/a 1.04, 1.27 1.08, 1.34		
Population: Strong Heart Study Darticipants In total: 3,935 Gribble et al. (2012) Study Type: cross- sectional Location: United States (Arizona; Oklahoma; North Dakota; South Dakota) Population: Strong Heart Study, adults with stored urine samples available In cases: 2,954 In control: 971	Exposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in quartiles Population-Level Exposure: 14.1 μg/L median, 7.9-24.2 μg/L 25th	urinary arseni Exp. Level 25th percentile 75th percentile Stat Meth urinary arseni Exp. Level <7.9 7.9 - 14.1 14.1 - 24.2 >24.2	<i>c concer</i> <u>n</u> NR NR od: Pois <i>c concer</i> <u>n</u> 413 492 503 531	adjPR 1 1.14 son regress ntration (qu adjPR 1 1.15 1.21 1.28	(<u>Cl</u>) n/a 1.08, 1.20 ion models nartiles), μg/L (<u>Cl</u>) n/a 1.04, 1.27 1.08, 1.34 1.14, 1.44		

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-131Draft: Do Not Cite or Quote

Reference and Study	Exposure Measures	Results			
Design			г	1630113	
		water arseni	c concent	ration, µg/	1
Study Type: cross- sectional	Exposure Description: arsenic samples from 94 water sources, including wells; arsenic exposure determined by location	arsenic not significantly associated with g			
Location: Mongolia region not available	of village				
	Population-Level Exposure:				
Population: residents of villages in the Hetao Plain, Inner Mongolia	50-1,860 μg/L range				
n cases: 680 n control: 189					
<u>Hsieh et al. (2008a)</u>	Exposure Surrogate: drinking water	Outcome: fre	ee testost	erone (nm	ol/L)
		drinking wat	er arsenie	c concentra	ition, ppb
Study Type: case-	Exposure Description: drinking water	<u>Exp. Level</u>	<u>n</u>	<u>mean</u>	<u>(CI)</u>
control (nested)	arsenic concentrations determined from	≤ 50	NR	0.38	n/a
	well water samples collected during	>50	NR	0.31	n/a
Location: Taiwan	home interview	Stat Met	hod: ANC	VA	
(Lanyang Basin		Outcome: se	x hormor	e-binding	globulin (SHBG)
(arsenic-exposed	Population-Level Exposure:	(nmol/L)			,
population))	0.15-3,590 ppb range	drinking wat	or arconi	concontro	ution nah
		-			antly different
Population: adult male		between sub		-	-
residents of Taiwan		exposure	,		
from existing cohort		Outcome: tes	stosteron	e (nmol/L)	
n cases: 129 n control: 48		drinking wat	er arseni	c concentro	tion. ppb
		Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>
		≤ 50	NR	17.55	n/a
		>50	NR	15.04	n/a
		Stat Met	hod: ANC	OVA	
Hsu et al. (2013b)	Exposure Surrogate: drinking water	Outcome: dia	abetes m	ellitus (DM)
		arsenic conce	entration	in well wa	ter, μg/L
Study Type: cohort	Exposure Description: SW population:	Exp. Level	<u>n</u>	Prev	<u>(CI)</u>
(prospective)	median arsenic level of several wells	<10	774	30.8	n/a
	shared in a village derived from two	10-49.9	505	26.4	n/a
Location: Taiwan (SW:	surveys; NE population: arsenic level of	50-99.9	217	25.8	n/a
Peimen, Hsuechia, Ichu,	well water samples collected during	100-499.9	397	31	n/a
and Putai Townships;	home interviews	≥ 500	520	43.4	n/a
• •		missing	595	33.3	n/a

Reference and Study	Exposure Measures		I	Results		
Design NE: Chiaohsi,		Stat Method: not reported Outcome: pancreatic cancer arsenic concentration in well water (non- diabetes mellitus vs. diabetes mellitus subjects),				
Chuangwei, Wuchieh, and Tungshan	Population-Level Exposure:					
Townships)	10-500 μg/L range -					
Population: residents		μg/L Exp. Lovel	n	ЦD		
of an arseniasis-		Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>	
endemic area with and vithout skin lesions		non-DM w/ As <500	NR	1	n/a	
n total: 9,525		DM w/ As <500	NR	3.03	1.22, 7.55	
		non-DM w/ As ≥ 500	NR	1	n/a	
		DM w/ As	NR	1.86	0.38, 9.02	
		≥ 500 Stat Meth	nod: Cox	regression	analysis	
slam et al. (2012b)	Exposure Surrogate: drinking water	Outcome: typ	e 2 diab	etes	-	
		cumulative drinking water arsenic exposure,				
	Fundation Descriptions summinations areasis	μg/L	inking v	ater arsen	e exposure,	
Study Type: cross-	Exposure Description: cumulative arsenic	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
ectional	exposure calculated by multiplying	<u>≤ 50</u>	nr NR	<u>aujon</u> 1	<u>(Ci)</u> n/a	
	arsenic concentration of single tube well	>50	NR	1 2.1	1.3, 3.2	
ocation: Bangladesh	measurement for each individual with					
Kandirpar,	self-reported duration of use; subjects	Stat wetr	iou: mui	livariate iog	sistic regression	
Gobindogonj, Uttarda, Modaffargonj,	grouped for analysis above and below maximum acceptable limit in drinking	cumulative dr (quartiles), µg	-	vater arseni	enic exposure	
Iolmuttar, Sunorpur,	water in Bangladesh (50 μ g/L) and as			adiOD		
Durgapur)	quartiles	Exp. Level	<u>n</u>	adjOR	<u>(CI)</u> n (n	
0.1		<22	NR	1	n/a	
	Population-Level Exposure:	23-32	NR	1.1	0.5, 2.3	
Population: adults	159 μg/L mean 198.5SD	33-261	NR	1.7	0.5, 3.2	
iving in unions of high		≥ 262	NR	1.9	1.1, 3.5	
arsenic contamination		Stat Meth	nod: mul	tivariate log	sistic regression	
n cases: 89 n control: 915						
James et al. (2013)	Exposure Surrogate: drinking water	Outcome: dia	betes m	ellitus (DM)		
		arsenic expos	ure TWA	λ, per 15 μg	/L	
Study Type: case-	Exposure Description: residential water	Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>	
cohort	samples (both private well and public	per 15 µg/L	NR	1.27	1.02, 1.64	
	water) collected at time of interview	increase in			-	
	(n=334); arsenic concentrations in the	TWA arsenic				
ocation: United States	San Luis Valley ranged from non-	Stat Method: Cox proportional hazards mod				
(CO)	detectable to 752 μ g/L with a mean	••••••		P P		

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-133Draft: Do Not Cite or Quote

Reference and Study	Exposure Measures		I	Results	
Design	concentration of 39 μg/L	Exp. Level	<u>n</u>	HR	<u>(CI)</u>
		<u>1 - <4</u>	nr	1	<u>(ci)</u> n/a
Population: San Luis		4 - <8	NR	1.11	0.82, 1.95
Valley Diabetes Study	Population-Level Exposure:	8 - <20	NR	1.42	0.94, 2.48
(SLVDS) participants	39 μg/L-year mean, 0-752 μg/L-year	≥ 20	NR	1.55	1.00, 2.51
with type II diabetes mellitus	range				al hazards mod
n cases: 141 n control: 347					
Jensen and Hansen	Exposure Surrogate: urine	Outcome: Hb/	A1c		
(1998)		urinary arseni	ic conce	ntration nm	ol/mmol
	Exposure Description: urinary arsenic	creatinine	0.000000		
	concentration determined from two	Exp. Level	<u>n</u>	adjBeta	<u>(CI)</u>
Study Type: cross- sectional	urine samples collected from each	continuous	nr	0.0078	<u>(ci)</u> n/a
SECUUIIAI	individual			tiple regress	
			.su. mu	CIPIC I CEI C33	
Location: Denmark					
region not available	Population-Level Exposure: 12-80 nmol/mmol creatinine range				
Demulation					
Population:					
Population: occupationally exposed					
occupationally exposed					
occupationally exposed adult workers					
occupationally exposed adult workers n cases: 40					
adult workers n cases: 40 n control: 26	Exposure Surrogate: urine	Outcome: dia	betes m	ellitus	
occupationally exposed adult workers n cases: 40 n control: 26	Exposure Surrogate: urine				enic
occupationally exposed adult workers n cases: 40 n control: 26 <u>Kim and Lee (2011)</u>		log-transform	ed total	urinary arso	enic
occupationally exposed adult workers n cases: 40 n control: 26 <u>Kim and Lee (2011)</u> Study Type: cross-	Exposure Description: urinary arsenic		ed total , μg/g-c	urinary arse reatinine	enic (<u>CI)</u>
occupationally exposed adult workers n cases: 40 n control: 26 Kim and Lee (2011) Study Type: cross-	Exposure Description: urinary arsenic concentration measured from single	log-transform concentration	ed total	urinary arso	<u>(CI)</u>
occupationally exposed adult workers n cases: 40 <u>n control: 26</u> <u>Kim and Lee (2011)</u> Study Type: cross- sectional	Exposure Description: urinary arsenic	log-transform concentration Exp. Level	ed total , μg/g-c <u>n</u>	urinary arse reatinine adjOR	<u>(CI)</u>
occupationally exposed adult workers n cases: 40 n control: 26 Kim and Lee (2011) Study Type: cross- sectional Location: South Korea	Exposure Description: urinary arsenic concentration measured from single sample for each individual	log-transform concentration Exp. Level continuous (females)	ed total , μg/g-c <u>n</u> NR	urinary arso reatinine adjOR 1.502	<u>(CI)</u> 1.038, 2.171
occupationally exposed adult workers n cases: 40 n control: 26 Kim and Lee (2011) Study Type: cross- sectional Location: South Korea	Exposure Description: urinary arsenic concentration measured from single sample for each individual Population-Level Exposure:	log-transform concentration <u>Exp. Level</u> continuous	ed total , μg/g-c <u>n</u>	urinary arse reatinine adjOR	<u>(CI)</u> 1.038, 2.171
occupationally exposed adult workers n cases: 40 n control: 26 Kim and Lee (2011) Study Type: cross- sectional Location: South Korea	 Exposure Description: urinary arsenic concentration measured from single sample for each individual Population-Level Exposure: 118.4 μg/g-creatinine geo mean, 112.9- 	log-transform concentration Exp. Level continuous (females) continuous	ed total , μg/g-c <u>n</u> NR	urinary arso reatinine adjOR 1.502	<u>(CI)</u> 1.038, 2.171 0.803, 1.577
occupationally exposed adult workers n cases: 40 <u>n control: 26</u> Kim and Lee (2011) Study Type: cross- sectional Location: South Korea (national)	Exposure Description: urinary arsenic concentration measured from single sample for each individual Population-Level Exposure:	log-transform concentration Exp. Level continuous (females) continuous (males)	ed total , μg/g-c <u>n</u> NR NR	urinary arse reatinine <u>adjOR</u> 1.502 1.126	<u>(CI)</u> 1.038, 2.171 0.803, 1.577
occupationally exposed adult workers n cases: 40 n control: 26 Kim and Lee (2011) Study Type: cross- sectional Location: South Korea (national)	 Exposure Description: urinary arsenic concentration measured from single sample for each individual Population-Level Exposure: 118.4 μg/g-creatinine geo mean, 112.9- 	log-transform concentration Exp. Level continuous (females) continuous (males) Continuous (all)	ed total , μg/g-c <u>n</u> NR NR NR	urinary arse reatinine <u>adjOR</u> 1.502 1.126	<u>(CI)</u> 1.038, 2.171 0.803, 1.577 1.040, 1.655
occupationally exposed adult workers n cases: 40 n control: 26 Kim and Lee (2011) Study Type: cross- sectional Location: South Korea (national) Population: KNHANES IV 2008, adult	 Exposure Description: urinary arsenic concentration measured from single sample for each individual Population-Level Exposure: 118.4 μg/g-creatinine geo mean, 112.9- 	log-transform concentration Exp. Level continuous (females) continuous (males) Continuous (all) Stat Meth	ed total , μg/g-c <u>n</u> NR NR NR NR	<i>urinary arse</i> reatinine <u>adjOR</u> 1.502 1.126 1.312 tiple logistic	(CI) 1.038, 2.171 0.803, 1.577 1.040, 1.655 regression
occupationally exposed adult workers n cases: 40 <u>n control: 26</u> Kim and Lee (2011) Study Type: cross- sectional Location: South Korea (national) Population: KNHANES IV 2008, adult participants	 Exposure Description: urinary arsenic concentration measured from single sample for each individual Population-Level Exposure: 118.4 μg/g-creatinine geo mean, 112.9- 	log-transform concentration Exp. Level continuous (females) continuous (males) Continuous (all) Stat Meth	ed total , μg/g-c <u>n</u> NR NR NR NR nod: mul	<i>urinary arse</i> reatinine <u>adjOR</u> 1.502 1.126 1.312 tiple logistic	(CI) 1.038, 2.171 0.803, 1.577 1.040, 1.655 regression
occupationally exposed adult workers n cases: 40 n control: 26 Kim and Lee (2011) Study Type: cross- sectional Location: South Korea (national) Population: KNHANES IV 2008, adult participants n cases: 1,677	 Exposure Description: urinary arsenic concentration measured from single sample for each individual Population-Level Exposure: 118.4 μg/g-creatinine geo mean, 112.9- 	log-transform concentration Exp. Level continuous (females) continuous (males) Continuous (all) Stat Meth log-transform μg/g-creatinin	ed total , μg/g-c <u>n</u> NR NR NR NR nod: mul	l urinary arse reatinine <u>adjOR</u> 1.502 1.126 1.312 tiple logistic	(CI) 1.038, 2.171 0.803, 1.577 1.040, 1.655 regression enic - female,
occupationally exposed adult workers n cases: 40 n control: 26 Kim and Lee (2011) Study Type: cross- sectional Location: South Korea (national) Population: KNHANES IV 2008, adult participants n cases: 1,677	 Exposure Description: urinary arsenic concentration measured from single sample for each individual Population-Level Exposure: 118.4 μg/g-creatinine geo mean, 112.9- 	log-transform concentration Exp. Level continuous (females) continuous (males) Continuous (all) Stat Meth log-transform μg/g-creatinin Exp. Level	ed total , μg/g-c <u>n</u> NR NR NR NR nod: mul red total ne <u>n</u>	<i>urinary arse</i> adjOR 1.502 1.126 1.312 tiple logistic <i>urinary arse</i> adjRR	(CI) 1.038, 2.171 0.803, 1.577 1.040, 1.655 regression enic - female, (CI)
occupationally exposed adult workers n cases: 40 n control: 26 Kim and Lee (2011) Study Type: cross- sectional Location: South Korea (national) Population: KNHANES IV 2008, adult participants n cases: 1,677	 Exposure Description: urinary arsenic concentration measured from single sample for each individual Population-Level Exposure: 118.4 μg/g-creatinine geo mean, 112.9- 	log-transform concentration Exp. Level continuous (females) continuous (males) Continuous (all) Stat Meth log-transform μg/g-creatinin Exp. Level diabetes - no	ed total , μg/g-c <u>n</u> NR NR NR nod: mul ned total ne <u>n</u> NR	l urinary arse reatinine <u>adjOR</u> 1.502 1.126 1.312 tiple logistic	(CI) 1.038, 2.171 0.803, 1.577 1.040, 1.655 regression enic - female, (CI) n/a
occupationally exposed adult workers n cases: 40 n control: 26 <u>Kim and Lee (2011)</u>	 Exposure Description: urinary arsenic concentration measured from single sample for each individual Population-Level Exposure: 118.4 μg/g-creatinine geo mean, 112.9- 	log-transform concentration Exp. Level continuous (females) continuous (males) Continuous (all) Stat Meth log-transform μg/g-creatinin Exp. Level	ed total , μg/g-c <u>n</u> NR NR NR NR nod: mul red total ne <u>n</u>	<i>urinary arse</i> adjOR 1.502 1.126 1.312 tiple logistic <i>urinary arse</i> adjRR	(CI) 1.038, 2.171 0.803, 1.577 1.040, 1.655 regression enic - female, (CI)
occupationally exposed adult workers n cases: 40 n control: 26 Kim and Lee (2011) Study Type: cross- sectional Location: South Korea (national) Population: KNHANES IV 2008, adult participants n cases: 1,677	 Exposure Description: urinary arsenic concentration measured from single sample for each individual Population-Level Exposure: 118.4 μg/g-creatinine geo mean, 112.9- 	log-transform concentration Exp. Level continuous (females) continuous (males) Continuous (all) Stat Meth log-transform μg/g-creatinin Exp. Level diabetes - no diabetes - yes	ed total , μg/g-c <u>n</u> NR NR NR nod: mul ed total ne <u>n</u> NR NR	l urinary arse reatinine <u>adjOR</u> 1.502 1.126 1.312 tiple logistic urinary arse <u>adjRR</u> 1	(CI) 1.038, 2.171 0.803, 1.577 1.040, 1.655 regression enic - female, (CI) n/a 1.025, 1.494

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-134Draft: Do Not Cite or Quote

Reference and Study	Exposure Measures	Results				
Design						
		µg/g-creatinin	ie			
		Exp. Level	<u>n</u>	<u>adjRR</u>	<u>(CI)</u>	
		diabetes - no	NR	1	n/a	
		diabetes -	NR	1.085	0.894, 1.316	
		yes	السمير الم	tiple regree	sion	
		Stat Method: multiple regression log-transformed total urinary arsenic - comb μg/g-creatinine				
				adipp		
		Exp. Level	<u>n</u>	adjRR 1	<u>(CI)</u>	
		diabetes - no	NR	1	n/a	
		diabetes -	NR	1.154	1.014, 1.314	
		yes				
		Stat Meth	od: mul	tiple regres	sion	
<u> (im et al. (2013)</u>	Exposure Surrogate: urine	Outcome: mea	an 2-hou	ır postload	plasma glucos	
		total arsenic concentration, μg/L				
Study Type: case-	Exposure Description: concentrations of	2-hour postload plasma glucose was corr				
control (nested)	arsenic (total and inorganic) and	negatively with	n MMA a	and %MMA	; correlations	
	metabolites measured in stored urine	only changed slightly when adjusted for potentia				
	samples obtained at the baseline	confounders				
Location: United States (Arizona)	examination; adjusted for urinary creatinine	Outcome: mean fasting plasma glucose			lucose	
		total arsenic c	oncentr	ation. ua/I		
Population:					ated negatively	
longitudinal study	Population-Level Exposure:	with %MMA a	-		-	
participants who	21.1 μg/L median, 15.3-29.4 μg/L 25th	inorganic arsei	-			
developed diabetes	percentile	changed slight	-	-	•	
within 10 years of		confounders	iy when	aujusteu n		
initial screening n cases: 150		Outcome: type	e 2 diab	etes (Mode	el 3)	
n control: 150		inorganic arse	nic conc	entration,	μg/L	
		Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>	
		continuous	150	1.16	0.89, 1.53	
				tic regress		
		inorganic arse	nic conc	entration (auartiles) val	
		Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>	
		quartile 1	NR	1	n/a	
		quartiles 2-4	NR	2.14	1.19, 3.85	
				tic regressi		
		total arsenic c	oncentr	ation un/		
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		continuous	<u></u> 150	<u>1.11</u>	0.79, 1.57	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-135Draft: Do Not Cite or Quote

Summary of Observa	ational Epidemiology Studies for Health Effe Diabetes	ct Category: En	docrine	System Effe	ects including
Reference and Study Design	Exposure Measures		l	Results	
		Stat Method: logistic regression Outcome: diabetes mellitus			
<u>Lai et al. (1994)</u>	Exposure Surrogate: drinking water				
o		Duration of drinking artesian well water (ye ppm-years			
Study Type: cross- sectional Location: Taiwan (Homei, Fuhsin, and Hsinming villages (Putai Township)) Population: adults living in arseniasis- endemic township n cases: 610 n control: 108	Exposure Description: cumulative arsenic exposure calculated as the drinking water arsenic concentration multiplied by self-reported years living in a particular village and added across individual's lifetime; arsenic levels in well water collected in previous studies conducted in the 1960s; exposure not calculated for 19.4% due to lack of arsenic measurements in areas outside endemic area Population-Level Exposure: 0-15.1 ppm-years range	Exp. Level 0 years 1-10 years 1-20 years ≥ 21 years Stat Meth test cumulative dr ppm-years Exp. Level 0 0.1-15.0 ≥ 15.1 Unknown	rinking v n NR NR NR NR NR	vater arsen adjOR 1 6.61 10.05 5.69	<u>(CI)</u> n/a 0.86, 51.0 1.30, 77.9 0.71, 45.5
Lewis et al. (1999)	Exposure Surrogate: drinking water	Stat Method: multivariate logistic regree Outcome: diabetes mellitus			
		cumulative ar	senic ex	posure (fen	nales), ppb-years
Study Type: cohort (retrospective) Location: United States (Millard County, Utah)	Exposure Description: arsenic concentrations in drinking water determined from Utah state records and an EPA study; arsenic exposure index score calculated individually based on number of years residence in each				(CI) n/a n/a n/a ortality ratio; pational cohort
Population: deceased	community and median drinking water arsenic concentration in community	cumulative ar	senic ex	posure (ma	les), ppb-years
Population: deceased male and female members of Latter-day Saints church wards n exposed: 2,203 n total: 2,203	Population-Level Exposure: 3.5-620 ppb-years range	Exp. Level <1,000 1,000-4,999 ≥ 5,000	<u>n</u> NR NR NR nod: star	<u>SMR</u> 0.93 0.95 0.42 ndardized m	(<u>CI)</u> n/a n/a n/a ortality ratios
		-			adaa) nah waar
		<i>cumulative ar</i> <u>Exp. Level</u> <1,000 1,000-4,999 ≥ 5,000	rsenic ex n NR NR NR NR	<i>posure (fen</i> <u>SMR</u> NR 0.35 0.31	n ales), ppb-year <u>(CI)</u> n/a n/a n/a

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-136Draft: Do Not Cite or Quote

Stat Method: standardized mortality in cumulative arsenic exposure (males), ppb Exp. LevelStat Method: standardized mortality in cumulative arsenic exposure (males), ppb Exp. LevelNLi et al. (2013a)Exposure Surrogate: drinking waterExposure Surrogate: drinking waterExposure Concentration of each tube well measured and provided by local public health government; cumulative arsenic exposure (CAE) calculated for each subject as: concentration in tube well that subject used in his/her residential duration multiplied by duration of water consumptionOutcome: type 2 diabetes (T2D) water arsenic concentration, $\mu g/L$ Exp. LevelPopulation: residents arconsers in a control: n/a n cases: n/a n control: n/aExposure Exposure: 0-760 µg/L rangeOutcome: diabetes, type 2 urinary arsenic concentrationStudy Type: cross- sectionalExposure Surrogate: urine Population-Level Exposure: 0-760 µg/L rangeOutcome: diabetes, type 2 urinary arsenic concentrationStudy Type: cross- sectionalExposure Surrogate: urine 2.760 µg/L rangeOutcome: diabetes, type 2 urinary arsenic concentrationStudy Type: cross- sectionalExposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in tertilesOutcome: diabetes, type 2 urinary arsenic concentrationPopulation-Level Exposure: 4.8-10.8 µg/L range80th N RN R3.581.18, i percentileStat Method: logistic regression urinary arsenic concentration (tertiles), µg/L Exp. Level enipuncture enipuncture enipuncture enipunctureM R1n/aAdiOR <th>Reference and Study</th> <th>Exposure Measures</th> <th colspan="5">Results</th>	Reference and Study	Exposure Measures	Results				
$\frac{\text{Exp} \text{ Level} \text{ n}}{\text{ sub}} = \frac{\text{SMR}}{(1)} \frac{(1)}{(1,000)} + \frac{(1)}{(2,000)} + \frac{(1)}{(2,00$	Design		Stat Meth	nod: star	ndardized m	ortality ratios	
</th <th></th> <th></th> <th>cumulative ar</th> <th>rsenic ex</th> <th>posure (ma</th> <th>lles), ppb-years</th>			cumulative ar	rsenic ex	posure (ma	lles), ppb-years	
Li et al. (2013a)Exposure Surrogate: drinking water Study Type: cross- sectionalLexposure Description: arsenic concentration of each tube well 			Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>	
\underline{i} et al. (2013a)Exposure Surrogate: drinking water $\geq 5,000$ NR0.86n/a Stat Method: standardized mortality r Stat Method: standardized mortality r water arsenic concentration, $\mu g/L$ Study Type: cross- dectionalExposure Description: arsenic concentration of each tube well measured and provided by local public health government; cumulative arsenic exposure (CAE) calculated for each subject as: concentration in tube well that subject used in his/her residential duration multiplied by duration of water consumptionOutcome: type 2 diabetes (T2D) Vopulation: residents exposed to arsenic in drinking water n cases: n/a n control: n/aExposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in tertilesOutcome: diabetes, type 2 Population-Level Exposure: ectionalExposure Surrogate: urineOutcome: diabetes, type 2 Study Type: cross- sectionalExposure Surrogate: urineOutcome: diabetes, type 2 Study Type: cross- sectionalPopulation-Level Exposure: asmple for each individual; subjects grouped for analysis in tertilesMay a 5.581.18, i percentileSourd Type: coross- sectionalPopulation-Level Exposure: 4.8-10.8 µg/L rangeNR3.581.18, i percentileSourd Type: source <br< td=""><td></td><td></td><td><1,000</td><td>NR</td><td>0.21</td><td>n/a</td></br<>			<1,000	NR	0.21	n/a	
Li et al. (2013a)Exposure Surrogate: drinking waterOutcome: type 2 diabetes (T2D)Study Type: cross- tectionalExposure Description: arsenic concentration of each tube well measured and provided by local public health government; cumulative arsenic exposure (CAE) calculated for each subject as: concentration in tube well that subject used in his/her residential duration multiplied by duration of water consumptionMRNRNRNRPopulation: residents exposed to arsenic inchinking waterPopulation-Level Exposure: 0-760 μg/L rangeOutcome: diabetes, type 2Uringry arsenic concentrationAvass-Acien et al. 2008)Exposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in tertilesOutcome: diabetes, type 2Uringry arsenic concentrationPopulation-Level Exposure: 4.8-10.8 μg/L rangeA.8-10.8 μg/L rangeOutcome: diabetes, type 2Uringry arsenic concentrationPopulation-Level Exposure: egion not availablePopulation-Level Exposure: a.8-10.8 μg/L rangeNR3.581.18, 1Population-Level Exposure: 4.8-10.8 μg/L rangeNR3.581.18, 1Population-Level Exposure: d.3-2003-2008, adult participants who had asted before renipuncture n cases: 788 n control: n/aNR1.27.36, 20.36			1,000-4,999	NR	1.44	n/a	
i et al. (2013a)Exposure Surrogate: drinking waterOutcome: type 2 diabetes (T2D)Study Type: cross- ectionalExposure Description: arsenic concentration of each tube well measured and provided by local public health government; cumulative arsenic exposure (CAE) calculated for each subject as: concentration in tube well that subject used in his/her residential duration multiplied by duration of water consumption10-50NR1.3620.519, >50NR1.3620.519, >50NR1.5780.584, Stat Method: multiple logistic regressopulation: residents exposed to arsenic in trinking water o consumptionPopulation-Level Exposure: 0-760 µg/L range0utcome: diabetes, type 2Image 1000000000000000000000000000000000000						-	
Reduct Type: cross- ectionalExposure Description: arsenic concentration of each tube well measured and provided by local public health government; cumulative arsenic exposure (CAE) calculated for each subject as: concentration in tube well that subject used in his/her residential duration multiplied by duration of water consumptionwater arsenic concentration, µg/LPopulation: residents exposed to arsenic in trinking water n cases: n/a n cases: n/a to control: n/aExposure Surrogate: urineOutcome: diabetes, type 2 urinary arsenic concentrationPopulation: United States egion not availableExposure Description: urinary arsenic concentration making is in tertilesOutcome: diabetes, type 2 urinary arsenic concentrationPopulation: NHANES 2003-2008, adult barticipants who had asted before renipuncture n cases: 788 n control: n/aPopulation-Level Exposure: 4.8-10.8 µg/L rangeOutcome: diabetes, type 2 urinary arsenic concentrationPopulation: NHANES 2003-2008, adult barticipants who had asted before renipuncture n cases: 788 n control: n/aPopulation-Level Exposure: 4.8-10.8 µg/L rangeOutcome: diabetes, type 2 urinary arsenic concentrationPopulation: NHANES 2003-2008, adult barticipants who had asted before renipuncture n cases: 788 n control: n/aPopulation-Level Exposure: 4.8-10.8 NR 1.27 0.36, >10.8 NR 1.6 0.46, 5			Stat Meth	nod: star	ndardized m	ortality ratios	
Kudy Type: cross- ectionalExposure Description: arsenic concentration of each tube well measured and provided by local public health government; cumulative arsenic exposure (CAE) calculated for each subject as: concentration in tube well that subject used in his/her residential duration multiplied by duration of water consent in rinking water n cases: n/a a control: n/aExposure Surrogate: urineExposure Surrogate: urineExposure Surrogate: urineOutcome: diabetes, type 2 urinary arsenic concentrationAdvas-Acien et al. 2008)Exposure Description: urinary arsenic concentration may be for each individual; subjects grouped for analysis in tertilesOutcome: diabetes, type 2 urinary arsenic concentrationPopulation: NHANES 1003-2008, adult barticipants who had acted be fore enipuncture n cases: 788 n control: n/aExposure Exposure: a.8-10.8 µg/L rangeOutcome: diabetes, type 2 urinary arsenic concentrationPopulation: NHANES 1003-2008, adult barticipants who had acted before enipuncture n cases: 788 n control: n/aPopulation-Level Exposure: a.8-10.8 µg/L rangeNR3.581.18, 3Population: NHANES 1003-2008, adult barticipants who had acted before enipuncture n cases: 788 n control: n/aNR1.270.36, 3Potomation: n/aControl: n/aNR1.270.36, 3Potomation: n/aNR1.270.36, 3Potomation: n/aNR1.270.36, 3Potomation: NHANES action trainal to action: n/aNR1.270.36, 3Potomation: NHANES action tubeNR1.270.36, 3Po	<u>i et al. (2013a)</u>	Exposure Surrogate: drinking water	Outcome: typ	e 2 diab	etes (T2D)		
ectionalconcentration of each tube well measured and provided by local public health government; cumulative arsenic exposure (CAE) calculated for each subject as: concentration in tube well that subject used in his/her residential duration multiplied by duration of water consumption<10NRNRn/a Yopulation: residents recases: n/a icontrol: n/a Population-Level Exposure: 0-760 µg/L range<10			water arsenic	concent	tration, μg/	′L	
OctoberImpact of the other and provided by local public health government; cumulative arsenic exposure (CAE) calculated for each subject as: concentration in tube well that subject used in his/her residential duration multiplied by duration of water consumption10-50NR1.3620.519, 0.584, Stat Method: multiple logistic regressPopulation: residents exposed to arsenic in trinking water n cases: n/a ocontrol: n/aPopulation-Level Exposure: 0-760 µg/L range10-50NR1.3620.519, 0.584, Stat Method: multiple logistic regressNavas-Acien et al. 2008)Exposure Surrogate: urineOutcome: diabetes, type 2Wavas-Acien et al. 2008)Exposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in tertilesOutcome: diabetes, type 2Population-Level Exposure: 4.8-10.8 µg/L rangePopulation-Level Exposure: 4.8-10.8 µg/L range0.0000-2008, adult adult anaticipants who had asted before renipuncture n cases: 788 n control: n/aNR3.581.18, 12Potouristion residentsPropulation-Level Exposure: 4.8-10.8 µg/L rangeNR3.581.18, 12Population: NHANES residents who had asted before renipuncture n cases: 788 n control: n/aPopulation-Level Exposure 4.8-10.8 NR1.270.36, 4Point of the states resident control: n/aNR1.270.36, 4Point of the states resident control: n/aNR1.270.36, 4	tudy Type: cross-	Exposure Description: arsenic		<u>n</u>	<u>adjOR</u>		
ocation: China Tuoketuo County, nner Mongolia)health government, cumulative arsenic exposure (CAE) calculated for each subject as: concentration in tube well that subject used in his/her residential duration multiplied by duration of water consumption>50NR1.5780.584, Stat Method: multiple logistic regressopulation: residents xposed to arsenic in rinking water control: n/aPopulation-Level Exposure: 0-760 µg/L range>50NR1.5780.584, Stat Method: multiple logistic regressPopulation-Level Exposure: 0-760 µg/L rangePopulation-Level Exposure: 0-760 µg/L rangeOutcome: diabetes, type 2tudy Type: cross- ectionalExposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in tertilesOutcome: diabetes, type 2opulation: NHANES 003-2008, adult articipants who had asted before enipuncture cases: 788 control: n/aD.84, measured form spot sample for each individual; subjects grouped for analysis in tertilesNR1.5780.584, Stat Method: multiple logistic regressionopulation: NHANES 003-2008, adult articipants who had asted before enipuncture cases: 788 control: n/aPopulation-Level Exposure: 4.8-10.8NR1.270.36, 4other control: n/aManuel along for analysis in tertilesNR1.60.46, 5	ectional	concentration of each tube well	<10	NR	NR	n/a	
ocation: China Tuoketuo County, nner Mongolia)exposure (CAE) calculated for each subject as: concentration in tube well that subject used in his/her residential duration multiplied by duration of water consumptionStat Method: multiple logistic regress'opulation: residents xposed to arsenic in Irinking water a control: n/aPopulation-Level Exposure: 0-760 µg/L rangeStat Method: multiple logistic regressPopulation-Level Exposure: 0-760 µg/L rangeOutcome: diabetes, type 2Lavas-Acien et al. 2008)Exposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in tertilesOutcome: diabetes, type 2Population-Level Exposure: 4.8-10.8 µg/L rangeAdjOR (CI) 20th(CI) n adjOR(CI) 20thPopulation: NHANES (003-2008, adult articipants who had asted before enipuncture 1 cases: 788 (control: n/aPopulation-Level Exposure: 4.8-10.8 NRNR1.270.36, 4 3.58Control: n/aControl: n/aNR1.270.36, 4 3.58NR1.60.46, 5		measured and provided by local public	10-50	NR	1.362	0.519, 3.571	
Tuoketuo County, nner Mongolia)exposure (CAE) calculated for each subject as: concentration in tube well that subject used in his/her residential duration multiplied by duration of water consumptionStat Method: multiple logistic regresstopulation: residents xposed to arsenic in Irinking water (cases: n/a icontrol: n/aPopulation-Level Exposure: 0-760 µg/L rangeOutcome: diabetes, type 2tudy Type: cross- ectionalExposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in tertilesOutcome: diabetes, type 2opulation: United States egion not availablePopulation-Level Exposure: 4.8-10.8 µg/L rangeOutcome: diabetes, type 2opulation: NHANES 003-2008, adult articipants who had asted before enipuncture (cases: 788 (control: n/aPopulation analysis (CI)In /a adjOR (CI)cases: 788 (control: n/aPopulation analysisR1.270.36, 4violation: IndaNR1.270.36, 4violation: IndaNR1.60.46, 5	ocation: China	health government; cumulative arsenic	>50	NR	1.578	0.584, 4.262	
nner Mongolia)Subject as: concentration in tube weil that subject used in his/her residential duration multiplied by duration of water consumptionPopulation: residents ixposed to arsenic in Irinking water i cases: n/a i control: n/aPopulation-Level Exposure: 0-760 µg/L rangeOutcome: diabetes, type 2Population: trudy Type: cross- ectionalExposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in tertilesOutcome: diabetes, type 2Population: United States egion not availablePopulation-Level Exposure: 4.8-10.8 µg/L rangeNR3.581.18, 3Population: NHANES 003-2008, adult articipants who had asted before enipuncture 0 cases: 788 (control: n/aPopulation and ysia in tertilesNR3.581.18, 3Control: n/aPopulation Level Exposure: 4.8-10.8 µg/L rangeNR1n/aPopulation: NHANES (03-2008, adult articipants who had asted before enipuncture (cases: 788 (control: n/aNR1.270.36, 4Pomone (control: n/aNR1.60.46, 5		exposure (CAE) calculated for each	Stat Meth	nod: mul	tiple logisti	c regression	
That subject used in nis/her residential duration multiplied by duration of water consumptionOutcome: diabetes, type 2Population-Level Exposure: 0-760 μg/L rangeOutcome: diabetes, type 22008)Exposure Surrogate: urineurinary arsenic concentrationExposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in tertilesOutcome: diabetes, type 2Opulation-Level Exposure: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in tertilesnPopulation: NHANES t003-2008, adult varticipants who had asted before renipuncture n cases: 788 n control: n/aPopulation-Level Exposure: 4.8-10.8 μg/L range80thNR3.581.18, 20.32-2008, adult varticipants who had asted before tenipuncture n cases: 788 h control: n/anadiOR adiOR (CI)0.33-2008, adult varticipants who had asted before tenipuncturenadiOR adiOR (CI)010.8NR1n/a010.8NR1.60.46, 5		-					
Population: residents exposed to arsenic in Irinking water n cases: n/a n control: n/aconsumptionPopulation-Level Exposure: 0-760 μg/L range0-760 μg/L rangeOutcome: diabetes, type 2Uavas-Acien et al. 2008)Exposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in tertilesOutcome: diabetes, type 2Outcome: diabetes, type: urinary arsenic concentrationExposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in tertilesnadiOR (CI) 20th(CI) 20thPopulation-Level Exposure: 4.8-10.8 μg/L rangeNR3.581.18, 19 percentilePopulations: NHANES 1003-2008, adult barticipants who had asted before renipuncture h cases: 788 h control: n/aPopulation-Level Exposure: 4.8-10.8 μg/L rangeNR1NG asses: 788 h control: n/aNR1.270.36, 4 >10.8NR1.60.46, 5	inici wongona)	-					
exposed to arsenic in drinking water n cases: n/a n control: n/aPopulation-Level Exposure: 0-760 μg/L rangeOutcome: diabetes, type 2Vavas-Acien et al. 2008)Exposure Surrogate: urineOutcome: diabetes, type 2Vavas-Acien et al. 2008)Exposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in tertilesOutcome: diabetes, type 2Vavas-Acien et al. 2008)Exposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in tertilesnAdjOR 2004-2008, adult participants who had asted before renipuncture n cases: 788 n control: n/aPopulation-Level Exposure: 4.8-10.8 µg/L rangeNRAlsona a coases: 788 n control: n/anadjOR adjOR (CI) (CI)AdjOR 2008-2008, adult asted before renipuncture n cases: 788 n control: n/aNR1.27AdjOR 2008CI) (CI) (AlsoNR1.27AdjOR 2008CI) (CI) (AlsoNR1.6AdjOR 2008CI) (CI)NR1.60.46, 5							
drinking water n cases: n/a n control: n/aPopulation-Level Exposure: 0-760 μg/L rangeOutcome: diabetes, type 2Navas-Acien et al. 2008)Exposure Surrogate: urineOutcome: diabetes, type 22008)Exposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in tertilesoutcome: diabetes, type 200000-2008, adult participants who had iasted before renipuncture n cases: 788 n control: n/aPopulation-Level Exposure: 4.8-10.8 μg/L rangenadiOR n/a0000-2008, adult participants who had iasted before renipuncture n cases: 788 n control: n/aPopulation and set a	-	consumption					
Population-Level Exposure: 0-760 μg/L rangeOutcome: diabetes, type 2Navas-Acien et al. 2008)Exposure Surrogate: urineOutcome: diabetes, type 2Study Type: cross- sectionalExposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in tertilesMay are adio RCocation: United States region not availablePopulation-Level Exposure: 4.8-10.8 μg/L rangeNR3.58Population: NHANES 2003-2008, adult barticipants who had iasted before renipuncture n cases: 788 n control: n/aPopulation (CI) colorVariary arsenic concentrationVariary arsenic concentrationUrinary arsenic concentrationUrinary arsenic concentrationVariary arsenic concentrationUrinary arsenic concentrati	-						
n cases: n/a n control: n/a0-760 μg/L rangeOutcome: diabetes, type 2Navas-Acien et al. (2008)Exposure Surrogate: urineOutcome: diabetes, type 2Study Type: cross- sactionalExposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in tertilesMay / LLocation: United States region not availablePopulation-Level Exposure: 4.8-10.8 μg/L rangeNR1Population: NHANES 2003-2008, adult barticipants who had rasted before renipuncture n cases: 788 n control: n/aPopulationIn adjOR (CI) 20thIn adjOR (CI) 20thVarianceIn adjOR adjOR (CI) 20thIn adjOR 2003-2008, adult 2003-2008, adult 200	drinking water	Population-Level Exposure:					
h control: n/aExposure Surrogate: urineOutcome: diabetes, type 2Vavas-Acien et al. (2008)Exposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in tertilesurinary arsenic concentrationStudy Type: cross- sectionalExposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in tertiles, µg/LLocation: United States region not availablePopulation-Level Exposure: 4.8-10.8 µg/L range80thNR3.581.18, 2Population: NHANES 2003-2008, adult participants who had rasted before venipuncture n cases: 788 n control: n/aNR1n/aAcentral: n/aNR1n/aAcentral: n/aNR1.270.36, 4Acentral: n/aNR1.60.46, 5	n cases: n/a						
Z2008)urinary arsenic concentrationStudy Type: cross- sectionalExposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in tertilesnadjOR(Cl)20thNR1n/a20cation: United States region not availablePopulation-Level Exposure: 4.8-10.8 µg/L range80thNR3.581.18, 32Population: NHANES 2003-2008, adult participants who had fasted before venipuncture n cases: 788 n control: n/aNR1n/aAcontrol: n/aImageImageImageImageImageVery Lastic StateImageImageImageImagePopulation: NHANES 2003-2008, adult participants who had fasted before venipuncture n cases: 788 n control: n/aImage	n control: n/a		_				
Study Type: cross- sectionalExposure Description: urinary arsenic concentration measured from spot sample for each individual; subjects grouped for analysis in tertiles, μg/LExp. LevelnadjOR(CI) 20thNR120thNR1n/apercentilePopulation-Level Exposure: 4.8-10.8 µg/L range80thNR3.581.18, 3Population: NHANES 2003-2008, adult participants who had iasted before venipuncture n cases: 788 n control: n/aNR1n/aAcases: 788 n control: n/anadjOR(CI) concentration(CI) concentrationAcases: 788 n control: n/aNR1.270.36, 4NR1.60.46, 5		Exposure Surrogate: urine	Outcome: dia	betes, ty	ype 2		
Study Type: cross- sectionalconcentration measured from spot sample for each individual; subjects grouped for analysis in tertiles, μg/LExp. LevelnadjOR(Cl) 20th20thNR1n/apercentile80thNR3.581.18, 3Population: NHANES 2003-2008, adult participants who had fasted before venipuncture n cases: 788 n control: n/aPopulation Hamiltonian (Cl)NR3.581.18, 3AdjOR(Cl) Population-Level Exposure: 4.8-10.8 µg/L rangeNR3.581.18, 3Population: NHANES 2003-2008, adult participants who had fasted before venipuncture n cases: 788 n control: n/anadjOR adjOR(Cl) (Cl)AdjOR(Cl) (Cl) (4.8NR1n/aAdjOR(Cl) (Cl) (4.8NR1.270.36, 4AdjOR(Cl) (4.8NR1.60.46, 5	<u>2008)</u>		urinary arsen	ic concei	ntration		
sectional sample for each individual; subjects grouped for analysis in tertiles sample for each individual; subjects grouped for analysis in tertiles section and the section of the sect							
sectional sample for each individual; subjects grouped for analysis in tertiles segion not available Population-Level Exposure: 4.8-10.8 μg/L range Population swho had fasted before venipuncture in cases: 788 in control: n/a segion not in /a segion not in /a segion not available for each individual; subjects grouped for analysis in tertiles segion not available for each individual; subjects grouped for analysis in tertiles segion not available for each individual; subjects each individual; subjects grouped for analysis in tertiles segion not available for each individual; subjects each individual; subjects grouped for analysis in tertiles segion not available fore venipuncture in cases: 788 in control: n/a segion not individual; subjects each individual; subjects grouped for analysis in tertiles segion not available fore segion not available fore venipuncture in cases: 788 in control: n/a segion not each individual; subjects each individual; subjects grouped for analysis in tertiles segion not available fore segion not available fore venipuncture in cases: 788 in control: n/a segion not each individual; subjects grouped for analysis in tertiles segion not each individual; subjects each individ	Study Type: cross-	concentration measured from spot	. µa/L				
grouped for analysis in tertiles20thNR1n/a20thNR1n/a20thNR1n/apercentile80thNR3.581.18, 3Population: NHANES4.8-10.8 µg/L rangeStat Method: logistic regression2003-2008, adultadit (Cl)ImageImageparticipants who hadimageImageImageimageimageImageImageImageImageImageImageImageImageimageImageImageImageImageimageImageImageImageImageimageImageImageImageImageimageImageImageImageImageimageImageImageImageImageimageImageImageImageImageimageImageImageImageImageimageImageImageImageImageimageImageImageImageImageimageImageImageImageImageimageImageImageImageImageimageImageImageImageImageimageImageImageImageImageimageImageImageImageImageimageImageImageImageImageimageImageImageImageImageimageImageImageImage <td< td=""><td>sectional</td><td></td><td></td><td>n</td><td>adjOR</td><td>(CI)</td></td<>	sectional			n	adjOR	(CI)	
Accation: United States region not availablePopulation-Level Exposure: 4.8-10.8 μg/L rangepercentile 80thNR3.581.18, 2Population: NHANES 		grouped for analysis in tertiles					
Population-Level Exposure: 4.8-10.8 μg/L range80th percentile Stat Method: logistic regression1.18, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	ocation: United States					, -	
4.8-10.8 μg/L rangepercentile Stat Method: logistic regressionPopulation: NHANES 2003-2008, adult participants who had asted before renipuncture in cases: 788 h control: n/apercentile Stat Method: logistic regressionUninary arsenic concentration (tertiles), μg/LImage: Concentration (tertiles), μg/LExp. Level < 4.8		Population-Level Exposure:		NR	3.58	1.18, 10.83	
Population: NHANES 2003-2008, adult participants who had asted before renipuncture n cases: 788 n control: n/aStat Method: logistic regressionUrinary arsenic concentration (tertiles), µg/LExp. Level <4.8	eBioli not available					,	
Population: NHANES2003-2008, adultparticipants who hadasted beforerenipuncturen cases: 788n control: n/aNR1.60.46, S		10 1010 µg/ 2 runge		nod: logi	stic regress	ion	
participants who had asted before renipuncture(tertiles), μg/LExp. LevelnadiOR(CI)<4.8	-			0			
Fasted before Exp. Level n adjOR (Cl) venipuncture <4.8	-		urinary arsen	ic concei	ntration		
asted before Exp. Level n adjOR (Cl) venipuncture <4.8	-		(tertiles), μα/	L			
venipuncture <4.8					adiOR	(CI)	
a cases: 788 4.8-10.8 NR 1.27 0.36, 4 a control: n/a >10.8 NR 1.6 0.46, 5	enipuncture						
>10.8 NR 1.6 0.46, 9	i cases: 788				_	0.36, 4.48	
		1				0.46, 5.54	
			>10.8	INK	1.0	0,40	
Navas-Acien et al. Exposure Surrogate: urine Outcome: Type 2 diabetes						,	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-137Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures				
(2009)		urinary arsei	nic concer	ntration, uc	n/l
		Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>
Study Type: cross-	Exposure Description: urinary arsenic concentration measured from spot	20th	NR	1	<u>, e.,</u> n/a
sectional	sample for each individual	percentile		-	ny a
sectional	sample for each individual	80th	NR	2.86	1.23, 6.63
		percentile		2.00	1.23, 0.03
Location: United States	Population-Level Exposure:	-	hod. Stat	istical meth	ods were
region not available	7.4 μg/L median				ier to Navas-
		Acien 2			
Population: NHANES			000		
2003-2006, adult		urinary arser	nic concei	ntration, μ <u>α</u>	ŋ/L
participants who had		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
fasted before		≤ 20th	NR	1	n/a
venipuncture		percentile			
n cases: n/a		≥ 80th	NR	1.78	0.6, 5.30
n control: n/a		percentile			
n control. N/a		Stat Met	hod: Stat	istical meth	ods were
		conduc	ted in a si	milar mann	er to Navas-
		Acien 2	n 2008		
		-		-	participants w betaine, μg/L
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
		20th	NR	1	n/a
		percentile			
		80th	NR	2.6	1.12, 6.03
		percentile			
		Stat Met	hod: Stat	istical meth	ods were
		conduct	ted in a si	milar mann	er to Navas-
		Acien 2	008		
		-		-	participants w
		undetectable			
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
		≤ 20th	NR	1	n/a
		percentile			
		≥ 80th	NR	4.26	0.83, 21.8
		percentile			
				istical meth	
				milar mann	er to Navas-
		Acien 2	008		
		urinary arser			
		arsenobetair	ne and ar		
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
		20th	NR	1	n/a

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-138Draft: Do Not Cite or Quote

	Diabetes			Results	
Reference and Study Design	Exposure Measures				
			ed in a si	1.72 istical meth milar manr	0.85, 3.45 nods were her to Navas-
		urinary arseni	ic concer	tration mi	inus
		arsenobetaine			
		Exp. Level	<u>n</u>	adjOR	(CI)
		≤ 20th percentile	NR	1	n/a
		≥ 80th percentile	NR	1.04	0.3, 3.59
			ed in a si	istical meth milar manr	nods were ner to Navas-
Nizam et al. (2013)	Exposure Surrogate: urine	Outcome: typ	e 2 diab	etes	
		urinary inorgo	anic arse	nic percen	t of total
Study Type: case- control Location: Bangladesh (Faridpur District, 130	Exposure Description: spot urine sample collected at time of recruitment; arsenic species measured; mean (95% CI) for absolute urinary inorganic arsenic was 20 (15.7-23.8) and 21.2 (17.9-24.5) for cases	Exp. Level non-diabetic controls diabetic cases	<u>n</u> 0 140	<u>mean</u> 10.5 9.5	(<u>CI)</u> n/a n/a
km southwest of Dhaka)	and controls, respectively Population-Level Exposure: 15.7-24.5 µg/L range	with case	e-contro		lysis of variance hing factors (sex ors
Population: adults in arsenic-contaminated area with type II diabetes					
n cases: 140 n control: 180					
<u>Pan et al. (2013)</u>	Exposure Surrogate: drinking water	Outcome: typ	e 2 diab	etes mellit	us (T2DM)
Study Type: case-	Exposure Description: drinking water	arsenic concentration in drinking water (quartiles), $\mu g/L$			
control	collected for each individual from tube well identified as primary drinking water	<u>Exp. Level</u> ≤ 1.7	<u>n</u> 11	<u>adjOR</u> 1	<u>(CI)</u> n/a
Leastion, Donaladad	source; samples below LOD assigned	1.8-15.5	19	1.92	0.84, 4.35
Location: Bangladesh	value of 0.5 μ g/L; average recovery of	15.6-170.0	24	3.07	1.38, 6.85
region not available	95%	≥ 170.1	28	4.51	2.01, 10.09

Reference and Study	Exposure Measures		R	Results	
Design					
Population: adults with	Population-Level Exposure:				
type II diabetes mellitus	1.7-170.1 μg/L range				
and varying levels of	Exposure Surrogate: toenails	Outcome: type	e 2 diabe	etes mellitu	is (T2DM)
arsenic exposure from		arsenic concer	tration	in toenail s	amples
drinking water	Exposure Description: toenail samples	(quartiles), μg	/g		-
n cases: 84	collected from each individual;	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
n control: 849	concentrations corrected for systematic	≤ 0.93	10	1	n/a
	errors by normalizing sample	0.94-2.12	24	3.34	1.46, 7.64
	concentration against measured average	2.13-6.18	22	3.4	1.46, 7.89
	daily NIST arsenic concentration; average	≥ 6.19	28	6.22	2.63, 14.69
	recovery of 86.5%	Stat Meth	od: logis	tic regressi	on
	Population-Level Exposure:				
	0.93-6.19 μg/g range				
<u>Rhee et al. (2013)</u>	Exposure Surrogate: urine	Outcome: diabetes mellitus (DM)			
		urinary total arsenic concentration (quart			on (quartiles),
Study Type: cross-	Exposure Description: urine samples	µg/g-creatinin	ie		
sectional	collected after a fast of 8 hours; clean	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
	mid-stream urine collected for analysis;	<70.7	NR	1	n/a
	all samples had concentrations >LOD;	70.7-117.7	NR	1.11	0.73, 1.68
Location: Korea,	inter-assay coefficients of variation for	117.7-<193.4	NR	1.42	0.94, 2.13
Republic Of region not available	the urinary arsenic assay were 2.5-3.2%	≥ 193.4	NR	1.56	1.03, 2.36
avallable	in 2008 and 2.3-4.3% in 2009	Stat Meth	od: logis	tic regressi	on analysis
Population: adults in	Population-Level Exposure:	Outcome: gluo	ose tole	erance statu	us
Korea National Health and Nutrition	70.7-193.4 μg/g-creatinine range	urinary total a	rsenic c	oncentratio	on, μg/g-
Examination Survey		creatinine			
(KNHANES)		arsenic not sig	nificantl	y associate	d with glucose
n cases: n/a		tolerance Outcome: insu	ulin rosis	tanco (HOI	MA 20/ C)
n control: n/a		urinary total a		-	
		creatinine	i senne et	oncentratie	,,,, k â, â
			nificantl	v associate	d with
		arsenic not significantly associated with HOMA2%S			
		Outcome: insulin secretion capacity (HOMA29			
		urinary total a creatinine	rsenic c	oncentratio	on, μg/g-
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	-0.04	<u>n/a</u>
				0.01	, ~
		Stat Meth	od: mult	tivariate reg	gression analys

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-140Draft: Do Not Cite or Quote

	Diabetes					
Reference and Study Design	Exposure Measures	Results				
		inorganic ars	enic inta	ke (female	s; quartiles),	
Study Type: cohort	Exposure Description: detailed	μg/day		15	, i ,,	
(prospective)	questionnaire on food intake/frequency;	Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>	
p. oop com c)	average arsenic concentrations in food	40.6	20	1	n/a	
	items obtained from the literature;	53.7	31	1.62	0.91, 2.88	
ocation: Japan (Iwate,	arsenic intake calculated by multiplying	62.6	27	1.38	0.76, 2.51	
Akita, Nagano,	average arsenic concentration in each	105.7	27	1.37	0.75, 2.49	
Okinawa, Tokyo,	item by quantity consumed			ltivariate re		
baraki, Niigata, Kochi,					8.000.000	
Nagasaki, Osaka)		inorganic ars	enic inta	ke (males;	quartiles),	
	Population-Level Exposure:	μg/day				
Population: adults in	170 μg/day mean, 88.3-253.2 μg/day	Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>	
apan Public Health	range	40.5	34	1	n/a	
Center (JPHC)		54.7	31	0.8	0.49, 1.32	
Prospective Study		63.5	46	1.14	0.72, 1.8	
cohort		99.1	31	0.78	0.47, 1.29	
n total: 90,378				ltivariate re	-	
Steinmaus et al. (2009)	Exposure Surrogate: urine	Outcome: Type 2 diabetes mellitus				
		estimated inorganic urinary arsenic				
Study Type: cross-	Exposure Description: urinary arsenic	concentratio	n (tertile	s), μg/L		
sectional	concentration measured from spot	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
	sample for each individual; subjects	≤ 4.1	NR	1	n/a	
Location: United States	grouped for analysis in tertiles	4.2-8.5	NR	0.63	0.34, 1.15	
National)		>8.5	NR	0.98	0.53, 1.80	
Nationaly	Population-Level Exposure:	Stat Met	hod: Log	istic regress	ion with non-lo	
	16.7 μg/L mean 39.7SD	transfor	med dat	а		
Population: NHANES 2003-2004, adult		urinary arser	nic conce	ntration, µ	a/L	
participants who had		Exp. Level	<u>n</u>	adjOR	(CI)	
fasted before		=<20th	NR	1	n/a	
venipuncture		(=<3.5)		-		
-		≥ 80th	NR	0.88	0.39, 1.97	
n cases: 795		(≥ 18.3)		0.00	0.00, 1.0,	
n control: n/a			hod	istic regress	ion with non-lo	
			med dat	-		
				ntration /+-	rtiloc)	
		urinary arser		-		
		Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>	
		=<5.2	NR	1	n/a	
		5.3-11.8	NR	0.87	0.48, 1.55	
		>11.8	NR	0.76	0.42, 1.39	
		Stat Met	hod: Log	istic regress	ion with non-lo	
			med dat			

eference and Study	Exposure Measures	Results				
Design		estimated in	oraanic u	irinary arse	enic	
		estimated inorganic urinary arsenic concentration, μg/L				
		Exp. Level	<u>n</u>	<u>OR</u>	<u>(CI)</u>	
		=<20th	NR	1	n/a	
		(≤ 2.7)		-	ny a	
		<pre>(= 2.7)</pre> ≥ 80th	NR	1.12	0.59, 2.15	
		(≥ 11.9)		1.12	0.00, 2.10	
		Stat Me	thod: Log rmed dat		sion with non-l	
		estimated in			enic	
		concentratio				
		Exp. Level	<u>n</u>	OR	<u>(CI)</u>	
		≤ 4.1	NR	1	n/a	
		4.2-8.5	NR	0.77	0.46, 1.30	
		>8.5	NR	0.9	0.54, 1.49	
			thod: Log rmed dat		sion with non-l	
		urinary arse	nic conce			
		Exp. Level	<u>n</u>	<u>OR</u>	<u>(CI)</u>	
		=<20th (=<3.5)	NR	1	n/a	
		≥ 80th (≥ 18.3)	NR	0.8	0.41, 1.59	
			thod: Log rmed dat		sion with non-l	
		urinary arse	nic conce	ntration (te	ertiles), μg/L	
		Exp. Level	<u>n</u>	<u>OR</u>	<u>(CI)</u>	
		=<5.2	NR	1	n/a	
		5.3-11.8	NR	0.9	0.54, 1.49	
		>11.8	NR	0.82	0.49, 1.38	
			thod: Log rmed dat		sion with non-l	
		estimated in concentratio		ırinary arse	enic	
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		=<20th	NR	1	n/a	
		(≤ 2.7)			-	
		≥ 80th (≥ 11.9)	NR	1.15	0.53, 2.50	
			thod	istic regress	sion with non-lo	
					, blood mercur	
			r creatinin	-		

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-142Draft: Do Not Cite or Quote

	Diabetes				
Reference and Study Design	Exposure Measures		I	Results	
		serum o	otinine		
		were ent	ered as c	ontinuous	variables
<u>Tseng et al. (2000)</u>	Exposure Surrogate: drinking water	Outcome: dia	abetes m	ellitus	
		cumulative d	rinking w	vater arsen	ic exposure,
Study Type: cohort	Exposure Description: cumulative arsenic	mg/L x yr			
(prospective)	exposure calculated based on arsenic	Exp. Level	<u>n</u>	<u>adjRR</u>	<u>(CI)</u>
	concentration in well water and self-	<17	NR	1	n/a
Location: Taiwan (three	reported years of drinking well water	≥ 17	NR	2.1	1.1, 4.2
villages on southwest coast)	during successive periods of living in different villages	Stat Met model	hod: Cox	's proportic	onal hazards
		cumulative d	rinking w	vater arsen	ic exposure,
Population: adult	Population-Level Exposure:	mg/L x yr	-		•
residents of arseniasis-	17-17 mg/L x yr range	Exp. Level	<u>n</u>	<u>RR</u>	<u>(CI)</u>
endemic villages		<17	NR	1	n/a
n exposed: 446		≥ 17	NR	2.5	1.4, 4.7
n reference: Not		Stat Met	hod: Cox	's proportic	onal hazards
reported		model			
n total: 446					

--: not reported; n: number of cases (when presented in Results column)

5.6.1 References for Summary of Observational Epidemiology Studies for Health Effect Category: Endocrine System Effects Including Diabetes

- <u>Chen, JW; Chen, HY; Li, WF; Liou, SH; Chen, CJ; Wu, JH; Wang, SL.</u> (2011). The association between total urinary arsenic concentration and renal dysfunction in a community-based population from central Taiwan. Chemosphere 84: 17-24. <u>http://dx.doi.org/10.1016/j.chemosphere.2011.02.091</u>
- Chen, JW; Wang, SL; Wang, YH; Sun, CW; Huang, YL; Chen, CJ; Li, WF. (2012). Arsenic methylation, GSTO1 polymorphisms, and metabolic syndrome in an arseniasis endemic area of southwestern Taiwan. Chemosphere 88: 432-438. <u>http://dx.doi.org/10.1016/j.chemosphere.2012.02.059</u>
- <u>Chen, Y; Ahsan, H; Slavkovich, V; Peltier, GL; Gluskin, RT; Parvez, F; Liu, X; Graziano, JH.</u> (2010). No association between arsenic exposure from drinking water and diabetes mellitus: a cross-sectional study in Bangladesh. Environ Health Perspect 118: 1299-1305. <u>http://dx.doi.org/10.1289/ehp.0901559</u>

Coronado-González, JA; Del Razo, LM; García-Vargas, G; Sanmiguel-Salazar, F; Escobedo-De la Peña, J. (2007). Inorganic arsenic exposure and type 2 diabetes mellitus in Mexico. Environ Res 104: 383-389. http://dx.doi.org/10.1016/j.envres.2007.03.004

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-143Draft: Do Not Cite or Quote

- Del Razo, LM; García-Vargas, GG; Valenzuela, OL; Castellanos, EH; Sánchez-Peña, LC; Currier, JM; Drobná, Z; Loomis, D; Stýblo, M. (2011). Exposure to arsenic in drinking water is associated with increased prevalence of diabetes: a cross-sectional study in the Zimapán and Lagunera regions in Mexico. Environ Health 10: 73. <u>http://dx.doi.org/10.1186/1476-069X-10-73</u>
- Ettinger, AS; Zota, AR; Cj Amarasiriwardena, CJ; Hopkins, MR; Schwartz, J; Hu, H; Wright, RO. (2009). Maternal arsenic exposure and impaired glucose tolerance during pregnancy. Environ Health Perspect 117: 1059-1064. <u>http://dx.doi.org/10.1289/ehp0800533</u>
- García-Esquinas, E; Pollan, M; Umans, JG; Francesconi, KA; Goessler, W; Guallar, E; Howard, B; Farley, J; Best, LG; Navas-Acien, A. (2013). Arsenic exposure and cancer mortality in a US-based prospective cohort: the strong heart study. Cancer Epidemiol Biomarkers Prev 22: 1944-1953. <u>http://dx.doi.org/10.1158/1055-9965.EPI-13-0234-T</u>
- <u>Gribble, MO; Howard, BV; Umans, JG; Shara, NM; Francesconi, KA; Goessler, W; Crainiceanu, CM;</u> <u>Silbergeld, EK; Guallar, E; Navas-Acien, A.</u> (2012). Arsenic exposure, diabetes prevalence, and diabetes control in the strong heart study. Am J Epidemiol 176: 865-874. <u>http://dx.doi.org/10.1093/aje/kws153</u>
- <u>Guo, JX; Hu, L; Yand, PZ; Tanabe, K; Miyatalre, M; Chen, Y.</u> (2007). Chronic arsenic poisoning in drinking water in Inner Mongolia and its associated health effects. J Environ Sci Health A Tox Hazard Subst Environ Eng 42: 1853-1858. <u>http://dx.doi.org/10.1080/10934520701566918</u>
- <u>Hsieh, FI; Hwang, TS; Hsieh, YC; Lo, HC; Su, CT; Hsu, HS; Chiou, HY; Chen, CJ.</u> (2008). Risk of erectile dysfunction induced by arsenic exposure through well water consumption in Taiwan. Environ Health Perspect 116: 532-536. <u>http://dx.doi.org/10.1289/ehp.10930</u>
- Hsu, LI; Wang, YH; Chiou, HY; Wu, MM; Yang, TY; Chen, YH; Tseng, CH; Chen, CJ. (2013). The association of diabetes mellitus with subsequent internal cancers in the arsenic-exposed area of Taiwan. J Asian Earth Sci 73: 452-459. <u>http://dx.doi.org/10.1016/j.jseaes.2013.04.048</u>
- Islam, R; Khan, I; Hassan, SN; McEvoy, M; D'Este, C; Attia, J; Peel, R; Sultana, M; Akter, S; Milton, AH. (2012). Association between type 2 diabetes and chronic arsenic exposure in drinking water: a cross sectional study in Bangladesh. Environ Health 11: 38. <u>http://dx.doi.org/10.1186/1476-069X-11-38</u>
- James, KA; Marshall, JA; Hokanson, JE; Meliker, JR; Zerbe, GO; Byers, TE. (2013). A case-cohort study examining lifetime exposure to inorganic arsenic in drinking water and diabetes mellitus. Environ Res. http://dx.doi.org/10.1016/j.envres.2013.02.005
- Jensen, GE; Hansen, ML. (1998). Occupational arsenic exposure and glycosylated haemoglobin. Analyst 123: 77-80. <u>http://dx.doi.org/10.1039/a705699k</u>
- Kim, NH; Mason, CC; Nelson, RG; Afton, SE; Essader, AS; Medlin, JE; Levine, KE; Hoppin, JA; Lin, C; Knowler, WC; Sandler, DP. (2013). Arsenic Exposure and Incidence of Type 2 Diabetes in Southwestern American Indians. Am J Epidemiol. <u>http://dx.doi.org/10.1093/aje/kws329</u>
- <u>Kim, Y; Lee, BK.</u> (2011). Association between urinary arsenic and diabetes mellitus in the Korean general population according to KNHANES 2008. Sci Total Environ 409: 4054-4062. <u>http://dx.doi.org/10.1016/j.scitotenv.2011.06.003</u>
- Lai, MS; Hsueh, YM; Chen, CJ; Shyu, MP; Chen, SY; Kuo, TL; Wu, MM; Tai, TY. (1994). Ingested inorganic arsenic and prevalence of diabetes mellitus. Am J Epidemiol 139: 484-492.
- Lewis, DR; Southwick, JW; Ouellet-Hellstrom, R; Rench, J; Calderon, RL. (1999). Drinking water arsenic in Utah: A cohort mortality study. Environ Health Perspect 107: 359-365. http://dx.doi.org/10.1289/ehp.99107359
- Li, X; Li, B; Xi, S; Zheng, Q; Lv, X; Sun, G. (2013). Prolonged environmental exposure of arsenic through drinking water on the risk of hypertension and type 2 diabetes. Environ Sci Pollut Res Int 20: 8151-8161. http://dx.doi.org/10.1007/s11356-013-1768-9

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-144Draft: Do Not Cite or Quote

- Navas-Acien, A; Silbergeld, EK; Pastor-Barriuso, R; Guallar, E. (2008). Arsenic exposure and prevalence of type 2 diabetes in US adults. JAMA 300: 814-822. <u>http://dx.doi.org/10.1001/jama.300.7.814</u>
- <u>Navas-Acien, A; Silbergeld, EK; Pastor-Barriuso, R; Guallar, E.</u> (2009). Rejoinder: Arsenic exposure and prevalence of type 2 diabetes: updated findings from the National Health Nutrition and Examination Survey, 2003-2006 [Comment]. Epidemiology 20: 816-820. <u>http://dx.doi.org/10.1097/EDE.0b013e3181afef88</u>
- Nizam, S; Kato, M; Yatsuya, H; Khalequzzaman, M; Ohnuma, S; Naito, H; Nakajima, T. (2013). Differences in urinary arsenic metabolites between diabetic and non-diabetic subjects in Bangladesh. Int J Environ Res Public Health 10: 1006-1019. <u>http://dx.doi.org/10.3390/ijerph10031006</u>
- Pan, WC; Seow, WJ; Kile, ML; Hoffman, EB; Quamruzzaman, Q; Rahman, M; Mahiuddin, G; Mostofa, G; Lu, Q; Christiani, DC. (2013). Association of low to moderate levels of arsenic exposure with risk of type 2 diabetes in Bangladesh. Am J Epidemiol 178: 1563-1570. <u>http://dx.doi.org/10.1093/aje/kwt195</u>
- <u>Rhee, SY; Hwang, YC; Woo, JT; Chin, SO; Chon, S; Kim, YS.</u> (2013). Arsenic exposure and prevalence of diabetes mellitus in Korean adults. J Korean Med Sci 28: 861-868. <u>http://dx.doi.org/10.3346/jkms.2013.28.6.861</u>
- Sawada, N; Iwasaki, M; Inoue, M; Takachi, R; Sasazuki, S; Yamaji, T; Shimazu, T; Tsugane, S. (2013). Dietary arsenic intake and subsequent risk of cancer: The Japan Public Health Center-based (JPHC) prospective study. Cancer Causes Control 24: 1403-1415. <u>http://dx.doi.org/10.1007/s10552-013-0220-2</u>
- Steinmaus, C; Yuan, Y; Smith, AH. (2009). Low-level population exposure to inorganic arsenic in the United States and diabetes mellitus: a reanalysis. Epidemiology 20: 807-815. <u>http://dx.doi.org/10.1097/EDE.0b013e3181b0fd29</u>
- <u>Tseng, CH; Tai, TY; Chong, CK; Tseng, CP; Lai, MS; Lin, BJ; Chiou, HY; Hsueh, YM; Hsu, KH; Chen, CJ.</u> (2000). Long-term arsenic exposure and incidence of non-insulin-dependent diabetes mellitus: a cohort study in arseniasis-hyperendemic villages in Taiwan. Environ Health Perspect 108: 847-851. <u>http://dx.doi.org/10.1289/ehp.00108847</u>

5.7 Summary of Observational Epidemiology Studies for Health Effect Category: Hematology, Hematopoietic System

Summary of Observa	tional Epidemiology Studies for Health Effec	t Category: Hematology, Hematopoietic System
Reference and Study Design	Exposure Measures	Results
<u>Del Razo et al. (2011)</u>	Exposure Surrogate: drinking water	Outcome: HbA1c levels
Study Type: cross- sectional Location: Mexico (Zimapan and Lagunera)	Exposure Description: each subject provided a sample of water used for drinking; mean inorganic arsenic concentrations in drinking water: 77.3 and 39.2 for diabetic and non-diabetic subpopulations, respectively	concentration of inorganic arsenic in drinking water (log-transformed), ppbExp. LevelnadjBeta(CI)continuousNR0.1930.018, 0.369Stat Method: linear regression, with log- transformation
Population: residents of arsenicosis-endemic	Population-Level Exposure: 3.1-215.2 ppb range	
areas of Mexico	Exposure Surrogate: urine	Outcome: HbA1c levels
n cases: n/a n control: n/a	Exposure Description: spot urine sample collected from each subject during the medical exam; concentrations of inorganic arsenic and methylated metabolites measured to assess inorganic arsenic metabolism	urinary total arsenic concentration (log- transformed), ng/mLExp. LevelnadjBeta(Cl)continuousNR0.164-0.57, 0.898Stat Method: linear regression, with log- transformation
	Population-Level Exposure: 2.3-233.7 ng/mL range	
<u>Guo et al. (2007)</u>	Exposure Surrogate: drinking water	Outcome: anemia
Study Type: cross- sectional Location: Mongolia	Exposure Description: arsenic samples taken from 94 water sources, including wells; detection limit not specified, but authors note reliability of the method at <10 μg/L; arsenic exposure determined by location of village	<i>water arsenic concentration, μg/L</i> arsenic not significantly associated with anemia
Population: residents of villages in the Hetao Plain, Inner Mongolia n cases: 680 n control: 189	Population-Level Exposure: 50-1,860 μg/L range	

Summary of Observa	tional Epidemiology Studies for Health Effec	ct Category: Hei	matology	, Hematop	oietic System
Reference and Study Design	Exposure Measures		F	Results	
Heck et al. (2008)	Exposure Surrogate: drinking water	Outcome: her	moglobir	1	
			-		concentration
Study Type: cross-	Exposure Description: time-weighted	(all men), μg/			concentration
sectional	arsenic exposure calculated based on	Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>
	drinking water duration from each well	0-<50	NR	13.9	n/a
La catione. Da u ala da ala	as reported by participants and well	50-<100	NR	13.9	n/a
Location: Bangladesh (Araihazar)	concentration measured in samples;	100-<200	NR	13.9	n/a
(Arailiazar)	levels below detection reanalyzed using	>200	NR	13.8	n/a
	ICP-MS with lower detection limit;	Stat Meth	nod: gen	eralized line	ar modeling
Population: Health	exposure groups split in to quartiles				
Effects of Arsenic	(quartile concentrations not provided for	-			concentration
Longitudinal Study	women)	quartiles (wo			
(HEALS) cohort		Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>
n cases: n/a	Population-Level Exposure:	lowest	NR	8.2	n/a
n control: n/a	0-200 μg/L range	quartile 2nd quartile	NR	7.2	nla
		3rd quartile	NR	7.2	n/a n/a
		highest	NR	6.4	n/a
		quartile	INIT	0.4	ll/d
			nod: gen	eralized line	ar modeling
			-		
	Exposure Surrogate: urine	Outcome: hemoglobin urine arsenic level (all men), μg/L			
			-		
	Exposure Description: total urine arsenic	Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>
	level measured in spot urine samples	<50	NR	13.9	n/a
		50-99	NR	13.8	n/a
	Population-Level Exposure:	100-199	NR	13.8	n/a
	50-200 μg/L range	200	NR	13.6	n/a
		Stat Metr	noa: gen	eralized line	ar modeling
		urine arsenic μg/L	level (wo	omen with H	lgb ≤ 10 g/dL),
		Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>
		<50	NR	10.2	n/a
		50-99	NR	9.3	n/a
		100-199	NR	8	n/a
		200	NR	8.2	n/a
		Stat Meth	nod: gen	eralized line	ar modeling
Majumdar et al. (2009)	Exposure Surrogate: drinking water	Outcome: and	aemia		
		arsenic conce	ntration	in drinkina	water
Study Type: cross-	Exposure Description: for each	(females), μg,		5	
sectional	participant, water samples from private	Exp. Level	<u>n</u>	prevOR	<u>(CI)</u>
	or public tube wells analyzed for arsenic;	<50	NR	1	n/a
	exposure categories developed based on	≥ 500	NR	3.85	2.6, 5.5
Location: India (West			nod: prev	alence odd	-

Draft Development	t Materials for the IRIS	Toxicological Review	of Inorganic Arsenic
<i>J</i> 1	5	0	J D

Summary of Observa	tional Epidemiology Studies for Health	Effect Category: He	matology	y, Hematopo	pietic System	
Reference and Study	Exposure Measures		Results			
Design						
Bengal)	arsenic levels		calculated for each outcome comparing highest and lowest exposure levels			
Population: residents of arsenic-affected villages with comparison population from low exposure area n cases: 3,825 n control: 3,451	Population-Level Exposure: 50-500 μg/L range	μg/L Exp. Level <50 ≥ 500 Stat Met calculat	<u>n</u> NR NR hod: prev ed for ea	in drinking prevOR 1 2.41 valence odds ch outcome est exposure	comparing	

--: not reported; n: number of cases (when presented in Results column)

5.7.1 References for Summary of Observational Epidemiology Studies for Health Effect Category: Hematology, Hematopoietic System

- Del Razo, LM; García-Vargas, GG; Valenzuela, OL; Castellanos, EH; Sánchez-Peña, LC; Currier, JM; Drobná, Z; Loomis, D; Stýblo, M. (2011). Exposure to arsenic in drinking water is associated with increased prevalence of diabetes: a cross-sectional study in the Zimapán and Lagunera regions in Mexico. Environ Health 10: 73. <u>http://dx.doi.org/10.1186/1476-069X-10-73</u>
- Guo, JX; Hu, L; Yand, PZ; Tanabe, K; Miyatalre, M; Chen, Y. (2007). Chronic arsenic poisoning in drinking water in Inner Mongolia and its associated health effects. J Environ Sci Health A Tox Hazard Subst Environ Eng 42: 1853-1858. <u>http://dx.doi.org/10.1080/10934520701566918</u>
- Heck, JE; Chen, Y; Grann, VR; Slavkovich, V; Parvez, F; Ahsan, H. (2008). Arsenic exposure and anemia in Bangladesh: A population-based study. J Occup Environ Med 50: 80-87. http://dx.doi.org/10.1097/JOM.0b013e31815ae9d4
- Majumdar, KK; Guha Mazumder, DN; Ghose, N; Ghose, A; Lahiri, S. (2009). Systemic manifestations in chronic arsenic toxicity in absence of skin lesions in West Bengal. Indian J Med Res 129: 75-82.

5.8 Summary of Observational Epidemiology Studies for Health Effect Category: Immune System and Lymphatic Effects

Reference and Study Design	Exposure Measures		1	Results	
<u>Ahmed et al. (2012)</u>	Exposure Surrogate: maternal blood	Outcome: sjT	RECs in c	ord blood	
Study Type: cohort	Exposure Description: maternal blood	In blood arse Exp. Level <1.8	nic at ge: <u>n</u> NR	station weel adjBeta -1.27	k 14, μg/kg (CI) -1.89, -0.66
(prospective) Location: Bangladesh	samples collected at gestation week 14 analyzed for arsenic content	≥ 1.8 Stat Met	NR hod: splir	0.7 ne regression	-0.01, 1.41 n model using
(Matlab)	Population-Level Exposure: 4.7 μg/kg median, 1.4-22.2 μg/kg 5th percentile	spline ki	nots at In	blood arser	iic 1.8
Population: women and infants enrolled in	Exposure Surrogate: urine	Outcome: sjT	RECs in c	ord blood	
MINIMat study of	Exposure Description: maternal urine samples taken at gestation week 8 or 30 analyzed for inorganic arsenic and metabolites; samples adjusted for specific gravity	In urinary ars	enic at g	estation we	ek 8, μg/L
nutritional impact on fetal and infant development		Exp. Level continuous Stat Met	<u>n</u> NR hod: line	<u>adjBeta</u> -0.25 ar regressior	(<u>CI)</u> -0.48, -0.01
n total: 130		<i>In urinary ars</i> <u>Exp. Level</u>	<u>n</u>	estation we adjBeta	<u>(CI)</u>
	Population-Level Exposure: 69 μg/L median, 19-441 μg/L 5th percentile			-0.53 0.15 ne regression urinary arse	-0.93, -0.13 -0.55, 0.85 n model using enic 5.0
Biswas et al. (2008)	Exposure Surrogate: level of exposure	Outcome: IFN	N-gamma	concentrat	ion (pg/mL)
		exposure sta	tus, unitl	ess	
Study Type: cross- sectional	Exposure Description: adult residents of area with high arsenic water concentrations with arsenic induced skin	<u>Exp. Level</u> unexposed individuals	<u>n</u> NR NR	<u>mean</u> 1,372.3 7.9	<u>(CI)</u> n/a n/a
Location: India (Murshidabad district, West Bengal)	lesions (individuals with arsenicosis); comparison population with similar socioeconomic status from area with no	with arsenicosis Stat Met	hod: Mar	nn-Whitney	U test
	arsenic contamination	Outcome: IL-	10 conce	ntration (pg	/mL)
Population: adult	Population-Level Exposure:	exposure sta	tus, unitl	ess	
residents of area with high arsenic water concentrations with	not available	<u>Exp. Level</u> unexposed	<u>n</u> NR	<u>mean</u> 90.3	<u>(CI)</u> n/a
concentrations with		individuals	NR	4.6	n/a

Reference and Study Design	Exposure Measures		Results	
arsenic induced skin		with		
esions		arsenicosis		
n cases: 20		Stat Method: Ma	nn-Whitney	U test
n control: 18		Outcome: IL-2 conce		
		exposure status, uni		
				<u>(CI)</u>
			mean	
		unexposed NR	398.5	n/a
		individuals NR	12.7	n/a
		with		
		arsenicosis		
		Stat Method: Ma	ann-Whitney	U test
		Outcome: IL-4 conce	ntration (pg/	mL)
		exposure status, uni	less	
		Exp. Level <u>n</u>	<u>mean</u>	<u>(CI)</u>
		unexposed NR	142.2	n/a
		individuals NR	4.7	n/a
		with		
		arsenicosis		
		Stat Method: Ma	nn-Whitnow	lltoct
		Outcome: IL-5 conce		mL)
		exposure status, uni		
		Exp. Level <u>n</u>	<u>mean</u>	<u>(CI)</u>
		unexposed NR	143.9	n/a
		individuals NR	1.4	n/a
		with		
		arsenicosis		
		Stat Method: Ma	ann-Whitney	U test
		Outcome: TNF-alpha	concentratio	on (pg/mL)
		exposure status, uni	tless	
		<u>Exp. Level n</u>	<u>mean</u>	<u>(CI)</u>
		unexposed NR	1,852.5	n/a
		individuals NR	6.7	n/a
		with		-
		arsenicosis		
		Stat Method: Ma	ann-Whitney	U test
		Outcome: [3H] TdR i	ncorporation	(cpm)
		exposure status + Co	nA dose (μg/	mL), unitless
		Exp. Level <u>n</u>	<u>mean</u>	<u>(CI)</u>
		unexposed + NR	1713.95	n/a
		0 μg/mL		

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-150Draft: Do Not Cite or Quote

Reference and Study	Exposure Measures	t Category: Immune System and Lymphatic Effects Results			
Design			N	esuits	
		ConA			
		individuals	NR	2929.34	n/a
		with arsenicosis + 0 μg/mL			
		ConA			_
		unexposed + 3 µg/mL ConA	NR	5642.51	n/a
		individuals with	NR	1862.53 8	n/a
		arsenicosis + 3 μg/mL ConA			
		unexposed + 5 μg/mL	NR	8199.8	n/a
		ConA individuals with	NR	1365.75	n/a
		arsenicosis + 5 μg/mL			
		ConA Stat Meth	od: Man	n-Whitney l	J test
<u>Bosnjak et al. (2008)</u>	Exposure Surrogate: urine	Outcome: B12			
		urinary arseni	c concen	tration, μg/	g-creatinine
Study Type: cross- sectional	Exposure Description: urinary arsenic concentration measured from single	<u>Exp. Level</u>	<u>n</u>	<u>corr</u> <u>coeff</u>	<u>(CI)</u>
	sample for each individual	continuous	NR	0.48 rman rank o	n/a
Location: Croatia (Andrijasevci)	Population-Level Exposure:	Stat Weth	iou. spea		
Population: adult residents of village with history of higher than average arsenic in drinking water	627.72 μg/g-creatinine mean, 199.5- 1,206.29 μg/g-creatinine range				
n cases: n/a n control: n/a					
García-Esquinas et al.	Exposure Surrogate: urine	Outcome: lym	phatic a	nd hematop	oietic cancer
<u>(2013)</u>		urinary arseni	c concen		-
Study Type: cohort	Exposure Description: individual urine samples collected and analyzed for	Exp. Level 80th vs. 20th percentiles	<u>n</u> 40	<u>HR</u> 0.46	<u>(CI)</u> 0.22, 0.96

Reference and Study Design	Exposure Measures	Results
(prospective)	arsenic speciation	Stat Method: Cox proportional hazard models; log transformed
Location: United States (AZ; ND; OK; SD)	Population-Level Exposure: 9.7 μg/g-creatinine median, 5.8-15.6 μg/g-creatinine 25th percentile	
Population: Strong Heart Study participants		
n total: 3,935		
<u> Josyula et al. (2006)</u>	Exposure Surrogate: urine	Outcome: In (MMP-2/TIMP-1)
Study Type: cross- sectional	Exposure Description: first morning void urine sample collected, analyzed for inorganic arsenic and metabolites and	urinary inorganic arsenic concentration, μg/LExp. LevelnadjBeta(CI)continuousNR0.028n/aStat Method: multiple linear regression
Location: United States	adjusted for creatinine; urine samples with creatinine <30 mg/dL or >300 mg/dL	Outcome: In (MMP-9/TIMP-1)
(Tucson and Ajo, Arizona) Population: adult residents using	samples also analyzed	urinary inorganic arsenic concentration, μg/LExp. LevelnadjBeta(Cl)continuousNR0.031n/aStat Method: multiple linear regression
household tap water in	22 μg/L mean	Outcome: In MMP-2
Ajo (mean As water		urinary inorganic arsenic concentration, μg/L
concentration 20.3+- 3.7 μg/L) and Tucson (mean As water concentration 4.0 +- 2.3		Exp. LevelnadjBeta(Cl)continuousNR-0.018n/aStat Method: multiple linear regression
μg/L)		Outcome: In MMP-9
n cases: 40 n control: 33		urinary inorganic arsenic concentration, μg/LExp. LevelnadjBeta(Cl)continuousNR-0.017n/aStat Method: multiple linear regression
		Outcome: In TIMP-1
		urinary inorganic arsenic concentration, μg/L
		Exp. LevelnadjBeta(Cl)continuousNR-0.049n/aStat Method: multiple linear regression
Lewis et al. (1999)	Exposure Surrogate: drinking water	Outcome: lymphatic, hematopoietic tissue cancer
Study Type: cohort	Exposure Description: arsenic	cumulative arsenic exposure (females), ppb-yed Exp. Level n SMR (CI)

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-152Draft: Do Not Cite or Quote

Draft Development Materials for the IRIS	Toxicological Review of Inorganic Arsenic
--	---

Reference and Study	ional Epidemiology Studies for Health Effect Exposure Measures			Results	
Design			-		
(retrospective)	concentrations in drinking water	<1,000	NR	0.94	n/a
	determined from Utah state records and	1,000-4,999	NR	0.68	n/a
	an EPA study; arsenic exposure index	≥ 5,000	NR	0.45	n/a
ocation: United States Millard County, Utah)	score calculated individually based on number of years residence in each	-			ortality ratios
	community and median drinking water	cumulative a	rsenic ex	posure (ma	les), ppb-years
Population: male and	arsenic concentration in community	Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>
emale members of		<1,000	NR	0.95	n/a
atter-day Saints		1,000-4,999	NR	0.65	n/a
church wards	Population-Level Exposure:	≥ 5,000	NR	0.64	n/a
	3.5-620 ppb-years range	-			-
n exposed: 2,203 n total: 2,203		Stat Metr	nod: star	idardized m	ortality ratios
<u>/loore et al. (2009)</u>	Exposure Surrogate: maternal urine	Outcome: thymic index			
		maternal urinary arsenic concentration at w			tration at week
Study Type: cohort	Exposure Description: sum of	52, μg/L	-		
(prospective)	metabolites of inorganic arsenic	Exp. Level	<u>n</u>	<u>chi-</u>	<u>(CI)</u>
pi ospective)	measured in spot urine samples;		_	square	<u></u>
	adjusted for variation in urine dilution by	continuous	NR	12.93	n/a
.ocation: Bangladesh	specific gravity (mean 1.0012 g/mL)		regression with		
Matlab)	specific gravity (mean 1.0012 g/mL)	quadrati			regression with
Population: infants	Population-Level Exposure:	Outcome: thymic index/weight ratio			atio
orn in rural	102 μg/L median, 5.5-1,150 μg/L range				
Bangladesh; mothers			ary arse	nic concent	tration at week
are participants in		52, μg/L			
MINIMat study		arsenic not sig	-	ly associate	d with thymic
-		index/weight	ratio		
n total: 1,556 Pesola et al. (2012)	Exposure Surrogate: drinking water	Outcome: dys			
<u>esola et al. (2012)</u>	Exposure Surrogate. Uninking water		-		(autintilas) un
		Exp. Level		<u>adjOR</u>	(quintiles), μg, (CI)
study Type: cross-	Exposure Description: well water arsenic	-	<u>n</u>		
ectional	concentration	<7	NR	1	n/a
		7 -<39	NR	1.36	0.97, 1.9
.ocation: Bangladesh	Population-Level Exposure:	39 -<91	NR	1.96	1.43, 2.7
Araihazar)	$7-179 \mu\text{g/L}$ range	91 -<179	NR	2.14	1.56, 2.92
	· -·- po/ -····o·	≥ 179	NR	1.8	1.31, 2.49
		Stat Meth	nod: logi	stic regressi	ion; Chi-square
Population: Health Effects of Arsenic		test for t	rend		
ongitudinal Study	Exposure Surrogate: urine	Outcome: dys	spnoea		
HEALS) participants		urinary arsen	ic concel	ntration (qu	ıintiles), μg/g-
n cases: n/a	Exposure Description: urinary arsenic	creatinine		••	
n control: n/a	concentration measured in single spot	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
	samples and adjusted by creatinine	quintile 1	<u></u> NR	1	n/a
		quintile 1 quintile 2	NR	1.37	0.97, 1.92
	concentration and stratified by quintile				

Summary of Observat	ional Epidemiology Studies for Health Effect	Category: Immune System and Lymphatic Effects
Reference and Study Design	Exposure Measures	Results
	Population-Level Exposure: not available	quintile 4NR1.941.41, 2.68quintile 5NR1.871.36, 2.58Stat Method: logistic regression; Chi-squared test for trendtest for trend
Ragib et al. (2009)	Exposure Surrogate: urine	Outcome: breast milk concentration of IL-7 at 12 months
Study Type: cohort (prospective) Location: Bangladesh (Matlab)	Exposure Description: maternal urine samples taken at gestation week 8 or 30 analyzed for inorganic arsenic and metabolites; samples adjusted for specific gravity	maternal urinary arsenic at gestation week 30,μg/LExp. LevelnadjBeta(CI)continuousNR-0.04-0.07, -0.02Stat Method: multivariate linear regression
Population: women	Population-Level Exposure:	Outcome: breast milk concentration of LtF at 12 months
and infants enrolled in MINIMat study of nutritional impact on fetal and infant development	145.8 μg/L mean 186.8SD	maternal urinary arsenic at gestation week 30,µg/LExp. LevelnadjBeta(Cl)continuousNR-0.002-0.003, -0.001Stat Method: multivariate linear regression
n total: 140		Outcome: thymic index at 2 months
		maternal urinary arsenic at gestation week 30, $\mu g/L$
		Exp. LevelnadjBeta(Cl)continuousNR-0.01-0.02, -0.001Stat Method: multivariate linear regression
		Outcome: thymus index at 12 months
		maternal urinary arsenic at gestation week 30, $\mu g/L$
		Exp. LevelnadjBeta(CI)continuousNR-0.012-0.02, -0.002Stat Method: multivariate linear regression
		Outcome: thymus index at 6 months
		maternal urinary arsenic at gestation week 30, μg/L
		Exp. LevelnadjBeta(Cl)continuousNR-0.015-0.02, -0.005Stat Method: multivariate linear regression
<u>Shiue (2013)</u>	Exposure Surrogate: urine	Outcome: food sensitization - egg
		<i>urinary total arsenic, unitless</i> total arsenic not significantly associated with food

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-154Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures	Results
Study Type: cross-	Exposure Description: urine samples	sensitization
sectional	collected from individuals	Outcome: food sensitization - milk
Location: United States (national)	Population-Level Exposure: not available	<i>urinary total arsenic, unitless</i> total arsenic not significantly associated with food sensitization
		Outcome: food sensitization - peanut
Population: NHANES n cases: 4,979 n control: n/a		<i>urinary total arsenic, unitless</i> total arsenic not significantly associated with food sensitization
		Outcome: food sensitization - shrimp
		<i>urinary total arsenic, unitless</i> total arsenic not significantly associated with food sensitization
<u>Sohel et al. (2009)</u>	Exposure Surrogate: drinking water	Outcome: all infections deaths
Study Type: cohort (prospective) Location: Bangladesh (Matlab) Population: Health and Demographic Surveillance System 1991-2000, adults and children with nonaccidental deaths 1991-2000 n exposed: 93,415 n total: 93,415	Exposure Description: cumulative drinking water arsenic concentration based on current arsenic concentrations (reasonably stable over time); average household exposure (used as proxy for individual exposure) calculated for each calendar year from 1970, based on information obtained from the current population present in that specific household for each year Population-Level Exposure: 10-300 μg/L range	cumulative water arsenic concentration (quintiles), μg/L Exp. Level n adjOR (Cl) <10
<u>Wu et al. (2012b)</u>	Exposure Surrogate: drinking water	Outcome: MMP-9 (ng/mL)
Study Type: cross- sectional Location: Bangladesh (Araihazar)	Exposure Description: water samples and geographic coordinates collected for 10,971 contiguous wells in a well-defined geographic area; participants used one of the tested wells	per Log-transformed well water arsenic, μg/LExp. LevelnadjBeta(Cl)continuousNR10.98, 1.02Stat Method: computed with the log- transformed arsenic level entered as a continuous variable in linear regression models
Population: random selection of adults over	Population-Level Exposure: 0.1-500.62 μg/L range	baseline concentrations of well water arsenic (quartiles), μg/L Exp. Level <u>n</u> <u>adjBeta</u> (Cl)

Reference and Study Design	Exposure Measures	Results				
age 30 enrolled in		0.10-2.0	NR	1	n/a	
HEALS study		2.01-23.13	NR	0.88	0.77, 0.99	
n cases: 666		23.14-73.46	NR	0.96	0.85, 1.08	
n control: n/a		73.47 -	NR	0.99	0.88, 1.12	
		500.62			,	
		Stat Meth	nod: mod	lels run with	log	
		transformed inflammatory markers				
		Outcome: Myeloperoxidase (ng/mL)			nL)	
		per Log-transformed well water arsen				
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		continuous	NR	1	0.97, 1.02	
		Stat Meth	nod: com	puted with	og-transform	
		arsenic level entered as a continuous			-	
		variable in linear regression models				
		baseline concentrations of well water arsen			ater arsenic	
		(quartiles), μg	ŋ∕L			
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		0.10-2.0	NR	1	n/a	
		2.01-23.13	NR	0.94	0.83, 1.07	
		23.14-73.46	NR	0.96	0.84, 1.09	
		73.47 -	NR	0.99	0.87, 1.13	
		500.62				
				lels run with ammatory m		
		Outcome: PAI	-1 (ng/n	nL)		
		per Log-trans	formed v	vell water a	rsenic. µa/L	
		Exp. Level	<u>n</u>	adjBeta	<u>(CI)</u>	
		continuous	NR	1.02	0.99, 1.04	
					og-transform	
				ered as a cor		
				regression r		
		baseline conc (quartiles), µg		ns of well w	ater arsenic	
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		0.10-2.0	NR	1	n/a	
		2.01-23.13	NR	0.98	0.87, 1.10	
		23.14-73.46	NR	0.95	0.84, 1.07	
		73.47 -	NR	1.13	1.00, 1.28	
		500.62				
			nod: mor	lels run with	log	
		transform			-	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-156Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures	Results			
		Outcome: Soluble	e E-selectin (ng/r	nL)	
		per Log-transform Exp. Level <u>n</u> continuous N	<u>adjBeta</u> R 1	<u>(CI)</u> 0.98, 1.02	
		Stat Method: computed with log-transform arsenic level entered as a continuous variable in linear regression models baseline concentrations of well water arsenic (quartiles), μg/L			
		<u>Exp. Level</u> <u>n</u> 0.10-2.0 N		<u>(CI)</u> n/a	
		2.01-23.13 N		0.91, 1.09	
		23.14-73.46 N		0.90, 1.08	
		73.47 - N 500.62	R 1	0.91, 1.10	
			models run with		
		transformed inflammatory markers Outcome: Soluble ICAM-1 (ng/mL)			
		per Log-transform			
		Exp. Level <u>n</u>		<u>(CI)</u>	
		continuous N	R 1 computed with	0.97, 1.03	
			entered as a cor		
			near regression r		
		baseline concentr (quartiles), μg/L	ations of well w	ater arsenic	
		<u>Exp. Level</u> <u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		0.10-2.0 N		n/a	
		2.01-23.13 N		0.75, 1.00	
		23.14-73.46 N 73.47 - N		0.78, 1.04 0.86, 1.15	
		500.62		0.00, 1.13	
			models run with	log	
		transformed	inflammatory m	arkers	
		Outcome: Soluble VCAM-1 (ng/mL)			
		per Log-transform			
		Exp. Level <u>n</u>		<u>(CI)</u>	
		continuous N Stat Method:	R 1.02 computed with	1.01, 1.03	
			entered as a cor	-	
			near regression r		

Reference and Study Design	Exposure Measures	Results				
		baseline conce (quartiles), μg		ns of well w	ater arsenic	
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		0.10-2.0	NR	1	n/a	
		2.01-23.13	NR	1.04	0.97, 1.12	
		23.14-73.46	NR	1.09	1.02, 1.17	
		73.47 -	NR	1.09	1.01, 1.16	
		500.62		1.05	1.01, 1.10	
			od: mor	dels run with	log	
				ammatory m	-	
	Exposure Surrogate: urine	Outcome: MMP-9 (ng/mL)				
		per Log-transj creatinine	formed	urinary arse	nic, μg/g-	
	Exposure Description: total urinary		n	adiData	(CI)	
	arsenic concentration measured by	Exp. Level	<u>n</u> NR	adjBeta	<u>(CI)</u> 0.93, 1.03	
	atomic absorption; all the urine samples	continuous		0.98	,	
	were detectable for total urinary arsenic.				og-transform	
				ered as a cor		
	Population-Level Exposure:	variable in linear regression mo			nodels	
	12.05-1,869.57 μg/g-creatinine range	baseline concentrations of urinary arsenic (quartiles), μg/g-creatinine				
		Exp. Level			<u>(CI)</u>	
		12.05-88.21	<u>n</u> NR	<u>adjBeta</u> 1	<u>n/a</u>	
		88.22-141.69	NR	0.89	-	
					0.79, 1.01	
		141.70-	NR	0.86	0.76, 0.97	
		275.63		0.05	0.04.4.00	
		275.64-	NR	0.95	0.84, 1.08	
		1,869.57				
				dels run with	-	
				ammatory m		
		Outcome: My				
		per Log-transj creatinine	formed	urinary arse	nic, μg/g-	
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		continuous	NR	0.98	0.93, 1.03	
		Stat Meth	od: com	puted with	og-transforme	
				ered as a cor	-	
		variable in linear regression models				
		baseline conce (quartiles), μg			v arsenic	
			-		(CI)	
		<u>Exp. Level</u> 12.05-88.21	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u> n/a	
			NR	1		

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-158Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures		R	lesults	
		141.70-	NR	0.91	0.80, 1.03
		275.63			
		275.64-	NR	0.92	0.81, 1.05
		1,869.57			
				lels run with	-
		transform	ed infla	mmatory m	arkers
		Outcome: PAI-1 (ng/mL)			
		per Log-transfo creatinine	ormed u	ırinary arseı	nic, μg/g-
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	1.05	1.00, 1.11
		Stat Metho	od: com	puted with	og-transform
		arsenic lev	vel ente	red as a cor	ntinuous
		variable in	n linear	regression r	nodels
		baseline concer			v arsenic
		(quartiles), μg/			
		Exp. Level	<u>n</u>	adjBeta	<u>(CI)</u> m (n
		12.05-88.21	NR	1	n/a
		88.22-141.69		0.96	0.85, 1.09
		141.70-	NR	0.95	0.84, 1.07
		275.63	ND	1 1 1	0.00 1.76
		275.64- 1,869.57	NR	1.11	0.90, 1.26
			d mod	lels run with	log
				mmatory m	-
		Outcome: Solu			
		per Log-transfo creatinine			-
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	1	0.96, 1.04
				-	og-transform
				ered as a cor	
		variable in	n linear	regression r	nodels
		baseline concer			v arsenic
		(quartiles), μg/	-		()
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		12.05-88.21	NR	1	n/a
		88.22-141.69	NR	0.96	0.88, 1.06
		141.70-	NR	0.92	0.84, 1.01
		275.63			
		275.64-	NR	0.99	0.90, 1.09
		1,869.57			

These draft development materials are for review purposes only and do not constitute Agency policy. April 2014 5-159 Draft: Do Not Cite or Quote

eference and Study Design	Exposure Measures		ſ	Results	
				dels run with ammatory m	
		Outcome: Soluble ICAM-1 (ng/mL) per Log-transformed urinary arsenic, µg/g-			
		creatinine	onnea	annary arser	<i>iic, µg, g</i>
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	1.01	0.95, 1.07
		Stat Method: computed with log-transform arsenic level entered as a continuous variable in linear regression models baseline concentrations of urinary arsenic (quartiles), μg/g-creatinine Exp. Level <u>n</u> adjBeta (CI)			
		12.05-88.21	NR	1	n/a
		88.22-141.69	NR	0.92	0.79, 1.06
		141.70-	NR	0.96	0.83, 1.11
		275.63		0.00	5.00, 1.11
		275.64-	NR	1	0.86, 1.16
		1,869.57		T	0.00, 1.10
			od: mor	lels run with	log
		Stat Method: models run with log transformed inflammatory markers			-
		Outcome: Solu	uble VC/	AM-1 (ng/m	L)
		per Log-transf creatinine	formed u	urinary arse	nic, μg/g-
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	1.04	1.01, 1.07
		Stat Meth	od: com	puted with l	log-transform
		arsenic le	evel ente	ered as a cor	ntinuous
		variable i	n linear	regression r	nodels
		baseline conce			v arsenic
		(quartiles), μg			<i>(</i>)
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		12.05-88.21	NR	1	n/a
		88.22-141.69	NR	1.02	0.95, 1.09
		141.70-	NR	1.08	1.01, 1.16
		275.63			
		275.64-1,869	NR	1.09	1.02, 1.17
		Stat Meth	od: mod	dels run with	log
				ammatory m	-

--: not reported; n: number of cases (when presented in Results column)

5.8.1 References for Summary of Observational Epidemiology Studies for Health Effect Category: Immune System and Lymphatic Effects

- <u>Ahmed, S; Ahsan, KB; Kippler, M; Mily, A; Wagatsuma, Y; Hoque, AMW; Ngom, PT; El Arifeen, S; Raqib, R;</u>
 <u>Vahter, M.</u> (2012). In utero arsenic exposure is associated with impaired thymic function in newborns possibly via oxidative stress and apoptosis. Toxicol Sci 129: 305-314. <u>http://dx.doi.org/10.1093/toxsci/kfs202</u>
- Biswas, R; Ghosh, P; Banerjee, N; Das, JK; Sau, T; Banerjee, A; Roy, S; Ganguly, S; Chatterjee, M; Mukherjee, <u>A; Giri, AK.</u> (2008). Analysis of T-cell proliferation and cytokine secretion in the individuals exposed to arsenic. Hum Exp Toxicol 27: 381-386. <u>http://dx.doi.org/10.1177/0960327108094607</u>
- Bosnjak, Z; Cavar, S; Klapec, T; Milic, M; Klapec-Basar, M; Toman, M. (2008). Selected markers of cardiovascular disease in a population exposed to arsenic from drinking water. Environ Toxicol Pharmacol 26: 181-186. <u>http://dx.doi.org/10.1016/j.etap.2008.03.005</u>
- García-Esquinas, E; Pollan, M; Umans, JG; Francesconi, KA; Goessler, W; Guallar, E; Howard, B; Farley, J; Best, LG; Navas-Acien, A. (2013). Arsenic exposure and cancer mortality in a US-based prospective cohort: the strong heart study. Cancer Epidemiol Biomarkers Prev 22: 1944-1953. <u>http://dx.doi.org/10.1158/1055-9965.EPI-13-0234-T</u>
- Josyula, AB; Poplin, GS; Kurzius-Spencer, M; McClellen, HE; Kopplin, MJ; Sturup, S; Lantz, RC; Burgess, JL. (2006). Environmental arsenic exposure and sputum metalloproteinase concentrations. Environ Res 102: 283-290. <u>http://dx.doi.org/10.1016/j.envres.2006.01.003</u>
- Lewis, DR; Southwick, JW; Ouellet-Hellstrom, R; Rench, J; Calderon, RL. (1999). Drinking water arsenic in Utah: A cohort mortality study. Environ Health Perspect 107: 359-365. http://dx.doi.org/10.1289/ehp.99107359
- Moore, SE; Prentice, AM; Wagatsuma, Y; Fulford, AJC; Collinson, AC; Raqib, R; Vahter, M; Persson, LA; Arifeen, SE. (2009). Early-life nutritional and environmental determinants of thymic size in infants born in rural Bangladesh. Acta Paediatr 98: 1168-1175. http://dx.doi.org/10.1111/j.1651-2227.2009.01292.x
- <u>Pesola, GR; Parvez, F; Chen, Y; Ahmed, A; Hasan, R; Ahsan, H.</u> (2012). Arsenic exposure from drinking water and dyspnoea risk in Araihazar, Bangladesh: a population-based study. Eur Respir J. <u>http://dx.doi.org/10.1183/09031936.00042611</u>
- <u>Raqib, R; Ahmed, S; Sultana, R; Wagatsuma, Y; Mondal, D; Hoque, AM; Nermell, B; Yunus, M; Roy, S;</u> <u>Persson, LA; Arifeen, SE; Moore, S; Vahter, M.</u> (2009). Effects of in utero arsenic exposure on child immunity and morbidity in rural Bangladesh. Toxicol Lett 185: 197-202. <u>http://dx.doi.org/10.1016/j.toxlet.2009.01.001</u>
- Shiue, I. (2013). Association of urinary arsenic, heavy metal, and phthalate concentrations with food allergy in adults: National Health and Nutrition Examination Survey, 2005-2006 [Letter]. Ann Allergy Asthma Immunol 111: 421-423. <u>http://dx.doi.org/10.1016/j.anai.2013.08.006</u>
- Sohel, N; Persson, LA; Rahman, M; Streatfield, PK; Yunus, M; Ekström, EC; Vahter, M. (2009). Arsenic in drinking water and adult mortality: a population-based cohort study in rural Bangladesh. Epidemiology 20: 824-830. <u>http://dx.doi.org/10.1097/EDE.0b013e3181bb56ec</u>
- Wu, F; Jasmine, F; Kibriya, MG; Liu, M; Wójcik, O; Parvez, F; Rahaman, R; Roy, S; Paul-Brutus, R; Segers, S;
 <u>Slavkovich, V; Islam, T; Levy, D; Mey, JL; van Geen, A; Graziano, JH; Ahsan, H; Chen, Y.</u> (2012).
 Association Between Arsenic Exposure From Drinking Water and Plasma Levels of Cardiovascular Markers.
 Am J Epidemiol. <u>http://dx.doi.org/10.1093/aje/kwr464</u>

5.9 Summary of Observational Epidemiology Studies for Health Effect Category: Liver Effects

	Health Effect Category: Liver Effects				
Reference and Study Design	Exposure Measures	Results			
Baastrup et al. (2008)	Exposure Surrogate: drinking water	Outcome: live			
		cumulative ar	senic exi	nosure ma	
	Evenesure Descriptions sumulative arconic	Exp. Level	<u>n</u>	IRR	<u>(CI)</u>
Study Type: cohort (prospective)	Exposure Description: cumulative arsenic exposure and time-weighted average	continuous	NR	0.99	<u></u> 0.89, 1.10
prospective)	arsenic concentrations calculated for			regression	0.05, 1.10
	individuals based on residential address	Stat Weth		16816331011	
Location: Denmark	and history from Central Population				
Copenhagen and	Registry combined with measurement				
Aarhus)	data from nearest water utility as				
	recorded by Geological Survey of				
Population: Danish	Denmark and Greenland (1987-2004)				
Cancer Registry					
population (adults)	Demolation Level Francesco				
n exposed: 56,378	Population-Level Exposure: not available				
n total: 57,053					
	Exposure Surrogate: drinking water	Outcome: liver cancer time-weighted average arsenic exposure, µg			
					xposure, μg/L
	Exposure Description: time-weighted	Exp. Level	<u>n</u>	IRR	<u>(CI)</u>
	and cumulative arsenic concentrations	continuous	NR	1.05	0.88, 1.25
	calculated for individuals based on	Stat Meth	od: Cox	regression	
	residential address and history from				
	Central Population Registry combined				
	with measurement data from nearest				
	water utility as recorded by Geological				
	Survey of Denmark and Greenland (1987-				
	2004)				
	Population-Level Exposure:				
	0.7 μg/L median				
<u>Chung et al. (2012)</u>	Exposure Surrogate: drinking water	Outcome: live	r cancer		
		cumulative wo	ater arse	nic exposu	re (tertiles),
Study Type: cohort	Exposure Description: cumulative arsenic	μg/L-year		-	-
(prospective)	exposure assessment determined by	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
··· ·	duration of artesian well water use,	<9.1	5	1	n/a
ecotion. Toiwon	history or residence, and historical data;	9.1-19.5	11	1.46	0.49, 4.37
Location: Taiwan	cumulative arsenic exposure derived to	≥ 19.5	8	0.65	0.17, 2.44
(Homei, Fuhsin, Hsinming)	reflect long-term arsenic exposure by	Stat Meth	od: Cox	proportion	al hazard mod
i si i i i i i i i i i i i i i i i i i	median well water arsenic (population				

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-163Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures	Results			
Design	level exposure reported here) x duration				
	of use				
Population: residents					
of arseniasis-endemic					
areas	Population-Level Exposure:				
n total: 1,563	9.1-19.5 μg/L-year range				
	Exposure Surrogate: drinking water	Outcome: live	er cance	r	
		average wate	er arseni	c concentra	ition (tertiles),
	Exposure Description: information on	mg/L			
	median arsenic level in artesian well	Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>
	water of each village acquired from	<0.05	3	1	n/a
	previous studies carried out in the early	0.05-0.71	12	1.29	0.34, 4.83
	1960s (<u>Lai et al., 1994</u>); some study	≥ 0.71	9	0.87	0.22, 3.50
	subjects had moved from one village to	Stat Met	hod: Cox	proportion	al hazard mode
	another, and there were differences in				
	arsenic concentrations between villages				
	Population-Level Exposure:				
	0.7-0.93 mg/L range				
	Exposure Surrogate: urine	Outcome: liver cancer			
		percent DMA in total urinary arsenic concentration (tertiles), %			enic
	Exposure Description: urine samples of				
	1,078 subjects collected at time of	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
	recruitment; all arsenic assays performed	≥ 85.8	3	1	n/a
	within 6 months of sample collection	76.13-85.8	7	1.67	0.43, 6.52
		<76.13	6	1.01	0.25, 4.13
	Population-Level Exposure:	Stat Met	hod: Cox	proportion	al hazard mode
	not available	nercent inorg	anic ars	enic in tota	l urinary arsen
		concentration			i unitur y urseni
		Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>
		<4.22	3	1	n/a
		4.22-7.86	4	1.05	0.23, 4.70
		≥ 7.86	9	2.32	0.63, 8.64
					al hazard mode
		percent MMA in total urinary arsenic concentration (tertiles), %			senic
			•		
		Exp. Level	<u>n</u>	adjOR	<u>(CI)</u> m (a
		<8.34	3	1	n/a
		8.34-15.31	8	2.57	0.68, 9.72
		≥ 15.31	5	0.8	0.19, 3.38
		Stat Met	nod: Cox	proportion	al hazard mode
	Exposure Surrogate: urine	Outcome: live			

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-164Draft: Do Not Cite or Quote

	of Observational Epidemiology Studies for					
Reference and Study Design	Exposure Measures	Results				
(2013)		urinary arsenic concentration, µg/g-creatining				
Study Type: cohort (prospective)	Exposure Description: individual urine samples collected and analyzed for arsenic speciation	Exp. LevelnHR(Cl)80th vs. 20thNR1.340.66, 2.72percentiles				
Location: United States (AZ; ND; OK; SD)	Population-Level Exposure: 9.7 μg/g-creatinine median, 5.8-15.6 μg/g-creatinine 25th percentile	Stat Method: Cox proportional hazard models; log transformed				
Population: Strong Heart Study participants n total: 3,935						
<u>Guo et al. (2007)</u>	Exposure Surrogate: drinking water	Outcome: hepatomegaly				
Study Type: cross- sectional	Exposure Description: arsenic samples were taken from 94 water sources,	water arsenic concentration, µg/L arsenic not significantly associated with hepatomegaly				
	including wells; detection limit not	Outcome: liver function test				
Location: Mongolia region not available	specified, but authors note reliability of the method at <10 µg/L; arsenic exposure determined by location of village	<i>water arsenic concentration, μg/L</i> arsenic not significantly associated with liver function				
Population: residents of villages in the Hetao Plain, Inner Mongolia n cases: 680 n control: 189	Population-Level Exposure: 50-1,860 μg/L range					
<u>Hsu et al. (2013b)</u>	Exposure Surrogate: drinking water	Outcome: liver cancer				
Study Type: cohort (prospective)	Exposure Description: SW population: median arsenic level of several wells	arsenic concentration in well water (non- diabetes mellitus vs. diabetes mellitus subject µg/L				
Location: Taiwan (SW: Peimen, Hsuechia, Ichu,	shared in a village derived from two surveys; NE population: arsenic level of well water samples collected during	Exp. LevelnHR(Cl)non-DM w/NR1n/aAs <500				
and Putai Townships; NE: Chiaohsi,	home interviews	DM w/ As NR 2.63 1.84, 3.76 <500 non-DM w/ NR 1 n/a				
Chuangwei, Wuchieh, and Tungshan	Population-Level Exposure: 10-500 μg/L range	As ≥ 500				
Townships)		DM w/ As NR 2.32 1.11, 4.86 ≥ 500				
Population: residents of an arseniasis- endemic area with and		Stat Method: Cox regression analysis				

Summary of Observational Epidemiology Studies for Health Effect Category: Liver Effects **Reference and Study Exposure Measures** Results Design without skin lesions n total: 9,525 Lewis et al. (1999) Exposure Surrogate: drinking water **Outcome: billiary passages and liver cancer** cumulative arsenic exposure (females), ppb-years SMR (CI) Exp. Level n Study Type: cohort Exposure Description: arsenic <1,000 NR 2.99 n/a (retrospective) concentrations in drinking water determined from Utah state records and 1,000-4,999 NR NR n/a ≥ 5.000 NR 1.15 n/a an EPA study; arsenic exposure index Location: United States score calculated individually based on Stat Method: standardized mortality ratios (Millard County, Utah) number of years residence in each cumulative arsenic exposure (males), ppb-years community and median drinking water Exp. Level n SMR (CI) **Population:** deceased arsenic concentration in community <1.000 NR NR n/a male and female 1,000-4,999 NR 2.52 n/a members of Latter-day **Population-Level Exposure:** ≥ 5,000 NR NR n/a Saints church wards 3.5-620 ppb-years range Stat Method: standardized mortality ratios n exposed: 2,203 n total: 2,203 Majumdar et al. (2009) Exposure Surrogate: drinking water **Outcome: hepatomegaly** arsenic concentration in drinking water (females), μg/L Study Type: cross-Exposure Description: for each Exp. Level prevOR (CI) sectional participant, water samples from private n <50 NR 1 n/a or public tube wells analyzed for arsenic; ≥ 500 NR 4.34 2.8, 6.5 exposure categories developed based on Location: India (West arsenic levels Stat Method: prevalence odds ratio Bengal) calculated for each outcome comparing highest and lowest exposure levels **Population-Level Exposure: Population:** residents 50-500 µg/L range arsenic concentration in drinking water (males), of arsenic-affected μg/L villages with Exp. Level <u>prevOR</u> <u>(CI)</u> <u>n</u> comparison population <50 NR 1 n/a from low exposure area 3.4, 7.6 ≥ 500 NR 5.13 n cases: 3,825 Stat Method: prevalence odds ratio n control: 3,451 calculated for each outcome comparing highest and lowest exposure levels Sawada et al. (2013) Exposure Surrogate: diet **Outcome: liver cancer** inorganic arsenic intake (females; quartiles), µg/day Study Type: cohort Exposure Description: detailed Exp. Level HR (CI) n (prospective) questionnaire on food intake/frequency; 40.6 21 1 n/a average arsenic concentrations in food 53.7 32 1.36 0.78.2.38 items obtained from the literature; Location: Japan (Iwate, 62.6 36 1.41 0.81, 2.46 arsenic intake calculated by multiplying Akita, Nagano,

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-166Draft: Do Not Cite or Quote

average arsenic concentration in each

105.7

28

1.1

0.61, 1.97

Summary	of Observational Epidemiology Studies for	Health Effect (Category:	Liver Effe	cts
Reference and Study Design	Exposure Measures	Results			
Okinawa, Tokyo, Ibaraki, Niigata, Kochi,	item by quantity consumed	Stat Met	egression		
Nagasaki, Osaka)	Population-Level Exposure:	inorganic ars μg/day	quartiles),		
Population: adults in Japan Public Health	170 μg/day mean, 88.3-253.2 μg/day range	<u>Exp. Level</u> 40.5	<u>n</u> 68	<u>HR</u> 1	<u>(CI)</u> n/a
Center (JPHC)		54.7	49	0.62	0.43, 0.90
Prospective Study cohort		63.5 99.1	78 90	0.87 0.94	0.62, 1.22 0.67, 1.31
n total: 90,378		Stat Met	hod: Mul	ltivariate re	egression
<u>Tsuda et al. (1995)</u>	Exposure Surrogate: drinking water	Outcome: liver cancer arsenic concentration in well water in 19			
					iter in 1959, ppm
Study Type: cohort	Exposure Description: arsenic in well	Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>
(retrospective)	water measured in 1959 (the end of the	< 0.05	0	0	0, 4.43
	exposure period) in 34 wells; 20 area wells had no documented levels of	0.05-0.99 ≥ 1	0 2	0 7.17	0, 15.06 1.28, 26.05
Location: Japan (Namiki-cho)	arsenic so authors inferred that arsenic levels were undetectable or very low; concentration assigned based on		-	proportion	,
Population: adults and children living near	residence in 1959				
factory producing arsenic trisulfide	Population-Level Exposure: 0.05-1 ppm range				
n exposed: 189 n reference: 254 n total: 443					

--: not reported; n: number of cases (when presented in Results column)

5.9.1 References for Summary of Observational Epidemiology Studies for Health Effect Category: Liver Effects

- Baastrup, R; Sørensen, M; Balstrøm, T; Frederiksen, K; Larsen, CL; Tjønneland, A; Overvad, K; Raaschou-<u>Nielsen, O.</u> (2008). Arsenic in drinking-water and risk for cancer in Denmark. Environ Health Perspect 116: 231-237. <u>http://dx.doi.org/10.1289/ehp.10623</u>
- Chung, CJ; Huang, YL; Huang, YK; Wu, MM; Chen, SY; Hsueh, YM; Chen, CJ. (2012). Urinary arsenic profiles and the risks of cancer mortality: A population-based 20-year follow-up study in arseniasis-endemic areas in Taiwan. Environ Res 122: 25-30. http://dx.doi.org/10.1016/j.envres.2012.11.007

- García-Esquinas, E; Pollan, M; Umans, JG; Francesconi, KA; Goessler, W; Guallar, E; Howard, B; Farley, J; Best, LG; Navas-Acien, A. (2013). Arsenic exposure and cancer mortality in a US-based prospective cohort: the strong heart study. Cancer Epidemiol Biomarkers Prev 22: 1944-1953. <u>http://dx.doi.org/10.1158/1055-9965.EPI-13-0234-T</u>
- <u>Guo, JX; Hu, L; Yand, PZ; Tanabe, K; Miyatalre, M; Chen, Y.</u> (2007). Chronic arsenic poisoning in drinking water in Inner Mongolia and its associated health effects. J Environ Sci Health A Tox Hazard Subst Environ Eng 42: 1853-1858. <u>http://dx.doi.org/10.1080/10934520701566918</u>
- Hsu, LI; Wang, YH; Chiou, HY; Wu, MM; Yang, TY; Chen, YH; Tseng, CH; Chen, CJ. (2013). The association of diabetes mellitus with subsequent internal cancers in the arsenic-exposed area of Taiwan. J Asian Earth Sci 73: 452-459. <u>http://dx.doi.org/10.1016/j.jseaes.2013.04.048</u>
- Lai, MS; Hsueh, YM; Chen, CJ; Shyu, MP; Chen, SY; Kuo, TL; Wu, MM; Tai, TY. (1994). Ingested inorganic arsenic and prevalence of diabetes mellitus. Am J Epidemiol 139: 484-492.
- Lewis, DR; Southwick, JW; Ouellet-Hellstrom, R; Rench, J; Calderon, RL. (1999). Drinking water arsenic in Utah: A cohort mortality study. Environ Health Perspect 107: 359-365. http://dx.doi.org/10.1289/ehp.99107359
- Majumdar, KK; Guha Mazumder, DN; Ghose, N; Ghose, A; Lahiri, S. (2009). Systemic manifestations in chronic arsenic toxicity in absence of skin lesions in West Bengal. Indian J Med Res 129: 75-82.
- Sawada, N; Iwasaki, M; Inoue, M; Takachi, R; Sasazuki, S; Yamaji, T; Shimazu, T; Tsugane, S. (2013). Dietary arsenic intake and subsequent risk of cancer: The Japan Public Health Center-based (JPHC) prospective study. Cancer Causes Control 24: 1403-1415. <u>http://dx.doi.org/10.1007/s10552-013-0220-2</u>
- Tsuda, T; Babazono, A; Yamamoto, E; Kurumatani, N; Mino, Y; Ogawa, T; Kishi, Y; Aoyama, H. (1995). Ingested arsenic and internal cancer: A historical cohort study followed for 33 years. Am J Epidemiol 141: 198-209.

5.10Summary of Observational Epidemiology Studies for Health Effect Category: Mortality

Summa	ry of Observational Epidemiology Studies fo	r Health Effect	Categor	y: Mortalit	y
Reference and Study Design	Exposure Measures	Results			
<u>Rahman et al. (2013)</u>	Exposure Surrogate: drinking water	Outcome: all-	cause m	ortality	
		cumulative w	ater ars	enic exposi	ure, ug-yr/L
Study Type: cohort	Exposure Description: cumulative arsenic	Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>
(prospective)	exposure based on number of years each	<1,000	54	1	n/a
	well used and concentration in each well	1,000-4,000	88	1.17	0.84, 1.65
Location: Bangladesh		>4,000	43	1.9	1.25, 2.89
(Matlab)	Population-Level Exposure: 1,000-4,000 ug-yr/L range	Stat Meth	nod: Cox	proportion	nal hazard
Population: children in	Exposure Surrogate: drinking water	Outcome: all-	cause m	ortality	
AsMat study who died non-accidental deaths		baseline wate μg/L	er arseni	c concentr	ation (quintiles),
	Exposure Description: well water	Exp. Level	n	<u>HR</u>	<u>(CI)</u>
n total: 185	samples (n = 13,286) analyzed for determination of baseline individual-level	<10	<u>n</u> 83	<u>1111</u>	n/a
	arsenic exposure; historical drinking	10-49	15	1.13	0.65, 1.96
	water exposure information obtained	50-149	13	0.81	0.45, 1.46
	from parent/guardian interviews;	150-299	39	1.35	0.92, 1.97
	baseline, time- weighted lifetime	300+	35	1.51	1.01, 2.23
	average, and cumulative arsenic	Stat Method: Cox proportional hazard			
	exposure estimated for each individual	· ·			
		time-weighte			arsenic
	Population-Level Exposure:	concentration			()
	10-300 µg/L range	Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>
		<10	24	1	n/a
		10-49	17	1.37	0.74, 2.57
		50-149	44	1.44	0.88, 2.38
		150-299	56	1.22	0.75, 1.98
		300+	44	1.88	1.14, 3.10
		Stat Meth	nod: Cox	proportion	hal hazard
		Outcome: car mortality	icer and	cardiovaso	cular-related
		baseline wate μg/L	er arseni	c concentr	ation quartiles),
		Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>
		<10	16	1	n/a
		10-50	4	1.53	0.51, 4.57
		51-150	4	1.29	0.43, 3.87

These draft development materials are for review purposes only and do not constitute Agency policy.

	ry of Observational Epidemiology Studies fo	or Health Effect			,
Reference and Study Design	Exposure Measures	Results			
Design		>150	22	2.18	1.15, 4.16
				proportion	
<u>Sohel et al. (2009)</u>	Exposure Surrogate: drinking water	Outcome: all	nonaccid	ental deat	hs
		cumulative w	tration		
Study Type: cohort	Exposure Description: cumulative	(quintiles), μ	g/L		
(prospective)	drinking water arsenic concentration	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
	based on current arsenic concentrations	<10	967	1	n/a
	(reasonably stable over time); average	10-49	1,258	1.16	1.06, 1.26
Location: Bangladesh	household exposure (used as proxy for	50-149	3,584	1.26	1.18, 1.36
(Matlab)	individual exposure) calculated for each	150-299	3,077	1.36	1.27, 1.47
	calendar year from 1970, based on	≥ 300	1,076	1.35	1.23, 1.48
Population: Health and	information obtained from the current	Stat Met	-	proportion	al hazard model
Demographic	population present in that specific				
Surveillance System	household for each year	Outcome: ca	ncer deatl	าร	
1991-2000, adults and children with		cumulative water arsenic concentration			tration
nonaccidental deaths	Population-Level Exposure:	(quintiles), μ	g/L		
1991-2000	10-300 μg/L range	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
		<10	55	1	n/a
n exposed: 93,415		10-49	71	1.1	0.77, 1.59
n total: 93,415		50-149	229	1.44	1.06, 1.95
		150-299	181	1.75	1.28, 2.40
		≥ 300	53	1.06	1.56, 2.30
		Stat Met	hod: Cox p	proportion	al hazard model
<u>Tsuda et al. (1995)</u>	Exposure Surrogate: drinking water	Outcome: all	deaths		
		arsenic conce	entration i	n well wa	ter in 1959, ppm
Study Type: cohort	Exposure Description: arsenic in well	Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>
(retrospective)	water measured in 1959 (the end of the	<0.05	56	0.87	0.67, 1.13
· · · /	exposure period) in 34 wells; 20 area	0.05-0.99	17	1.08	0.65, 1.73
	wells had no documented levels of	≥1	32	1.58	1.12, 2.22
Location: Japan	arsenic so authors inferred that arsenic	Stat Met	hod: Cox r	proportion	al hazard
(Namiki-cho)	levels were undetectable or very low;			•	
	concentration assigned based on				
Population: adults and	residence in 1959				
children living near					
factory producing	Deputation Louis Function				
arsenic trisulfide	Population-Level Exposure:				
n exposed: 189	0.05-1 ppm range				
n reference: 254					
n total: 443					
	l per of cases (when presented in Results colu	<u> </u>			

--: not reported; n: number of cases (when presented in Results column)

5.10.1 References for Summary of Observational Epidemiology Studies for Health Effect Category: Mortality

- Rahman, M; Sohel, N; Yunus, M; Chowdhury, ME; Hore, SK; Zaman, K; Bhuiya, A; Streatfield, PK. (2013). Increased childhood mortality and arsenic in drinking water in Matlab, Bangladesh: a population-based cohort study. PLoS ONE 8: e55014. <u>http://dx.doi.org/10.1371/journal.pone.0055014</u>
- Sohel, N; Persson, LA; Rahman, M; Streatfield, PK; Yunus, M; Ekström, EC; Vahter, M. (2009). Arsenic in drinking water and adult mortality: a population-based cohort study in rural Bangladesh. Epidemiology 20: 824-830. <u>http://dx.doi.org/10.1097/EDE.0b013e3181bb56ec</u>
- Tsuda, T; Babazono, A; Yamamoto, E; Kurumatani, N; Mino, Y; Ogawa, T; Kishi, Y; Aoyama, H. (1995). Ingested arsenic and internal cancer: A historical cohort study followed for 33 years. Am J Epidemiol 141: 198-209.

5.11Summary of Observational Epidemiology Studies for Health Effect Category: Nervous System Effects

Summary of Ol	oservational Epidemiology Studies for Healt	h Effect Category: Nervous System Effects
Reference and Study Design	Exposure Measures	Results
Adams et al. (2013)	Exposure Surrogate: blood	Outcome: autism
		arsenic concentration in RBC, ng/g
Study Type: case- control Location: United States (AZ)	Exposure Description: morning blood samples collected after overnight fast; RBC samples provided a measure of longer-term exposure (several months)	Exp. Levelnmean(Cl)neurotypicalNR4.33n/agroupautism groupNR4.3n/aStat Method:two-sided unpaired t-test
Population: children	Population-Level Exposure: 4.32 ng/g mean	
with autism;	Exposure Surrogate: blood	Outcome: autism
participants recruited with help of the Autism Society of America— Greater Phoenix Chapter and the Arizona Division of Developmental Disabilities n cases: 55 n control: 44	Exposure Description: morning blood samples collected after overnight fast; whole blood samples included a mixture of long-term (cellular) and short-term (serum) components and provided a measure of intermediate exposure Population-Level Exposure: 3.33 µg/L mean	whole blood arsenic concentrations, μg/LExp. Levelnmean(Cl)neurotypicalNR3.37n/agroupautism groupNR3.3n/aStat Method:two-sided unpaired t-test
	Exposure Surrogate: blood and urine	Outcome: autism (severity/symptoms determined by pervasive developmental disorder behavior inventory [PDD-BI])
	Exposure Description: blood and urine exposure (combined) as continuous variable	toxic metals in blood and urine, unitlessExp. LevelnadjR2(Cl)continuousNR0.46n/aStat Method: regression
	Population-Level Exposure: not available	
	Exposure Surrogate: urine	Outcome: autism
	Exposure Description: morning urine samples collected after overnight fast (first urine); provided a measure of recent exposure (several days)	arsenic concentration in urine by autism status,µg/g-creatinineExp. Levelnmean(CI)neurotypicalNR17.9n/agroup
		autism group NR 30.8 n/a

Summary of Observational Epidemiology Studies for Health Effect Category: Nervous System Effects **Reference and Study Exposure Measures** Results Design Stat Method: two-sided unpaired t-test **Population-Level Exposure:** 24.35 μg/g-creatinine mean Ali et al. (2010) Outcome: plasma cholinesterase (PChE) activity Exposure Surrogate: drinking water (U/L) x 10^4 water arsenic levels (by regulatory limits), µg/L Study Type: cross-**Exposure Description:** water samples Exp. Level mean (CI) sectional collected from tube wells and analyzed n ≤ 50 NR 1.775 n/a for total arsenic; all samples determined >50 NR 1.365 n/a in triplicate and average values used for Location: Bangladesh Stat Method: Independent Samples T-Test data analysis; study subjects split into (Kushtia district tertile groups based on drinking water (northwest)) Log water arsenic concentration, µg/L arsenic concentrations Exp. Level n corr (CI) coeff **Population:** residents **Population-Level Exposure:** -0.52 n/a continuous NR of areas with high 224.92 μg/L mean 57.2SD Stat Method: Spearman correlation prevalence of coefficient test arsenicosis n cases: 141 Exposure Surrogate: hair Outcome: plasma cholinesterase (PChE) activity n control: n/a (U/L) x 10^4 log hair arsenic levels, $\mu g/g$ Exposure Description: hair samples ~1 (CI) Exp. Level n corr cm long were collected from close to the coeff scalp, behind the ear; cleaned prior to continuous NR -0.47 n/a analysis Stat Method: Spearman correlation coefficient test **Population-Level Exposure:** 5.27 μg/g mean 7.06SD Exposure Surrogate: nail Outcome: plasma cholinesterase (PChE) activity (U/L) x 10^4 *log nail arsenic levels, μg/g* **Exposure Description:** individual nail (CI) Exp. Level n corr samples collected and cleaned prior to coeff analysis -0.35 continuous NR n/a Stat Method: Spearman correlation **Population-Level Exposure:** coefficient test 7.51 μg/g mean 7.64SD Chiou et al. (2005) **Outcome: Neurological disorder** Exposure Surrogate: drinking water drinking water arsenic concentration - nondiabetic subjects, mg/L Study Type: cohort **Exposure Description:** drinking water Exp. Level adjOR (CI) n (retrospective) arsenic concentration as reported by the < 0.1 National Taiwan University Group; NR 1 n/a 0.1-0.29 NR 0.84 0.73, 0.97 median concentration used as surrogate Location: Taiwan 0.3-0.59 NR 1.1 0.98, 1.25 if village had multiple wells (southwestern: Tainan

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

≥ 0.6

NR

1.68

1.49, 1.89

Reference and Study Design	oservational Epidemiology Studies for Healt Exposure Measures	Results			
County (Yenshui, Beimen, and Shuechia townships), Chiayi	Population-Level Exposure:	Stat Method: Stratified analysis and unconditional logistic regression			
County (Putai and Yichu townships))	0.1-0.6 mg/L range	drinking water diabetic subjec			ition - Type 2
co		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
		<0.1	NR	1	n/a
Population: adults and		0.1-0.29	NR	1.08	0.73, 1.60
children living in		0.3-0.59	NR	1.8	1.32, 2.46
arseniasis-endemic		≥ 0.6	NR	2.78	2.01, 3.85
townships		Stat Meth	od: Stra	tified analy	-
n total: 28,499				sistic regres	
Ghosh et al. (2007b)	Exposure Surrogate: drinking water	Outcome: con	junctivit	tis	
		arsenic exposu	ıre/skin	lesion stat	us, unitless
Study Type: cross-	Exposure Description: arsenic content in	Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>
sectional	drinking water measured from 100 ml	unexposed	13	1	n/a
sectional	samples provided by study participants;	exposed, no	44	4.66	2.45, 8.85
	instrument calibrated and readings taken	skin lesions			, 0.000
Location: India (West	in duplicate for each sample	exposed, skin	208	37.22	20.56, 67.36
Bengal)		lesions			
Population: West	Population-Level Exposure:	Stat Method: Logistic regression analysis			
Bengal residents	0-1,188 μg/L range	Outcome: peripheral neuropathy			
exposed to arsenic in		arsenic exposu	ıre/skin	lesion stat	us, unitless
drinking water with and		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
without skin lesions		unexposed	11	1	n/a
and similar unexposed		exposed, no	33	3.99	1.95, 8.09
residents		skin lesions			
n cases: 725		exposed, skin	114	15.61	8.2, 29.71
n control: 389		lesions			
		Stat Meth	od: Logi	stic regress	ion analysis
<u>Guo et al. (2007)</u>	Exposure Surrogate: drinking water	Outcome: blur	red visi	on	
		water arsenic	concent	ration, µg/	′L
Study Type: cross-	Exposure Description: arsenic samples	Exp. Level	<u>n</u>	Prev	<u>(CI)</u>
sectional	were taken from 94 water sources,	≤ 50 μg/L	NR	3.7	n/a
	including wells; detection limit not	>50 μg/L	NR	17.35	n/a
	specified, but authors note reliability of	Stat Meth			
Location: Mongolia (region not available)	the method at <10 μ g/L; arsenic				
exposure determined by location of				-	
Demulations must be	village	water arsenic	concent	ration, μg/	′L
uppulation, residents	1	Exp Loval	n	Prev	<u>(CI)</u>
Population: residents		Exp. Level	<u>n</u>	1101	<u>(Ci)</u>
of villages in the Hetao Plain, Inner Mongolia	Population-Level Exposure:	<u>≤ 50 μg/L</u>	NR	1.06	n/a

Summary of Ok	oservational Epidemiology Studies for Healt	h Effect Catego	ry: Nervo	ous System	Effects
Reference and Study	Exposure Measures		-	Results	
Design					
n cases: 680	50-1,860 μg/L range (≤ 50 μg/L unaffected villages; >50 μg/L affected	Stat Method: not reported			
n control: 189	villages)	Outcome: los	s of taste	9	
		water arsenia	concent	ration, μg/	L
		Exp. Level	<u>n</u>	Prev	<u>(CI)</u>
		≤ 50 µg/L	NR	0	n/a
		>50 µg/L:	NR	5.44	n/a
		Stat Meth	hod: not	reported	
		Outcome: nu	mbness o	of limbs	
		water arsenia	concent	ration, μg/	L
		Exp. Level	<u>n</u>	Prev	<u>(CI)</u>
		≤ 50 μg/L	NR	0	n/a
		>50 μg/L	NR	33.53	n/a
		Stat Met			
Hafeman et al. (2005)	Exposure Surrogate: drinking water	Outcome: ind	hreshold		
		cumulative a	rsenic ind	dex (tertiles), ug
Study Type: cross-	Exposure Description: cumulative arsenic	Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
sectional	index calculated by multiplying water	2.9-159.1	NR	NR	n/a
	arsenic concentration by estimated	159.5-843.7	NR	-0.087	n/a
La catione. De cale de ch	volume consumed yearly times years of	953.3-	NR	0.038	n/a
Location: Bangladesh	water use	11,482.5			
(Araihazar)		Stat Met	hod: Line	ar regressio	n analyses
Population: subset of	Population-Level Exposure:	cumulative a	rsenic ind	dex per 50 u	nits, ug
HEALS participants	2.9-11,482 ug range	Exp. Level	<u>n</u>	adjBeta	<u>(CI)</u>
randomly selected at		continuous	NR	0.00003	n/a
clinic for peripheral				71	-
neuropathy assessment		Stat Met	hod: Line	ar regressio	n analyses
n cases: 137 n control: n/a		Outcome: toe	e vibratio	on threshold	l
, -		cumulative a	rsenic ind	dex (tertiles), ug
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		2.9-159.1	NR	NR	n/a
		159.5-843.7	NR	-0.009	n/a
		953.3-	NR	0.129	n/a
		11,482.5			
		Stat Met	hod: Line	ar regressio	n analyses
		cumulative arsenic index per 50 units, ug			
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	0.00251	n/a
		Stat Met	hod: Line	ar regressio	n analyses
	Exposure Surrogate: drinking water	Outcome: ind	lex finge	r vibration t	hreshold

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-175Draft: Do Not Cite or Quote

	bservational Epidemiology Studies for Healt	n Effect Categoi	-	ous System I Results	ETTECTS
Reference and Study Design	Exposure Measures	osure Measures R			
2 00.0		drinking wate	r arseni	c concentrat	ion (tertiles)
	Exposure Description: drinking water	μg/L			
	samples obtained from wells of use at	Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
	recruitment to HEALS	5-23	NR	NR	n/a
		25-125	NR	0.058	n/a
		129-743	NR	-0.013	, n/a
	Population-Level Exposure:		nod: Line		-
	115 μg/L mean, 140SD, 5-743 μg/L range	Stat Method: Linear regression analyses drinking water arsenic concentration per 50			
		-	r arseni	c concentrat	ion per 50
		units, μg/L		adiData	
		Exp. Level	<u>n</u>	adjBeta	<u>(CI)</u> ra (a
		continuous	NR	-0.013	n/a
		Stat Metr	nod: Line	ar regressio	n analyses
		Outcome: toe	vibratio	on threshold	
		drinking wate μg/L	er arseni	c concentrat	ion (tertiles <u>)</u>
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		5-23	NR	NR	n/a
		25-125	NR	-	n/a
				0.00058 5	
		129-743	NR	0.203	n/a
		Stat Meth	nod: Line	ar regressio	n analyses
		drinking wate units, μg/L	er arseni	c concentrat	ion per 50
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	0.025	n/a
		Stat Meth	nod: Line	ar regressio	•
	Exposure Surrogate: urine	Outcome: ind	ex finge	r vibration t	hreshold
		urinary arsen μg/mg creatir	ic concei		
	Exposure Description: urine samples collected at recruitment into HEALS	Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
	(2001) and again at recruitment into	25.5-148.7	nr	NR	<u>n/a</u>
	subcohort (2003); mean (SD) urinary As:	149.1-325.5	NR	-0.106	n/a
	326.3 (307.5) in 2001 and 252.4 (185.4)	332.6-	NR	-0.100	n/a
	in 2003	1,736.9		0.000	n/u
	11 2005	Stat Method: Linear regression analyses			n analyses
	Population-Level Exposure:	urinary arseni	ic concei	ntration (200	03) (tertiles).
	25.5-1,736.9 μg/mg creatinine range	μg/mg creatin		- 1	,, =//
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		36.5-147	NR	NR	n/a
		150.8-270.5	NR	-0.039	n/a

Reference and Study Design	ational Epidemiology Studies for H Exposure Measures	Results					
		271.4-975.4	NR	0.129	n/a		
		Stat Meth	nod: Line	ar regressio	n analyses		
		urinary arsen μg/mg creati		ntration per	50 units (2001		
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>		
		continuous	NR	-	n/a		
				0.00364	.,		
		Stat Meth	nod: Line	od: Linear regression analyses			
		urinary arsen μg/mg creati	nic concentration per 50 units (200 inine				
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>		
		continuous	NR	-0.008	n/a		
		Stat Meth	nod: Line	ar regressio	n analyses		
		Outcome: toe	e vibratio	on threshold			
		urinary arsen μg/mg creati		ntration (20	01) (tertiles),		
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>		
		25.5-148.7	NR	NR	n/a		
		149.1-325.5	NR	0.019	n/a		
		332.6-	NR	0.197	n/a		
		1,736.9					
		Stat Meth	nod: Line	ar regressio	n analyses		
		urinary arsen μg/mg creati		ntration (20	03) (tertiles),		
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>		
		36.5-147	NR	NR	n/a		
		150.8-270.5	NR	-0.039	n/a		
		271.4-975.4	NR	-0.138	n/a		
		Stat Meth	nod: Line	ar regressio	n analyses		
		urinary arsen μg/mg creati		ntration per	50 units (200		
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>		
		continuous	NR	0.019	n/a		
		Stat Meth	nod: Line	ar regressio	n analyses		
		urinary arsen		ntration per	50 units (2003		
		μg/mg creating		a din li			
		Exp. Level	<u>n</u>	adjBeta	<u>(CI)</u>		
		continuous Stat Meth	NR nod: Line	0.014 ar regressio	n/a n analyses		
				-0			

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-177Draft: Do Not Cite or Quote

-	oservational Epidemiology Studies for Healt	h Effect Catego	-	-	n Effects	
Reference and Study	Exposure Measures		I	Results		
Design						
		velocity				
Study Type: cross- sectional	Exposure Description: daily arsenic ingestion calculated individually based on	daily arsenic ingestion from drinking water, $\mu g/day$				
	consumption information for both well	Exp. Level	<u>n</u>	Prev	<u>(CI)</u>	
	water and water from other sources;	0-100	NR	17	n/a	
Location: United States	arsenic concentrations of home well	101-1000	NR	12	n/a	
(Ester Dome, Alaska)	water analyzed	1001-15000	NR	3	n/a	
					regression	
Population: adult					0	
residents under age 60 living for at least 2	Population-Level Exposure: 1-4521 µg/day range	Outcome: any percentile	/ conduc	tion veloc	ity below 5th	
years in area with known elevated levels		daily arsenic i μg/day	ngestio	n from drin	king water,	
of arsenic in well water		Exp. Level	<u>n</u>	Prev	<u>(CI)</u>	
n cases: 147		0-100	NR	13	n/a	
n control: 95		101-1000	NR	12	n/a	
		1001-15000	NR	2	n/a	
				_	regression	
		Outcome: neuropathy by examination	nation			
		daily arsenic i μg/day	ngestio	n from drin	king water,	
		Exp. Level	<u>n</u>	Prev	<u>(CI)</u>	
		0-100	NR	4	n/a	
		101-1000	NR	1	n/a	
		1001-15000	NR	1	n/a	
		Stat Meth	nod: mul	tiple linear	regression	
		Outcome: per 5th percentile		notor nerve	e velocity below	
		daily arsenic ingestion from drinking water, μg/day				
		Exp. Level	<u>n</u>	Prev	<u>(CI)</u>	
		0-100	NR	4	n/a	
		101-1000	NR	6	n/a	
		101-1000	NR	0	n/a	
				-	regression	
		Stat Well	iou. mul	upie iniedi	i egi essioli	
		Outcome: sur percentile	al senso	ry nerve v	elocity below 51	
		daily arsenic i μg/day	ngestio	n from drin	king water,	
		Exp. Level	<u>n</u>	Prev	<u>(CI)</u>	
		0-100	NR	4	n/a	

	oservational Epidemiology Studies for Healt	Result			
Reference and Study Design	Exposure Measures		F	Results	
Ŭ		101-1000	NR	3	n/a
		1001-15000	NR	1	n/a
		Stat Meth	nod: mul	tiple linear	regression
		Outcome: ulnar motor nerve velocity: elbow axilla below 5th percentile daily arsenic ingestion from drinking water, µg/day			ocity: elbow-
					king water,
		Exp. Level	<u>n</u>	Prev	<u>(CI)</u>
		0-100	NR	4	n/a
		101-1000	NR	3	n/a
		1001-15000	NR	0	n/a
		Stat Meth	nod: mul	tiple linear	regression
		Outcome: ulnar motor nerve velocity: wrist elbow below 5th percentile			ocity: wrist-
		daily arsenic i μg/day	ingestior	n from drin	king water,
		Exp. Level	<u>n</u>	Prev	<u>(CI)</u>
		0-100	NR	4	n/a
		101-1000	NR	3	n/a
		1001-15000	NR	1	n/a
			nod: mul	tiple linear	regression
<u>Lewis et al. (1999)</u>	Exposure Surrogate: drinking water	Outcome: cer	tral ner	vous syste	m cancer
		cumulative ar	senic ex	posure (fei	nales), ppb-
Study Type: cohort	Exposure Description: arsenic	years		CN 4 D	
(retrospective)	concentrations in drinking water	Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>
	determined from Utah state records and	<1000	NR	1.21	n/a
ocation: United States	an EPA study; arsenic exposure index	1000-4999	NR	NR	n/a
(Millard County, Utah)	score calculated individually based on	≥ 5000	NR	NR	n/a
, , , , , , , , , , , , , , , , , , ,	number of years residence in each community and median drinking water	Stat Meth	nod: stan	idardized n	nortality ratios
Population: deceased	arsenic concentration in community		senic ex		ales), ppb-years
male and female		Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>
members of Latter-day	Population-Level Exposure:	<1000	NR	NR	n/a
Saints church wards	3.5-620 ppb-years range	1000-4999	NR	0.9	n/a
n exposed: 2203	3.3 020 ppb-years range	≥ 5000	NR	NR	n/a
n total: 2203		Stat Meth	nod: stan	idardized n	nortality ratios
<u>Li et al. (2006)</u>	Exposure Surrogate: drinking water	Outcome: per	ipheral	neuropath	y - left arm
		drinking wate	er arseni	c concentro	ation, µg/L
Study Type: cross-	Exposure Description: water samples	<u>Exp. Level</u>	<u>n</u>	<u>regr</u>	<u>(CI)</u>
sectional	obtained from wells of individual families			coeff	

	bservational Epidemiology Studies for Healt	h Effect Catego	ory: Nerv	ous System	Effects
Reference and Study Design	Exposure Measures		I	Results	
8	or community water sources	100-300	NR	0.35	n/a
		400-700	NR	1.7	n/a
Location: China	Denvilation, Lawel Free accurate	Stat Met	thod: cate	egorical mu	ltivariate analys
(Mongolia)	Population-Level Exposure: 0-700 μg/L range				
	0-700 µg/L range	Outcome: pe	eripheral	neuropath	y - left leg
Population: residents of Bamen region		drinking water arsenic concentration, μ			ation, μg/L
exposed to arsenic in		Exp. Level	<u>n</u>	regr	<u>(CI)</u>
drinking water				<u>coeff</u>	
-		<20	NR	1	n/a
n cases: 309		100-300	NR	1.41	n/a
n control: n/a		400-700	NR	2.96	n/a
		Stat Met	thod: cate	egorical mu	ltivariate analys
		Outcome: pe	eripheral	neuropath	y - right arm
		drinking wat	er arseni	c concentra	tion, μq/L
		Exp. Level	<u>n</u>	regr	<u>(CI)</u>
			—	coeff	<u> </u>
		<20	NR	1	n/a
		100-300	NR	0.62	n/a
		400-700	NR	1.51	n/a
					ltivariate analys
		Outcome: pe		-	
		-	-	-	
		drinking wat			
		Exp. Level	<u>n</u>	<u>regr</u> coeff	<u>(CI)</u>
		<20	NR	1	n/a
		100-300	NR	NR	n/a
		400-700	NR	2.16	n/a
					ltivariate analys
Lin et al. (2008)	Exposure Surrogate: drinking water	Outcome: pt	ervgium		
				posure con	centration, mg,
Study Type, cross	Exposure Description: cumulative arsenic	- yr			·····;
Study Type: cross- sectional	exposure calculated based on well water	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
Sectional		<0.1	nr	<u>aujon</u> 1	<u>(Ci)</u> n/a
	concentrations (1960 measurements),				-
Location: Taiwan	and duration of living in each village	0.1-15.0	NR	2.04	1.04, 3.99
(Homei, Fuhsin, and	(obtained from questionnaire); exposure	≥ 15.1	NR	2.88	1.42, 5.83
Hsinming villages in	was classified as unknown if the arsenic	unknown	NR	1.1	0.45, 2.69
Putai Township, Chiayi County)	concentration was unavailable for any village the participant had lived in	Stat Met model	thod: mul	tiple logisti	c regression
Population: residents of pterygium endemic	Population-Level Exposure: 0.1-15.1 mg/L - yr range				

Summary of Ob	oservational Epidemiology Studies for Healt	h Effect Catego	ry: Nerv	ous System	Effects
Reference and Study Design	Exposure Measures		-	Results	
villages					
n cases: 223					
n control: 160					
<u>Otto et al. (2006)</u>	Exposure Surrogate: drinking water	Outcome: vik digit 2	oration tl	hreshold, d	ominant hand,
Study Type: cross- sectional Location: China (Bamen Region, Inner Mongolia, China)	Exposure Description: samples from individual and community wells analyzed; statistical analyses conducted to determine threshold in relationship between arsenic concentration and outcome	total water a Exp. Level <170 >170	<u>n</u> NR NR hod: log1	<u>corr</u> <u>coeff</u> -0.25 0.2	n, μg/L <u>(CI)</u> n/a n/a mation and linear
Population: children and adults in region	Population-Level Exposure: 20-700 μg/L range	Outcome: vik digit 5	pration th	hreshold, d	ominant hand,
with high arsenic		total water arsenic concentration, μg/L			
concentrations who consumed water from		Exp. Level	<u>n</u>	<u>corr</u> <u>coeff</u>	<u>(CI)</u>
wells		<170	NR	-0.55	n/a
n cases: 309		>170	NR	0.4	n/a
n control: n/a		Stat Met regressi			mation and linear
		Outcome: vik hand, digit 2	oration tl	hreshold, n	on-dominant
		total water a	rsenic co	oncentratio	n, μg/L
		<u>Exp. Level</u>	<u>n</u>	<u>corr</u> <u>coeff</u>	<u>(CI)</u>
		<150	NR	-0.31	n/a
		>150	NR	0.36	n/a
		Stat Met regressi	-	LO transforr	mation and linear
		Outcome: vik hand, digit 5	oration tl	hreshold, n	on-dominant
		total water a	rsenic co	oncentratio	n, μg/L
		Exp. Level	<u>n</u>	<u>corr</u> <u>coeff</u>	<u>(CI)</u>
		<170	NR	-0.51	n/a
		>170	NR	0.4	n/a
		Stat Met regressi	-	LO transforr	mation and linear
<u>Otto et al. (2007)</u>	Exposure Surrogate: drinking water	Outcome: pir	nprick sco	ore, left arr	n

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-181Draft: Do Not Cite or Quote

	bservational Epidemiology Studies for Healt				
Reference and Study Design	Exposure Measures	Results			
		drinking water arsenic concentration, μ g/L			
Study Type: cross- sectional	Exposure Description: samples collected from 117 wells used by study participants on three consecutive days and results	Exp. LevelnadjOR(CI)continuousNR2.13n/aStat Method: multivariate regression;			
Location: China	averaged across days); no speciation	ordered logistic regression models			
(Farming region of Ba Men, Inner Mongolia) Population: residents from 9 to 64 years of age using wells in area	Population-Level Exposure: 270 μg/L mean 230SD	drinking water arsenic concentration, μg/LExp. Levelnregr(CI)coeffcoeffcontinuousNR3.23n/aStat Method: multivariate regression; ordered logistic regression modelscoeff			
with high arsenic concentrations in		Outcome: pinprick score, left leg			
ground water n cases: 320 n control: n/a		drinking water arsenic concentration, μg/LExp. LevelnadjOR(CI)continuousNR2.77n/aStat Method: multivariate regression;ordered logistic regression models			
		drinking water arsenic concentration, μg/LExp. Levelnregr(CI)coeffcoeffcontinuousNR4.36n/aStat Method: multivariate regression; ordered logistic regression models			
		Outcome: pinprick score, right arm			
		drinking water arsenic concentration, μg/LExp. LevelnadjOR(CI)continuousNR1.85n/aStat Method: multivariate regression; ordered logistic regression modelsordels			
		drinking water arsenic concentration, μg/L			
		Exp. Level <u>n</u> <u>regr</u> (CI) coeff			
		continuous NR 2.64 n/a Stat Method: multivariate regression; ordered logistic regression models			
		Outcome: pinprick score, right leg			
		drinking water arsenic concentration, μg/L Exp. Level <u>n</u> <u>adjOR</u> <u>(CI)</u>			
		continuous NR 2.99 n/a Stat Method: multivariate regression;			

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-182Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures	Results			
		ordered logistic regression models			
		drinking water arsenic concentration, μg/L			
		Exp. Level <u>n</u> <u>regr</u> (CI) <u>coeff</u>			
		continuous NR 4.65 n/a			
		Stat Method: multivariate regression; ordered logistic regression models			
		Outcome: vibration threshold, non-dominant hand, fifth digit			
		drinking water arsenic concentration, μg/L			
		Exp. Level <u>n</u> <u>adjR2 (CI)</u>			
		continuous NR 0.11 n/a Stat Method: multivariate regression			
		Outcome: vibration threshold, non-dominant hand, second digit			
		drinking water arsenic concentration, μg/L			
		Exp. Level <u>n</u> <u>adjR2</u> (CI)			
		continuous NR 0.11 n/a			
		Stat Method: multivariate regression			
	Exposure Surrogate: toenails	Outcome: pinprick score, left arm			
		toenail arsenic concentration, μg/kg			
	Exposure Description: cleaned and	Exp. Level <u>n</u> <u>adjOR (CI)</u>			
	washed toenail samples from each	continuous NR 1.91 n/a			
	participant analyzed	Stat Method: multivariate regression; ordered logistic regression models			
	Population-Level Exposure:	toenail arsenic concentration, μg/kg			
	11.85 μg/kg mean 11.85SD	Exp. Level <u>n</u> <u>regr</u> (CI) <u>coeff</u>			
		continuous NR 0.0548 n/a			
		Stat Method: multivariate regression;			
		ordered logistic regression models			
		Outcome: pinprick score, left leg			
		toenail arsenic concentration, $\mu g/kg$			
		Exp. Level <u>n</u> adjOR (CI)			
		continuous NR 2.03 n/a			
		Stat Method: multivariate regression; ordered logistic regression models			
		toenail arsenic concentration, μg/kg			
		Exp. Level <u>n</u> regr (CI)			

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-183Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures	Health Effect Category: Nervous System Effects Results		
		<u>coeff</u> continuous NR 0.0597 n/a Stat Method: multivariate regression; ordered logistic regression models		
		Outcome: pinprick score, right arm		
		toenail arsenic concentration, μg/kg		
		Exp. LevelnadjOR(CI)continuousNR1.71n/aStat Method: multivariate regression;ordered logistic regression models		
		toenail arsenic concentration, μg/kg Exp. Level <u>n regr</u> (Cl)		
		<u>coeff</u> continuous NR 0.0454 n/a Stat Method: multivariate regression; ordered logistic regression models		
		Outcome: pinprick score, right leg		
		toenail arsenic concentration, μg/kgExp. LevelnadjOR(Cl)continuousNR2.28n/aStat Method: multivariate regression; ordered logistic regression models		
		toenail arsenic concentration, μg/kg Exp. Level <u>n</u> regr (CI)		
		<u>coeff</u> continuous NR 0.0694 n/a Stat Method: multivariate regression; ordered logistic regression models		
		Outcome: vibration threshold, non-dominant hand, fifth digit		
		toenail arsenic concentration, μg/kgExp. LevelnadjR2(Cl)continuousNR0.12n/aStat Method: multivariate regression		
		Outcome: vibration threshold, non-dominant hand, second digit		
		toenail arsenic concentration, μg/kg <u>Exp. Level n adjR2 (Cl)</u> continuous NR 0.11 n/a		

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-184Draft: Do Not Cite or Quote

Reference and Study Design	bservational Epidemiology Studies for Healt Exposure Measures	Results Stat Method: multivariate regression			
<u> </u>					
	Exposure Surrogate: urine	Outcome: pinprick score, left arm			
		urinary inorganic arsenic concentration, μg/L			
	collected on 3 consecutive days and analyzed for arsenic species; total urinary arsenic (As[III] As[V], MMA, DMA), inorganic arsenic (As[III], As[V]), organic arsenic (MMA, DMA), and arsenite	Exp. Level n regr (Cl) coeff coeff continuous NR 0.0056 n/a Stat Method: multivariate regression urinary inorganic arsenic concentration, µg/L Exp. Level n adjOR (Cl) continuous NR 1.00 n (a)			
	measurements in 3 samples Population-Level Exposure:	continuous NR 1.88 n/a Stat Method: multivariate regression; ordered logistic regression models			
	374.85 μg/L mean 350.01SD	Outcome: pinprick score, left leg			
		urinary inorganic arsenic concentration, μ g/L			
		Exp. Level <u>n</u> <u>regr</u> (CI) <u>coeff</u>			
		continuous NR 0.00738 n/a Stat Method: multivariate regression			
		urinary inorganic arsenic concentration, μg/LExp. LevelnadjOR(Cl)continuousNR2.29n/aStat Method: multivariate regression; ordered logistic regression models			
		Outcome: pinprick score, right arm			
		urinary inorganic arsenic concentration, μg/LExp. Levelnregr(CI)coeffcoeffcontinuousNR0.00458n/aStat Method: multivariate regression			
		urinary inorganic arsenic concentration, μg/LExp. LevelnadjOR(CI)continuousNR1.67n/aStat Method: multivariate regression; ordered logistic regression models			
		Outcome: pinprick score, right leg			
		urinary inorganic arsenic concentration, μg/L Exp. Level <u>n</u> regr (CI)			

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-185Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures	Results			
		Stat Method: multivariate regression			
		urinary inorganic arsenic concentration, μg/LExp. LevelnadjOR(CI)continuousNR2.58n/aStat Method: multivariate regression; ordered logistic regression modelsordered			
		Outcome: vibration threshold, dominant hand, fifth digit			
		urinary inorganic arsenic concentration, μg/LExp. LevelnadjR2(Cl)continuousNR0.12n/aStat Method: multivariate regression			
		Outcome: vibration threshold, dominant hand, second digit			
		urinary inorganic arsenic concentration, μg/LExp. LevelnadjR2(Cl)continuousNR0.13n/aStat Method: multivariate regression			
		Outcome: vibration threshold, non-domin hand, fifth digit			
		urinary inorganic arsenic concentration, μg/LExp. LevelnadjR2(Cl)continuousNR0.13n/aStat Method: multivariate regression			
		Outcome: vibration threshold, non-dominant hand, second digit			
		urinary inorganic arsenic concentration, μg/L			
		Exp. LevelnadjR2(CI)continuousNR0.13n/aStat Method: multivariate regression			
Park et al. (2014)	Exposure Surrogate: serum	Outcome: Alzheimer's disease (AD)			
		arsenic concentration in serum by Alzheimer's			
tudy Type: case- ontrol	Exposure Description: nonfasting blood samples were collected and serum extracted; analytical methods were validated using certified reference	Disease status, μg/LExp. Levelnmean(Cl)controls6728.66n/acases6428.08n/a			
ocation: Korea, epublic Of region not vailable	material	Stat Method: t-test			
	Population-Level Exposure:				

Reference and Study Design	Exposure Measures	h Effect Catego	-	Results	
	28.37 μg/L mean				
Population: elderly patients with probable Alzheimer's Disease					
n cases: 89 n control: 118					
<u>Paul et al. (2013)</u>	Exposure Surrogate: drinking water	Outcome: cor	njunctiva	al irritations	5
		drinking wate	er arseni	c concentra	ition by
Study Type: cross-	Exposure Description: samples collected	exposure stat	us and y	ear, unitles	55
sectional	directly from study participants during	Exp. Level	<u>n</u>	<u>OR</u>	<u>(CI)</u>
Location: India (West	2005-2006 and 2010-2011 study periods	unexposed (2005-2006 analysis)	NR	1	n/a
Bengal) Population: male and	Population-Level Exposure: mean concentration in drinking water ranged from 3.7 (unexposed) to 190.1	unexposed (2010-2011 analysis)	NR	1	n/a
Temale adult residents with skin lesions from 3 villages with high	(exposed) in both analyses	exposed (2005-2006 analysis)	NR	11.15	4.91, 25.32
arsenic concentrations n cases: 189		exposed (2010-2011 analysis)	NR	20.51	9.84, 42.72
n control: 171		Stat Meth	npared t		; 2005 - 2006 11 data using
		Outcome: per	ripheral	neuropathy	1
		drinking wate	er arseni	c concentro	ition. µa/L
		Exp. Level	<u>n</u>	OR	<u>(CI)</u>
		unexposed (2005-2006 analysis)	NR	1	n/a
		unexposed (2010-2011 analysis)	NR	1	n/a
		exposed (2005-2006 analysis)	NR	9.08	3.48, 23.72
		exposed (2010-2011 analysis)	NR	18.48	7.75, 44.06
		Stat Meth	npared t		; 2005 - 2006 11 data using

Summary of Ol	oservational Epidemiology Studies for Heal	th Effect Cate	gory: Nervous	s System Effe	cts	
Reference and Study Design	Exposure Measures			sults		
Rosado et al. (2007)	Exposure Surrogate: urine	Outcome: attention: letter sequencing				
		urinary arsenic, µg/dL				
Study Type: cross- sectional Location: Mexico (Torreon)	Exposure Description: urine samples collected the morning after subjects fasted overnight; urinary arsenic concentrations include inorganic As, monomethylarsenic, dimethylarsenic,	Exp. Level continuou s in children with UAs	n NR	<u>adjOR</u> 0.992	(<u>CI)</u> 0.963, 1.021	
Population: children 6- 8 years of age attending school near a metallurgic smelter complex	and the sum of all metabolic species of arsenic Population-Level Exposure: 58.1 μg/dL mean 33.2SD	continuou NR 0.993 0		0.988, 0.999 n		
n cases: n/a n control: n/a						
		Outcome: attention: visual search				
		<i>urinary ars</i> <u>Exp.</u>	enic, μg/dL <u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		Level continuou s in children with UAs	NR	-0.008	-0.022, 0.005	
		<50 μg/L continuou s in children with UAs >50 μg/L Stat Metho	NR d: multiple lin	-0.006	-0.012, 0	
		Outcome: a	attention: WI	SC-RM codin	g subscale	
		<i>urinary arsenic, μg/dL</i> arsenic not significantly associated with WISC-RM Coding Subscale			th attention:	
		Outcome: memory: Sternberg memory				
		urinary ars Exp. Level	enic, μg/dL	adjBeta	(<u>CI)</u>	
		continuou s in	NR	-0.027	-0.053, - 0.002	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-188Draft: Do Not Cite or Quote

	ational Epidemiology Studies for H	leaith Effect Category: No		ects
Reference and Study Design	Exposure Measures		Results	
		children with UAs <50 μg/L Continuou NR s in children with UAs	0.002	-0.008, 0.012
		>50 µg/L Stat Method: multi		
		Outcome: memory: stimulus discrimination		
		urinary arsenic, μg	i i	
		<u>Exp.</u> <u>n</u> Level	<u>adjOR</u>	<u>(CI)</u>
		continuou NR s in children with UAs <50 µg/L	0.982	0.957, 1.008
		Continuou NR s in children with UAs >50 µg/L	1.004	1.000, 1.008
		Stat Method: m	ultiple linear re	gression
		Outcome: memory	: visual memory	span
		urinary arsenic, μg	/dL	
		Exp. <u>n</u> Level	<u>adjBeta</u>	<u>(CI)</u>
		continuou NR s in children with UAs <50 µg/L	-0.003	-0.007, 0.000
		continuou s in children with UAs >50 µg/L	-0.001	-0.002, 0.003
		Stat Method: multiple linear regression		
		Outcome: memory	: WISC-RM digit	span subscal
		urinary arsenic, µg <u>Exp. n</u>	/ dL adjBeta	<u>(CI)</u>
		Level		

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-189Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures		I	Results	
		continuou s in children with UAs	NR	-0.037	-0.065, - 0.010
		<pre><50 µg/L continuou s in children with UAs >50 µg/L</pre>	NR	-0.012	-0.037, 0.012
			problem so	linear regressi	
		solving and children wi	significant vocabular th urinary a y reduced i	y associated w y: math achievo rsenic >50 μg/ n children with	ement test in L, but
		-	Outcome: problem solving and vocabulary: Peabody picture vocabulary test		
		urinary arsenic, μg/dL			
		Exp. Level continuou	<u>n</u> NR	<u>adjBeta</u> -0.185	<u>(CI)</u> -0.293, -
		s in children with UAs <50 µg/L continuou s in children with UAs >50 µg/L Stat Metho	NR d: multiple	-0.058 linear regressi	0.078 -0.120, 0.004
				_	
		Outcome: problem solving and vocabulary: visual-spatial abilities with figure design			
		urinary ars	1	1	
		Exp. Level continuou s in	<u>n</u> NR	<u>adjBeta</u> -0.018	<u>(CI)</u> -0.096, 0.061

Reference and Study Design	Exposure Measures	Results				
		with UAs <50 µg/L continuou s in children with UAs >50 µg/L Stat Metho	NR d: multiple lir	-0.028	-0.053, 0.004 on	
		Outcome: problem solving and vocabulary: WISC-RM arithmetic subscale urinary arsenic, μg/dL arsenic not significantly associated with proble solving and vocabulary: WISC-RM arithmetic subscale				
	Exposure Surrogate: urine	Outcome: attention: letter sequencing				
	Exposure Description: urine samples collected the morning after subjects fasted overnight; urinary arsenic concentrations include inorganic As, monomethylarsenic, dimethylarsenic, and the sum of all metabolic species of arsenic Population-Level Exposure: 58.1 µg/dL mean 33.2SD	Exp. Level continuou s	enic (overall g	adjOR 0.992	(<u>CI)</u> 0.987, 0.996	
		Outcome: attention: visual search				
		Exp. Level continuou s	enic (overall g <u>n</u> NR d: multiple lir	<u>adjBeta</u> -0.007	(<u>CI</u>) -0.011, 0.002	
		Outcome: memory: Sternberg memory urinary arsenic (overall group), μg/dL For a standard for the standard for t			ory	
		<u>Exp.</u> Level continuou s	<u>n</u> NR	<u>adjBeta</u> -0.002	<u>(CI)</u> -0.007, 0.004	

Reference and Study Design	Exposure Measures	ealth Effect Category: Nervous System Effects Results					
		Stat Metho	Stat Method: multiple linear regression Outcome: memory: stimulus discrimination				
		Outcome: r					
		urinary ars	urinary arsenic (overall group), μg/dL				
		<u>Exp.</u> Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>		
		continuou s	NR	0.998	0.993, 1.004		
		Stat Metho	d: multiple lii	near regressi	on		
		Outcome: r	Outcome: memory: visual memory span				
		urinary ars	urinary arsenic (overall group), μg/dL				
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>		
		continuou s	NR	0	-0.002, 0.001		
		Stat Metho	Stat Method: multiple linear regression				
		Outcome: r	Outcome: memory: WISC-RM digit span subsc				
		urinary ars	urinary arsenic (overall group), μg/dL				
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>		
		continuou s	NR	-0.014	-0.025, - 0.002		
		Stat Metho	d: multiple lii	near regressi	on		
		-	Outcome: problem solving and vocabulary:				
			Peabody picture vocabulary test				
			enic (overall	1	1		
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>		
		continuou s	NR	-0.064	-0.115, - 0.013		
		Stat Metho	Stat Method: multiple linear regression				
		-	Outcome: problem solving and vocabulary: visual-spatial abilities with figure design urinary arsenic (overall group), µg/dL				
		-					
		<u>Exp.</u> Level	<u>n</u>	adjBeta	<u>(CI)</u>		
		continuou s	NR	-0.024	-0.045, - 0.004		
		Stat Method: multiple linear regression					

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-192Draft: Do Not Cite or Quote

eannai y ei ei	servational Epidemiology Studies for Healt	I Lifect Catego	JIY. NEIV	ous system	Effects	
Reference and Study	Exposure Measures	Results				
Design						
<u>See et al. (2007)</u>	Exposure Surrogate: drinking water	Outcome: eye: cortical opacity cumulative arsenic drinking water exposure,				
Study Type: cross-	Exposure Description: cumulative arsenic	mg/L - yr				
sectional	exposure derived by multiplying the	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
	arsenic concentration in artesian well	0	12	1	n/a	
e estis en Tsimon (Dutsi	water from levels measured in 1960s by	0.1-12.0	9	0.74	0.25, 2.18	
L ocation: Taiwan (Putai Fownship of Chiayi	the self-reported duration of water	12.1-20.0	24	1.36	0.51, 3.65	
County)	consumption; subjects who moved were	>20.0	37	1.25	0.42, 3.69	
county)	categorized as having unknown exposure	Unknown	37	2.1	0.75, 5.87	
	levels	Stat Met	hod: chi-	square test		
Population: adult						
residents in arseniasis-	Population-Level Exposure:	cumulative a	irsenic ar	inking wate	er exposure,	
nyperendemic villages	0-20 mg/L - yr range	mg/L - yr		0.0		
who previously	6. , 6	Exp. Level	<u>n</u>	<u>OR</u>	<u>(CI)</u>	
consumed artesian well		0	12	1	n/a	
water		0.1-12.0	9	0.66	0.26, 1.69	
n cases: n/a		12.1-20.0	24	2.5	1.11, 5.61	
n control: n/a		>20.0	37	6.42	2.85, 14.48	
		Unknown	37	4.53	2.07, 9.93	
		Stat Method: chi-square test				
		Outcome: ey				
		cumulative arsenic drinking water exposur				
		mg/L - yr				
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		0	8	1	n/a	
		0.1-12.0	4	0.65	0.16, 2.62	
		12.1-20.0	19	1.79	0.57, 5.58	
		>20.0	28	1.74	0.51, 5.90	
		Unknown	23	2.03	0.59, 7.01	
		Stat Method: chi-square test				
		cumulative a	er exposure,			
		mg/L - yr	-	0.0		
		Exp. Level	<u>n</u>	OR 1	<u>(CI)</u>	
		0	8	1	n/a	
		0.1-12.0	4	0.44	0.13, 1.54	
		12.1-20.0	19	2.97	1.18, 7.48	
		>20.0	28	7.29	2.89, 18.38	
		Unknown Stat Met	23 -hod: chi-	4.23 square test	1.69, 10.56	
		Outcome: ey	e: overal	l cataract		
		cumulative a	rsenic dr	inkina wate	er exposure.	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-193Draft: Do Not Cite or Quote

Reference and Study	Exposure Measures		h Effect Category: Nervous System Effects Results			
Design			nesuits			
200.811		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		0	15	1	n/a	
		0.1-12.0	12	1.08	0.39, 2.97	
		12.1-20.0	31	2.27	0.90, 5.72	
		>20.0	43	2.19	0.81, 5.91	
		Unknown	43	2.7	0.99, 7.29	
			Stat Method: chi-square test cumulative arsenic drinking water exposure, mg/L - yr			
		cumulative a				
		mg/L - yr				
		Exp. Level	<u>n</u>	<u>OR</u>	<u>(CI)</u>	
		0	15	1	n/a	
		0.1-12.0	12	0.71	0.30, 1.64	
		12.1-20.0	31	2.58	1.23, 5.43	
		>20.0	43	5.97	2.78, 12.80	
		Unknown	43	4.22	2.02, 8.76	
		Stat Met	Stat Method: chi-square test Outcome: eye: posterior subcapsular opacity cumulative arsenic drinking water exposure, ma/L = vr			
		Outcome: ey				
		cumulative a mg/L - yr				
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		0	5	1	n/a	
		0.1-12.0	5	2.19	0.4, 12.07	
		12.1-20.0	15	4.78	1.03, 22.18	
		>20.0	28	5.7	1.23, 26.32	
		Unknown	22	4.1	0.84, 19.94	
				-square tes	0.01) 1919 1	
		cumulative a	ırsenic dı	rinking wate	er exposure,	
		mg/L - yr				
		Exp. Level	<u>n</u>	<u>OR</u>	<u>(CI)</u>	
		0	5	1	n/a	
		0.1-12.0	5	0.88	0.24, 3.21	
		12.1-20.0	15	3.75	1.26, 11.2	
		>20.0	28	25.1	4.01, 33.97	
		Unknown	22	6.47	2.23, 18.76	
		Stat Met	hod: chi-	-square test		
<u>seng et al. (2006)</u>	Exposure Surrogate: drinking water		Outcome: Sural Sensory Action Potential (SAP) nerve conduction velocity (NCV) in m/s			
	Experience Descriptions areanic experience	arsenic conc	arsenic concentration in well water, µg/L			
tudy Type: cross- ectional	Exposure Description: arsenic exposure based on previously conducted large-	Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>	
scuollal	scale study; arsenic exposure indices	<u>≤ 10</u>	NR	<u>aajon</u> 1	n/a	
	based on well water samples from each		NR	0.9	0.3, 3.2	
ocation: Taiwan	Bused on wen water samples nom edu	>50	1.813	0.5	0.5, 5.2	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-194Draft: Do Not Cite or Quote

Summary of Ob	oservational Epidemiology Studies for Healt	h Effect Catego	ory: Nervo	ous System	Effects	
Reference and Study	Exposure Measures	Results				
Design						
(Langyang Basin)	participant's household; cumulative arsenic dose calculated based on volume consumed and self-reported years of consumption; 3,901 wells were matched to students using questionnaire	Stat Method: multiple logistic regression cumulative dose of arsenic concentration, µg/L				
Population: adolescent		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
students with arsenic		≤ 50.0	NR	1	n/a	
contaminated drinking		50.1-100	NR	0.4	0.04, 3.2	
water n cases: 117 n control: n/a	Population-Level Exposure: 0.15-3.59 µg/L range	>100	NR	2.9	1.1, 7.5	
		Stat Method: multiple logistic regression				
		length of time (years) since stopping exposure, μg/L	oing arsenic			
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		>1	NR	1	n/a	
		0-1	NR	0.6	0.2, 1.7	
		0	NR	1.3	0.4, 4.7	
		Stat Method: multiple logistic			c regression	

Draft Development Materials for the IRIS Toxicological Review of Inorganic Arsenic

--: not reported; n: number of cases (when presented in Results column)

5.11.1 References for Summary of Observational Epidemiology Studies for Health Effect Category: Nervous System Effects

- Adams, JB; Audhya, T; Mcdonough-Means, S; Rubin, RA; Quig, D; Geis, E; Gehn, E; Loresto, M; Mitchell, J; <u>Atwood, S; Barnhouse, S; Lee, W.</u> (2013). Toxicological status of children with autism vs. neurotypical children and the association with autism severity. Biol Trace Elem Res 151: 171-180. <u>http://dx.doi.org/10.1007/s12011-012-9551-1</u>
- Ali, N; Hoque, MA; Haque, A; Salam, KA; Karim, MR; Rahman, A; Islam, K; Saud, ZA; Khalek, MA; Akhand, AA; Hossain, M; Mandal, A; Karim, MR; Miyataka, H; Himeno, S; Hossain, K. (2010). Association between arsenic exposure and plasma cholinesterase activity: a population based study in Bangladesh. Environ Health 9: 36. http://dx.doi.org/10.1186/1476-069X-9-36
- <u>Chiou, JM; Wang, SL; Chen, CJ; Deng, CR; Lin, W; Tai, TY.</u> (2005). Arsenic ingestion and increased microvascular disease risk: Observations from the south-western arseniasis-endemic area in Taiwan. Int J Epidemiol 34: 936-943. <u>http://dx.doi.org/10.1093/ije/dyi108</u>
- <u>Ghosh, P; Banerjee, M; De Chaudhuri, S; Chowdhury, R; Das, JK; Mukherjee, A; Sarkar, AK; Mondal, L;</u> <u>Baidya, K; Sau, TJ; Banerjee, A; Basu, A; Chaudhuri, K; Ray, K; Giri, AK.</u> (2007). Comparison of health effects between individuals with and without skin lesions in the population exposed to arsenic through drinking water in West Bengal, India. J Expo Sci Environ Epidemiol 17: 215-223. <u>http://dx.doi.org/10.1038/sj.jes.7500510</u>
- <u>Guo, JX; Hu, L; Yand, PZ; Tanabe, K; Miyatalre, M; Chen, Y.</u> (2007). Chronic arsenic poisoning in drinking water in Inner Mongolia and its associated health effects. J Environ Sci Health A Tox Hazard Subst Environ Eng 42: 1853-1858. <u>http://dx.doi.org/10.1080/10934520701566918</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-195Draft: Do Not Cite or Quote

- <u>Hafeman, DM; Ahsan, H; Louis, ED; Siddique, AB; Slavkovich, V; Cheng, Z; van Geen, A; Graziano, JH.</u>
 (2005). Association between arsenic exposure and a measure of subclinical sensory neuropathy in
 Bangladesh. J Occup Environ Med 47: 778-784. <u>http://dx.doi.org/10.1097/01.jom.0000169089.54549.db</u>
- Kreiss, K; Zack, MM; Feldman, RG; Niles, CA; Chirico-Post, J; Sax, DS; Landrigan, PJ; Boyd, MH; Cox, DH. (1983). Neurologic evaluation of a population exposed to arsenic in Alaskan well water. Arch Environ Health 38: 116-121.
- Lewis, DR; Southwick, JW; Ouellet-Hellstrom, R; Rench, J; Calderon, RL. (1999). Drinking water arsenic in Utah: A cohort mortality study. Environ Health Perspect 107: 359-365. http://dx.doi.org/10.1289/ehp.99107359
- Li, Y; Xia, Y; He, L; Ning, Z; Wu, K; Zhao, B; Le, XC; Kwok, R; Schmitt, M; Wade, T; Mumford, J; Otto, D. (2006). Neurosensory effects of chronic exposure to arsenic via drinking water in Inner Mongolia: I. signs, symptoms and pinprick testing. J Water Health 4: 29-37. http://dx.doi.org/10.2166/wh.2005.022
- Lin, W; Wang, SL; Wu, HJ; Chang, KH; Yeh, P; Chen, CJ; Guo, HR. (2008). Associations between arsenic in drinking water and pterygium in southwestern Taiwan. Environ Health Perspect 116: 952-955. http://dx.doi.org/10.1289/ehp.11111
- Otto, D; He, L; Xia, Y; Li, Y; Wu, K; Ning, Z; Zhao, B; Hudnell, HK; Kwok, R; Mumford, J; Geller, A; Wade, <u>T.</u> (2006). Neurosensory effects of chronic exposure to arsenic via drinking water in Inner Mongolia: II. Vibrotactile and visual function. J Water Health 4: 39-48.
- Otto, D; Xia, Y; Li, Y; Wu, K; He, L; Telech, J; Hundell, H; Prah, J; Mumford, J; Wade, T. (2007). Neurosensory effects of chronic human exposure to arsenic associated with body burden and environmental measures. Hum Exp Toxicol 26: 169-177. http://dx.doi.org/10.1177/0960327107070561
- Park, JH; Lee, DW; Park, KS; Joung, H. (2014). Serum trace metal levels in Alzheimer's disease and normal control groups. Am J Alzheimers Dis Other Demen 29: 76-83. <u>http://dx.doi.org/10.1177/1533317513506778</u>
- Paul, S; Das, N; Bhattacharjee, P; Banerjee, M; Das, JK; Sarma, N; Sarkar, A; Bandyopadhyay, AK; Sau, TJ; Basu, S; Banerjee, S; Majumder, P; Giri, AK. (2013). Arsenic-induced toxicity and carcinogenicity: a twowave cross-sectional study in arsenicosis individuals in West Bengal, India. J Expo Sci Environ Epidemiol 23: 156-162. <u>http://dx.doi.org/10.1038/jes.2012.91</u>
- <u>Rosado, JL; Ronquillo, D; Kordas, K; Rojas, O; Alatorre, J; Lopez, P; Garcia-Vargas, G; Caamano, MDC;</u>
 <u>Cebrian, ME; Stoltzfus, RJ.</u> (2007). Arsenic exposure and cognitive performance in Mexican schoolchildren. Environ Health Perspect 115: 1371-1375. <u>http://dx.doi.org/10.1289/ehp.9961</u>
- See, LC; Chiou, HY; Lee, JS; Hsueh, YM; Lin, SM; Tu, MC; Yang, ML; Chen, CJ. (2007). Dose-response relationship between ingested arsenic and cataracts among residents in Southwestern Taiwan. J Environ Sci Health A Tox Hazard Subst Environ Eng 42: 1843-1851. <u>http://dx.doi.org/10.1080/10934520701566884</u>
- <u>Tseng, HP; Wang, YH; Wu, MM; The, HW; Chiou, HY; Chen, CJ.</u> (2006). Association between chronic exposure to arsenic and slow nerve conduction velocity among adolescents in Taiwan. J Health Popul Nutr 24: 182-189.

5.12Summary of Observational Epidemiology Studies for Health Effect Category: Other

Summary of Observational Epidemiology Studies for Health Effect Category: Other						
Reference and Study Design	Exposure Measures	Results				
<u>Chung et al. (2012)</u>	Exposure Surrogate: drinking water	Outcome: all s				
Study Type: cohort (prospective) Location: Taiwan (Homei, Fuhsin, Hsinming)	Exposure Description: information on median arsenic level in artesian well water of each village acquired from previous studies carried out in the early 1960s (Lai et al., 1994); some study subjects had moved from one village to another, and there were differences in arsenic concentrations between villages	average water arsenic concentration (tertiles), mg/L not significant for average urinary arsenic or cumulative arsenic exposure in drinking water; for arsenic profiles, only significant trend for inorganic arsenic% (not %MMA or %DMA)				
Population: residents of arseniasis-endemic areas n total: 1563	Population-Level Exposure: 0.7-0.93 mg/L range					
Hsu et al. (2013b)	Exposure Surrogate: drinking water	Outcome: all internal cancers				
Study Type: cohort (prospective)	Exposure Description: SW population: median arsenic level of several wells shared in a village derived from two	arsenic concentration in well water (non- diabetes mellitus vs. diabetes mellitus subje µg/L Exp. Level <u>n HR</u> (CI)				
Location: Taiwan (SW: Peimen, Hsuechia, Ichu, and Putai Townships;	surveys; NE population: arsenic level of well water samples collected during home interviews	non-DM w/ As <500 DM w/ As <500	NR NR	1 1.45	n/a 0.24, 1.70	
NE: Chiaohsi, Chuangwei, Wuchieh, and Tungshan Townships)	Population-Level Exposure: 10-500 μg/L range	non-DM w/ As ≥ 500 DM w/ As	NR NR	1 1.72	n/a 1.33, 2.22	
Population: residents of an arseniasis- endemic area with skin lesions				regression DM status	analysis with	
n total: 9525						
<u>Majumdar et al. (2009)</u>	Exposure Surrogate: drinking water	Outcome: weakness and diarrhea				
Study Type: cross- sectional	Exposure Description: for each participant, water samples from private	arsenic concentration in drinking water (males), μg/L significant increase in weakness and diarrhea in				

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-197Draft: Do Not Cite or Quote

Summ	Summary of Observational Epidemiology Studies					
Reference and Study Design	Exposure Measures	Results males and females exposed to >500 µg/L				
Location: India (West Bengal)	or public tube wells analyzed for arsenic; exposure categories developed based on arsenic levels					
Population: residents of arsenic-affected villages	Population-Level Exposure: 50-500 μg/L range					
n cases: 3825 n control: 3451						
<u>Tsuda et al. (1995)</u>	Exposure Surrogate: drinking water	Outcome: all cancers				
		arsenic concentration in well water in 1959, pp				
Study Type: cohort	Exposure Description: arsenic in well	Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>	
(retrospective)	water measured in 1959 (the end of the	<0.05	11	0.78	0.41, 1.41	
	exposure period) in 34 wells; 20 area	0.05-0.99	5	1.3	0.51, 3.06	
Location: Japan	wells had no documented levels of	≥1	18	3.63	2.25, 5.71	
(Namiki-cho)	arsenic so authors inferred that arsenic levels were undetectable or very low; concentration assigned based on	Stat Method: Cox proportional hazard			nal hazard	
Population: adults and	residence in 1959					
children living near						
factory producing arsenic trisulfide	Population-Level Exposure: 0.05-1 ppm range					
n exposed: 189						
n reference: 254						
n total: 443						

--: not reported; n: number of cases (when presented in Results column)

5.12.1 References for Summary of Observational Epidemiology Studies for Health Effect Category: Other

Chung, CJ; Huang, YL; Huang, YK; Wu, MM; Chen, SY; Hsueh, YM; Chen, CJ. (2012). Urinary arsenic profiles and the risks of cancer mortality: A population-based 20-year follow-up study in arseniasis-endemic areas in Taiwan. Environ Res 122: 25-30. http://dx.doi.org/10.1016/j.envres.2012.11.007

Hsu, LI; Wang, YH; Chiou, HY; Wu, MM; Yang, TY; Chen, YH; Tseng, CH; Chen, CJ. (2013). The association of diabetes mellitus with subsequent internal cancers in the arsenic-exposed area of Taiwan. J Asian Earth Sci 73: 452-459. <u>http://dx.doi.org/10.1016/j.jseaes.2013.04.048</u>

Lai, MS; Hsueh, YM; Chen, CJ; Shyu, MP; Chen, SY; Kuo, TL; Wu, MM; Tai, TY. (1994). Ingested inorganic arsenic and prevalence of diabetes mellitus. Am J Epidemiol 139: 484-492.

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-198Draft: Do Not Cite or Quote

- Majumdar, KK; Guha Mazumder, DN; Ghose, N; Ghose, A; Lahiri, S. (2009). Systemic manifestations in chronic arsenic toxicity in absence of skin lesions in West Bengal. Indian J Med Res 129: 75-82.
- Tsuda, T; Babazono, A; Yamamoto, E; Kurumatani, N; Mino, Y; Ogawa, T; Kishi, Y; Aoyama, H. (1995). Ingested arsenic and internal cancer: A historical cohort study followed for 33 years. Am J Epidemiol 141: 198-209.

5.13Summary of Observational Epidemiology Studies for Health Effect Category: Renal Effects

Summary of Observational Epidemiology Studies for Health Effect Category: Renal Effects					
Reference and Study Design	Exposure Measures		Results		
<u>Baastrup et al. (2008)</u>	Exposure Surrogate: drinking water	Outcome: kidney cancer			
		cumulative arsenio	c exposure, mg		
Study Type: cohort (prospective)	Exposure Description: cumulative arsenic exposure and time-weighted average arsenic concentrations calculated for individuals based on residential address	Exp. Level <u>n</u> continuous NF Stat Method: (<u>(CI)</u> 0.84, 1.06	
Location: Denmark (Copenhagen and Aarhus)	and history from Central Population Registry combined with measurement data from nearest water utility as recorded by Geological Survey of				
Population: Danish Cancer Registry population (adults)	Denmark and Greenland (1987-2004)				
n exposed: 56,378	Population-Level Exposure: not available				
n total: 57053	Exposure Surrogate: drinking water	Outcome: kidney o			
		time-weighted average arsenic expos		xposure, μg/L	
	Exposure Description: time-weighted and cumulative arsenic concentrations calculated for individuals based on residential address and history from Central Population Registry combined with measurement data from nearest water utility as recorded by Geological Survey of Denmark and Greenland (1987- 2004)	Exp. Level <u>n</u> continuous NF Stat Method: (<u>IRR</u> R 0.89	<u>(CI)</u> 0.65, 1.22	
	Population-Level Exposure: 0.7 μg/L median				
<u>Chen et al. (2011a)</u>	Exposure Surrogate: urine	Outcome: renal tu glomerular filtratio	-		
Study Type: cross- sectional	Exposure Description: urinary arsenic concentration measured from spot sample for each individual; results below	urinary arsenic corExp. Leveln=<35	<u>adjOR</u>	ı/g-creatinine <u>(CI)</u> n/a	
Location: Taiwan (Changhua County	LOD assigned one-half of LOD	>35-75 NF >75-200 NF >200 NF	R 0.68	0.56, 1.80 0.42, 1.33 0.95, 4.99	

	of Observational Epidemiology Studies for	Health Effect C			S	
Reference and Study Design	Exposure Measures	Results				
(central Taiwan))	Population-Level Exposure:	Stat Method: multivariate logistic regression				
Population: adult	85.13 μg/g-creatinine median	Outcome: renal tubular dysfunction (estimated glomerular filtration rate <90 mL/min) urinary arsenic concentration, μg/g-creatinine				
residents of village with history of higher than						
average arsenic in		Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>	
drinking water		=<35	NR	<u>aajon</u> 1	<u>, e., /</u> n/a	
		>35-75	NR	1.45	0.49, 1.88	
n cases: 910		>75-200	NR	2.15	1.06, 3.78	
n control: 133		>200	NR	2.15	1.11, 3.49	
					istic regression	
		Outcome: re beta2 microg		-	•	
		urinary arser	nic concer	ntration. µa	/g-creatinine	
		Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>	
		=<35	NR	1	n/a	
		>35-75	NR	1.69	0.94, 3.64	
		>75-200	NR	2.11	1.23, 4.98	
		>200	NR	2.04	1.11, 4.37	
					istic regression	
<u>Chiou et al. (2005)</u>	Exposure Surrogate: drinking water	Outcome: Renal disease				
Study Type: cohort	Exposure Description: drinking water	drinking water arsenic concentration - rena disease, mg/L				
(retrospective)	arsenic concentration as reported by the	Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
(10103)2011(0)	National Taiwan University Group;	continuous	NR	-0.898	n/a	
Location: Taiwan	median concentration used as surrogate	Stat Met	hod: Logi	stic regressi	on model	
(southwestern: Tainan County (Yenshui,	if village had multiple wells	drinking water arsenic concentration - non- diabetic subjects, mg/L				
Beimen, and Shuechia	Population-Level Exposure:	Exp. Level	n	<u>adjOR</u>	<u>(CI)</u>	
townships), Chiayi	0.1-0.6 mg/L range	<0.1	NR	1	n/a	
County (Putai and Yichu		0.1-0.29	NR	1.17	0.75, 1.83	
townships))		0.3-0.59	NR	0.78	0.48, 1.24	
		≥ 0.6	NR	1.3	0.85, 2.00	
Population: adults and				tified analys	-	
children living in				gistic regress		
arseniasis-endemic townships		drinking wat			tion - Type 2	
n total: 28499		diabetic subj				
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		<0.1	NR	1	n/a	
		0.1-0.29	NR	0.69	0.27, 1.81	
		0.3-0.59	NR	1.33	0.67, 2.63	
		≥ 0.6	NR	2.08	1.05, 4.11	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-201Draft: Do Not Cite or Quote

Reference and Study	Exposure Measures	Health Effect Category: Renal Effects Results			
•	Exposure measures			Results	
Design		Stat Matk	ad. Ctra	tified analy	sic and
				tified analy	
		unconun	.លោង លេរូ	gistic regres	SIOII
Ferreccio et al. (2013a)	Exposure Surrogate: drinking water	Outcome: ren (transitional c	cancers		
Study Type: case-	Exposure Description: cumulative arsenic	cumulative ar	senic ex	posure, mg	
control	intake calculated by multiplying each	Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>
	average daily arsenic intake by 365	<10	7	1	n/a
	days/year and summing the results of all	10-25	12	5.49	2.02, 14.88
Location: Chile	years; exposures in the 5 years preceding	>25	5	10.35	2.57, 41.64
(Regions I and II in	cancer diagnosis or control identification		nod: unc		ogistic regressio
northern Chile)	not included	Stat metr			
Population: residents					
with kidney cancer in	Population-Level Exposure:				
area formerly having	10.3 mg mean				
arsenic-contaminated	Exposure Surrogate: drinking water	Outcome: other/unclassified kidney cancers			
drinking water		arsenic concentration in drinking wate			
n cases: 122	Exposure Description: historical concentrations of arsenic in drinking water available for Northern Chile (1930-1995 onward); arsenic concentrations in 1958-1970 averaged 860 µg/L;	arsenic not as	sociated	with other,	/unclassified
n control: 640		kidney cancers			
		Outcome: ren	al cell ca	ancers	
		arsenic conce	ntration	in drinking	water ua/day
		arsenic concentration in drinking water, µg/day arsenic not significantly associated with renal cell			
	installation of a treatment plant reduced	-	siincant	ly associated	u with renal ten
	recent concentrations to <10 μg/L;	cancers			
	exposure categories based on arsenic	Outcome: ren	-		cancers
	intake in the 3 main exposure areas of	(transitional o	ell carci	nomas)	
	Arica/Iquique, Calama, and Antofagasta	highest 5-yea	r daily a	verage arse	enic intake,
		μg/day			
	Population-Level Exposure:	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
	0-1000 μg/day range	<400	5	1	n/a
		400-1,000	8	5.71	1.65, 19.82
		>1,000	11	11.09	3.60, 34.16
		Stat Meth	od: unc	onditional lo	ogistic regressio
		highest daily	arsenic i	ntake befoi	re 1971, μg/day
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
		<400	7	1	n/a
		400-1,000	6	3.36	1.02, 11.10
		>1,000	11	7.13	2.61, 19.44
					ogistic regressio
García-Esquinas et al.	Exposure Surrogate: urine	Outcome: kid	nev can	cer	
(2013)		urinary arsen	-		/a-creatinine
	Evenoruro Decorintion individual uring	Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>
	Exposure Description: individual urine	80th vs. 20th	nr	0.44	<u>(Ch)</u> 0.14, 1.40

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-202Draft: Do Not Cite or Quote

Summary	of Observational Epidemiology Studies for	Health Effect Category: Renal Effects			
Reference and Study	Exposure Measures	Results			
Design					
Study Type: cohort (prospective)	samples collected and analyzed for arsenic speciation	percentiles Stat Method: Cox proportional hazard models; log transformed			
Location: United States (AZ; ND; OK; SD)	Population-Level Exposure: 9.7 μg/g-creatinine median, 5.8-15.6 μg/g-creatinine 25th percentile				
Population: Strong Heart Study participants					
n total: 3,935					
Hawkesworth et al.	Exposure Surrogate: maternal urine	Outcome: glomerular filtration			
<u>(2013)</u>	Exposure Description: spot urine	maternal urinary arsenic concentration (combined), mg/L			
Study Type: cohort	samples from participating women	Exp. Level <u>n</u> <u>adjBeta</u> (CI)			
(prospective)	collected at 8 and 30 weeks gestation;	continuous NR -14.2 -32.2, 3.7			
	log transformed as continuous variable	Stat Method: linear regression			
Location: Bangladesh (Matlab)	for analysis; median maternal urinary arsenic was 80 µg/L (10th, 90th	maternal urinary arsenic concentration week 30, mg/L			
	percentile: 24, 383 µg/L) at week 8 of gestation and 83 µg/L (10th, 90th: 26,	Exp. Level <u>n</u> <u>adjBeta</u> (CI)			
Population: children in	$415 \ \mu\text{g/L}$) at week 30	continuous NR 0.51 -16.2, 17.2			
Maternal and Infant		Stat Method: linear regression			
Nutrition Interventions in Matlab (MINIMat)	Population-Level Exposure: 80 mg/L median	maternal urinary arsenic concentration week 8, mg/L			
cohort		Exp. Level <u>n</u> adjBeta (CI)			
n total: 2499		continuous NR -21.2 -39.2, -3.2			
		Stat Method: linear regression			
		Outcome: kidney volume			
		maternal urinary arsenic concentration (combined), mg/L			
		Exp. Level <u>n</u> <u>adjBeta</u> (CI)			
		continuous NR 2.89 -6.17, 11.96			
		Stat Method: linear regression			
		maternal urinary arsenic concentration week 30, mg/L			
		Exp. Level <u>n</u> adjBeta (CI)			
		continuous NR 6.04 -3.11, 15.2			
		Stat Method: linear regression			
		maternal urinary arsenic concentration week 8, mg/L			
		<u>Exp. Level n adjBeta (CI)</u>			

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-203Draft: Do Not Cite or Quote

	of Observational Epidemiology Studies for			
Reference and Study Design	Exposure Measures	Results		
		continuous NR 0.75 -8.59, 10.08 Stat Method: linear regression		
	Exposure Surrogate: urine	Outcome: glomerular filtration		
	Exposure Description: urine samples collected from participating children at 18 months of age; log transformed as continuous variable for analysisinfant urinary arsenic concentration mg/LInfant urinary arsenic concentration mg/Lmg/LExp. Level continuousnadjBeta 			
		Outcome: kidney volume		
	Population-Level Exposure: 34 mg/L median	infant urinary arsenic concentration 18 months, mg/LExp. LevelnadiBeta(CI)continuousNR-1.9-23.45, 27.26Stat Method: linear regression		
Huang et al. (2011)	Exposure Surrogate: urine	Outcome: renal cell carcinoma		
Study Type: case- control Location: Taiwan region not available Population: adults with and without renal cell carcinoma in region without obvious sources of arsenic exposure n cases: 132 n control: 260	Exposure Description: total concentration of arsenic in daytime urine sample based on sum of individual arsenic species measured; mean urinary total arsenic for cases and controls: 25.16 (+/- 2.22) and 21.15 (+/- 1.02) μg/L, respectively Population-Level Exposure: not available	total urinary arsenic concentration, μg/g- creatinine Total urinary arsenic level was significantly associated with risk of developing renal cell carcinomas in a dose-reponse relationship after multivariate adjustment		
<u>Huang et al. (2012)</u>	Exposure Surrogate: urine	Outcome: renal cell carcinoma		
Study Type: case- control Location: Taiwan region not available Population: adults with and without renal cell	Exposure Description: total concentration of arsenic in daytime urine sample based on sum of individual arsenic species measured Population-Level Exposure: 12.3-20.95 μg/g-creatinine range	total urinary arsenic concentration (tertiles), $\mu g/g$ -creatinine $Exp. Level$ n ≤ 12.30 32 1 n/a 12.30 - 20.95 44 1.43 $0.73, 2.79$ >20.95 56 2.62 $1.32, 5.22$ Stat Method: multiple logistic regression		

Summary	of Observational Epidemiology Studies for	Health Effect Ca	tegory:	Renal Effec	ts
Reference and Study Design	Exposure Measures		I	Results	
carcinoma in region without obvious sources of arsenic exposure n cases: 132 n control: 245					
Kurttio et al. (1999)	Exposure Surrogate: drinking water	Outcome: kidi	nev can	rer	
<u>Kurtio et al. (1999)</u>	Exposure surrogate. uninking water	drinking wate			tion un/l
Study Type: case- control Location: Finland region not available	Exposure Description: arsenic concentration measured in well-water samples collected Jul-Nov 1996 from locations where individuals lived from 1967-1980	Exp. Level <.1 0.1-0.5 ≥ 0.5	<u>n</u> NR NR NR od: Line	adjRR 1 0.78 1.49 ear modeling	<u>(CI)</u> n/a 0.37, 1.66 0.67, 3.31
Population: register-	Population-Level Exposure: not available				
based cohort of Finnish people living outside	Exposure Surrogate: drinking water	Outcome: kidney cancer			
municipal water system from 1967-1980; 61 bladder cancer cases, 49 kidney cancer cases n cases: 49 n control: 275	Exposure Description: cumulative arsenic dose calculated based on duration of exposure as reported in questionnaire and sampled arsenic concentration in well water; if questionnaire data not available, assumed mean value from the reference cohort for consumption; arsenic concentration in drinking water before and after well-water use was considered null			n/a 0.33, 1.68 0.42, 1.86	
	Population-Level Exposure: 0.8 mg median				
	Exposure Surrogate: drinking water	Outcome: kidi	ney can	cer	
		daily dose of a			
	Exposure Description: daily dose of arsenic estimated from sampled arsenic concentration in well water (collected and measured 1996 from locations where individuals lived from 1967-1980) and reported consumption of well water from the 1970s; if questionnaire data not available assumed mean value from the reference cohort for consumption;	Exp. Level <0.2 0.2-1.0 ≥ 1.0 Stat Meth transform		adjRR 1 1.08 1.21 ear modelin	(<u>CI)</u> n/a 0.52, 2.25 0.52, 2.82 g after log
	arsenic concentration in drinking water				

Reference and Study	of Observational Epidemiology Studies for Exposure Measures			Results	
Design					
	before and after well-water use				
	considered null				
	Population-Level Exposure:				
	0.2 µg/day median				
Lewis et al. (1999)	Exposure Surrogate: drinking water	Outcome: kid	ney cano	cer	
		cumulative arsenic exposure (female			nales), ppb-yea
Study Type: cohort	Exposure Description: arsenic	Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>
(retrospective)	concentrations in drinking water	<1000	NR	2.36	n/a
(determined from Utah state records and	1000-4999	NR	1.32	n/a
	an EPA study; arsenic exposure index	≥ 5000	NR	1.13	n/a
Location: United States	score calculated individually based on	Stat Met	nod: stan		ortality ratios
(Millard County, Utah)	number of years residence in each				-
	community and median drinking water		rsenic ex	-	iles), ppb-years
Population: deceased	arsenic concentration in community	Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>
male and female		<1000	NR	2.51	n/a
members of Latter-day	Population-Level Exposure:	1000-4999	NR	1.13	n/a
Saints church wards	3.5-620 ppb-years range	≥ 5000	NR	1.43	n/a
n exposed: 2203	5.5-020 ppb-years range	Stat Met	nod: stan	dardized m	ortality ratios
n total: 2203		Outcome: nephritis and nephrosis		is	
		cumulative a	rsenic ex	posure (ma	ıles), ppb-years
		Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>
		<1000	NR	2.02	n/a
		1000-4999	NR	2.1	n/a
		≥ 5000	NR	0.88	n/a
		Stat Met	nod: stan	dardized m	ortality ratio;
					pational cohort
Mostafa and Cherry	Exposure Surrogate: drinking water	Outcome: renal cell cancer (RCC)			
<u>(2013)</u>		water arsenia			
	Exposure Description: 3534 wells	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
Study Type: case-	sampled by British Geological Survey;	<10	NR	1	n/a
control	arsenic in drinking water estimated for	10-<50	NR	1.37	0.92, 2.06
	each subject as mean arsenic	50-<100	NR	2.05	1.27, 3.32
	concentration (non-detects set at 0.5	100-<200	NR	2.28	1.42, 3.64
Location: Bangladesh	μ g/L) in wells for the area in which the	200-<300	NR	3.95	2.42, 6.44
(Dhaka)	patient lived at the time of biopsy; where	≥ 300	NR	6	3.24, 11.12
	address as extracted did not indicate the			tilevel logis	
Population: patients	area, the clinical record was reviewed				
from a single clinic in a	and assigned to the correct or closest	well water ar		ncentration	(1994 or
rural high arsenic area	area	earlier), μg/L			
who developed renal		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
cancer	Bonulation Loval Experience	<10	NR	1	n/a
	Population-Level Exposure:	10-<50	NR	2.47	1.52, 4.01

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-206Draft: Do Not Cite or Quote

Summary	of Observational Epidemiology Studies fo	r Health Effect C	ategory:	Renal Effec	ts		
Reference and Study Design	Exposure Measures			Results			
n cases: 986	10-300 μg/L range	50-<100	NR	3.52	2.06, 6.01		
n control: 503		100-<200	NR	2.89	1.76, 4.783		
		200-<300	NR	5.4	3.16, 9.23		
		≥ 300	NR	9.22	5.07, 16.76		
		Stat Met	Stat Method: multilevel logistic model				
		well water a	rsenic coi	ncentration	(1995 or later),		
		μg/L					
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>		
		<10	NR	1	n/a		
		10-<50	NR	0.67	0.34, 1.32		
		50-<100	NR	0.79			
		100-<200					
		200-<300					
		≥ 300					
			NR 1 n/a <50				
			Outcome: renal cell cancer (RCC) and transitiona cell cancer (TCC) water arsenic concentration, µg/L				
			c concent				
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>		
		<10	NR	1	n/a		
		10-<50	NR	1.29	0.86, 1.91		
		50-<100	NR	2.12	1.33, 3.39		
		100-<200	NR	2.41	1.53, 3.81		
		200-<300	NR	3.84	2.38, 6.19		
		≥ 300	NR	6	3.29, 10.98		
		Stat Met	hod: mul	tilevel logis	tic model		
		Outcome: tra	ansitiona	cell cancer	r (TCC)		
		water arseni			۲L		
		Exp. Level			<u>(CI)</u>		
		<10	NR	1	n/a		
		10-<50	NR	0.51	0.16, 1.63		
		50-<100	NR	4.59	1.70, 12.36		
		100-<200	NR	4.94	1.88, 12.99		
		200-<300	NR	4.83	1.77, 13.13		
		≥ 300	NR	7.7	2.37, 25.03		
		Stat Met	hod: mul	tilevel logis	tic model		
<u>Sawada et al. (2013)</u>	Exposure Surrogate: diet	Outcome: ki	dney can	er			
Study Type: cohort	Exposure Description: detailed	inorganic ars μg/day	senic inta	ke (females	; quartiles),		
(prospective)	questionnaire on food intake/frequency;		<u>n</u>	HR	<u>(CI)</u>		
(p. ospective)		40.6	13	1	n/a		

Summary	of Observational Epidemiology Studies for	Health Effect Ca	tegory:	Renal Effe	cts
Reference and Study	Exposure Measures		ł	Results	
Design					
	average arsenic concentrations in food	53.7	7	0.48	0.19, 1.23
Location: Japan (Iwate,	items obtained from the literature;	62.6	5	0.34	0.12, 0.96
Akita, Nagano,	arsenic intake calculated by multiplying	105.7	9	0.64	0.27, 1.53
Okinawa, Tokyo,	average arsenic concentration in each	Stat Meth	nod: Mul	tivariate re	gression
Ibaraki, Niigata, Kochi,	item by quantity consumed	-			
Nagasaki, Osaka)		inorganic arse	enic inta	ke (males;	quartiles),
	Population-Level Exposure:	μg/day			()
	170 μg/day mean, 88.3-253.2 μg/day	Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>
Population: adults in	range	40.5	14	1	n/a
Japan Public Health		54.7	22	1.72	0.87, 3.39
Center (JPHC)		63.5	21	1.66	0.83, 3.35
Prospective Study		99.1	26	2.05	1.05, 4.03
cohort		Stat Meth	nod: Mul	tivariate re	gression
n total: 90378					
<u>Yuan et al. (2010)</u>	Exposure Surrogate: residency	Outcome: kidney cancer mortality arsenic exposure by birth year (combined), a			ty
					combined). units
Study Type: cohort	Exposure Description: based on	not available		,	· · · · // · · · ·
(retrospective)	measurements of drinking water in	Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>
(ietiospective)	Antofagasta and Mejillones 1950 - 1970	born 1950 -	8	7.08	3.05, 14
	defined as the high exposure period, so	1970			,
Location: Chile (Region	individuals born during this period would	born before	187	3.12	2.69, 3.61
II (Mejillones and	have had exposure in utero and in early	1950			,
Antofagasta))	childhood, but individuals born before	Stat Meth	nod: Pois	son regres	sion
	would only have early childhood	arsenic exposure by birth year (men only), uni			
Population: residents	exposure				nen only), units
of areas with high		not available			
arsenic concentrations	Dopulation Loyal Exposures	<u>Exp. Level</u>	<u>n</u>	<u>SMR</u>	<u>(CI)</u>
in water	Population-Level Exposure: 60-870 range	born 1950 -	4	5.63	1.52, 14.4
number of subjects not	60-870 range	1970			
reported		born before	103	2.68	2.19, 3.26
		1950			
		Stat Meth	nod: Pois	son regres	sion
		arsenic expos	ure hv h	irth vear (v	women only)
		units not avai	-	in the year (voinen oniy),
		Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>
		born 1950 -	4	9.52	2.56, 24.4
		1970		5.52	,
		born before	84	3.91	3.12, 4.84
		1950			- ,
			nod: Pois	son regres	sion

--: not reported; n: number of cases (when presented in Results column)

5.13.1 References for Summary of Observational Epidemiology Studies for Health Effect Category: Renal Effects

- Baastrup, R; Sørensen, M; Balstrøm, T; Frederiksen, K; Larsen, CL; Tjønneland, A; Overvad, K; Raaschou-<u>Nielsen, O.</u> (2008). Arsenic in drinking-water and risk for cancer in Denmark. Environ Health Perspect 116: 231-237. <u>http://dx.doi.org/10.1289/ehp.10623</u>
- <u>Chen, JW; Chen, HY; Li, WF; Liou, SH; Chen, CJ; Wu, JH; Wang, SL.</u> (2011). The association between total urinary arsenic concentration and renal dysfunction in a community-based population from central Taiwan. Chemosphere 84: 17-24. <u>http://dx.doi.org/10.1016/j.chemosphere.2011.02.091</u>
- <u>Chiou, JM; Wang, SL; Chen, CJ; Deng, CR; Lin, W; Tai, TY.</u> (2005). Arsenic ingestion and increased microvascular disease risk: Observations from the south-western arseniasis-endemic area in Taiwan. Int J Epidemiol 34: 936-943. <u>http://dx.doi.org/10.1093/ije/dyi108</u>
- Ferreccio, C; Smith, AH; Durán, V; Barlaro, T; Benítez, H; Valdés, R; Aguirre, JJ; Moore, LE; Acevedo, J; Vásquez, MI; Pérez, L; Yuan, Y; Liaw, J; Cantor, KP; Steinmaus, C. (2013). Case-control study of arsenic in drinking water and kidney cancer in uniquely exposed Northern Chile. Am J Epidemiol 178: 813-818. <u>http://dx.doi.org/10.1093/aje/kwt059</u>
- García-Esquinas, E; Pollan, M; Umans, JG; Francesconi, KA; Goessler, W; Guallar, E; Howard, B; Farley, J; Best, LG; Navas-Acien, A. (2013). Arsenic exposure and cancer mortality in a US-based prospective cohort: the strong heart study. Cancer Epidemiol Biomarkers Prev 22: 1944-1953. <u>http://dx.doi.org/10.1158/1055-9965.EPI-13-0234-T</u>
- <u>Hawkesworth, S; Wagatsuma, Y; Kippler, M; Fulford, AJ; Arifeen, SE; Persson, LA; Moore, SE; Vahter, M.</u> (2013). Early exposure to toxic metals has a limited effect on blood pressure or kidney function in later childhood, rural Bangladesh. Int J Epidemiol 42: 176-185. <u>http://dx.doi.org/10.1093/ije/dys215</u>
- Huang, CY; Chu, JS; Pu, YS; Yang, HY; Wu, CC; Chung, CJ; Hsueh, YM. (2011). Effect of urinary total arsenic level and estimated glomerular filtration rate on the risk of renal cell carcinoma in a low arsenic exposure area. J Urol 185: 2040-2044. <u>http://dx.doi.org/10.1016/j.juro.2011.01.079</u>
- Huang, CY; Su, CT; Chung, CJ; Pu, YS; Chu, JS; Yang, HY; Wu, CC; Hsueh, YM. (2012). Urinary total arsenic and 8-hydroxydeoxyguanosine are associated with renal cell carcinoma in an area without obvious arsenic exposure. Toxicol Appl Pharmacol 262: 349-354. <u>http://dx.doi.org/10.1016/j.taap.2012.05.013</u>
- Kurttio, P; Pukkala, E; Kahelin, H; Auvinen, A; Pekkanen, J. (1999). Arsenic concentrations in well water and risk of bladder and kidney cancer in Finland. Environ Health Perspect 107: 705-710. http://dx.doi.org/10.1289/ehp.99107705
- Lewis, DR; Southwick, JW; Ouellet-Hellstrom, R; Rench, J; Calderon, RL. (1999). Drinking water arsenic in Utah: A cohort mortality study. Environ Health Perspect 107: 359-365. http://dx.doi.org/10.1289/ehp.99107359
- Mostafa, M; Cherry, N. (2013). Arsenic in drinking water and renal cancers in rural Bangladesh. Occup Environ Med 70: 768-773. <u>http://dx.doi.org/10.1136/oemed-2013-101443</u>
- Sawada, N; Iwasaki, M; Inoue, M; Takachi, R; Sasazuki, S; Yamaji, T; Shimazu, T; Tsugane, S. (2013). Dietary arsenic intake and subsequent risk of cancer: The Japan Public Health Center-based (JPHC) prospective study. Cancer Causes Control 24: 1403-1415. <u>http://dx.doi.org/10.1007/s10552-013-0220-2</u>

Yuan, Y; Marshall, G; Ferreccio, C; Steinmaus, C; Liaw, J; Bates, M; Smith, AH. (2010). Kidney cancer mortality: Fifty-year latency patterns related to arsenic exposure. Epidemiology 21: 103-108. http://dx.doi.org/10.1097/EDE.0b013e3181c21e46

5.14Summary of Observational Epidemiology Studies for Health Effect Category: Reproductive System Effects including Pregnancy Outcomes

Summary of Observa Effects including Pre	1 01	th Effect Category: Reproductive System
Reference and Study Design	Exposure Measures	Results
Baastrup et al. (2008)	Exposure Surrogate: drinking water Exposure Description: cumulative arsenic exposure and time-weighted average arsenic concentrations calculated for	Outcome: breast cancer
Study Type: cohort (prospective)		cumulative arsenic exposure, mgExp. LevelnIRR(CI)continuousNR10.99, 1.02Stat Method: Cox regression
Location: Denmark	individuals based on residential address and history from Central Population	Outcome: prostate cancer
(Copenhagen and Aarhus) Population: Danish Cancer Registry population (adults) n exposed: 56,378 n total: 57053	Registry combined with measurement data from nearest water utility as recorded by Geological Survey of Denmark and Greenland (1987-2004)	cumulative arsenic exposure, mgExp. LevelnIRR(CI)continuousNR10.99, 1.03Stat Method: Cox regression
	Population-Level Exposure: not available	
	Exposure Surrogate: drinking water	Outcome: breast cancer
	Exposure Description: time-weighted and cumulative arsenic concentrations calculated for individuals based on	time-weighted average arsenic exposure, μg/LExp. LevelnIRR(CI)continuousNR1.030.99, 1.08Stat Method: Cox regression
	residential address and history from Central Population Registry combined	Outcome: prostate cancer
	with measurement data from nearest water utility as recorded by Geological Survey of Denmark and Greenland (1987- 2004)	time-weighted average arsenic exposure, μg/LExp. LevelnIRR(CI)continuousNR1.030.97, 1.09Stat Method: Cox regression
	Population-Level Exposure: 0.7 μg/L median	
García-Esquinas et al.	Exposure Surrogate: urine	Outcome: breast cancer
(2013) Study Type: cohort	Exposure Description: individual urine samples collected and analyzed for	<i>urinary arsenic concentration, μg/g-creatinine</i> no significant association between arsenic and breast cancer
(prospective)	arsenic speciation	Outcome: prostate cancer

Reference and Study Design	Exposure Measures	Results				
Design		urinary arsenic concentration, µg/g-creatinine				
Location: United States (AZ; ND; OK; SD) Population: Strong Heart Study participants n total: 3,935	Population-Level Exposure: 9.7 μg/g-creatinine median, 5.8-15.6 μg/g-creatinine 25th percentile			(<u>CI)</u> 1.28, 8.48 al hazard		
Garland et al. (1996)	Exposure Surrogate: toenails	Outcome: bre	ast can	er		
<u>Ganand et al. (1990)</u>	Laposure Surrogate. toerians	toenail arseni			untiles) ua/a	
Study Type: case- control (nested) Location: United States (11 States) Population: Nurses' Health Study cohort members with no prior history of of cancer in 1982 n cases: 427 n control: 450	Exposure Description: case-control pair samples analyzed together; 47 samples below LOD and set to the value of LOD; concentrations log € transformed and regressed (adjusted) for weight by laboratory batch; exposure quintiles derived based on distribution in controls Population-Level Exposure: 0.12 µg/g mean	logistic re	egressio	adjOR 1 1.19 1.01 1.12 1.12 onditional r	(<u>CI)</u> n/a 0.71, 1.98 0.59, 1.73 0.67, 1.90 0.66, 1.91 nultivariate	
<u>Kwok et al. (2006)</u>	Exposure Surrogate: drinking water	Outcome: stillbirths				
		drinking wate				
Study Type: cross- sectional	Exposure Description: water samples collected during in-home interview from main drinking water source used during pregnancy	Exp. Level continuous Stat Meth	n NR od: mu	<u>adjOR</u> 0.999 Itivariate log	(<u>CI)</u> 0.996, 1.002 gistic regression	
Location: Bangladesh	pregnancy	drinking wate	r arseni	ic concentra		
(Faridpur district (Faridpur Sadar upazila) and Chandpur district (Matlab and Shahrasti upazilas))	Population-Level Exposure: 0.5-668 ppb range	Exp. Level ≤ 10 11-50 51-100 101-200 201-300 >300	<u>n</u> 8 5 6 14 17 3	Prev 2.5 2.2 2.7 2.8 3.4 1.3	(<u>CI)</u> n/a n/a n/a n/a n/a	
Population: residents of 261 highly arsenic-		Stat Meth			nya	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-211Draft: Do Not Cite or Quote

Effects including Pre	gnancy Outcomes				
Reference and Study Design	Exposure Measures		I	Results	
Lewis et al. (1999)	Exposure Surrogate: drinking water	Outcome: bro	east cano	er	
		cumulative a	rsenic ex	posure (fen	nales), ppb-yea
Study Type: cohort	Exposure Description: arsenic	Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>
retrospective)	concentrations in drinking water	<1000	NR	0.64	n/a
· ,	determined from Utah state records and	1000-4999	NR	0.7	n/a
ocation: United States	an EPA study; arsenic exposure index	≥ 5000	NR	0.4	n/a
Millard County, Utah)	score calculated individually based on number of years residence in each	Stat Met	nod: star	ndardized m	ortality ratios
	community and median drinking water	Outcome: oth	ner fema	le genital o	rgans cancer
Population: deceased	arsenic concentration in community	cumulative a	rsenic ex	posure (fen	nales), ppb-yea
nale and female nembers of Latter-day		Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>
Saints church wards	Population-Level Exposure:	<1000	NR	0.87	n/a
	3.5-620 ppb-years range	1000-4999	NR	0.71	n/a
n exposed: 2203		≥ 5000	NR	1.09	n/a
n total: 2203		Stat Met	nod: star	ndardized m	ortality ratios
		Outcome: prostate cancer			
					lles), ppb-years
		Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>
		<1000	NR	1.07	n/a
		1000-4999	NR	1.7	n/a
		≥ 5000	NR	1.65	n/a
		Stat Met	nod: star	idardized m	ortality ratios
		Outcome: uterine cancer			
					nales), ppb-yea
		Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>
		<1000	NR	0.42	n/a
		1000-4999	NR	0.49	n/a
		≥ 5000	NR	0.65	n/a
		Stat wet	nod: star	idardized m	ortality ratios
<u> Wilton et al. (2005)</u>	Exposure Surrogate: drinking water	Outcome: spo			
		drinking wate			
Study Type: cross-	Exposure Description: single well-water	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
sectional	measurement used to characterize	≤ 50	NR	1	n/a
	chronic arsenic exposure; arsenic	>50	NR	2.5	1.5, 4.3
Location: Bangladesh	concentrations recorded as zero replaced	51-100	NR	2.4	1.2, 5.1
(Comilla, Chandpur,	with 30 μg/L	>100	NR	2.5	1.5, 4.4
and Chuadanga		Stat Met	nod: logi:	stic regress	ion analysis
districts)	Population-Level Exposure: 279 μg/L mean 355SD	Outcome: sti	lbirth		

These draft development materials are for review purposes only and do not constitute Agency policy. April 2014 5-212 Draft: Do Not Cite or Quote

Reference and Study	egnancy Outcomes Exposure Measures	Results			
Design					
Population: women		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
iving in study area with		≤ 50	13	1	n/a
≥ 1 prior pregnancy		>50	49	2.5	1.3, 4.9
n cases: n/a		51-100	4	1.1	0.3, 3.1
n control: n/a		>100	45	2.9	1.5, 5.9
		Stat Met	hod: logis	stic regressi	ion analysis
Pollack et al. (2013)	Exposure Surrogate: urine	Outcome: en	dometric	osis	
		urinary arser	nic concer	ntration (op	perative cohort
Study Type: cohort	Exposure Description: blood and urine	by endometr	iosis stat	us, μg/L	
(prospective)	specimens collected from women upon	Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>
	completion of interview; urine specimens	controls	283	8.37	7.50, 9.33
Location: United States	were analyzed for 20 trace elements	cases	190	8.37	7.41, 9.46
(CA; UT)					or Wilcoxon
	Population-Level Exposure:	nonpara	ametric te	est for conti	inuous data
Population: adult	4.94-10.84 μg/L range	urinary arsei	nic concer	ntration (pa	pulation coho
females in ENDO Study		by endometr			
•		Exp. Level	<u>n</u>	mean	<u>(CI)</u>
n exposed: 495 n reference: 131		controls	113	8.69	7.26, 10.39
n total: 626		cases	14	7.74	4.88, 12.25
11 LOLAI: 020		Stat Met	hod: Stuc	lent's t-test	or Wilcoxon
		nonparametric test for continuous data			inuous data
<u>Rahman et al. (2010)</u>	Exposure Surrogate: urine	Outcome: sp	ontaneou	us abortion	/miscarriage
		early pregna	ncy urina	ry arsenic d	concentration
Study Type: cohort	Exposure Description: urine samples	(quintiles), μ	g/L		
(prospective)	collected at ~approx gestation week 8	Exp. Level	<u>n</u>	<u>OR</u>	<u>(CI)</u>
	and gestation week 30; samples adjusted	<33	45	1	n/a
Location: Bangladesh	by specific gravity rather than creatinine;	33-57	57	1.28	0.85, 1.93
(Matlab)	urine levels divided into quintiles	58-121	63	1.41	0.94, 2.11
		122-248	47	1.06	0.69, 1.62
	Population-Level Exposure:	249-1253	63	1.44	0.96, 2.15
Population: pregnant women enrolled in the	38-2019 μg/L range	Stat Met	hod: logis	stic regressi	ion
Maternal and Infant		Outcome: st	illbirths		
Nutrition Intervention in Matlab study		-	ary arsen	ic concentr	ation (quintile:
(MINIMat)		μg/L Exp. Loval	n	adiOP	
n total: 1725		Exp. Level	<u>n</u> 2	adjOR 1	<u>(CI)</u> n/a
		<38	3	1	n/a
		39-67	6	2.06	0.51, 8.38
		68-133	7	2.35	0.6, 9.23
		134-267	10	3.41 2.02	0.92, 12.63 0.5, 8.24
		268-2019	6	2 112	N L 0 7/

These draft development materials are for review purposes only and do not constitute Agency policy.

Reference and Study Design	Exposure Measures	Results			
		Stat Method: logistic regression			
<u>Sawada et al. (2013)</u>	Exposure Surrogate: diet	Outcome: breast cancer			
Study Type: cohort (prospective)	Exposure Description: detailed questionnaire on food intake/frequency;	<i>arsenic concentration in diet, μg/day</i> arsenic not significantly associated with breast cancer			
Location: Japan (Iwate, Akita, Nagano, Okinawa, Tokyo,	items obtained from the literature; arsenic intake calculated by multiplying average arsenic concentration in each	Outcome: endometrial cancerarsenic concentration in diet, μg/dayarsenic not significantly associated with			
Ibaraki, Niigata, Kochi, Nagasaki, Osaka)	item by quantity consumed	endometrial cancer Outcome: prostate cancer			
Population: adults in Japan Public Health Center (JPHC) Prospective Study cohort n total: 90378	Population-Level Exposure: 170 μg/day mean, 88.3-253.2 μg/day range	<i>arsenic concentration in diet, μg/day</i> arsenic not significantly associated with prostate cancer			
<u>Tsuda et al. (1995)</u>	Exposure Surrogate: drinking water	Outcome: uterine cancer			
Study Type: cohort (retrospective) Location: Japan (Namiki-cho)	Exposure Description: arsenic in well water measured in 1959 (the end of the exposure period) in 34 wells; 20 area wells had no documented levels of arsenic so authors inferred that arsenic levels were undetectable or very low; concentration assigned based on	arsenic concentration in well water in 1959, ppmExp. LevelnSMR(CI)<0.05			
Population: adults and children living near factory producing arsenic trisulfide n exposed: 189 n reference: 254 n total: 443	residence in 1959 Population-Level Exposure: 0.05-1 ppm range				
Von Ehrenstein et al.	Exposure Surrogate: drinking water	Outcome: spontaneous abortion			
(2006) Study Type: cross- sectional	Exposure Description: water samples collected from tube wells used at least 6 months since first pregnancy; past arsenic concentration measurements	arsenic concentration in drinking water, $\mu g/L$ Exp. Leveln $adjOR$ (Cl)0-49211n/a50-19920.910.25, 3.34 ≥ 200 51.010.38, 2.70			

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-214Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures			Results	
Location: India (West		method	of gener	alized estir	nating equation
Bengal)	Population-Level Exposure: 0-200 μg/L range	Outcome: sti	llbirths		
Population: women		arsenic conce	ntration	in drinking	η water, μg/L
residing in 21 villages of		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
West Bengal, India		0-49	8	1	n/a
n cases: n/a		50-199	1	0.8	0.10, 6.66
n control: n/a		≥ 200	9	6.07	1.54, 24.0
			•	-	ion based on
		method	of gener	alized estir	nating equation
<u>Xu et al. (2012)</u>	Exposure Surrogate: urine	Outcome: semen volume			
Study Type: cross-Exposure Description: urine samplesdichotomised urinary arsenic concentreμg/g-creatinine				ncentration,	
sectional	collected on same day as semen	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
	collection (unless multiple samples	1	NR	1	n/a
Location: China	given); arsenic concentration	2	NR	1.4	0.4, 4.8
(Chongqing)	dichotomized with cut-offs of the median	Stat Met	hod: bina	ary logistic	regression
		Outcome: sp	erm cono	entration	
Population: male patients at infertility	Population-Level Exposure: 4.89 μg/g-creatinine mean 3.67SD	dichotomised urinary arsenic concentration, μg/g-creatinine			
clinic		<u>Exp. Level</u>	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
n cases: n/a		1	NR	1	n/a
n control: n/a		2	NR	0.6	0.1, 2.2
		Stat Met	hod: bina	ary logistic	regression
		Outcome: sp	erm mot	ility	
		dichotomised μg/g-creatini	-	arsenic coı	ncentration,
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
		1	NR	1	n/a
		2	NR	1.1	0.4, 2.8

--: not reported; n: number of cases (when presented in Results column)

5.14.1 References for Summary of Observational Epidemiology Studies for Health Effect Category: Reproductive System Effects including Pregnancy Outcomes

- Baastrup, R; Sørensen, M; Balstrøm, T; Frederiksen, K; Larsen, CL; Tjønneland, A; Overvad, K; Raaschou-<u>Nielsen, O.</u> (2008). Arsenic in drinking-water and risk for cancer in Denmark. Environ Health Perspect 116: 231-237. <u>http://dx.doi.org/10.1289/ehp.10623</u>
- García-Esquinas, E; Pollan, M; Umans, JG; Francesconi, KA; Goessler, W; Guallar, E; Howard, B; Farley, J; Best, LG; Navas-Acien, A. (2013). Arsenic exposure and cancer mortality in a US-based prospective cohort: the strong heart study. Cancer Epidemiol Biomarkers Prev 22: 1944-1953. <u>http://dx.doi.org/10.1158/1055-9965.EPI-13-0234-T</u>
- Garland, M; Morris, JS; Colditz, GA; Stampfer, MJ; Spate, VL; Baskett, CK; Rosner, B; Speizer, FE; Willett, <u>WC; Hunter, DJ.</u> (1996). Toenail trace element levels and breast cancer: a prospective study. Am J Epidemiol 144: 653-660.
- Kwok, RK; Kaufmann, RB; Jakariya, M. (2006). Arsenic in drinking-water and reproductive health outcomes: A study of participants in the Bangladesh integrated nutrition programme. J Health Popul Nutr 24: 190-205.
- Lewis, DR; Southwick, JW; Ouellet-Hellstrom, R; Rench, J; Calderon, RL. (1999). Drinking water arsenic in Utah: A cohort mortality study. Environ Health Perspect 107: 359-365. http://dx.doi.org/10.1289/ehp.99107359
- Milton, AH; Smith, W; Rahman, B; Hasan, Z; Kulsum, U; Dear, K; Rakibuddin, M; Ali, A. (2005). Chronic arsenic exposure and adverse pregnancy outcomes in Bangladesh. Epidemiology 16: 82-86. http://dx.doi.org/10.1097/01.ede.0000147105.94041.e6
- Pollack, AZ; Louis, GM; Chen, Z; Peterson, CM; Sundaram, R; Croughan, MS; Sun, L; Hediger, ML; Stanford, JB; Varner, MW; Palmer, CD; Steuerwald, AJ; Parsons, PJ. (2013). Trace elements and endometriosis: The ENDO study. Reprod Toxicol 42: 41-48. <u>http://dx.doi.org/10.1016/j.reprotox.2013.05.009</u>
- Rahman, A; Persson, LÅ; Nermell, B; El Arifeen, S; Ekström, EC; Smith, AH; Vahter, M. (2010). Arsenic exposure and risk of spontaneous abortion, stillbirth, and infant mortality. Epidemiology 21: 797-804. http://dx.doi.org/10.1097/EDE.0b013e3181f56a0d
- Sawada, N; Iwasaki, M; Inoue, M; Takachi, R; Sasazuki, S; Yamaji, T; Shimazu, T; Tsugane, S. (2013). Dietary arsenic intake and subsequent risk of cancer: The Japan Public Health Center-based (JPHC) prospective study. Cancer Causes Control 24: 1403-1415. <u>http://dx.doi.org/10.1007/s10552-013-0220-2</u>
- Tsuda, T; Babazono, A; Yamamoto, E; Kurumatani, N; Mino, Y; Ogawa, T; Kishi, Y; Aoyama, H. (1995). Ingested arsenic and internal cancer: A historical cohort study followed for 33 years. Am J Epidemiol 141: 198-209.
- Von Ehrenstein, OS; Guha Mazumder, DN; Hira-Smith, M; Ghosh, N; Yuan, Y; Windham, G; Ghosh, A; Haque, R; Lahiri, S; Kalman, D; Das, S; Smith, AH. (2006). Pregnancy outcomes, infant mortality, and arsenic in drinking water in West Bengal, India. Am J Epidemiol 163: 662-669. http://dx.doi.org/10.1093/aje/kwj089
- Xu, W; Bao, H; Liu, F; Liu, L; Zhu, YG; She, J; Dong, S; Cai, M; Li, L; Li, C; Shen, H. (2012). Environmental exposure to arsenic may reduce human semen quality: associations derived from a Chinese cross-sectional study. Environ Health. <u>http://dx.doi.org/10.1186/1476-069X-11-46</u>

5.15Summary of Observational Epidemiology Studies for Health Effect Category: Respiratory Effects

Summary of	Observational Epidemiology Studies for Hea	alth Effect Cate	gory: Res	piratory Eff	fects
Reference and Study Design	Exposure Measures		R	esults	
Baastrup et al. (2008)	Exposure Surrogate: drinking water	Outcome: lung cancer			
		cumulative ar	senic exp	osure, mg	
Study Type: cohort (prospective)	Exposure Description: cumulative arsenic exposure and time-weighted average arsenic concentrations calculated for	<u>Exp. Level</u> continuous Stat Meth	<u>n</u> NR nod: Cox r	IRR 1 egression	<u>(CI)</u> 0.98, 1.02
Location : Denmark (Copenhagen and Aarhus)	individuals based on residential address and history from Central Population Registry combined with measurement data from nearest water utility as recorded by Geological Survey of				
Population: Danish Cancer Registry population (adults)	Denmark and Greenland (1987-2004)				
n exposed: 56,378	Population-Level Exposure: not available				
n total: 57053	Exposure Surrogate: drinking water	Outcome: lung cancer time-weighted average arsenic exposure, µg			
					kposure. µa/L
	Exposure Description: time-weighted and cumulative arsenic concentrations calculated for individuals based on residential address and history from Central Population Registry combined with measurement data from nearest water utility as recorded by Geological Survey of Denmark and Greenland (1987- 2004) Population-Level Exposure:	Exp. Level continuous Stat Meth	<u>n</u> NR	<u>IRR</u> 0.99	<u>(CI)</u> 0.92, 1.07
	0.7 μg/L median				
<u>Chen et al. (2004a)</u>	Exposure Surrogate: drinking water	Outcome: lun	g cancer		
Study Type: cohort (prospective)	Exposure Description: average drinking water arsenic concentrations calculated using median concentration for relevant	average drink µg/L Exp. Level <10	i ng wate <u>n</u> 27	r arsenic co <u>adjRR</u> 1	oncentration, (CI) n/a
Location: Taiwan (Southwestern coast	village wells as measured in the early 1960s (southeastern cohort) or measured concentration for relevant	10-99 100-299 300-699	31 17 18	1.09 2.28 3.03	0.63, 1.91 1.22, 4.27 1.62, 5.69

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-217Draft: Do Not Cite or Quote

Summary of Observational Epidemiology Studies for Hea						
Reference and Study	Exposure Measures	Results				
Design						
(Peimen, Hsuehchia,	personal wells (northeastern cohort) and	≥ 700	26	3.29	1.60, 6.78	
Putai and Ichu	total years drinking artesian well water;	unknown	20	1.1	0.60, 2.03	
townships) and	grouped to include enough lung cancer			proportion	al hazards	
northeaster Lanyang	cases in each category	regressio	n mode			
Basin (Tungshan,						
Chuangwei, Chiaohsi,	Population-Level Exposure:					
and Wuchieh	10-700 μg/L range					
townships))						
Population: adults						
living in arseniasis-						
endemic areas,						
followed from exisiting						
cohort						
n total: 10591						
<u>Chen et al. (2010a)</u>	Exposure Surrogate: drinking water	Outcome: all lung cancer				
		cumulative ar	senic ex	oosure (ref	[;] = 0), μg/L-yea	
Study Type: cohort	Exposure Description: cumulative arsenic	Exp. Level	<u>n</u>	<u>adjRR</u>	<u>(CI)</u>	
(prospective)	levels calculated based on arsenic	0	NR	1	n/a	
	concentration in well water and self-	<1000	NR	0.56	0.36, 0.89	
Location: Taiwan	reported years of drinking well water	1000-<5000	NR	0.78	0.5, 1.21	
(Lanyang Basin (Tung-		5000-	NR	1.37	0.8, 2.34	
Shan, Chuang-Wei,	Population-Level Exposure:	<10,000				
Chiao-His, and Wu-	3523.5 μg/L-year mean 9443.5SD	≥ 10,000	NR	1.52	0.92, 2.52	
Chieh Townships))	5525.5 µ _b , 2 year mean 5445.555	Stat Meth	od: mul	tivariate re	gression	
		cumulative ar	senic ex	posure (ref	= <100), μg/L-	
Population: adults		year				
living in arseniasis-		Exp. Level	<u>n</u>	adjRR	<u>(CI)</u>	
endemic township		<100	43	1	n/a	
n total: 6888		100-<1000	32	0.65	0.41, 1.02	
		100 - <1000	54	0.04	0.00.4.00	
		1000-<5000	51	0.91	0.60, 1.36	
		5000-<10000	23	1.6	0.96, 2.65	
		≥ 10,000	29	1.78	1.11, 2.85	
				tivariate re		
		cumulative ars year	senic ex	posure (ref	= <400), μg/L-	
		Exp. Level	<u>n</u>	<u>adjRR</u>	<u>(CI)</u>	
		<400	55	1	n/a	
		400-<1000	20	0.83	0.50, 1.39	
		1000-<5000	51	1.06	0.73, 1.56	
		5000-<10000	23	1.87	1.15, 3.04	
		≥ 10,000	29	2.08	1.13, 3.27	

These draft development materials are for review purposes only and do not constitute Agency policy. 5-218 Draft: Do Not Cite or Quote

Defenses a lot l	Observational Epidemiology Studies for He				iects	
Reference and Study Design	Exposure Measures	Results				
		Stat Method: multivariate regression				
	Exposure Surrogate: drinking water	Outcome: ad	enocarci	noma		
					tion un/l	
		drinking wat Exp. Level		adjRR	<u>(CI)</u>	
	Exposure Description: drinking water	<10	<u>n</u> 14	<u>aujitit</u> 1	<u>n/a</u>	
	arsenic concentration determined from	10-49.9	20	1.5	0.76, 2.98	
	water samples from household wells	50-99.9	20 4	0.7	0.70, 2.98	
	during home interview				-	
		100-299.9	6 7	1.06	0.41, 2.77	
	Population-Level Exposure: 117.2 μg/L mean 297.2SD	≥ 300 Stat Met	-	1.63 Itivariate reg	0.65, 4.05 gression	
		Outcome: all lung cancer				
		drinking wat	er arseni	ic concentra	tion, μg/L	
		Exp. Level	<u>n</u>	<u>adjRR</u>	<u>(CI)</u>	
		<10	48	1	n/a	
		10-49.9	51	1.1	0.74, 1.63	
		50-99.9	20	0.99	0.59, 1.68	
		100-299.9	28	1.54	0.97, 2.46	
		≥ 300	31	2.25	1.43, 3.55	
			-	tivariate reg	-	
		Outcome: ot	her histo	logical type	S	
		drinking wat	er arseni	ic concentra	tion, μg/L	
		Exp. Level	<u>n</u>	<u>adjRR</u>	<u>(CI)</u>	
		<10	7	1	n/a	
		10-49.9	11	1.7	0.66, 4.39	
		50-99.9	3	1.1	0.28, 4.25	
		100-299.9	5	2.03	0.64, 6.40	
		≥ 300	4	2.25	0.65, 7.71	
		Stat Met	hod: mul	tivariate reg	-	
		Outcome: sm	nall cell c	arcinoma		
		drinking wat				
		Exp. Level	<u>n</u>	<u>adjRR</u>	<u>(CI)</u>	
		<10	4	1	n/a	
		10-49.9	8	2.02	0.61, 6.73	
		50-99.9	0	NR	n/a	
		100-299.9	4	2.77	0.69, 11.1	
		≥ 300 Stat Met	6 hod: mul	5.15 Itivariate reg	1.44, 18.4	
					-	
		Outcome: sq	JUDMOULC	coll carcino	ma	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-219Draft: Do Not Cite or Quote

-	Observational Epidemiology Studies for Hea	alth Effect Cate	gory: Re	spiratory Ef	fects	
Reference and Study Design	Exposure Measures	Results				
Ŭ		Exp. Level	<u>n</u>	<u>adjRR</u>	<u>(CI)</u>	
		<10	23	1	n/a	
		10-49.9	12	0.53	0.26, 1.07	
		50-99.9	13	1.32	0.67, 2.61	
		100-299.9	13	1.52	0.77, 3.00	
		≥ 300	14	2.13	1.09, 4.17	
			hod: mul	tivariate reg		
<u>Chiou et al. (1995)</u>	Exposure Surrogate: drinking water	Outcome: lui	ng cancei	r		
		average arse	nic conce	entration in	well water.	
Study Type: cohort	Exposure Description: individual	mg/L				
prospective)	exposure estimated using median arsenic	Exp. Level	<u>n</u>	<u>adjRR</u>	<u>(CI)</u>	
Jiospective)	levels in artesian well water in each	≤ 0.05	5	1	n/a	
	village combined with residential history	0.05-0.70	7	2.1	0.7, 6.8	
ocation: Taiwan	information gathered during individual	>0.71	, 7	2.7	0.7, 10.2	
Southwestern coast of	interviews	unknown	, 10	1.5	0.5, 4.3	
aiwan (Peimen,	litterviews		-		-	
Isuechia, Putai, and				proportion		
Ichu townships))	Population-Level Exposure:	regression analysis				
	0.78 mg/L median	cumulative water arsenic exposure, n			re, mg/L-yr	
opulation: BFD		Exp. Level	<u>n</u>	adjRR	<u>(CI)</u>	
atients and healthy		0	NR	1	n/a	
esidents in arseniasis-		0.1-19.9	NR	2.74	0.69, 11.0	
ndemic townships		>20	NR	4.01	1.0, 16.12	
-		Unknown	NR	2.01	0.55, 7.36	
exposed: 263 reference: 2293				proportion	-	
i total: 2556			on analys			
<u>Chung et al. (2012)</u>	Exposure Surrogate: drinking water	Outcome: lung cancer				
		cumulative w	vater arso	enic exposu	re (tertiles),	
Study Type: cohort	Exposure Description: cumulative arsenic	μg/L-year				
prospective)	exposure assessment determined by	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
	duration of artesian well water use,	<9.1	10	1	n/a	
	history or residence, and historical data;	9.1-19.5	13	0.9	0.39, 2.09	
ocation: Taiwan	cumulative arsenic exposure derived to	≥ 19.5	34	1.47	0.66, 3.31	
Homei, Fuhsin,	reflect long-term arsenic exposure by				al hazard mode	
lsinming)	median well water arsenic (population					
	level exposure reported here) x duration					
opulation: residents	of use					
f arseniasis-endemic						
reas						
n total: 1563	Population-Level Exposure: 9.1-19.5 μg/L-year range					
	Exposure Surrogate: drinking water	Outcome: lui	ng cancei	r		
		average wat mg/L	er arseni	c concentra	tion (tertiles),	

		alth Effect Category: Respiratory Effects			
Reference and Study	Exposure Measures	Results			
Design		Exp. Loval		Цр	(CI)
	Exposure Description: information on	Exp. Level	<u>n</u> 7	<u>HR</u> 1	<u>(CI)</u>
	median arsenic level in artesian well	<0.05	7		n/a
	water of each village acquired from	0.05-0.71	20	0.81	0.33, 1.97
	previous studies carried out in the early	≥ 0.71	30	1.04	0.43, 2.48
	1960s (<u>Lai et al., 1994</u>); some study	Stat Meth	nod: Cox	proportion	al hazard mode
	subjects had moved from one village to				
	another, and there were differences in				
	arsenic concentrations between villages				
	Population-Level Exposure:				
	0.7-0.93 mg/L range				
	Exposure Surrogate: urine	Outcome: lun	•		
	Exposure Description: urine samples of	percent DMA concentratior		-	enic
	1078 subjects collected at time of	Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>
	recruitment; all arsenic assays performed	≥ 85.8	<u></u> 14	1	n/a
	within 6 months of sample collection	76.13-85.8	17	0.97	0.47, 1.98
	within 6 months of sample collection	<76.13	15	0.81	0.47, 1.58
			-		-
	Population-Level Exposure:	Stat Method: Cox proportional hazard m percent inorganic arsenic in total urinary ar concentration (tertiles), %			
	not available				l urinary arseni
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
		<4.22	11	1	n/a
		4.22-7.86	20	1.98	0.94, 4.17
		≥ 7.86	15	1.43	0.66, 3.14
		Stat Meth	nod: Cox	proportion	al hazard mod
		percent MMA in total urinary arsenic			enic
		concentration	n (tertile:	s), %	
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
		<8.34	14	1	n/a
		8.34-15.31	15	1.04	0.5, 2.15
		≥ 15.31	17	0.85	0.41, 1.76
		Stat Meth	nod: Cox	proportion	al hazard mode
auphiné et al. (2011)	Exposure Surrogate: drinking water	Outcome: any	y respira	tory sympt	om
tudy Type: cohort	Exposure Description: drinking water	peak water a (0-250 referei			n before age 10
retrospective)	arsenic concentration calculated from	Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>
ieu ospecuvej	municipal drinking water records and	0-250	NR	<u>aajon</u> 1	n/a
	each individual's residential history	>800	NR	2.63	0.78, 8.92
ocation: Chile					gistic regression
Antofagasta and Arica)	Population-Level Exposure:	Outcome: FEV-1 residual (ml)		-	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-221Draft: Do Not Cite or Quote

Summary of	Observational Epidemiology Studies for Hea	alth Effect Cate	gory: Res	piratory Eff	ects
Reference and Study	Exposure Measures			Results	
Design					
Population: adult nursing school	0-800 μg/L	peak water a (<50 referend		ncentration	before age 10
employees living in		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
village with history of		<50	NR	0	n/a
higher than average		50-250	NR	-152	n/a
arsenic in drinking		>800	NR	-335	n/a
water		Stat Met	hod: mult	tivariate line	ar regression
n exposed: 32 n reference: 65		Outcome: FV	C residua	ıl (ml)	
n total: 97		peak water a	irsenic co		before age 10
		(<50 reference			
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		<50	NR	0	n/a
		50-250	NR	-52	n/a
		>800	NR	-429	n/a
		Stat Met	hod: mult	tivariate line	ar regression
		Outcome: pe	rcent pre	dicted FEV-	1
		peak water a (<50 referend		ncentration	before age 10
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		<50	NR	0	n/a
		50-250	NR	-4.6	n/a
		>800	NR	-11.5	n/a
		Stat Met	hod: mult	tivariate line	ar regression
		Outcome: pe	rcent pre	dicted FVC	
		peak water a (<50 referend		ncentration	before age 10
		Exp. Level	<u>n</u>	adjBeta	(CI)
		<50	NR	0	n/a
		50-250	NR	-2.7	n/a
		>800	NR	-12.2	n/a
		Stat Met	hod: mult	tivariate line	ar regression
Dauphiné et al. (2013)	Exposure Surrogate: drinking water	Outcome: lur	ng cancer		
		highest 5-yed	-	e arsenic co	ncentration:
Study Type: case-	Exposure Description: over 7,000 arsenic	40-year lag, p	-	adiOD	
control	measurements for community-supplied	Exp. Level	<u>n</u> 160	<u>adjOR</u> 1	<u>(CI)</u>
	drinking water and thousands of private	≤ 10 11.84	169 15		n/a
Location: United States	domestic wells within study area	11-84	15	0.84	0.40, 1.79
(CA; NV)	provided by Nevada State Health Division	≥ 85	12 h a du un au	1.39	0.55, 3.53
	and California Department of Health Services; participants asked over phone	Stat Met	1100: UNCO	prioritional lo	gistic regression
Population: residents	how many glasses of water and water-				

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-222Draft: Do Not Cite or Quote

Summary of	Observational Epidemiology Studies for Hea	alth Effect Categ	gory: Re	spiratory l	Effects
Reference and Study	Exposure Measures			Results	
Design					
with lung cancer	based beverages and foods typically				
n cases: 196	consumed 1 year prior to interview or				
n control: 359	diagnosis, as well as 20 and 40 years				
	before				
	Population-Level Exposure:				
	36 μg/L mean, 0-1460 μg/L range				
Former et al. (2012)		Outrouver	***		
<u>Farzan et al. (2013)</u>	Exposure Surrogate: urine	Outcome: acu	-	ratory syn	nptoms,
		conditions, ill			
Study Type: cohort	Exposure Description: mothers provided				rmed; categorized
(prospective)	spot urine sample upon enrollment (24-	by 4 infection			
	28 weeks gestation); samples that	Exp. Level	<u>n</u>	<u>RR</u>	<u>(CI)</u>
Location: United States	registered below the detection limit	continuous:	74	1.1	0.8, 1.6
(NH)	assigned a value equal to the detection	at least one			
····/	limit divided by the square root of two;	infection			
	total urinary As calculated as the sum of	continuous:	57	1.3	0.9, 1.9
Population: 4 month	inorganic As (As[III] and As[V]) and	infection			
old infants born to	metabolic products MMA(V) and	lasting 2 or			
women 18-45 years old	DMA(V), excluding arsenobetaine	more days			
n total: 214		continuous:	27	1.3	0.8, 2.0
	Population-Level Exposure:	infection			
	6 μg/L mean 7.5SD	with a			
		physician			
		visit	-		10 15 0
		continuous:	5	4	1.0, 15.9
		infection			
		treated with			
		prescription medication			
			od: logi	stic regres	sion
			iou. iogi	stic regres	51011
		Outcome: any	lower i	respiratory	y tract infection
		maternal urin	ary As (In transfo	rmed; categorized
		by 4 infection	descrip	tions), μg/	1
		<u>Exp. Level</u>	<u>n</u>	<u>RR</u>	<u>(CI)</u>
		continuous:	9	1.4	0.7, 3.1
		at least one			
		infection			
		continuous:	9	1.4	0.7, 3.1
		infection			
		lasting 2 or			
		more days			
		continuous:	9	1.4	0.7, 3.1
		infection			
		with a			

Reference and Study Design	rvational Epidemiology Studies fo Exposure Measures	Results		
Design		physician visit continuous: 7 3.3 1.2, 9.0 infection treated with prescription medication Stat Method: logistic regression		
		Outcome: any respiratory tract infection		
		maternal urinary As (In transformed; categor by two infection descriptions), μg/L		
		Exp. LevelnRR(Cl)with aNR1.51.0, 2.1physicianvisit		
		treated with NR 1.6 1.1, 2.4 prescription medication Stat Method: Poisson model		
		Outcome: any upper respiratory tract infection		
		maternal urinary As (In transformed; categor by 4 infection descriptions), μ g/L		
		Exp. LevelnRR(CI)continuous:1331.10.8, 1.6at least oneinfection		
		continuous: 111 1.2 0.9, 1.7 infection lasting 2 or more days		
		continuous: 53 1.1 0.8, 1.6 infection with a physician visit		
		continuous: 28 1.6 1.0, 2.5 infection treated with prescription medication		
		Stat Method: logistic regression		

Summary of Obse Reference and Study Design	ervational Epidemiology Studies fo Exposure Measures	r Health Effect Cate		Results	effects
		maternal urinary As (In transformed; categoria by 4 infection descriptions), μg/L			
		Exp. Level	<u>n</u>	<u>RR</u>	<u>(CI)</u>
		continuous:	126	1	0.8, 1.4
		at least one			
		infection			
		continuous:	103	1.1	0.8, 1.5
		infection			
		lasting 2 or			
		more days			
		continuous:	39	1	0.7, 1.4
		infection	55	T	0.7, 1.4
		with a			
		physician			
		visit			
		continuous:	9	2.3	1.0, 5.2
		infection	9	2.3	1.0, 3.2
		treated with			
		prescription			
		medication			
			od logic	tic rogree	sion
		Stat Meth			
		Outcome: ear			
		by 4 infection			rmed; categorize ′L
		Exp. Level	<u>n</u>	<u>RR</u>	<u>(CI)</u>
		continuous:	8	1.1	0.5, 2.6
		at least one			
		infection			
		continuous:	8	1.1	0.5, 2.6
		infection			
		lasting 2 or			
		more days			
		continuous:	7	1.6	0.7, 3.8
		infection			
		with a			
		physician			
		visit			
		continuous:	7	1.6	0.7, 3.8
		infection		-	- ,
		treated with			
		prescription			
			od: logis	stic regres	sion

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-225Draft: Do Not Cite or Quote

Summary of	Observational Epidemiology Studies for He	alth Effect Categ	gory: Res	spiratory Ef	fects	
Reference and Study Design	Exposure Measures		F	Results		
Design		maternal urinary As (In transformed; categorized by 4 infection descriptions), μg/L				
		Exp. Level	<u>n</u>	<u>RR</u>	<u>(CI)</u>	
		continuous: at least one infection	17	1.4	0.8, 2.4	
		continuous: infection lasting 2 or more days	14	1.4	0.6, 2.6	
		continuous: infection with a physician visit	14	1.6	0.9, 2.9	
		continuous: infection treated with prescription medication	14	1.2	0.7, 2.1	
		Stat Meth	od: logis	tic regressi	on	
Ferreccio et al. (2000)	Exposure Surrogate: drinking water	Outcome: lung cancer				
		lifetime water	r arsenic	concentrat	ion (1930-1994),	
Study Type: case-	Exposure Description: drinking water	μg/L				
control	arsenic concentrations measured by	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
	water companies (1950-1994) or	0-10	9	1	n/a	
			5	1.6	0.5, 5.3	
LOCATION (DUA	estimated based on 1950s	10-29	5		0.5, 5.5	
Location: Chile	estimated based on 1950s concentrations (1930-1957); individual	10-29 30-49	8	3.9	0.3, 3.3 1.2, 12.3	
(Regions I, II, III in	concentrations (1930-1957); individual exposure calculated using self-reported			3.9 5.2		
	concentrations (1930-1957); individual	30-49	8		1.2, 12.3	
(Regions I, II, III in northern Chile) Population: public	concentrations (1930-1957); individual exposure calculated using self-reported residential history and yearly average water arsenic concentration for each county of residence; lifetime average	30-49 50-199 200-400	8 50 79	5.2	1.2, 12.3 2.3, 11.7 4.0, 19.6	
(Regions I, II, III in northern Chile)	concentrations (1930-1957); individual exposure calculated using self-reported residential history and yearly average water arsenic concentration for each	30-49 50-199 200-400 Stat Meth analysis	8 50 79 ood: unco	5.2 8.9 onditional re ater arsenie	1.2, 12.3 2.3, 11.7 4.0, 19.6 egression	
(Regions I, II, III in northern Chile) Population: public hospital adult patients in areas with low to	concentrations (1930-1957); individual exposure calculated using self-reported residential history and yearly average water arsenic concentration for each county of residence; lifetime average exposure based on 1930-1994 concentrations; peak average exposure	30-49 50-199 200-400 Stat Meth analysis peak years av (1958-1970), <u>p</u> <u>Exp. Level</u>	8 50 79 lod: unco erage w Ig/L <u>n</u>	5.2 8.9 onditional re ater arsenia <u>adjOR</u>	1.2, 12.3 2.3, 11.7 4.0, 19.6 egression	
(Regions I, II, III in northern Chile) Population: public hospital adult patients in areas with low to high drinking water	concentrations (1930-1957); individual exposure calculated using self-reported residential history and yearly average water arsenic concentration for each county of residence; lifetime average exposure based on 1930-1994 concentrations; peak average exposure based on 1958-1970 concentrations	30-49 50-199 200-400 Stat Meth analysis peak years av (1958-1970), µ <u>Exp. Level</u> 0-10	8 50 79 lod: unco erage w ig/L	5.2 8.9 onditional re ater arsenia <u>adjOR</u> 1	1.2, 12.3 2.3, 11.7 4.0, 19.6 egression c concentration <u>(CI)</u> n/a	
(Regions I, II, III in northern Chile) Population: public hospital adult patients in areas with low to high drinking water arsenic exposure	concentrations (1930-1957); individual exposure calculated using self-reported residential history and yearly average water arsenic concentration for each county of residence; lifetime average exposure based on 1930-1994 concentrations; peak average exposure based on 1958-1970 concentrations	30-49 50-199 200-400 Stat Meth analysis peak years av (1958-1970), <u>p</u> <u>Exp. Level</u>	8 50 79 food: unco erage w ug/L <u>n</u> 11 3	5.2 8.9 onditional re ater arsenia <u>adjOR</u>	1.2, 12.3 2.3, 11.7 4.0, 19.6 egression	
(Regions I, II, III in northern Chile) Population: public hospital adult patients in areas with low to high drinking water arsenic exposure n cases: 151	concentrations (1930-1957); individual exposure calculated using self-reported residential history and yearly average water arsenic concentration for each county of residence; lifetime average exposure based on 1930-1994 concentrations; peak average exposure based on 1958-1970 concentrations	30-49 50-199 200-400 Stat Meth analysis peak years av (1958-1970), µ <u>Exp. Level</u> 0-10	8 50 79 hod: unco erage w ug/L <u>n</u> 11	5.2 8.9 onditional re ater arsenia <u>adjOR</u> 1	1.2, 12.3 2.3, 11.7 4.0, 19.6 egression c concentration <u>(CI)</u> n/a	
(Regions I, II, III in northern Chile) Population: public hospital adult patients in areas with low to high drinking water arsenic exposure n cases: 151	concentrations (1930-1957); individual exposure calculated using self-reported residential history and yearly average water arsenic concentration for each county of residence; lifetime average exposure based on 1930-1994 concentrations; peak average exposure based on 1958-1970 concentrations	30-49 50-199 200-400 Stat Meth analysis <i>peak years av</i> (1958-1970), µ <u>Exp. Level</u> 0-10 10-29	8 50 79 food: unco erage w ug/L <u>n</u> 11 3	5.2 8.9 onditional re ater arsenia adjOR 1 0.3	1.2, 12.3 2.3, 11.7 4.0, 19.6 egression c concentration (<u>(CI)</u> n/a 0.1, 1.2	
(Regions I, II, III in northern Chile) Population: public hospital adult patients in areas with low to high drinking water arsenic exposure n cases: 151	concentrations (1930-1957); individual exposure calculated using self-reported residential history and yearly average water arsenic concentration for each county of residence; lifetime average exposure based on 1930-1994 concentrations; peak average exposure based on 1958-1970 concentrations	30-49 50-199 200-400 Stat Meth analysis peak years av (1958-1970), µ <u>Exp. Level</u> 0-10 10-29 30-59	8 50 79 nod: unco erage w ug/L <u>n</u> 11 3 4	5.2 8.9 onditional re ater arsenia adjOR 1 0.3 1.8	1.2, 12.3 2.3, 11.7 4.0, 19.6 egression c concentration (<u>CI)</u> n/a 0.1, 1.2 0.5, 6.9	
(Regions I, II, III in northern Chile) Population: public hospital adult patients in areas with low to high drinking water arsenic exposure n cases: 151	concentrations (1930-1957); individual exposure calculated using self-reported residential history and yearly average water arsenic concentration for each county of residence; lifetime average exposure based on 1930-1994 concentrations; peak average exposure based on 1958-1970 concentrations	30-49 50-199 200-400 Stat Meth analysis peak years av (1958-1970), p Exp. Level 0-10 10-29 30-59 60-89	8 50 79 nod: unco erage w ug/L <u>n</u> 11 3 4 22	5.2 8.9 onditional re ater arsenia adjOR 1 0.3 1.8 4.1	1.2, 12.3 2.3, 11.7 4.0, 19.6 egression c concentration (<u>CI)</u> n/a 0.1, 1.2 0.5, 6.9 1.8, 9.6	
(Regions I, II, III in northern Chile) Population: public hospital adult patients in areas with low to high drinking water arsenic exposure n cases: 151	concentrations (1930-1957); individual exposure calculated using self-reported residential history and yearly average water arsenic concentration for each county of residence; lifetime average exposure based on 1930-1994 concentrations; peak average exposure based on 1958-1970 concentrations	30-49 50-199 200-400 Stat Meth analysis peak years av (1958-1970), µ <u>Exp. Level</u> 0-10 10-29 30-59 60-89 90-199	8 50 79 nod: unco erage w ig/L <u>n</u> 11 3 4 22 13	5.2 8.9 onditional re ater arsenia adjOR 1 0.3 1.8 4.1 2.7	1.2, 12.3 2.3, 11.7 4.0, 19.6 egression c concentration (<u>CI)</u> n/a 0.1, 1.2 0.5, 6.9 1.8, 9.6 1.0, 7.1	
(Regions I, II, III in northern Chile) Population: public hospital adult patients in areas with low to high drinking water arsenic exposure n cases: 151	concentrations (1930-1957); individual exposure calculated using self-reported residential history and yearly average water arsenic concentration for each county of residence; lifetime average exposure based on 1930-1994 concentrations; peak average exposure based on 1958-1970 concentrations	30-49 50-199 200-400 Stat Meth analysis peak years av (1958-1970), µ <u>Exp. Level</u> 0-10 10-29 30-59 60-89 90-199 200-399	8 50 79 food: unco erage w ug/L 11 3 4 22 13 23	5.2 8.9 onditional re ater arsenia adjOR 1 0.3 1.8 4.1 2.7 4.7	1.2, 12.3 2.3, 11.7 4.0, 19.6 egression c concentration (CI) n/a 0.1, 1.2 0.5, 6.9 1.8, 9.6 1.0, 7.1 2.0, 11.0	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-226Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures	ealth Effect Category: Respiratory Effects Results			
Design		analysis			
Ferreccio et al. (2013b)	Exposure Surrogate: drinking water	Outcome: lun	g cancei	•	
		water arsenic	concent	tration - ne	ver smoker, µg/
Study Type: case-	Exposure Description: lifetime arsenic	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
control	exposure estimated by linking subject's	<11	16	1	n/a
	residence with water arsenic	>355	18	2	0.8, 5.0
	concentration	Stat Method: Unconditional logistic			
Location: Chile		regressio			0
(Regions I and II,					
Northern Chile)	Population-Level Exposure:	water arsenic	concent	tration - sm	oked >10
	0-800 μg/L range	cigarettes/da	γ, μg/L		
Population: residents		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
with bladder or lung		<11 never	NR	1	n/a
cancer in area formerly		smoker			
, having arsenic-		<11	28	3.8	1.7, 8.5
contaminated drinking		>355	46	16	6.5, 40
water		Stat Meth	od: Unc	onditional l	ogistic
n cases: 538		regressio	n		
n control: 640					
	Fundation Strengton units a	Outeense lun			
García-Esquinas et al.	Exposure Surrogate: urine	Outcome: lun			
<u>(2013)</u>		urinary arseni	c concei	ntration, μg	g/g-creatinine
	Exposure Description: individual urine	Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>
Study Type: cohort	samples collected and analyzed for	80th vs. 20th	78	1.56	1.02, 2.39
(prospective)	arsenic speciation	percentiles			
		Stat Method: Cox proportional hazard model			
Location: United States	Population-Level Exposure:				
(AZ; ND; OK; SD)	9.7 μ g/g-creatinine median, 5.8-15.6				
(AZ, ND, OK, 3D)	μ g/g-creatinine 25th percentile				
	hg/g-creatinine 25th percentile				
Population: Strong					
Heart Study					
participants					
n total: 3,935					
<u>Ghosh et al. (2007b)</u>	Exposure Surrogate: drinking water	Outcome: res	oiratory	illness	
		arsenic exposure/skin lesion status, µg/L			
Study Type: cross-	Exposure Description: arsenic content in	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
sectional	drinking water measured from 100 ml	unexposed	13	1	n/a
	samples provided by study participants;	exposed, no	32	3.21	1.65, 6.26
	instrument calibrated and readings taken	skin lesions			
Location: India (West	in duplicate for each sample	exposed, skin	118	13.54	7.45, 24.62
Bengal)		lesions			-
	Banalatian Las 15		od: Logi	stic regress	ion analysis
Population: West	Population-Level Exposure:		5	U U	
Bengal residents	0-1188 μg/L range	1			

Summary of Reference and Study	Observational Epidemiology Studies for Hea Exposure Measures	Results
Design		incourto
exposed to arsenic in drinking water with and without skin lesions and similar unexposed residents		
n cases: 725 n control: 389		
<u>Guo et al. (2007)</u>	Exposure Surrogate: drinking water	Outcome: chronic bronchitis
		water arsenic concentration, µg/L
Study Type: cross- sectional Location: Mongolia region not available	Exposure Description: arsenic samples were taken from 94 water sources, including wells; detection limit not specified, but authors note reliability of the method at <10 μg/L; arsenic exposure determined by location of village	arsenic not significantly associated with bronchiti
Population: residents of villages in the Hetao Plain, Inner Mongolia	Population-Level Exposure: 50-1860 μg/L range	
n cases: 680 n control: 189		
<u>Heck et al. (2009)</u>	Exposure Surrogate: toenails	Outcome: all lung cancers
		toenail arsenic concentration (quartiles), μg/g
Study Type: case- control Location: United States (NH; VT) Population: New England Lung Cancer	 Exposure Description: toenail arsenic concentration measured from individual cleaned clippings obtained during interview; results below LOD assigned 0.0015 μg/g Population-Level Exposure: 0.05-0.1137 μg/g range 	Exp. Level n adjOR (CI) <0.05
Study, adult lung cancer cases n cases: 223		Outcome: lung cancer cell types previously associated with arsenic (small cell and squamou cells)
n control: 238		toenail arsenic concentration (quartiles), μg/g Exp. Level n adjOR (Cl) <0.05

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-228Draft: Do Not Cite or Quote

Summary of	Observational Epidemiology Studies for Hea					
Reference and Study Design	Exposure Measures		I	Results		
<u>Hsu et al. (2013a)</u>	Exposure Surrogate: drinking water	Outcome: lung cancer		•		
	Exposure surrogate. armiting water	cumulative arsenic exposure, mg/L - yr				
Study Type: cohort	Exposure Description: lifetime	Exp. Level	<u>n</u> NR	HR 1	<u>(CI)</u> n/a	
(prospective)	cumulative arsenic exposure estimated using median arsenic concentration in	1.0-19.9	NR	0.8	0.46, 1.4 0.38, 1.42	
Location: Taiwan (Peimen, Hsuechia, Putai, Ichu townships)	village well where study subject lived and duration of exposure; arsenic concentrations in wells obtained from 2 investigations examining more than 38,565 wells across Taiwan; lifetime	≥ 20NR0.730.38,missingNR0.650.38,Stat Method: Cox regression analysis time-dependent covariates				
Population: 3 separate subcohorts of residents of an arseniasis- endemic area	cumulative arsenic exposure (CAE) estimated using median arsenic concentration in village well where study subject lived and duration of exposure					
n exposed: 1075 n reference: 535 n total: 2447	Population-Level Exposure: 1-20 mg/L - yr range					
<u>Khlifi et al. (2014)</u>	Exposure Surrogate: blood	Outcome: laryngeal cancer (LC): differentiated epidermoid carcinoma				
Study Type: case-	Exposure Description: 3 mL venous	blood arsenic level - continuous, μg/L				
control	blood samples collected from patients at diagnosis and analyzed for arsenic and	Exp. Level blood arsenic level	<u>n</u> NR	<u>adjOR</u> 1.14	<u>(CI)</u> 1.05, 1.42	
Location: Tunisia (Sfax and South Tunisia)	cadmium		od: con	ditional logi	istic regression	
	Population-Level Exposure:	blood arsenic	levels, µ	ıg/L		
Population: hospital	0.83 μg/L median, 0.13-42 μg/L range	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
patients with laryngeal or nasopharyngeal		Low (≤ 2.32 µg/L)	49	1	n/a	
cancer n cases: 145		High (>2.32 μg/L)	48	2.63	1.50, 4.34	
n control: 351		Stat Meth	od: logi	stic regressi	ion analysis	
		Outcome: laryngeal cancer + nasopharyngeal cancer				
		blood arsenic	level - c	ontinuous.	μg/L	
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		blood arsenic level	NR	1.16	1.08, 1.26	
		Stat Meth	od: con	ditional logi	istic regression	
		blood arsenic	levels, µ	ıg/L		
		<u>Exp. Level</u>	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		Low (≤ 2.32 µg/L)	76	1	n/a	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-229Draft: Do Not Cite or Quote

	Observational Epidemiology Studies for Hea	aith Ellect Categ	nects			
Reference and Study Design	Exposure Measures					
20080		High (>2.32 μg/L) Stat Meth	69 iod: logi	2.41 stic regress	1.56, 3.71 sion analysis	
	Outcome: nasopharyngeal cancer (NPC undifferentiated carcinoma					
		blood arsenic level - continuous, μg/L				
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		blood arsenic level	NR	1.16	1.06, 1.28	
		Stat Meth	iod: con	ditional log	sistic regression	
		blood arsenic				
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		Low (≤ 2.32 µg/L)	27	1	n/a	
		High (>2.32 µg/L)	21	2.18	1.15, 4.12	
		Stat Meth	od: logi	stic regress	sion analysis	
<u>ewis et al. (1999)</u>	Exposure Surrogate: drinking water	Outcome: bronchitis, emphysema, asthma				
Study Type: cohort retrospective)	Exposure Description: arsenic concentrations in drinking water determined from Utah state records and	cumulative arsenic exposure, ppb-years SMR for bronchitis, emphysema, and asthma unchanged from expected in males and female Outcome: nonmalignant respiratory disease				
ocation: United States Millard County, Utah) Population: male and	an EPA study; arsenic exposure index score calculated individually based on number of years residence in each community and median drinking water	ore calculated individually based on mber of years residence in each mmunity and median drinking water senic concentration in community community and median drinking water senic concentration in community				
emale members of		only	• •			
atter-day Saints church wards	Population-Level Exposure:	Outcome: res		-		
n exposed: 2203	3.5-620 ppb-years range	<i>cumulative ar</i> Exp. Level	senic ex <u>n</u>	posure (fei <u>SMR</u>	males), ppb-ye (<u>(CI)</u>	
n total: 2203		<1000	NR	0.44	n/a	
		1000-4999	NR	0.44	n/a	
		≥ 5000	NR	0.88	n/a	
					nortality ratios	
					ales), ppb-year	
		Exp. Level		<u>SMR</u>	<u>(CI)</u>	
		LVD. LEAG	<u>n</u>			
		<1000	NP	025	n/2	
		<1000 1000-4999	NR NR	0.32	n/a n/a	
		<1000 1000-4999 ≥ 5000	NR NR NR	0.32 0.96 0.44	n/a n/a n/a	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-230Draft: Do Not Cite or Quote

Observational Epidemiology Studies for Hea	alth Effect Cate	gory: Res	piratory Eff	ects
Exposure Measures	Results			
Exposure Surrogate: drinking water	Outcome: chronic lung disease			
	arsenic concentration in drinking wo		water	
participant, water samples from private or public tube wells analyzed for arsenic; exposure categories developed based on arsenic levels Population-Level Exposure: 50-500 μg/L range	Exp. LevelnprevOR<50NR1≥ 500NR1.76Stat Method: prevalence odds calculated for each outcome highest and lowest exposurearsenic concentration in drinking u $\mu g/L$ Exp. Leveln < 50 NR < 50 NR < 50 NR < 50 NR < 500 <	comparing levels water (males), (CI) n/a 0.65, 1.3 s ratio		
Expecting Surregates driphing water	highest and lowest exposure levels			
Exposure Description: drinking water concentration calculated from samples tested at field site using portable kits; source more frequently used for drinking water tested when multiple sources used; subjects grouped for analysis as	drinking wate Exp. Level ≥ 100	er arsenia <u>n</u> NR	<u>adjBeta</u> -154.3	<u>(CI)</u> -324.7, 16.0
	Exp. Level ≥ 250	<u>n</u> NR	<u>adjBeta</u> -226.4	<u>(CI)</u> -430.4, -22.4
Population-Level Exposure:	Outcome: FEV1/FVC			
10-250 μg/L range	Exp. LevelnadjBeta ≥ 100 NR2Stat Method:Multivariate lindrinking water arsenic concentrationExp. LevelnadjBeta ≥ 250 NR9.9	adjBeta 2 tivariate line concentrat adjBeta 9.9	(Cl) -25.3, 29.4 ear regression <i>ion, μg/L</i> (Cl) -21.8, 41.6	
			c concentrat adjBeta	ion, μg/L (<u>(Cl)</u>
	Exposure Measures Exposure Surrogate: drinking water Exposure Description: for each participant, water samples from private or public tube wells analyzed for arsenic; exposure categories developed based on arsenic levels Population-Level Exposure: 50-500 µg/L range Exposure Surrogate: drinking water Exposure Description: drinking water concentration calculated from samples tested at field site using portable kits; source more frequently used for drinking water tested when multiple sources used; subjects grouped for analysis as exposed (≥ 100 µg/L; ≥ 250 µg/L)	Exposure MeasuresOutcome: chrExposure Surrogate: drinking waterarsenic conce (females), µµ Exp. Level <50	Exposure MeasuresOutcome: chronic lung arsenic concentration (females), $\mu g/L$ Exposure Description: for each participant, water samples from private or public tube wells analyzed for arsenic; exposure categories developed based on arsenic levels $\Delta Utcome: chronic lungarsenic concentration(females), \mu g/LPopulation-Level Exposure:50-500 \mu g/L range\Delta Stat Method: prevcalculated for eachhighest and lowe:\Delta Stat Method: prevcalculated for eachhighest and lowe:Exposure Surrogate: drinking waterconcentration calculated from samplestested at field site using portable kits;source more frequently used for drinkingwater tested when multiple sourcesused; subjects grouped for analysis asexposed (\geq 100 \ \mu g/L; \geq 250 \ \mu g/L)Outcome: FEV1 (mL)drinking water arsenicExp. Level \ n\geq 250 \ NRPopulation-Level Exposure:10-250 \mu g/L rangeOutcome: FEV1/FVC\Delta Iniking water arsenicExp. Level \ n\geq 250 \ NRStat Method: Multidrinking water arsenicExp. Level \ n\geq 250 \ NRStat Method: Multi\Delta Iniking water arsenicExp. Level \ n\geq 250 \ NRStat Method: Multi\Delta Iniking water arsenicExp. Level \ n\geq 250 \ NRStat Method: Multi\Delta Iniking water arsenicExp. Level \ n\geq 250 \ NRStat Method: Multi\Delta Iniking water arsenicExp. Level \ n\geq 250 \ NRStat Method: Multi\Delta Iniking water arsenicExp. Level \ n\geq 250 \ NRStat Method: Multi\Delta Iniking water arsenicExp. Level \ n\geq 250 \ NRStat Method: Multi\Delta Iniking water arsenicExp. Level \ n\geq 250 \ NRStat Method: Multi\Delta Iniking water arsenicExp. Level \ n\geq 250 \ NRStat Method: Multi\Delta Iniking water arsenic$	Exposure Surrogate: drinking water Outcome: chronic lung disease Exposure Description: for each participant, water samples from private or public tube wells analyzed for arsenic; exposure categories developed based on arsenic levels n prevol® Population-Level Exposure: 50500 µg/L range Stat Method: prevalence odds calculated for each outcome highest and lowest exposure discovere. 50-500 µg/L range arsenic concentration in drinking µg/L Exposure Surrogate: drinking water arsenic concentration in drinking water concentration calculated for each outcome highest and lowest exposure Exposure Surrogate: drinking water concentration calculated for each outcome highest and lowest exposure NR 1 Exposure Description: drinking water concentration calculated for each outcome highest and lowest exposure Outcome: FEV1 (mL) drinking water arsenic concentration a dilBeta ≥ 100 NR -154.3 Stat Method: prevalence odds calculated for each outcome highest and lowest exposure ≥ 100 NR -154.3 Exposure Description: drinking water concentration calculated for analysis as exposed (≥ 100 µg/L; ≥ 250 µg/L) drinking water arsenic concentrate Exp. Level n adiBeta ≥ 100 AdiBeta 2500 µg/L range Dutcome: FEV1/FVC drinking water arsenic concentrate Exp. Level n adiBeta ≥ 100 Stat Method: Multivariate lines 250 Population-Level Exposure: 100 <td< td=""></td<>

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-231Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures	Results				
Design		Stat Method: Multivariate linear regression				
<u>Parvez et al. (2013)</u>	Exposure Surrogate: drinking water	Outcome: lung function: forced expiratory volume (FEV1)				
Study Type: cohort (prospective) Location: Bangladesh (Araihazar) Population: subset of Health Effects of Arsenic Longitudinal Study (HEALS) participants with respiratory symptoms n total: 950	Exposure Description: field sample collection and laboratory analyses of water samples; arsenic concentration noted to be relatively stable and not to change over time under normal conditions; information on the status of well and water consumption behavior and pattern from the study participants collected Population-Level Exposure: 19-97 μg/L range	Exp. LevelnadjBeta(CI) ≥ 250 NR -354.8 $-583.6, -12$ Stat Method: Multivariate linear regressioOutcome: lung function: forced expiratory volume (FEV1)well water arsenic concentration (tertiles), μg ,Exp. LevelnadjBeta(CI)<19				
		well water arsenic concentration - per one SL (118.1 μg/L), μg/L Exp. Level <u>n</u> <u>adjBeta</u> (Cl)	D			
	Exposure Surrogate: urine	Outcome: lung function: forced expiratory volume (FEV1)				
	Exposure Description: urinary arsenic measured at baseline and biannually in spot urine samples	urinary arsenic concentration (tertiles), μg/gcreatinineExp. LevelnadjBeta(Cl)<125	-			
	Population-Level Exposure: 125-285 μg/g-creatinine	>125-285 NR -67 -148.3, 14 >285 NR -90.5 -173.6, -7 Stat Method: multivariate logistic regress	.4			

	Observational Epidemiology Studies for Hea	alth Effect Cate			ects
Reference and Study Design	Exposure Measures		ſ	Results	
		urinary arsenic concentration - per one SD (277.2 μg/g-creatinine), μg/g-creatinine			
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		continuous	NR	-48.3	-82.5, -14.1
		Stat Method: multivariate logistic regression Outcome: lung function: forced vital capacity (FVC) urinary arsenic concentration (tertiles), μg/g- creatinine			
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>
		<125	NR	0	n/a
		>125-285	NR	-36.4	-120.4, 47.0
		>285	NR	-81	-166.7, 4.8
					istic regression
		urinary arsen	ic concei	ntration - pe	r one SD (277.2
		μg/g-creatini			
		Exp. Level	<u>n</u>	adjBeta	<u>(CI)</u>
		continuous	NR	-55.2	-90.5, -19.9
					istic regression
<u>Parvez et al. (2010)</u>	Exposure Surrogate: drinking water	Outcome: blood in sputum			
		drinking wate	er arseni	c concentrat	tion (quintiles),
Study Type: cohort	Exposure Description: drinking water	μg/L			
(prospective)	arsenic concentration based on water	<u>Exp. Level</u>	<u>n</u>	<u>HR</u>	<u>(CI)</u>
	samples collected from wells from which	≤ 7	NR	1	n/a
Location: Bangladesh	study participants drank regularly; results	7-40	NR	1.15	0.75, 1.76
(Araihazar)	<lod analyzed="" method<="" second="" td="" using=""><td>7 - 40</td><td></td><td></td><td></td></lod>	7 - 40			
(Arailiazar)		40-90	NR	1.09	1.69, 1.70
	Population-Level Exposure:	90-178	NR	1.66	1.10, 2.51
Population: Health	7-178 μg/L range	>178	NR	1.51	0.98, 2.32
Effects of Arsenic Longitudinal Study,	, 1/0 μg/ L tulige	Stat Meth	nod: Cox	proportiona	l hazard models
adults participants who		Outcome: bre	eathing p	oroblem	
underwent first two follow-up visits		drinking wate μg/L	er arseni	c concentrat	tion (quintiles),
n total: 10833		Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>
		≤7	NR	1	n/a
					-
		7-40	NR	1.44	1.20, 1.74
		7-40 7 - 40	NR	1.44	1.20, 1.74
		7 - 40			
		7 - 40 40-90	NR	1.52	1.25, 1.84
		7 - 40			

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-233Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures	s for Health Effect Category: Respiratory Effec Results			
2001811		Outcome: ch	ronic cou	ıgh	
		drinking wat μg/L	er arseni	c concentro	ation (quintiles),
		Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>
		≤7	NR	1	n/a
		7-40	NR	1.19	0.95, 1.5
		7 - 40			·
		40-90	NR	1.4	1.11, 1.75
		90-178	NR	1.57	1.25, 1.97
		>178	NR	1.6	1.27, 2.01
					nal hazard mode
	Exposure Surrogate: urine	Outcome: bl	ood in sp	utum	
	Exposure Description: urinary arsenic	urinary arsei creatinine	nic concei	ntration (q	uintiles), μg/g-
	concentration measured from spot	Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>
	samples collected at each visit	<u>≤</u> 90	NR	1	n/a
		90-160	NR	1.16	0.77, 1.74
		160-246	NR	1.05	0.69, 1.60
	Population-Level Exposure:	246-406	NR	1.03	0.67, 1.58
	90-406 μg/g-creatinine range	>406	NR	1.33	0.89, 1.99
					nal hazard mode
		Outcome: breathing problem			
		urinary arser creatinine	nic concei	ntration (q	uintiles), μg/g-
		Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>
		≤ 90	nr	1	n/a
		90-160	NR	1.14	0.95, 1.38
		160-246	NR	1.14	0.96, 1.40
		246-406	NR	1.10	1.06 <i>,</i> 1.54
		>406	NR	1.28	1.05, 1.54
					nal hazard mode
		Outcome: ch	ronic cou	ıgh	
		urinary arser creatinine	nic concei	ntration (q	uintiles), μg/g-
		Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>
		<u>≤</u> 90	NR	1	n/a
		90-160	NR	0.98	0.78, 1.23
		160-246	NR	1.14	0.91, 1.42
		246-406	NR	1.52	1.23, 1.88
		>406	NR	1.51	1.21, 1.87
			hod: Cox		

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-234Draft: Do Not Cite or Quote

-	Observational Epidemiology Studies for Hea	ealth Effect Category: Respiratory Effects					
Reference and Study Design	Exposure Measures			Results			
<u>Paul et al. (2013)</u>	Exposure Surrogate: drinking water	Outcome: res disorders	piratory	problems/	respiratory		
Study Type: cross-	Exposure Description: samples collected	drinking wate	er arseni	c concentra	ition, μg/L		
sectional	directly from study participants during	Exp. Level	<u>n</u>	<u>OR</u>	<u>(CI)</u>		
	2005-2006 and 2010-2011 study periods	unexposed (2005-2006	NR	1	n/a		
Location: India (West		analysis)					
Bengal)	Population-Level Exposure: mean concentration in drinking water ranged from 3.7 (unexposed) to 190.1	unexposed (2010-2011 analysis)	NR	1	n/a		
Population: male and female adult residents with skin lesions from 3	(exposed) in both analyses	exposed (2005-2006	NR	6.07	2.47, 14.95		
villages with high		analysis)					
arsenic concentrations		exposed (2010-2011	NR	11.45	5.04, 25.94		
n cases: 189 n control: 171		analysis)					
			npared t		; 2005 - 2006 11 data using		

with skin lesions from 3 villages with high		(2005-2006 analysis)			
arsenic concentrations		exposed	NR	11.45	5.04, 25.94
n cases: 189		(2010-2011			
n control: 171		analysis)			
			hod: OR	with 95% Cl	; 2005 - 2006
					11 data using
		Chi-Squ	are test.		
<u>Rahman et al. (2011)</u>	Exposure Surrogate: maternal urine	Outcome: LR	TI		
		maternal uri	-	nic concent	tration
Study Type: cohort	Exposure Description: maternal urinary	(quintiles), μ	g/L		
(prospective)	arsenic concentration measured from	Exp. Level	<u>n</u>	<u>adjRR</u>	<u>(CI)</u>
	urine samples collected at GW 8 and 30;	<39	NR	1	n/a
Location: Bangladesh	arsenic exposure calculated as sum of	39-64	NR	1.28	1.02, 1.61
(Matlab)	inorganic arsenic and its methylated	65-132	NR	1.33	1.07, 1.67
(Matiab)	metabolites (MMA and DMA) and the	133-261	NR	1.57	1.27, 1.96
	average of exposure at GW 8 and 30;	≥ 261	NR	1.69	1.36, 2.09
Population: MINIMat	samples <lod larger<="" reanalyzed="" td="" using=""><td colspan="4">Stat Method: Poisson regression</td></lod>	Stat Method: Poisson regression			
Study, mother-infant pairs	volume; groups are quintiles	Outcome: se	vere LRTI		
n total: 1552	Population-Level Exposure:	maternal uri	nary arse	nic concent	tration
	159 μg/L mean 163SD	(quintiles), μ	g/L		
		<u>Exp. Level</u>	<u>n</u>	<u>adjRR</u>	<u>(CI)</u>
		<39	NR	1	n/a
		39-64	NR	1.33	1.03, 1.71
		65-132	NR	1.31	1.02, 1.69
		133-261	NR	1.54	1.21, 1.97
		≥261	NR	1.54	1.21, 1.97
		Stat Met	hod: Pois	son regress	sion
<u>Raqib et al. (2009)</u>	Exposure Surrogate: urine	Outcome: ac months	ute respi	ratory infe	ction at 6-12

Observational Epidemiology Studies for He		-		
Exposure Measures		F	lesults	
Exposure Description: maternal urine samples taken at gestation week 8 or 30 analyzed for inorganic arsenic and metabolites; samples adjusted for specific gravity	μ g/L Exp. Level continuous Stat Meth	<u>n</u> NR od: mult	<u>adjBeta</u> 0.004 iple linear i	<u>(CI)</u> 0.001, 0.006 regression
Population-Level Exposure: 145.8 μg/L mean 186.8SD				
Exposure Surrogate: diet	Outcome: lung cancer			
Exposure Description: detailed	-		ke (tertiles;	females; never
questionnaire on food intake/frequency;	Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>
average arsenic concentrations in food	lowest tertile	58		n/a
-				0.92, 1.86
	-	92	1.57	1.12, 2.20
average arsenic concentration in each item by quantity consumed		od: Cox'	s proportio	nal hazards
Population-Level Exposure: 170 μg/day mean, 88.3-253.2 μg/day	-		ke (tertiles;	males; current
range	<u>Exp. Level</u>	<u>n</u>	<u>HR</u>	<u>(CI)</u>
	lowest tertile	115	1	n/a
	middle tertile	137	1.2	0.93, 1.55
	highest tertile	166	1.38	1.07, 1.77
	Stat Methor model	od: Cox'	s proportio	nal hazards
	-		ke (tertiles;	males; ever
	Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>
	lowest tertile	149	1	n/a
	middle tertile	158	1.07	0.85, 1.34
	highest tertile	215	1.36	1.09, 1.7
		od: Cox'	s proportio	nal hazards
	Exposure Description: maternal urine samples taken at gestation week 8 or 30 analyzed for inorganic arsenic and metabolites; samples adjusted for specific gravityPopulation-Level Exposure: 145.8 μg/L mean 186.8SDExposure Surrogate: dietExposure Description: detailed questionnaire on food intake/frequency; average arsenic concentrations in food items obtained from the literature; arsenic intake calculated by multiplying average arsenic concentration in each item by quantity consumedPopulation-Level Exposure:Population-Level Exposure:	Exposure Description: maternal urine samples taken at gestation week 8 or 30 analyzed for inorganic arsenic and metabolites; samples adjusted for specific gravityHg/L Exp.Level continuous Stat Mether Stat Mether Stat MetherPopulation-Level Exposure: 145.8 µg/L mean 186.8SDOutcome: lung inorganic arse smoker), µg/d Exposure Description: detailed questionnaire on food intake/frequency; average arsenic concentrations in food item by quantity consumedOutcome: lung inorganic arse smoker), µg/d Exp. Level lowest tertile highest 	Exposure Description: maternal urine samples taken at gestation week 8 or 30 analyzed for inorganic arsenic and metabolites; samples adjusted for specific gravity $\mu g/l$ $Exp_Level ncontinuous NRStat Method: multiStat Method: multismoker), \mu g/dayExp_Level nlowest tertile 28middle tertile 74highest 92tertileStat Method: CoxtmodelPopulation-Level Exposure:170 µg/day mean, 88.3-253.2 µg/dayrangeinorganic arsenic intalsmoker), µg/dayExp_Level nlowest tertile 115middle tertile 137highest 166tertileStat Method: CoxtmodelPopulation-Level Exposure:170 µg/day mean, 88.3-253.2 µg/dayrangeinorganic arsenic intalsmoker), µg/dayExp_Level nlowest tertile 137middle tertile 137highest 166tertilestat Method: Coxtmodel$	Exposure Description: maternal urine samples taken at gestation week 8 or 30 analyzed for inorganic arsenic and metabolites; samples adjusted for specific gravity <i>μg/l</i>

	Observational Epidemiology Studies for Hea	alth Effect Categ			ects	
Reference and Study	Exposure Measures	Results				
Design						
		smoker), μg/d				
		Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>	
		lowest tertile	101	1	n/a	
		middle tertile	153	1.41	1.09, 1.82	
		highest tertile	164	1.37	1.06, 1.77	
			od: Cox'	s proportior	nal hazards	
		total arsenic ir smoker), μg/d	-	ertiles; male	es; ever	
		Exp. Level	'n	<u>HR</u>	<u>(CI)</u>	
		lowest tertile	<u></u> 135	1	n/a	
		middle tertile	180	1.24	0.99, 1.56	
		highest	207	1.24	1.03, 1.61	
		tertile	207	1.23	1.03, 1.01	
		Stat Meth model	od: Cox'	s proportior	nal hazards	
<u>Smith et al. (2013)</u>	Exposure Surrogate: drinking water	Outcome: asthma				
		in utero arseni	ic expos	ure (quartile	es), μg/L	
Study Type: cohort	Exposure Description: water samples	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
prospective)	were collected from all functioning tube	10-199	NR	1.23	0.50, 3.02	
,	wells used at home and at school; in	200-399	NR	1.88	0.90, 3.92	
	utero exposure assessed during 9 months	400-599	NR	2.23	1.13, 4.49	
-ocation: Bangladesh	of pregnancy based on tube well	≥ 600	NR	2.38	1.17, 4.83	
(Matlab)	concentrations with levels from the	NR	NR	1	n/a	
	2002-2003 survey used for any tube wells			tiple linear r	-	
Population: children in	where samples could not be collected		ou. mun		egression	
ural area	and residential histories starting 1 year	analysis				
n exposed: 491	prior to the childs birth to the current	Outcome: cou	ghing - r	no cold		
n reference: 159	residence	in utero arseni	ic expos	ure (quartil	es), μg/L	
n total: 650		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
	Population-Level Exposure:	10-199	NR	2.37	0.92, 6.09	
	436.8 μg/L mean	200-399	NR	1.62	0.64, 4.11	
		400-599	NR	1.78	0.74, 4.31	
		≥ 600	NR	2.47	1.05, 5.79	
		NR	NR	1	n/a	
				tiple linear r	-	
		Outcome: FEV	1			
		in utero arseni	ic expos	ure (continu	ious), μg/L	
		Exp. Level	<u>n</u>	adjBeta	<u>(CI)</u>	
		continuous	<u></u> NR	-0.013	-0.076, 0.04	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-237Draft: Do Not Cite or Quote

Reference and Study Design	ervational Epidemiology Studies fo Exposure Measures			Results		
Design		Stat Method: multiple linear re			egression	
		analysis			-	
		in utero arse	nic expos	ure (tertiles), μg/L	
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		<10	NR	0	n/a	
		10-499	NR	16.4	-25.5 <i>,</i> 58.3	
		500+	NR	-22.6	-72.7, 27.6	
			Stat Method: multiple linear regression analysis			
		Outcome: FV	c			
		in utero arse	nic expos	ure (continu	ious), μg/L	
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		continuous	NR	-0.007	-0.075, 0.06	
		Stat Met analysis		tiple linear r	egression	
		in utero arsenic exposure (tertiles), μg/l), μg/L	
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		<10	NR	0	n/a	
		10-499	NR	27	-18.5, 72.5	
		500+	NR	-17.2	-71.6, 37.3	
		Stat Met analysis		tiple linear r	egression	
		Outcome: sh walking/clim		of breath - fa	st	
		in utero arse	nic expos	ure (quartil	es), μq/L	
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		10-199	NR	1.07	0.27, 4.28	
		200-399	NR	2.89	1.06, 7.91	
		400-599	NR	4.09	1.56, 10.7	
		≥ 600	NR	3.2	1.18, 8.71	
		NR	NR	NR	n/a	
		Stat Met analysis		tiple linear r		
		Outcome: sh	ortness c	of breath - w	alking	
		in utero arse	nic expos			
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		10-199	NR	1.3	0.72, 7.58	
		200-399	NR	2.21	0.54, 9.12	
		400-599	NR	4.5	1.17, 17.3	
		≥ 600	NR	3.37	0.88, 12.8	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-238Draft: Do Not Cite or Quote

Study Type: case- controlExposure Description: drinking water arsenic concentrations for each city or town in the study area collected from government agencies, research studies, and water suppliers; subjects self- reported daily water intake $cumulative arsenic concentration: all years(quartiles), \mu g/L - yrPopulation: residentswith lung cancer orbladder cancer whowere formerly exposedto high arsenic levels indrinking watern cases: 538n control: 640Population-Level Exposure:1578-12841 \mu g/L - yr rangecumulative arsenic concentration: all years(quartiles), \mu g/L - yrExp. LevelnadjOR(Cl)<1578601n/a1578-12841 \mu g/L - yr range1578-4876610.950.61, 1.504877-12841891.891.19, 3.02>12841962.91.69, 4.97Stat Method: Unconditional logisticregressionregressionregressionregressionto high arsenic levels indrinking watern cases: 538n control: 640nadjOR(Cl)<372511n/a372-2464641.290.82, 2.022465-10319872.41004.822.79, 8.34$		Observational Epidemiology Studies for He	alth Effect Cate			fects		
Steinmaus et al. (2013) Exposure Surrogate: drinking water arsenic concentrations of reach tity or to in the study area collected from government agencies, research studies, and water suppliers; subjects self-reported daily water intake NR NR NR NR N/a Stat Method: multiple linear regression analysis Outcome: wheezing (ever) in utero arsenic exposure (quartiles), µg/L Exp. Level n adiOR (Cl) 10-199 NR 1.98 1.03, 3.80 200.399 NR 1.51 0.033, 2.74 400-599 NR 1.51 0.033, 2.74 400-599 NR 1.51 0.033, 2.74 400-599 NR 1.51 0.03, 2.02 200 0.079 NR 1.98 1.07, 32.02 200 NR 8.65 1.64, 45.7 2.600 NR 8.65 1.64, 45.7 200-399 NR 8.65 1.64, 45.7 2.600 NR NR n/a Stat Method: multiple linear regression analysis analysis adiopation analysis adiopation analysis State Method: multiple linear regression analysis analysis 1.57 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20,	•	Exposure Measures	Results					
Steinmaus et al. (2013)Exposure Surrogate: drinking water source daily water intakeStat Method: multiple linear regression analysisSteinmaus et al. (2013)Exposure Surrogate: drinking water reported daily water intakeStat Method: multiple linear regression analysisSteinmaus et al. (2013)Exposure Surrogate: drinking water reported daily water intakeStat Method: multiple linear regression analysisStat Method: multiple linear regression analysisNRNRNRNRNRNRNRNRNRStat Method: multiple linear regression analysisNRStat Method: subjers; subjects self- reported daily water intakeNRStat Method: Stat Method: Sta								
Steinmaus et al. (2013) Exposure Surrogate: drinking water control Exposure Surrogate: drinking water arsenic concentrations for each city or town in the study area collected from goverment agencies, research studies, and water suppliers; subjects self- reported daily water intake Surgent Su								
Exp. LevelnadjOR(C)10-199NR1.581.03, 3.80200-399NR1.510.83, 2.74400-599NR3.171.78, 5.64 \geq 600NR2.121.19, 3.76NRNR1n/aStat Method: multiple linear regression analysisanalysisOutcome: wheezing - no coldIn utero arsenic exposure (quartiles), $\mu g/L$ Exp. LevelnadjOR(C)10-199NR5.0100.78, 32.0200-399NR1.570.20, 12.110-19910-199NR5.0110-199NR5.0110-199NR5.0110-199NR5.64, 45.72 600NR8.21200-399NR1.570.20, 12.1100-199100-199NR8.6510-199NR5.110-199NR8.6510-199NR8.6510-199NR8.7200-399NR1.57200-399NR1.57200-399NR1.57200-399NR1.57200-399NR1.57200-399NR1.57200-399NR1.57200-399NR1.57200-399NR1.57200-399NR1.5720101.563.120101.573.120111.571			Outcome: wh					
$ \frac{10.199}{200.399} = NR = 1.98 = 1.03, 3.80 \\ 200.399 = NR = 1.51 = 0.83, 2.74 \\ 400.599 = NR = 3.17 = 1.78, 5.64 \\ \geq 600 = NR = 2.12 = 1.19, 3.76 \\ NR = NR = 1 = n/a \\ Stat Method: multiple linear regression \\ analysis = \frac{10.199}{200.399} = NR = 1.57 = 0.201 \\ \frac{10.199}{10.199} = NR = 5.01 = 0.78, 32.02 \\ \frac{10.199}{200.399} = NR = 5.01 = 0.78, 32.02 \\ \frac{10.199}{200.399} = NR = 5.01 = 0.78, 32.02 \\ 200.399 = NR = 5.01 = 0.95, 0.61, 1.50 \\ 372.4264 = 61 = 0.95 = 0.61, 1.50 \\ 372.2464 = 61 = 0.95 = 0.61, 1.50 \\ 372.2464 = 61 = 0.95 = 0.61, 1.50 \\ 372.2464 = 61 = 0.95 = 0.61, 1.50 \\ 372.2464 = 61 = 0.95 = 0.61, 1.50 \\ 372.2464 = 61 = 0.95 = 0.61, 1.51 \\ 372.2464 = 61 = 0.95 = 0.61, 1.51 \\ 372.2464 = 61 = 0.95 = 0.61, 1.51 \\ 372.2464 = 61 = 0.95 = 0.61, 1.51 \\ 372.2464 = 61 = 0.95 = 0.61, 1.51 \\ 372.2464 = 61 = 0.95 = 0.61, 1.51 \\ 372.2464 = 61 = 0.95 = 0.61, 1.51 \\ 372.2464 = 61 = 0.95 = 0.61, 1.51 \\ 372.2464 = 61 = 0.95 = 0.61, 1.51 \\ 372.2464 = 61 = 0.95 = 0.61, 1.51 \\ 372.2464 = 61 = 0.95 \\ 372.2464 = 61 = 0.95 \\ 372.2$			in utero arsen	nic expos	ure (quarti	les), μg/L		
Steel maus et al. (2013) Steel mean agencies, research studies, and water suppliers; subjects self-reported daily water intake Solution claves is 538 n control: 640 sing water in cases: 538 n control: 640 sing water in cases can cases can can cases can can can can cases can can can cases can can can can case can can can					-			
			10-199	NR	1.98	1.03, 3.80		
$ \frac{2600 \text{ NR } 2.12 1.19, 3.76 NR 1 n/a Stat \text{ Method: multiple linear regression analysis} } $			200-399	NR	1.51	0.83, 2.74		
NRNR1n/aStat Method:multiple linear regression analysisOutcome: wheezing - no coldin utero arsenic exposure (quartiles), $\mu g/L$ Exp. LevelnadjOR(CI)10-199NR5.010.78, 32.0200-399200-399NR1.57200-399NR8.651.64, 45.72 600NR8.211.56, 43.1NRStat Method:multiple linear regression analysisStat Method:NRStat Method:NRStat Method:NRNRNRNRNRAddoffG1NRNRAddoffG1NRNRAddoffG1NRNRAddoffG1NRNRAddoffG1NRNRAddoffNRAddoffNRNRNRAddoffStat Method:AddoffNRAddoffNRAddoffNRAddoffNRAddoffNRAddoffNRAddoffNRAddoffNRAddoffNRAdd			400-599	NR	3.17	1.78, 5.64		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			≥ 600	NR	2.12	1.19, 3.76		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			NR	NR	1	n/a		
Steinmaus et al. (2013)Exposure Surrogate: drinking water arsenic concentrations for each city or town in the study area collected from government agencies, research studies, and water suppliers; subjects self- reported daily water intakeOutcome: lung cancerStat Method: $\frac{adjOR}{Cl}$ (Cl)1578-12841 µg/L - yr range $\frac{adjOR}{Cl}$								
$ \frac{\text{Exp. Level}}{10.199} NR 5.01 0.78, 32.0 \\ 200-399 NR 1.57 0.20, 12.1 \\ 400-599 NR 8.65 1.64, 45.7 \\ 2 \ 600 NR 8.21 1.56, 43.1 \\ NR NR NR n/a \\ \text{Stat Method: multiple linear regression analysis} \\ \frac{\text{Step sure Surrogate: drinking water}}{2 \ control} \text{Stat Method: multiple linear regression analysis} \\ \frac{\text{Exp. Level}}{2 \ control} \frac{n}{2 \ control} \frac{adjOR}{2 \ control} \frac{CI}{2 \ control} \frac{1}{2 \ control} \frac$			Outcome: wh	Outcome: wheezing - no cold				
Steelnmaus et al. (2013)Exposure Surrogate: drinking water analysisOutcome: lung cancer controlOutcome: lung cancerStudy Type: case- controlExposure Description: drinking water arsenic concentrations for each city or town in the study area collected from government agencies, research studies, and water suppliers; subjects self- reported daily water intakeOutcome: lung cancerPopulation: residents with lung cancer or bladder cancer who were formerly exposed to high arsenic levels in drinking water n cases: 538 n control: 640Population-Level Exposure: 1578-12841 µg/L - yr rangeOutcome: lung cancer cumulative arsenic concentrations i all years (quartiles), µg/L - yr Exp. Level 1578-12841 µg/L - yr rangePopulation: residents with lung cancer or bladder cancer who were formerly exposed to high arsenic levels in drinking water n cases: 538 n control: 640Population-Level Exposure: 1578-12841 µg/L - yr rangeCLI exposure exposure exposure exposure exposure exposure 1578-12841 µg/L - yr range			in utero arsen	nic expos	ure (quarti	les), μg/L		
Steinmaus et al. (2013) Steinmaus et al. (2013)Exposure Surrogate: drinking water arsenic concentrations for each city or town in the study area collected from government agencies, research studies, and water suppliers; subjects self- reported daily water intakeOutcome: lung cancerImage adio R adio R (CI) <1578-12841 µg/L - yr rangeCI (CI) <1578-12841 µg/L - yr rangeOutcome: lung cancer adio R (CI) <1578-4876Image adio R adio R (CI) <1578-4876CI (CI) <1578-4876Image adio R (CI) <1578-12841CI (CI) <1578-12841 µg/L - yr rangeCI (CI) <1578-12841 µg/L - yr rangeImage adio R (CI) <1578-12841 µg/L - yr rangeCI (CI) <1578-12841 µg/L - yr rangeCI (CI) <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <1000CI <10			Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>		
400-599NR8.651.64, 45.7≥ 600NR8.211.56, 43.1NRNRNRNRn/aStat Method: multiple linear regression analysisStat Method: multiple linear regression analysisNRNRStudy Type: case- controlExposure Description: drinking water arsenic concentrations for each city or town in the study area collected from government agencies, research studies, and water suppliers; subjects self- reported daily water intakeOutcome: lung cancerImage: Concentration: all years (quartiles), µg/L - yrPopulation: residents with lung cancer or oladder cancer who were formerly exposed to high arsenic levels in drinking water n cases: 538 n control: 640Population-Level Exposure: 1578-12841 µg/L - yr rangeStat Method: Unconditional logistic regressionImage: Concentration image: C			10-199	NR	5.01	0.78, 32.0		
Steinmaus et al. (2013)Exposure Surrogate: drinking water arsenic concentrations for each city or town in the study area collected from government agencies, research studies, and water suppliers; subjects self- reported daily water intakeOutcome: lung cancer $adjOR$ (CI) exposure CIPopulation: residents with lung cancer or bladder cancer who were formerly exposed to high arsenic levels in drinking water n cases: 538 n control: 640Exposure Description: drinking water arsenic concentrations for each city or town in the study area collected from government agencies, research studies, and water suppliers; subjects self- reported daily water intake01n/aPopulation-Level Exposure: 1578-12841 µg/L - yr range1578-4876610.950.61, 1.50Cumulative arseric concentrations lor each city or town in the study area collected from government agencies, research studies, and water suppliers; subjects self- reported daily water intake1578-4876610.950.61, 1.50Population-Level Exposure: 1578-12841 µg/L - yr range962.91.69, 4.971.69, 4.97Stat Method: Unconditional logistic regression1001n/a372-2464641.290.82, 2.022465-10319872.41.51, 3.81>103191004.822.79, 8.34			200-399	NR	1.57	0.20, 12.1		
NRNRNRn/aStat Method: multiple linear regression analysisStat Method: multiple linear regression analysisStat Method: multiple linear regression analysisSteinmaus et al. (2013)Exposure Surrogate: drinking waterOutcome: lung cancerStudy Type: case- controlExposure Description: drinking water arsenic concentrations for each city or town in the study area collected from government agencies, research studies, and water suppliers; subjects self- reported daily water intakeMRNRn/aPopulation: residents with lung cancer or bladder cancer who were formerly exposed to high arsenic levels in drinking water n cases: 538 n control: 640Population-Level Exposure: 1578-12841 µg/L - yr rangeStat Method: Unconditional logistic regressionStat Method: Unconditional logistic regressioncumulative arsenic concentration: 640nadiOR(CI) 4.97stat Method: Unconditional logistic regressionn/a372-2464641.290.82, 2.022465-10319872.41.51, 3.81>103191004.822.79, 8.34			400-599	NR	8.65	1.64, 45.7		
Steinmaus et al. (2013)Exposure Surrogate: drinking waterOutcome: lung cancerStudy Type: case- controlExposure Description: drinking water arsenic concentrations for each city or town in the study area collected from government agencies, research studies, and water suppliers; subjects self- reported daily water intakeOutcome: lung cancerPopulation: residents with lung cancer or bladder cancer who were formerly exposed to high arsenic levels in drinking waternadiOR (CI) (CI)Population: residents with lung cancer or bladder cancer who were formerly exposed to high arsenic levels in drinking waterPopulation-Level Exposure: 1578-12841 µg/L - yr rangecumulative arsenic concentration: before 1971 (quartiles), µg/L - yr Exp. Leveln cases: 538 n control: 640n/aadiOR (CI)n cases: 538 n control: 640CI)0.82, 2.02 2465-10319872.41.51, 3.81 >103191004.822.79, 8.34			≥ 600	NR	8.21	1.56, 43.1		
Steinmaus et al. (2013)Exposure Surrogate: drinking waterOutcome: lung cancerStudy Type: case- controlExposure Description: drinking water arsenic concentrations for each city or town in the study area collected from government agencies, research studies, and water suppliers; subjects self- reported daily water intakeOutcome: lung cancerPopulation: residents with lung cancer or bladder cancer who were formerly exposed to high arsenic levels in drinking waternadiOR (CI) (CI)Population: residents with lung cancer or bladder cancer who were formerly exposed to high arsenic levels in drinking waterPopulation-Level Exposure: 1578-12841 µg/L - yr rangecumulative arsenic concentration: before 1971 (quartiles), µg/L - yr Exp. Leveln cases: 538 n control: 640n/aadiOR (CI)n cases: 538 n control: 640CI)0.82, 2.02 2465-10319872.41.51, 3.81 >103191004.822.79, 8.34			NR	NR	NR	n/a		
Study Type: case- controlExposure Description: drinking water arsenic concentrations for each city or town in the study area collected from government agencies, research studies, and water suppliers; subjects self- reported daily water intake $cumulative arsenic concentration: all years(quartiles), \mu g/L - yrPopulation: residentswith lung cancer orbladder cancer whowere formerly exposedto high arsenic levels indrinking watern cases: 538n control: 640Population-Level Exposure:1578-12841 \mu g/L - yr rangecumulative arsenic concentration: all years(quartiles), \mu g/L - yrExp. LevelnadjOR(Cl)<1578601n/a1578-12841 \mu g/L - yr range1578-4876610.950.61, 1.504877-12841891.891.19, 3.02>12841962.91.69, 4.97Stat Method: Unconditional logisticregressionregressionregressionregressionto high arsenic levels indrinking watern cases: 538n control: 640nadjOR(Cl)<372511n/a372-2464641.290.82, 2.022465-10319872.41004.822.79, 8.34$				nod: mul		-		
Study Type: case- controlExposure Description: drinking water arsenic concentrations for each city or town in the study area collected from government agencies, research studies, and water suppliers; subjects self- reported daily water intake(quartiles), µg/L - yradjOR (Cl)(Cl)Population: residents with lung cancer or bladder cancer who were formerly exposed to high arsenic levels in drinking water n cases: 538 n control: 640Population-Level Exposure: 1578-12841 µg/L - yr range962.91.69, 4.97Population: residents with lung cancer or bladder cancer who were formerly exposed to high arsenic levels in drinking waterPopulation-Level Exposure: 1578-12841 µg/L - yr rangecumulative arset concentrations logevenPopulation-Level Exposure: 1578-12841 µg/L - yr rangecumulative arset concentrationsevenevenPopulation-Level Exposure: 1578-12841 µg/L - yr rangeevenadjOR(Cl)(quartiles), µg/L - yrevenadjOR(Cl)(quartiles), µg/L - yrevenadjOR(Cl)(quartiles), µg/L - yrevenadjOR(Cl)(quartiles), µg/L - yrevenadjOR(Cl)(alor 0evenadjOR(Cl)(alor 0	<u>Steinmaus et al. (2013)</u>	Exposure Surrogate: drinking water	Outcome: lun	g cancer	•			
Study Type: case- controlExposure Description: drinking water arsenic concentrations for each city or town in the study area collected from government agencies, research studies, and water suppliers; subjects self- reported daily water intake(quartiles), µg/L - yradjOR (Cl)(Cl)Population: residents with lung cancer or bladder cancer who were formerly exposed to high arsenic levels in drinking water n cases: 538 n control: 640Population-Level Exposure: 1578-12841 µg/L - yr range962.91.69, 4.97Population: residents with lung cancer or bladder cancer who were formerly exposed to high arsenic levels in drinking waterPopulation-Level Exposure: 1578-12841 µg/L - yr rangecumulative arset concentrations logevenPopulation-Level Exposure: 1578-12841 µg/L - yr rangecumulative arset concentrationsevenevenPopulation-Level Exposure: 1578-12841 µg/L - yr rangeevenadjOR(Cl)(quartiles), µg/L - yrevenadjOR(Cl)(quartiles), µg/L - yrevenadjOR(Cl)(quartiles), µg/L - yrevenadjOR(Cl)(quartiles), µg/L - yrevenadjOR(Cl)(alor 0evenadjOR(Cl)(alor 0			cumulative ar	rsenic co	ncentration	all years		
Location:Chile arsenic concentrations for each city or town in the study area collected from government agencies, research studies, and water suppliers; subjects self- reported daily water intake $Exp. Level n$ $adjOR$ (Cl)Population:residents with lung cancer or bladder cancer who were formerly exposed to high arsenic levels in drinking water n cases:578-12841 μ g/L - yr range962.91.69, 4.97Stat Method:Unconditional logistic regressionregressionregression1n/aCumulative arsenic levels in drinking water n cases:538 n control:n $adjOR$ (Cl) (Cl)AdjOR(Cl) (Cl)1n/a372-2464641.290.82, 2.02 2465-10319872.41.51, 3.81 >10319>1004.822.79, 8.34	Study Type: case-	Exposure Description: drinking water						
Location: Chile (Antofagasta)town in the study area collected from government agencies, research studies, and water suppliers; subjects self- reported daily water intake <1578 60 1 n/a Population: residents with lung cancer or bladder cancer who were formerly exposed to high arsenic levels in drinking water n cases: 538 n control: 640Population: the study area collected from government agencies, research studies, and water suppliers; subjects self- reported daily water intake <1578 60 1 n/a Population: residents with lung cancer or bladder cancer who were formerly exposed to high arsenic levels in drinking water n cases: 538 n control: 640Population-Level Exposure: $to high arsenic levels indrinking water1578-12841 \ \mu g/L - yr range<1578 - 12841 \ \mu g/L - yr<1.50 \ .0.61, 1.50 \ .4877 - 12841 \ .96 \ .2.9 \ .1.69, 4.97 \ .51841 \ .000 \ .0$					adjOR	(CI)		
Location: Chile (Antofagasta)government agencies, research studies, and water suppliers; subjects self- reported daily water intake $1578-4876$ 61 0.95 $0.61, 1.50$ Population: residents with lung cancer or bladder cancer who were formerly exposed to high arsenic levels in drinking water n cases: 538 n control: 640Population-Level Exposure: $1578-12841 \ \mu g/L - \ yr$ range $1578-4876$ 61 0.95 $0.61, 1.50$ $U = 100000000000000000000000000000000000$								
Location: Chile (Antofagasta)and water suppliers; subjects self- reported daily water intake $4877-12841$ 89 1.89 $1.19, 3.02$ Population: residents with lung cancer or bladder cancer who were formerly exposed to high arsenic levels in drinking water n cases: 538 n control: 640Population-Level Exposure: $1578-12841 \ \mu g/L - \ yr$ range $4877-12841 \ 89$ 89 $1.89 \ 1.19, 3.02$ 2.9 $1.69, 4.97$ Stat Method: Unconditional logistic regression $regression$ cumulative arsenic concentration: before 1971 (quartiles), $\mu g/L - \ yr$ $Exp. Level \ 10, 2372 \ 51 \ 1 \ 10, 2465 \ 51 \ 10, 2465 \ 51$					0.95	-		
Population: residents with lung cancer or bladder cancer who were formerly exposed to high arsenic levels in drinking water n cases: 538 n control: 640reported daily water intake>12841962.91.69, 4.97Stat Method: Unconditional logistic regressionStat Method: Unconditional logistic regressionStat Method: Unconditional logistic regression Population-Level Exposure: 1578-12841 µg/L - yr range1578-12841 µg/L - yr rangecumulative arsenic concentration: before 1971 (quartiles), µg/L - yr Exp. Level 372nadjOR 1(CI) n/a372-2464641.290.82, 2.02 2465-10319872.41.51, 3.81 >103191004.822.79, 8.34								
Population: residents with lung cancer or bladder cancer who were formerly exposed to high arsenic levels in drinking water n cases: 538 n control: 640Population-Level Exposure: 1578-12841 µg/L - yr rangeStat Metho: Unconditional logistic regressionCumulative arse-ic concertation: before 1971 (quartiles), µg/L - yrcumulative arse-ic concertation: before 1971 (quartiles), µg/L - yrExp. LevelnadjOR(Cl)<372	(Antofagasta)							
Population: residents with lung cancer or bladder cancer who were formerly exposed to high arsenic levels in n cases: 538 n control: 640Population-Level Exposure: 1578-12841 μg/L - yr rangeregressionPopulation-Level Exposure: 1578-12841 μg/L - yr rangecumulative arse-ic concertration: before 1971 (quartiles), μg/L - yrExp. LevelnadjOR(Cl)<372		reported daily water intake						
With lung cancer or bladder cancer who were formerly exposed to high arsenic levels in drinking water n cases: 538 n control: 640Population-Level Exposure: IS78-12841 μ g/L - yr rangecumulative arsenic concentration: before 1971 (quartiles), μ g/L - yrExp. Level 372 nadjOR 51 (Cl) 10 372-2464641.290.82, 2.02 $2465-10319$ 872.42465-10319872.41.51, 3.81 >10319 1004.822.79, 8.34	Population: residents					OBISCIC		
bladder cancer who were formerly exposed to high arsenic levels in drinking water n cases: 538 n control: 640 1578-12841 µg/L - yr range	-		105105510	511				
were formerly exposed (quartiles), µg/L - yr to high arsenic levels in Exp. Level n adjOR (CI) drinking water <372	-	1578-12841 μg/L - yr range	cumulative ar	rsenic co	ncentration	: before 1971		
Interview						• •		
drinking water <372					adiOR	(CI)		
an cases: 538 372-2464 64 1.29 0.82, 2.02 an control: 640 2465–10319 87 2.4 1.51, 3.81 >10319 100 4.82 2.79, 8.34	•							
n control: 640 2465–10319 87 2.4 1.51, 3.81 >10319 100 4.82 2.79, 8.34	-							
>10319 100 4.82 2.79, 8.34								
,	n control: 640							
Stat Method: Unconditional logistic								

-	vational Epidemiology Studies fo	or Health Effect Cate	gory: Res	piratory Ef	fects	
Reference and Study	Exposure Measures	Results				
Design		regression				
		cumulative ar	senic int	ake: all ye	ars (quartiles),	
		ug				
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		<2438	64	1	n/a	
		2438-8214	58	0.84	0.54, 1.32	
		8215-19093	77	1.29	0.81, 2.06	
		>19093	107	3.25	2.00, 5.29	
		Stat Meth	nod: Unc	onditional l		
		regressio			-0	
			cumulative arsenic intake: before 1971			
		(quartiles), ug			()	
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		<576	53	1	n/a	
		576-4429	63	1.21	0.77, 1.89	
		4430–14347	78	1.92	1.22, 3.03	
		>14347	108	4.86	2.92, 8.09	
		Stat Meth regressio		onditional l	ogistic	
		lifetime avera	ige arser	nic concent	ration: all yea	
		(quartiles), μα			,	
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		<26	61	1	n/a	
		26-79	61	0.98	0.62, 1.53	
		80-197	85	1.7	1.05, 2.75	
		>197	99	3.18	1.90, 5.30	
				onditional l		
		regressio			08.00.0	
		lifetime avera	-	nic concent	ration: before	
		1971 (quartile				
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		<11	51	1	n/a	
		11-90	66	1.27	0.81, 1.98	
		91-335	80	2	1.24, 3.24	
		>335	105	4.32	2.60, 7.17	
		Stat Meth regressio		onditional l	ogistic	
				avaarda i-+		
		lifetime daily (quartiles), μ <u>α</u>		ursenic int	uke: all years	
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		>41	64	1	n/a	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-240Draft: Do Not Cite or Quote

Summary of	Observational Epidemiology Studies for He	alth Effect Cate	egory: Res	piratory Ef	fects	
Reference and Study Design	Exposure Measures	Results				
		137-307	76	1.24	0.78, 1.98	
		>307	110	3.16	1.98, 5.03	
		Stat Method: Unconditional logistic regression				
		lifetime daily average arsenic intake: befor 1971 (quartiles), μg/day				
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
		<21	53	1	n/a	
		21-159	64	1.19	0.76, 1.85	
		160-525	73	1.63	1.01, 2.65	
		>525	112	4.89	2.99, 7.99	
		Stat Met	hod: Unc	onditional l	ogistic	
		regress	ion			
<u>Tsuda et al. (1995)</u>	Exposure Surrogate: drinking water	Outcome: lu	ng cancer			
		arsenic conc	entration	in well wa	ter in 1959, ppm	
Study Type: cohort	Exposure Description: arsenic in well	Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>	
(retrospective)	water measured in 1959 (the end of the	<0.05	0	0	0, 2.43	
	exposure period) in 34 wells; 20 area	0.05-0.99	1	2.33	0.12, 13.39	
Lessting lange	wells had no documented levels of	≥1	8	15.69	7.38, 31.02	
Location: Japan (Namiki-cho)	arsenic so authors inferred that arsenic levels were undetectable or very low; concentration assigned based on	Stat Met	hod: Cox:	proportion	al hazard	
Population: adults and children living near	residence in 1959					
factory producing arsenic trisulfide	Population-Level Exposure: 0.05-1 ppm range					
n exposed: 189 n reference: 254 n total: 443						

--: not reported; n: number of cases (when presented in Results column)

5.15.1 References for Summary of Observational Epidemiology Studies for Health Effect Category: Respiratory Effects

Baastrup, R; Sørensen, M; Balstrøm, T; Frederiksen, K; Larsen, CL; Tjønneland, A; Overvad, K; Raaschou-<u>Nielsen, O.</u> (2008). Arsenic in drinking-water and risk for cancer in Denmark. Environ Health Perspect 116: 231-237. <u>http://dx.doi.org/10.1289/ehp.10623</u>

- <u>Chen, CL; Chiou, HY; Hsu, LI; Hsueh, YM; Wu, MM; Chen, CJ.</u> (2010). Ingested arsenic, characteristics of well water consumption and risk of different histological types of lung cancer in northeastern Taiwan. Environ Res 110: 455-462. <u>http://dx.doi.org/10.1016/j.envres.2009.08.010</u>
- Chen, CL; Hsu, LI; Chiou, HY; Hsueh, YM; Chen, SY; Wu, MM; Chen, CJ; Group, BDS. (2004). Ingested arsenic, cigarette smoking, and lung cancer risk: A follow-up study in arseniasis-endemic areas in Taiwan. JAMA 292: 2984-2990. http://dx.doi.org/10.1001/jama.292.24.2984
- Chiou, HY; Hsueh, YM; Liaw, KF; Horng, SF; Chiang, MH; Pu, YS; Lin, JS; Huang, CH; Chen, CJ. (1995). Incidence of internal cancers and ingested inorganic arsenic: A seven-year follow-up study in Taiwan. Cancer Res 55: 1296-1300.
- Chung, CJ; Huang, YL; Huang, YK; Wu, MM; Chen, SY; Hsueh, YM; Chen, CJ. (2012). Urinary arsenic profiles and the risks of cancer mortality: A population-based 20-year follow-up study in arseniasis-endemic areas in Taiwan. Environ Res 122: 25-30. <u>http://dx.doi.org/10.1016/j.envres.2012.11.007</u>
- Dauphiné, DC; Ferreccio, C; Guntur, S; Yuan, Y; Hammond, SK; Balmes, J; Smith, AH; Steinmaus, C. (2011). Lung function in adults following in utero and childhood exposure to arsenic in drinking water: preliminary findings. Int Arch Occup Environ Health. <u>http://dx.doi.org/10.1007/s00420-010-0591-6</u>
- Dauphiné, DC; Smith, AH; Yuan, Y; Balmes, JR; Bates, MN; Steinmaus, C. (2013). Case-control study of arsenic in drinking water and lung cancer in California and Nevada. Int J Environ Res Public Health 10: 3310-3324. <u>http://dx.doi.org/10.3390/ijerph10083310</u>
- Farzan, SF; Korrick, S; Li, Z; Enelow, R; Gandolfi, AJ; Madan, J; Nadeau, K; Karagas, MR. (2013). In utero arsenic exposure and infant infection in a United States cohort: A prospective study. Environ Res 126: 24-30. http://dx.doi.org/10.1016/j.envres.2013.05.001
- Ferreccio, C; González, C; Milosavjlevic, V; Marshall, G; Sancha, AM; Smith, AH. (2000). Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology 11: 673-679. http://dx.doi.org/10.1097/00001648-200011000-00010
- Ferreccio, C; Yuan, Y; Calle, J; Benítez, H; Parra, RL; Acevedo, J; Smith, AH; Liaw, J; Steinmaus, C. (2013). Arsenic, tobacco smoke, and occupation: associations of multiple agents with lung and bladder cancer. Epidemiology 24: 898-905. <u>http://dx.doi.org/10.1097/EDE.0b013e31829e3e03</u>
- García-Esquinas, E; Pollan, M; Umans, JG; Francesconi, KA; Goessler, W; Guallar, E; Howard, B; Farley, J; <u>Best, LG; Navas-Acien, A.</u> (2013). Arsenic exposure and cancer mortality in a US-based prospective cohort: the strong heart study. Cancer Epidemiol Biomarkers Prev 22: 1944-1953. <u>http://dx.doi.org/10.1158/1055-9965.EPI-13-0234-T</u>
- <u>Ghosh, P; Banerjee, M; De Chaudhuri, S; Chowdhury, R; Das, JK; Mukherjee, A; Sarkar, AK; Mondal, L;</u> <u>Baidya, K; Sau, TJ; Banerjee, A; Basu, A; Chaudhuri, K; Ray, K; Giri, AK.</u> (2007). Comparison of health effects between individuals with and without skin lesions in the population exposed to arsenic through drinking water in West Bengal, India. J Expo Sci Environ Epidemiol 17: 215-223. <u>http://dx.doi.org/10.1038/sj.jes.7500510</u>
- <u>Guo, JX; Hu, L; Yand, PZ; Tanabe, K; Miyatalre, M; Chen, Y.</u> (2007). Chronic arsenic poisoning in drinking water in Inner Mongolia and its associated health effects. J Environ Sci Health A Tox Hazard Subst Environ Eng 42: 1853-1858. <u>http://dx.doi.org/10.1080/10934520701566918</u>
- Heck, JE; Andrew, AS; Onega, T; Rigas, JR; Jackson, BP; Karagas, MR; Duell, EJ. (2009). Lung cancer in a U.S. population with low to moderate arsenic exposure. Environ Health Perspect 117: 1718-1723. http://dx.doi.org/10.1289/ehp.0900566
- Hsu, LI; Chen, GS; Lee, CH; Yang, TY; Chen, YH; Wang, YH; Hsueh, YM; Chiou, HY; Wu, MM; Chen, CJ. (2013). Use of arsenic-induced palmoplantar hyperkeratosis and skin cancers to predict risk of subsequent internal malignancy. Am J Epidemiol 177: 202-212. <u>http://dx.doi.org/10.1093/aje/kws369</u>

- Khlifi, R; Olmedo, P; Gil, F; Feki-Tounsi, M; Hammami, B; Rebai, A; Hamza-Chaffai, A. (2014). Risk of laryngeal and nasopharyngeal cancer associated with arsenic and cadmium in the Tunisian population. Environ Sci Pollut Res Int 21: 2032-2042. <u>http://dx.doi.org/10.1007/s11356-013-2105-z</u>
- Lai, MS; Hsueh, YM; Chen, CJ; Shyu, MP; Chen, SY; Kuo, TL; Wu, MM; Tai, TY. (1994). Ingested inorganic arsenic and prevalence of diabetes mellitus. Am J Epidemiol 139: 484-492.
- Lewis, DR; Southwick, JW; Ouellet-Hellstrom, R; Rench, J; Calderon, RL. (1999). Drinking water arsenic in Utah: A cohort mortality study. Environ Health Perspect 107: 359-365. http://dx.doi.org/10.1289/ehp.99107359
- Majumdar, KK; Guha Mazumder, DN; Ghose, N; Ghose, A; Lahiri, S. (2009). Systemic manifestations in chronic arsenic toxicity in absence of skin lesions in West Bengal. Indian J Med Res 129: 75-82.
- <u>Nafees, AA; Kazi, A; Fatmi, Z; Irfan, M; Ali, A; Kayama, F.</u> (2011). Lung function decrement with arsenic exposure to drinking groundwater along River Indus: a comparative cross-sectional study. Environ Geochem Health 33: 203-216. <u>http://dx.doi.org/10.1007/s10653-010-9333-7</u>
- Parvez, F; Chen, Y; Brandt-Rauf, PW; Slavkovich, V; Islam, T; Ahmed, A; Argos, M; Hassan, R; Yunus, M;
 <u>Haque, SE; Balac, O; Graziano, JH; Ahsan, H.</u> (2010). A prospective study of respiratory symptoms associated with chronic arsenic exposure in Bangladesh: findings from the Health Effects of Arsenic Longitudinal Study (HEALS). Thorax 65: 528-533. <u>http://dx.doi.org/10.1136/thx.2009.119347</u>
- Parvez, F; Chen, Y; Yunus, M; Olopade, C; Segers, S; Slavkovich, V; Argos, M; Hasan, R; Ahmed, A; Islam, T; Akter, MM; Graziano, JH; Ahsan, H. (2013). Arsenic exposure and impaired lung function. Findings from a large population-based prospective cohort study. Am J Respir Crit Care Med 188: 813-819. http://dx.doi.org/10.1164/rccm.201212-2282OC
- Paul, S; Das, N; Bhattacharjee, P; Banerjee, M; Das, JK; Sarma, N; Sarkar, A; Bandyopadhyay, AK; Sau, TJ; Basu, S; Banerjee, S; Majumder, P; Giri, AK. (2013). Arsenic-induced toxicity and carcinogenicity: a twowave cross-sectional study in arsenicosis individuals in West Bengal, India. J Expo Sci Environ Epidemiol 23: 156-162. <u>http://dx.doi.org/10.1038/jes.2012.91</u>
- <u>Rahman, A; Vahter, M; Ekström, EC; Persson, LA.</u> (2011). Arsenic exposure in pregnancy increases the risk of lower respiratory tract infection and diarrhea during infancy in Bangladesh. Environ Health Perspect 119: 719-724. <u>http://dx.doi.org/10.1289/ehp.1002265</u>
- <u>Raqib, R; Ahmed, S; Sultana, R; Wagatsuma, Y; Mondal, D; Hoque, AM; Nermell, B; Yunus, M; Roy, S;</u> <u>Persson, LA; Arifeen, SE; Moore, S; Vahter, M.</u> (2009). Effects of in utero arsenic exposure on child immunity and morbidity in rural Bangladesh. Toxicol Lett 185: 197-202. <u>http://dx.doi.org/10.1016/j.toxlet.2009.01.001</u>
- Sawada, N; Iwasaki, M; Inoue, M; Takachi, R; Sasazuki, S; Yamaji, T; Shimazu, T; Tsugane, S. (2013). Dietary arsenic intake and subsequent risk of cancer: The Japan Public Health Center-based (JPHC) prospective study. Cancer Causes Control 24: 1403-1415. <u>http://dx.doi.org/10.1007/s10552-013-0220-2</u>
- Smith, AH; Yunus, M; Khan, AF; Ercumen, A; Yuan, Y; Smith, MH; Liaw, J; Balmes, J; von Ehrenstein, O; Raqib, R; Kalman, D; Alam, DS; Streatfield, PK; Steinmaus, C. (2013). Chronic respiratory symptoms in children following in utero and early life exposure to arsenic in drinking water in Bangladesh. Int J Epidemiol 42: 1077-1086. <u>http://dx.doi.org/10.1093/ije/dyt120</u>
- Steinmaus, CM; Ferreccio, C; Acevedo Romo, J; Yuan, Y; Cortes, S; Marshall, G; Moore, LE; Balmes, J. R.; Liaw, J; Golden, T; Smith, AH. (2013). Drinking water arsenic in northern Chile: high cancer risks 40 years after exposure cessation. Cancer Epidemiol Biomarkers Prev 22: 623-630. <u>http://dx.doi.org/10.1158/1055-9965.EPI-12-1190</u>
- <u>Tsuda, T; Babazono, A; Yamamoto, E; Kurumatani, N; Mino, Y; Ogawa, T; Kishi, Y; Aoyama, H.</u> (1995). Ingested arsenic and internal cancer: A historical cohort study followed for 33 years. Am J Epidemiol 141: 198-209.

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-243Draft: Do Not Cite or Quote

5.16Summary of Observational Epidemiology Studies for Health Effect Category: Skin Diseases

Summary	of Observational Epidemiology Studies for I	Health Effect Ca	tegory:	Skin Diseas	es
Reference and Study	Exposure Measures		I	Results	
Design					
<u>Ahsan et al. (2000)</u>	Exposure Surrogate: drinking water	Outcome: any	skin les	sions	
		arsenic in pitcl	her-wat	er (quartile	s), μg/L
Study Type: cross-	Exposure Description: arsenic measured	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
sectional	in pitcher-water obtained directly from	≤ 29	NR	1	n/a
	household (correlated with tube-well	>29-90	NR	0.9	0.3, 2.9
	water samples); exposure stratified by	>90-278	NR	0.36	0.1, 1.2
Location: Bangladesh	quartiles	>278-991	NR	1.67	0.6, 5.1
(Sonargaon)		Stat Method: logistic regression mode			
	Population-Level Exposure:				
Population: residents	29-991 µg/L range				
of three contiguous		Outcomerce	akin laa	ione	
villages where well	Exposure Surrogate: drinking water	Outcome: any skin lesions			
water had not been		cumulative ar			
previously tested	Exposure Description: cumulative arsenic	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
n cases: n/a	index (CAI) calculated by multiplying arsenic concentration in pitcher water with estimated yearly water consumption and years of water source use (tube well concentration assumed to	≤ 116.4	NR	1	n/a
n control: n/a		>116.4-474.9	NR	1.3	0.4, 4.4
		>474.9-	NR	0.6	0.15, 2.2
		1279.9			
		>1279.9-	NR	2.3	0.7, 7.6
	be constant); exposure stratified by	22147.1			
	quartiles	Stat Method: logistic regression models			
	Population-Level Exposure: 116.4-22147.1 mg range				
	Exposure Surrogate: urine	Outcome: any	skin les	sions	
	Exposure Description: individual urine	total urinary a μg/L	irsenic c	oncentratio	on (quartiles),
	samples, adjusted for creatinine content;	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
	exposure stratified by quartiles	≤ 122	NR	1	n/a
		>122-244	NR	1	0.3, 3.6
	Population-Level Exposure:	>244-471	NR	2.1	0.6, 7.4
	122-1840 μg/L range	>471-1840	NR	3.6	1.2, 12.1
	122-1040 μg/L ιαιιge	Stat Meth	od: logi	stic regressi	on models
	Exposure Surrogate: urine	Outcome: any	skin les	sions	
		creatinine adju (quartiles), μg		-	ic concentration

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-244Draft: Do Not Cite or Quote

Summary	of Observational Epidemiology Studies for I	Health Effect Ca	tegory: S	Skin Diseas	es
Reference and Study Design	Exposure Measures	Results			
0	Exposure Description: individual urine	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
	samples; exposure stratified by quartiles	≤ 242	NR	1	n/a
		>242-440	NR	0.83	0.2, 2.9
	Denulation Lovel Experime	>440-766	NR	0.88	0.2, 3.1
	Population-Level Exposure:	>766-5727	NR	3.22	1.1, 10.1
	242-5727 µg/g-creatinine range	Stat Meth	od: logis	stic regressi	on models
<u>Ahsan et al. (2006)</u>	Exposure Surrogate: drinking water	Outcome: skin	lesions		
		cumulative ar	senic ind	lex, mg	
Study Type: cross-	Exposure Description: cumulative arsenic	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
sectional	index calculated using well water arsenic	0.1-48.1	53	1	n/a
	concentration times daily consumption	48.2-226.4	90	1.83	1.25, 2.69
Lesstien. Developer	volume times duration of well use	226.5-582.6	122	2.53	1.72, 3.71
Location: Bangladesh (Araihazar)		582.7-1485.8	162	3.62	2.5, 5.23
(Ardindzdr)	Population-Level Exposure:	1485.9-	268	5.49	3.82, 7.90
	0.1-9609 mg range	9609.0			
Population: Health	0.1-9009 mg range	Stat Meth	od: Prev	alence odd	s ratios (PORs)
Effects of Arsenic		for skin lesions analyzed using uncon			ng unconditional
Longitudinal Study (HEALS) subcohort		logistic re	egressio	n modeling	
exposed to full dose	Exposure Surrogate: drinking water	Outcome: skin lesions			
range of arsenic		time-weighted	d water	arsenic con	centration, μg/L
n cases: 11438	Exposure Description: time-weighted	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
n control: n/a	arsenic concentration calculated using	0.1-8.0	57	1	n/a
	drinking duration (data from interview)	8.1-40.0	90	1.91	1.26, 2.89
	and well arsenic concentrations (if two	40.1-91.0	144	3.03	2.05, 4.50
	wells used concentrations averaged)	91.1-175.0	162	3.71	2.53, 5.44
		175.1-864.0	242	5.39	3.69, 7.86
	Population-Level Exposure:	Stat Meth	od: Prev	alence odd	s ratios (PORs)
	0.1-864 µg/L range			nalyzed usir n modeling	ng unconditional
	Exposure Surrogate: urine	Outcome: skin	lesions	1	
		urinary creatii	nine-adj	usted arser	nic
	Exposure Description: total urinary	concentration	, µg/g-с	reatinine	
	arsenic adjusted for creatinine	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
	concentration	6.6-90.1	60	1	n/a
		90.2-158.4	99	1.75	1.23, 2.48
	Population Loval Exposure:	158.5-243.4	129	2.33	1.67, 3.26
	Population-Level Exposure:	243.5-396.5	153	3.08	2.19, 4.35
	6 6-1306 ug/g-creatining range	1	220	F 20	3.78, 7.41
	6.6-4306 μg/g-creatinine range	396.6-4306.0	239	5.29	5.70, 7.41
	6.6-4306 μg/g-creatinine range	396.6-4306.0 unavailable	239 15	5.29 NR	n/a
	6.6-4306 μg/g-creatinine range	unavailable	15	NR	•
	6.6-4306 μg/g-creatinine range	unavailable Stat Meth	15 od: Prev	NR valence odd	n/a

Summary	Summary of Observational Epidemiology Studies for Health Effect Category: Skin Diseases					
Reference and Study	Exposure Measures			Results		
Design						
Argos et al. (2011)	Exposure Surrogate: drinking water	Outcome: incident skin lesions				
		daily arsenic	intake, u	a/dav		
Study Type: cohort	Exposure Description: daily arsenic	Exp. Level	<u>n</u>	HR	<u>(CI)</u>	
(prospective)	intake calculated by multiplying well	0.4-19.4	NR	1	n/a	
(prospective)	water arsenic concentration of primary	19.5-100.8	NR	1.23	0.96, 1.58	
	well (and secondary well if applicable) by	100.9-233.1	NR	1.57	1.24, 1.99	
Location: Bangladesh	daily consumption (self-reported)	233.2-472.0	NR	1.82	1.45, 2.30	
(Araihazar)		≥ 472.1	NR	2.92	2.34, 3.65	
				tivariate m	,	
Population: Health Effects of Arsenic	Population-Level Exposure: 0.4-472.1 μg/day range	Stat Wet				
Longitudinal Study	Exposure Surrogate: drinking water	Outcome: inc	ident ski	n lesions		
(HEALS) participants		well water ar	senic coi	ncentratio	n, μg/L	
without skin lesions at	Exposure Description: well water	Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>	
baseline	samples in study area collected; samples	0.1-10	NR	1	n/a	
n exposed: 866	below LOD reanalyzed; participants	10.1-50	NR	1.17	0.92, 1.49	
n reference: 9316	identified primary well of use at baseline	50.1-100	NR	1.69	1.33, 2.14	
n total: 10182		100.1-200	NR	1.97	1.58, 2.46	
	Population-Level Exposure:	≥ 200.1	NR	2.98	2.40, 3.71	
	0.1-200.1 µg/L range	Stat Method: Multivariate model				
	Exposure Surrogate: urine	Outcome: inc	ident ski	n lesions		
		creatinine adjusted urinary arsenic			nic	
	Exposure Description: individual urinary	concentration		-		
	total arsenic concentration measured	Exp. Level	<u>n</u>	HR	<u>(CI)</u>	
	and adjusted for creatinine	7-88	NR	1	n/a	
	and adjusted for creatinine	89-155	NR	0.9	0.71, 1.15	
		156-240	NR	1.34	1.07, 1.68	
	Population-Level Exposure:	241-392	NR	1.62	1.29, 2.02	
	7-393 μg/g-creatinine range	≥ 393	NR	2.39	1.92, 2.97	
				tivariate m		
<u>Baastrup et al. (2008)</u>	Exposure Surrogate: drinking water	Outcome: me				
		cumulative a	rsenic ex			
Study Type: cohort	Exposure Description: cumulative arsenic	Exp. Level	<u>n</u>	<u>IRR</u>	<u>(CI)</u>	
(prospective)	exposure and time-weighted average	continuous	NR	0.97	0.92, 1.03	
	arsenic concentrations calculated for	Stat Meth	nod: Cox	regression		
	individuals based on residential address	Outcome: nonmelanoma skin cancer			incer	
Location: Denmark		Outcome. no				
(Copenhagen and	and history from Central Population		rsonic or	nosura ma	7	
	and history from Central Population Registry combined with measurement	cumulative ar				
(Copenhagen and	and history from Central Population Registry combined with measurement data from nearest water utility as	<i>cumulative ar</i> Exp. Level	<u>n</u>	IRR	<u>(CI)</u>	
(Copenhagen and	and history from Central Population Registry combined with measurement	<i>cumulative ar</i> Exp. Level continuous	<u>n</u> NR	<u>IRR</u> 0.95	<u>(CI)</u> 0.92, 0.97	
(Copenhagen and Aarhus)	and history from Central Population Registry combined with measurement data from nearest water utility as recorded by Geological Survey of	<i>cumulative ar</i> Exp. Level continuous	<u>n</u> NR	IRR	<u>(CI)</u> 0.92, 0.97	
(Copenhagen and Aarhus) Population: Danish	and history from Central Population Registry combined with measurement data from nearest water utility as recorded by Geological Survey of	<i>cumulative ar</i> Exp. Level continuous	<u>n</u> NR	<u>IRR</u> 0.95	<u>(CI)</u> 0.92, 0.97	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-246Draft: Do Not Cite or Quote

Reference and Study	Exposure Measures	Results			
Design					
n exposed: 56,378	not available				
n total: 57053	Exposure Surrogate: drinking water	Outcome: me	lanoma	skin cancer	
		time-weighte	d avera	ae arsenic e	xposure, μg/L
	Exposure Description: time-weighted and cumulative arsenic concentrations calculated for individuals based on	<u>Exp. Level</u> continuous	<u>n</u> NR	IRR 0.89 regression	<u>(CI)</u> 0.73, 1.07
	residential address and history from	Outcome: noi			ncer
	Central Population Registry combined with measurement data from nearest				
	with measurement data from nearest water utility as recorded by Geological Survey of Denmark and Greenland (1987- 2004)	<u>Exp. Level</u> continuous	<u>n</u> NR	<u>IRR</u> 0.88 regression	xposure, μg/L <u>(CI)</u> 0.81, 0.94
	Population-Level Exposure: 0.7 μg/L median				
<u>Barati et al. (2010)</u>	Exposure Surrogate: drinking water	Outcome: de			
		drinking wate	er arseni	c concentra	tion, μg/L
Study Type: cross- sectional	Exposure Description: arsenic concentrations measured in 530 village drinking water sources in the region;	<u>Exp. Level</u> <50 51-200	<u>n</u> 1 48	<u>adjOR</u> 1 9.19	<u>(CI)</u> n/a 1.18, 71.01
Location: Iran (Qorveh	individual exposures estimated using village arsenic concentration	201-500 >500	42 11	10.34 9.29	1.33, 80.62 1.09, 78.49
and Bijar cities, Kurdistan Province)		Stat Method: Mantel-Haenzel odds ratio			
	Population-Level Exposure:	Outcome: gangrene			
Population: Western	42-1500 μg/L range	drinking water arsenic concentration, μg/L			
Iran residents with prevalence of multi- chronic arsenical poisoning as indicated		Exp. Level <50 51-200	<u>n</u> 0 0	<u>adjOR</u> NR NR	<u>(CI)</u> n/a n/a
by skin lesions, gangrene toes and fingers		201-500 >500 Stat Meth	2 3 nod: Mai	0.49 2.31 ntel-Haenze	0.04, 5.79 0.22, 24.31 l odds ratio
n cases: 587		Outcome: hyp	perpigm	entation	
n control: n/a		drinking wate			
		Exp. Level <50	<u>n</u> 1	<u>adjOR</u> 1	<u>(CI)</u> n/a
		51-200 201-500 >500	54 39 13	10.31 9.61 10.04	1.33, 79.72 1.23, 74.99 1.19, 84.54
		Stat Meth	nod: Mai	ntel-Haenze	l odds ratio
	1				

		or Health Effect Category: Skin Diseases					
Reference and Study Design	Exposure Measures		Results				
		drinking wat	er arseni	c concentro	tion. µa/l		
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>		
		<50	3	<u>aajon</u> 1	n/a		
		51-200	75	3.85	1.10, 13.91		
		201-500	47	5	1.41, 17.73		
		>500 Stat Met	17 hod: Mar:	4.34 ntel-Haenze	1.10, 17.42 l odds ratio		
		Outcome: M	ee's line				
		drinking wat	er arseni	c concentra	tion, μg/L		
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>		
		<50	2	<u>a ajen</u> 1	n/a		
		51-200	82	7.83	1.75, 34.94		
		201-500	54	6.65	1.45, 30.05		
		>500	19	7.34	1.50, 35.94		
					l odds ratio		
		Stat Met					
		Outcome: M cases	ne: Multi-chronic arsenical poisonin				
		drinking wat	er arseni	c concentra	ition, μg/L		
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>		
		<50	NR	1	n/a		
		51-200	NR	1.96	0.56, 6.85		
		201-500	NR	3.65	1.03, 12.93		
		>500	NR	5.93	1.51, 23.25		
			hod: Chi-		, Mantel-Haenze		
		odds ra		•	,		
Bhowmick et al. (2013)	Exposure Surrogate: saliva	Outcome: sk	in lesion	severity sco	ore		
		salivary arse	nic conce	ntration, µ	g/L		
Study Type: case-	Exposure Description: saliva samples	Exp. Level	<u>n</u>	adjBeta	<u>(CI)</u>		
control	collected at interview	continuous	NR	0.09	0.05, 0.13		
		Stat Met		tiple regres	-		
Location: India (West	Population-Level Exposure:						
Bengal)	7.84 μg/L mean 12.6SD						
	Exposure Surrogate: urine	Outcome: sk	in lesion	severity sco	ore		
Population:		urinary arser	nic concei	ntration, μg	g/L		
participants from cross-	Exposure Description: participants	Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>		
sectional study carried	provided urine samples at interview	continuous	NR	0.11	0.04, 0.17		
out in several villages		Stat Met	hod: mul	tiple regres	sion		
n cases: 64				-			
n control: 37	Population-Level Exposure:						
	110 μg/L mean 154SD						
Breton et al. (2006)	Exposure Surrogate: toenails	Outcome: Sk	in lesions	5			

	of Observational Epidemiology Studies for I					
Reference and Study Design	Exposure Measures	Results				
2 00.8.						
Study Type: case- control Location: Bangladesh (Pabna district)	Exposure Description: arsenic concentration in toenail clippings collected from every toe of each participant; arsenic analyzed in five replicate analyses	toenail arsenic concentration, μg/g <u>Exp. Level</u> <u>n</u> <u>adjOR</u> (CI) continuous NR 1.79 1.52, 2.10 Stat Method: Conditional logistic regression spline model (main effects model)				
Population: Dhaka Community Hospital Trust clinic recruits n cases: n/a n control: n/a	Population-Level Exposure: 3.7 μg/g median					
	Function Summerster drinking water	Outcome: Skin concer				
<u>Chen et al. (2003a)</u>	Exposure Surrogate: drinking water	Outcome: Skin cancer				
		cumulative arsenic exposure, mg/L - yr				
Study Type: case- control Location: Taiwan (Southwestern Taiwan)	Exposure Description: cumulative arsenic exposure calculated based on average arsenic concentration of artesian well water from the village in which subjects lived	Exp. Level n adjOR (Cl) 0-2 NR 1 n/a >2-15 NR 1.87 0.79, 4.45 >15 NR 2.99 1.30, 6.87 Stat Method: Multivariate logistic regression				
Population: hospital patients with skin cancer or fracture/cataract n cases: 76 n control: 224	Population-Level Exposure: 0-15 mg/L - yr range					
<u>Fatmi et al. (2009)</u>	Exposure Surrogate: drinking water	Outcome: arsenic skin lesions (arsenicosis)				
		cumulative arsenic exposure, μg/L-years/kg				
Study Type: cross- sectional Location: Pakistan (Khairpur district, Sindh province) Population: residents of three villages with different levels of exposure	Exposure Description: cumulative arsenic exposure calculated by arsenic level in water source (weighted with proportion drinking from each source) multiplied by average drinking volume water and tea per day multiplied by duration (years) of drinking from same source per body weight; water samples taken from current drinking water sources and past sources when available within same village	Exp. LevelnPrev(Cl)<10				
n cases: n/a n control: n/a	Population-Level Exposure: 10-100 μg/L-years/kg range					

Summary	of Observational Epidemiology Studies for	Health Effect C	ategory:	Skin Diseas	es
Reference and Study Design	Exposure Measures		I	Results	
	Exposure Surrogate: urine	Outcome: ar	senic skir	lesions (a	rsenicosis)
		urinary arser			
	Exposure Description: arsenic	Exp. Level	<u>n</u>	Prev	<u>(CI)</u>
	concentrations in urine spot samples	<10	NR	36.6	n/a
	collected from all individuals with signs	10-<50	NR	99.5	n/a
	of arsenic skin lesions (suspected cases)	50-<100	NR	123.6	n/a
	and from two individuals (one male one	≥ 100	NR	186	n/a
	female) without any arsenic skin lesions from each village	populat	ion accoι	-	alence per 1,000 omplex survey ampling)
	Population-Level Exposure: 10-100 μg/L range				
Fatmi et al. (2013)	Exposure Surrogate: drinking water	Outcome: ar	senicosis		
		drinking wat	er arseni	c concentra	ition, ppb
Study Type: cross-	Exposure Description: : arsenic	Exp. Level	<u>n</u>	<u>PR</u>	<u>(CI)</u>
sectional	concentrations in drinking water based	>50-99	2	4.5	2.74, 6.26
	on screening of 707 water sources	100-299	47	14.8	10.88, 18.72
Location: Pakistan	serving 610 households; results	300-399	10	11.7	13.85, 20.23
(Gambat in Khairpur	compared to UNICEF survey for	≥ 400	13	12.8	9.24, 14.76
district, Sindh province)	consistency; high-risk water sources randomly verified for arsenic level; personal reporting of duration of	Stat Met	hod: Prev	valence	
Population: residents near Indus River	drinking from source				
exposed to elevated arsenic levels	Population-Level Exposure: 50-400 ppb range				
n cases: 72 n control: 462					
Gilbert-Diamond et al.	Exposure Surrogate: urine	Outcome: sq	uamous	cell carcino	ma (SCC)
<u>(2013)</u>		In-transform	ed total u	ırinary arse	enic, μg/L
	Exposure Description: urine samples	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
Study Type: case-	collected for cases and controls and	continuous	323	1.37	1.04, 1.80
control	analyzed for urinary inorganic arsenic	Stat Met logit tra	-	eralized line	ear model with a
Location: United States	Population-Level Exposure:	In-transform	ed urinar	v inoraania	arsenic, μg/L
(NH)	5.27 μg/L median, 3.38-8.52 μg/L 25th	Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>
	percentile	continuous	<u></u> 323	<u>1.2</u>	0.97 <i>,</i> 1.49
Population: residents with invasive squamous cell carcinoma		Stat Met logit tra	hod: gen		ear model with a
		total urinary	arsenic (tertiles), μ <u>α</u>	g/L
n cases: n/a n control: n/a		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
		<3.36	323	1	n/a

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-250Draft: Do Not Cite or Quote

Summary of Observational Epidemiology Studies for Health Effect Category: Skin Diseases					
Reference and Study	Exposure Measures		F	Results	
Design		2.26 .5.24	222	0.04	0.00.4.45
		3.36 - <5.31	323	0.94	0.60, 1.45
		≥ 5.31	323	1.43	0.91, 2.27
			-	eralized line	ear model with a
		logit trar	nsform		
		urinary inorgo	anic arse	nic (tertiles	s), μg/L
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
		<0.23	323	1	n/a
		0.23 - <0.45	323	0.97	0.63, 1.48
		≥ 0.45	323	1.27	0.82, 1.98
		Stat Meth	nod: gene	eralized line	ear model with a
		logit trar	-		
<u>Guo et al. (2006b)</u>	Exposure Surrogate: drinking water	Outcome: ker	atosis		
		drinking wate	er arsenio	c concentra	tion, μα/L
Study Type: case-	Exposure Description: arsenic	Exp. Level	<u>n</u>	adjOR	<u>(CI)</u>
control	concentrations in drinking water based	<50	NR	1	n/a
control	on samples collected in triplicate from	51-199	NR	- 1.46	0.61, 3.51
	households using drinking water wells	200-499	NR	0.92	0.45, 1.9
Location: Inner	nousenolus using uninking water wens	≥ 500	NR	1.46	0.57, 3.75
Mongolia (Wuyuan					
county)	Population-Level Exposure:	Stat Method: logistic regression Outcome: pigment disorder			011
	0-1354 μg/L range	Outcome: pig	ment dis	order	
Population: adults with	0-1354 μg/L range	Outcome: pig			tion, μg/L
cutaneous lesions in	0-1354 μg/L range				tion, μg/L (<u>(Cl)</u>
	0-1354 μg/L range	drinking wate	er arsenio	c concentra	
cutaneous lesions in	0-1354 μg/L range	drinking wate	er arsenia <u>n</u>	c concentra adjOR	<u>(CI)</u> n/a
cutaneous lesions in arsenic-affected village	0-1354 μg/L range	drinking wate Exp. Level <50	e r arsenia <u>n</u> NR	c concentra adjOR 1 5.25	<u>(Cl)</u> n/a 1.3, 83.24
cutaneous lesions in arsenic-affected village n cases: 227	0-1354 μg/L range	<i>drinking wate</i> Exp. Level <50 51-199 200-499	er arsenia n NR NR NR NR	c concentra <u>adjOR</u> 1 5.25 10.97	(<u>CI)</u> n/a 1.3, 83.24 1.5, 79.95
cutaneous lesions in arsenic-affected village n cases: 227	0-1354 μg/L range	<i>drinking wate</i> <u>Exp. Level</u> <50 51-199 200-499 ≥ 500	er arsenia <u>n</u> NR NR NR NR	c concentra adjOR 1 5.25	(<u>CI)</u> n/a 1.3, 83.24 1.5, 79.95 1.39, 71.77
cutaneous lesions in arsenic-affected village n cases: 227 n control: 221		drinking wate <u>Exp. Level</u> <50 51-199 200-499 ≥ 500 Stat Meth	er arsenia <u>n</u> NR NR NR NR NR nod: logis	adjOR 1 5.25 10.97 10 stic regressi	(<u>CI)</u> n/a 1.3, 83.24 1.5, 79.95 1.39, 71.77
cutaneous lesions in arsenic-affected village n cases: 227	0-1354 μg/L range Exposure Surrogate: drinking water	drinking water Exp. Level <50 51-199 200-499 ≥ 500 Stat Meth Outcome: skin	n arsenia NR NR NR NR NR nod: logis	adjOR 1 5.25 10.97 10 stic regressi	(<u>CI)</u> n/a 1.3, 83.24 1.5, 79.95 1.39, 71.77 on
cutaneous lesions in arsenic-affected village n cases: 227 n control: 221 <u>Guo et al. (2006a)</u>	Exposure Surrogate: drinking water	drinking water Exp. Level <50 51-199 200-499 ≥ 500 Stat Meth Outcome: skin well water ar	er arsenia <u>n</u> NR NR NR NR nod: logis n lesions	c concentra adjOR 1 5.25 10.97 10 stic regressi centration	(<u>CI)</u> n/a 1.3, 83.24 1.5, 79.95 1.39, 71.77 on
cutaneous lesions in arsenic-affected village n cases: 227 n control: 221 Guo et al. (2006a) Study Type: cross-	Exposure Surrogate: drinking water Exposure Description: arsenic	drinking wate Exp. Level <50 51-199 200-499 ≥ 500 Stat Meth Outcome: skin well water ar Exp. Level	er arsenia <u>n</u> NR NR NR NR nod: logis n lesions senic con <u>n</u>	adjOR 1 5.25 10.97 10 stic regressi centration adjOR	(<u>Cl)</u> n/a 1.3, 83.24 1.5, 79.95 1.39, 71.77 on , μg/L (<u>Cl)</u>
cutaneous lesions in arsenic-affected village n cases: 227 n control: 221 <u>Guo et al. (2006a)</u>	Exposure Surrogate: drinking water Exposure Description: arsenic concentrations in water samples	drinking wate Exp. Level <50 51-199 200-499 ≥ 500 Stat Meth Outcome: skin well water ar Exp. Level ≤ 50	er arsenia <u>n</u> NR NR NR NR nod: logis n lesions senic con <u>n</u> NR	c concentra adjOR 1 5.25 10.97 10 stic regressi centration adjOR 1	(<u>Cl)</u> n/a 1.3, 83.24 1.5, 79.95 1.39, 71.77 on , μg/L (<u>Cl)</u> n/a
cutaneous lesions in arsenic-affected village n cases: 227 n control: 221 Guo et al. (2006a) Study Type: cross-	Exposure Surrogate: drinking water Exposure Description: arsenic concentrations in water samples collected from all tube wells used by	drinking water Exp. Level <50 51-199 200-499 ≥ 500 Stat Meth Outcome: skin well water art Exp. Level ≤ 50 51-99	er arsenia <u>n</u> NR NR NR nod: logis n lesions senic con <u>n</u> NR NR NR	c concentra adjOR 1 5.25 10.97 10 stic regressi centration adjOR 1 15.5	<u>(CI)</u> n/a 1.3, 83.24 1.5, 79.95 1.39, 71.77 on , μg/L <u>(CI)</u> n/a 1.53, 248.7
cutaneous lesions in arsenic-affected village n cases: 227 n control: 221 Guo et al. (2006a) Study Type: cross-	Exposure Surrogate: drinking water Exposure Description: arsenic concentrations in water samples collected from all tube wells used by participants for at least 6 months in the	drinking water Exp. Level <50 51-199 200-499 ≥ 500 Stat Meth Outcome: skin well water arr. Exp. Level ≤ 50 51-99 100-149	er arsenia <u>n</u> NR NR NR nod: logis n lesions senic con <u>n</u> NR NR NR NR	c concentra adjOR 1 5.25 10.97 10 stic regressi centration adjOR 1 15.5 16.1	<u>(CI)</u> n/a 1.3, 83.24 1.5, 79.95 1.39, 71.77 on , μg/L <u>(CI)</u> n/a 1.53, 248.7 3.73, 69.63
cutaneous lesions in arsenic-affected village n cases: 227 n control: 221 Guo et al. (2006a) Study Type: cross- sectional	Exposure Surrogate: drinking water Exposure Description: arsenic concentrations in water samples collected from all tube wells used by participants for at least 6 months in the last 20 years (several subjects shared the	drinking water Exp. Level <50 51-199 200-499 ≥ 500 Stat Meth Outcome: skin well water arr. Exp. Level ≤ 50 51-99 100-149 >150	er arsenia <u>n</u> NR NR NR nod: logis n lesions senic con NR NR NR NR NR	<i>concentra</i> <u>adjOR</u> 1 5.25 10.97 10 stic regressi <i>adjOR</i> 1 15.5 16.1 25.7	<u>(Cl)</u> n/a 1.3, 83.24 1.5, 79.95 1.39, 71.77 on , μg/L <u>(Cl)</u> n/a 1.53, 248.7 3.73, 69.63 6.43, 102.87
cutaneous lesions in arsenic-affected village n cases: 227 n control: 221 <u>Guo et al. (2006a)</u> Study Type: cross- sectional Location: China (Wuyuan county, Inner	Exposure Surrogate: drinking water Exposure Description: arsenic concentrations in water samples collected from all tube wells used by participants for at least 6 months in the last 20 years (several subjects shared the same wells); samples below the LOD	drinking water Exp. Level <50 51-199 200-499 ≥ 500 Stat Meth Outcome: skin well water arr. Exp. Level ≤ 50 51-99 100-149 >150	er arsenia <u>n</u> NR NR NR nod: logis n lesions senic con NR NR NR NR NR	c concentra adjOR 1 5.25 10.97 10 stic regressi centration adjOR 1 15.5 16.1	<u>(Cl)</u> n/a 1.3, 83.24 1.5, 79.95 1.39, 71.77 on , μg/L <u>(Cl)</u> n/a 1.53, 248.7 3.73, 69.63 6.43, 102.87
cutaneous lesions in arsenic-affected village n cases: 227 n control: 221 Guo et al. (2006a) Study Type: cross- sectional Location: China	Exposure Surrogate: drinking water Exposure Description: arsenic concentrations in water samples collected from all tube wells used by participants for at least 6 months in the last 20 years (several subjects shared the	drinking water Exp. Level <50 51-199 200-499 ≥ 500 Stat Meth Outcome: skin well water arr. Exp. Level ≤ 50 51-99 100-149 >150	er arsenia <u>n</u> NR NR NR nod: logis n lesions senic con NR NR NR NR NR	<i>concentra</i> <u>adjOR</u> 1 5.25 10.97 10 stic regressi <i>adjOR</i> 1 15.5 16.1 25.7	<u>(Cl)</u> n/a 1.3, 83.24 1.5, 79.95 1.39, 71.77 on , μg/L <u>(Cl)</u> n/a 1.53, 248.7 3.73, 69.63 6.43, 102.87
cutaneous lesions in arsenic-affected village n cases: 227 n control: 221 Guo et al. (2006a) Study Type: cross- sectional Location: China (Wuyuan county, Inner Mongolia)	Exposure Surrogate: drinking water Exposure Description: arsenic concentrations in water samples collected from all tube wells used by participants for at least 6 months in the last 20 years (several subjects shared the same wells); samples below the LOD were assigned 0 μg/L	<i>drinking wate</i> <u>Exp. Level</u> <50 51-199 200-499 ≥ 500 Stat Meth <i>Outcome: skin</i> <i>well water ar</i> <u>Exp. Level</u> ≤ 50 51-99 100-149 >150	er arsenia <u>n</u> NR NR NR nod: logis n lesions senic con NR NR NR NR NR	<i>concentra</i> <u>adjOR</u> 1 5.25 10.97 10 stic regressi <i>adjOR</i> 1 15.5 16.1 25.7	<u>(Cl)</u> n/a 1.3, 83.24 1.5, 79.95 1.39, 71.77 on , μg/L <u>(Cl)</u> n/a 1.53, 248.7 3.73, 69.63 6.43, 102.87
cutaneous lesions in arsenic-affected village n cases: 227 n control: 221 <u>Guo et al. (2006a)</u> Study Type: cross- sectional Location: China (Wuyuan county, Inner Mongolia) Population: residents	Exposure Surrogate: drinking water Exposure Description: arsenic concentrations in water samples collected from all tube wells used by participants for at least 6 months in the last 20 years (several subjects shared the same wells); samples below the LOD were assigned 0 μg/L Population-Level Exposure:	<i>drinking wate</i> <u>Exp. Level</u> <50 51-199 200-499 ≥ 500 Stat Meth <i>Outcome: skin</i> <i>well water ar</i> <u>Exp. Level</u> ≤ 50 51-99 100-149 >150	er arsenia <u>n</u> NR NR NR nod: logis n lesions senic con NR NR NR NR NR	<i>concentra</i> <u>adjOR</u> 1 5.25 10.97 10 stic regressi <i>adjOR</i> 1 15.5 16.1 25.7	<u>(Cl)</u> n/a 1.3, 83.24 1.5, 79.95 1.39, 71.77 on , μg/L <u>(Cl)</u> n/a 1.53, 248.7 3.73, 69.63 6.43, 102.87
cutaneous lesions in arsenic-affected village n cases: 227 n control: 221 Guo et al. (2006a) Study Type: cross- sectional Location: China (Wuyuan county, Inner Mongolia) Population: residents of high and low arsenic-	Exposure Surrogate: drinking water Exposure Description: arsenic concentrations in water samples collected from all tube wells used by participants for at least 6 months in the last 20 years (several subjects shared the same wells); samples below the LOD were assigned 0 μg/L	<i>drinking wate</i> <u>Exp. Level</u> <50 51-199 200-499 ≥ 500 Stat Meth <i>Outcome: skin</i> <i>well water ar</i> <u>Exp. Level</u> ≤ 50 51-99 100-149 >150	er arsenia <u>n</u> NR NR NR nod: logis n lesions senic con NR NR NR NR NR	<i>concentra</i> <u>adjOR</u> 1 5.25 10.97 10 stic regressi <i>adjOR</i> 1 15.5 16.1 25.7	<u>(Cl)</u> n/a 1.3, 83.24 1.5, 79.95 1.39, 71.77 on , μg/L <u>(Cl)</u> n/a 1.53, 248.7 3.73, 69.63 6.43, 102.87
cutaneous lesions in arsenic-affected village n cases: 227 n control: 221 <u>Guo et al. (2006a)</u> Study Type: cross- sectional Location: China (Wuyuan county, Inner Mongolia) Population: residents	Exposure Surrogate: drinking water Exposure Description: arsenic concentrations in water samples collected from all tube wells used by participants for at least 6 months in the last 20 years (several subjects shared the same wells); samples below the LOD were assigned 0 μg/L Population-Level Exposure:	<i>drinking wate</i> <u>Exp. Level</u> <50 51-199 200-499 ≥ 500 Stat Meth <i>Outcome: skin</i> <i>well water ar</i> <u>Exp. Level</u> ≤ 50 51-99 100-149 >150	er arsenia <u>n</u> NR NR NR nod: logis n lesions senic con NR NR NR NR NR	<i>concentra</i> <u>adjOR</u> 1 5.25 10.97 10 stic regressi <i>adjOR</i> 1 15.5 16.1 25.7	<u>(Cl)</u> n/a 1.3, 83.24 1.5, 79.95 1.39, 71.77 on , μg/L <u>(Cl)</u> n/a 1.53, 248.7 3.73, 69.63 6.43, 102.87

Reference and Study	Exposure Measures	s for Health Effect Category: Skin Diseases Results			
Design	Exposure measures				
n control: 32					
<u>Guo et al. (2007)</u>	Exposure Surrogate: drinking water	Outcome: ar	senic der	matosis	
		water arseni			
Study Type: cross-	Exposure Description: arsenic samples	arsenic not s	ignificant	ly associate	ed with
sectional	were taken from 94 water sources,	dermatosis			
	including wells; detection limit not				
Location: Mongolia	specified, but authors note reliability of				
region not available	the method at <10 μ g/L; arsenic				
-0	exposure determined by location of				
	village				
Population: residents					
of villages in the Hetao Plain, Inner Mongolia	Population-Level Exposure:				
· •	50-1860 μg/L range				
n cases: 680					
n control: 189					
<u>Hall et al. (2006)</u>	Exposure Surrogate: blood	Outcome: sk	in lesions	5	
		arsenic conc	entration	in blood (d	quintiles), μg/L
Study Type: case-	Exposure Description: arsenic	Exp. Level	<u>n</u>	<u>IRR</u>	<u>(CI)</u>
control (nested)	concentration in whole blood collected	1.6-5.4	41	1	n/a
	and analyzed for each individual	5.5-7.5	40	1.22	0.70, 2.12
ocation: Bangladesh		7.6-10.4	51	1.21	0.69, 2.13
(Araihazar)	Population-Level Exposure:	10.5-15	70	1.68	0.99, 2.86
(1.6-63.9 μg/L range	15.1-63.9	101	2.54	1.51, 4.27
- - - - - - - - - -				proportion	nal hazards
Population: Health Effects of Arsenic		models			
Longitudinal Study	Exposure Surrogate: drinking water	Outcome: sk	in lesions	5	
(HEALS) participants		arsenic conc	entration	in water (quintiles), μg/l
randomly selected and	Functional Descriptions encode	Exp. Level	<u>n</u>	IRR	(<u>CI)</u>
, members newly	Exposure Description: arsenic concentration water samples from wells	0.1-7	48	<u>1</u>	n/a
diagnosed with skin	collected at baseline; time-weighted	8-38	31	0.92	0.50, 1.67
esions	arsenic concentration based on drinking	39-94	48	1.27	0.73, 2.20
n cases: 303	duration and well concentration	95-189	81	1.92	1.14, 3.24
n control: 849	(historical drinking source taken into	190-564	95	2.5	1.52, 4.14
	account)				
	,	Stat Method: Cox proportional hazards models			
	Population-Level Exposure:				
	0.1-564 µg/L range	-	ed arseni	c concentre	ation in water,
	0.1-204 HR/ L 19186	μg/L			
		Exp. Level	<u>n</u>	<u>IRR</u>	<u>(CI)</u>
		0.1-7.9	40	1	n/a
		8.0-41	35	1.14	0.61, 2.11
		42-94	51	1.44	0.81, 2.58
		95-175	58	1.66	0.94, 2.93
		176-564	101	2.85	1.66, 4.89

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-252Draft: Do Not Cite or Quote

	of Observational Epidemiology Studies for	Health Effect C			ses	
Reference and Study	Exposure Measures		I	Results		
Design		Stat Method: Cox proportional hazards				
		models	noa: Cox	proportion	ial hazards	
		models				
	Exposure Surrogate: urine	Outcome: skin lesions				
		arsenic conc	entration	in urine (q	uintiles), μg/L	
	Exposure Description: individual total	Exp. Level	<u>n</u>	<u>IRR</u>	<u>(CI)</u>	
	urinary arsenic concentration creatinine	3-35	36	1	n/a	
	adjusted (urinary arsenic concentration	36-64	54	1.63	0.92, 2.89	
	not creatinine adjusted)	65-113	54	1.73	0.99, 3.02	
		114 -201	68	2	1.13, 3.56	
	Population Loval Exposures	202-1230	91	3.16	1.73, 5.76	
	Population-Level Exposure: 3-1230 µg/L range	Stat Met	hod: Cox	proportion	nal hazards	
	5-1230 µg/L tange	models				
Hashim et al. (2013)	Exposure Surrogate: hair	Outcome: hy	perkerat	osis		
		hair arsenic	concentro	ation (0.5-µ	ıg/g cutoff), μg/g	
Study Type: cross-	Exposure Description: arsenic	Exp. Level	<u>n</u>	Prev	<u>(CI)</u>	
sectional	concentration in hair samples collected	<0.5	5	1.97	n/a	
	from the nape of heads as close as	≥ 0.5	41	16.2	n/a	
Location: Cambodia	possible to the scalp, washed, and	Stat Met	hod: pre	valence rate	e; method of	
(Mekong River basin)	analyzed for arsenic; arsenic recovery	calculat	ing signif	icance not	reported	
	rate was 94.8%; median hair As levels:			/4	/	
	0.090, 0.240, and 4.81 μg/g for Kampong				/g cutoff), μg/g	
Population: residents	Cham, Kratie, and Kandal, respectively	Exp. Level	<u>n</u>	Prev	<u>(CI)</u>	
of high, medium, and		<1	14	4.94	n/a	
low arsenic-	Population-Level Exposure:	≥1	32	18.82	n/a	
contaminated areas	not available				e; method of	
n cases: n/a		calculat	ing signif	icance not	reported	
n control: n/a		Outcome: hy	perpigm	entation		
		hair arsenic	concentro	ation (0.5-µ	ıg/g cutoff), μg/g	
		Exp. Level	<u>n</u>	Prev	<u>(CI)</u>	
		<0.5	7	2.76	n/a	
		≥ 0.5	36	14.22	n/a	
					e; method of	
		calculat	ing signif	icance not	reported	
			concentro	ation (1-µg,	/g cutoff), μg/g	
		Exp. Level	<u>n</u>	Prev	<u>(CI)</u>	
		<1	13	4.59	n/a	
		≥1	30	17.64	n/a	
					e; method of	
		calculat	ing signif	icance not	reported	
		Outcome: hy	pomelar	nosis		
		hair arconic	concontre	ntion (0 E u	ıg/g cutoff), μg/g	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-253Draft: Do Not Cite or Quote

	of Observational Epidemiology Studies for	r Health Effect Category: Skin Diseases Results				
Reference and Study Design	Exposure Measures					
Design		Exp. Level	<u>n</u>	Prev	<u>(CI)</u>	
		< 0.5	<u></u> 13	5.13	n/a	
		≥ 0.5	63	24.9	n/a	
					-	
			-		e; method of	
		calculat	ing signif	icance not	reported	
		hair arsenic d	concentra	ation (1-µg,	/g cutoff), μg/g	
		Exp. Level	<u>n</u>	<u>Prev</u>	<u>(CI)</u>	
		<1	21	7.42	n/a	
		≥1	55	32.35	n/a	
		Stat Met	hod: prev		e; method of	
			-	icance not		
		Outcome: m	ee's lines			
		hair arsenic d	concentro	ation (0.5-µ	ig/g cutoff), μg/g	
		Exp. Level	<u>n</u>	Prev	<u>(CI)</u>	
		< 0.5	9	3.55	n/a	
		≥ 0.5	24		-	
				24 9.48 n/a d: prevalence rate; meth		
		calculating significance not reported			reported	
		hair arsenic concentration (1-μg/g cutoff), μ				
		Exp. Level	<u>n</u>	<u>Prev</u>	<u>(CI)</u>	
		<1	14	4.94	n/a	
		≥1	19	11.17	n/a	
		Stat Met	hod: prev	valence rate	e; method of	
			-	icance not		
<u>Hsu et al. (2013a)</u>	Exposure Surrogate: drinking water	Outcome: hy	-	osis with o	r without	
		hyperpigmer			<i>/</i> ·	
Study Type: cohort	Exposure Description: lifetime	cumulative a				
(prospective)	cumulative arsenic exposure estimated				c exposure of	
	using median arsenic concentration in				ns and this group	
Location: Taiwan	village well where study subject lived and				is not reported	
(Peimen, Hsuechia,	duration of exposure; arsenic concentrations in wells obtained from 2	Outcome: hy	perpigm	entation or	nly	
Putai, Ichu townships)	investigations examining more than	cumulative a			-	
	38,565 wells across Taiwan; lifetime				c exposure of	
Population: 3 separate	cumulative arsenic exposure (CAE)				ns and this group	
subcohorts of residents	estimated using median arsenic	was statistica	illy signifi	icant; mean	is not reported	
of an arseniasis-	concentration in village well where study	Outcome: sk	in cancer	(Bowen's	disease or NMSC	
endemic area	subject lived and duration of exposure	without hype		-		
n exposed: 1075		cumulative a	rsenic ex	posure, ma	1/L - yr	
n reference: 535	Population-Level Exposure:				c exposure of	
n total: 2447	1-20 mg/L - yr range				ins and this group	
					is not reported	

Summary	of Observational Epidemiology Studies for H	Health Effect Ca	tegory: S	kin Diseas	es	
Reference and Study Design	Exposure Measures		R	esults		
		Outcome: skir	n cancer	and hyper	keratosis	
		cumulative arsenic exposure, mg/L - yr difference between mean arsenic exposure of group with no arsenical skin lesions and this group was statistically significant; means not reported				
<u>Hsueh et al. (1995)</u>	Exposure Surrogate: drinking water	Outcome: skir	n cancer			
Study Type: cross- sectional Location: Taiwan (Putai Township) Population: residents of Homei, Fuhsin, and Hsingming villages n cases: n/a n control: n/a	Exposure Description: cumulative arsenic exposure index, based on arsenic concentration of well water (ppm) and duration of water consumption (years) for consecutive period of living in various villages Population-Level Exposure: 4-25 ppm-years range				ption: cumulative arsenicExp. LevelnadjOR(Cbased on arsenic≤ 4NR1n/well water (ppm) and or consumption (years)5-24NR6.690.=>25NR9.051.Stat Method: multiple logistic reg multivariate-adjusted	<u>(CI)</u> n/a 0.76, 59.17 1.06, 77.27
Hsueh et al. (1997)	Exposure Surrogate: drinking water	Outcome: skir	n cancer			
		0.71-1.10 13 8.69 1.08, 6			entration. ma/L	
Study Type: cohort (prospective) Location: Taiwan (Putai township) Population: residents of Homei, Fushin, and	Exposure Description: arsenic concentration in artesian well water for each village obtained from a previous report (~1960s) Population-Level Exposure: 0-1.1 mg/L range				(<u>CI)</u> n/a 0.42, 35.76 1.08, 65.5 0.55, 40.35 justed relative	
Hsinming villages	Exposure Surrogate: drinking water	Outcome: skin	n cancer			
n total: 654	Exposure Description: individual cumulative arsenic exposure based on average arsenic concentration in drinking water and cumulative arsenic exposure from well water; residential history and duration of well water consumption self- reported; arsenic concentration in artesian well water for each village was obtained from a previous report (~1960s) Population-Level Exposure:		n 1 2 5 18 7 wod: mult g Cox's pr	adjRR 1 2.82 2.61 7.58 5.14 ivariate ad	(CI) n/a 0.25, 31.87 0.30, 22.90 0.95, 60.33 0.59, 44.41 justed relative	

-	of Observational Epidemiology Studies for I	lealth Effect Ca			es
Reference and Study Design	Exposure Measures		Results		
Karagas et al. (2001)	Exposure Surrogate: toenails	Outcome: bas		rcinoma	
Karagas et al. (2001)	Exposure Surrogate: toenans				
		toenail arseni			
Study Type: case-	Exposure Description: individual arsenic	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
control	concentrations based on toenail samples;	0.009-0.089	281	1	n/a
	prior to analysis, nail samples were	0.090-0.133	156	1.01	0.76, 1.35
Leasting United States	carefully washed to remove external	0.134-0.211	92	1.06	0.74, 1.51
Location: United States	contamination	0.212-0.280	22	0.72	0.40, 1.31
(NH)		0.281-0.344	10	0.75	0.31, 1.81
		0.345-0.81	26	1.44	0.74, 2.81
Population: individuals	Population-Level Exposure:				on analysis
with or without	0.009-2.57 μg/g range	Stat Weth	iou. iogis	ine regressi	on analysis
squamous cell		Outcome: Squ	iamous o	cell carcino	ma
carcinoma or basal cell carcinoma		toenail arseni	c concen	tration, μg	/g
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
n cases: 871		0.009-0.089	155	1	n/a
n control: 524		0.090-0.133	64	0.93	0.64, 1.34
		0.134-0.211	33	0.98	0.61, 1.58
		0.212-0.280	14	1.1	0.55, 2.21
		0.281-0.344	5	1	0.33, 3.01
		0.345-0.81	13	2.07	0.92, 4.66
				z.07 stic regressi	
Knobeloch et al. (2006)	Exposure Surrogate: drinking water	Outcome: skir		-	•
	Exposure surrogate. uninking water				//
		drinking wate			
Study Type: cross-	Exposure Description: subjects	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
sectional	submitted samples from drinking water	<1.0	15	1	n/a
	source using provided kit	1-9.9	36	1.81	1.10, 3.14
Leasting United States		≥ 10	23	1.92	1.01, 3.68
Location: United States	Demolation Level Francesco	Stat Meth	od: mult	tivariate log	istic regression
(WI)	Population-Level Exposure: 2 μg/L median, 1-3100 μg/L range				, U
Population: residents					
of 19 rural townships					
with arsenic					
contaminated private					
drinking wells					
-					
n cases: n/a					
n control: n/a					
	Exposure Surrogate: drinking water	Outcome: bas	al cell ca	ircinoma	
<u>Leonardi et al. (2012)</u>	1 0 0	cumulative inorganic arsenic dose con			
<u>Leonardi et al. (2012)</u>		cumulative in	organic (arsenic dos	econcentration
			organic (arsenic dos	econcentration
Study Type: case-	Exposure Description: arsenic in drinking	(quintiles), g	-		
			organic (<u>n</u> NR	<u>adjOR</u> 1	<u>(CI)</u> n/a

Reference and Study	of Observational Epidemiology Studies for Exposure Measures					
Design	Exposure Measures	Results				
Location: Hungary,	available	0.03-0.13	NR	1.46	0.93, 2.27	
Romania, Slovakia		0.13-0.55	NR	1.76	1.02, 3.04	
,		0.55-4.46	NR	2.63	1.45, 4.78	
(Bács-Kiskun, Békés, Csongrád, and Jász-	Population-Level Exposure:				ogistic regression	
Nagykun-Szolnok	0-4.46 g range	model	00.1110			
counties (Hungary); Arad and Bihor	Exposure Surrogate: drinking water	Outcome: bas	al cell ca	arcinoma		
counties (Romania);		peak daily ino	rganic d	arsenic dose	e rate	
Banska Bystrica county	Exposure Description: arsenic in drinking	concentration	(quintil	les), μg/day	/	
(Slovakia)	water derived from measurements at	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
	time of study and historical data when	0-0.73	NR	1	n/a	
Dama latiana ACUDANA	available; peak daily dose rate calculated	0.73-1.48	NR	0.91	0.59, 1.39	
Population: ASHRAM	from the participant's residence with the	1.48-9.09	NR	1.55	1, 2.41	
(Arsenic Health Risk	highest water inorganic arsenic	9.09-32.23	NR	1.76	, 1.01, 3.07	
Assessment and	concentration	32.23-242.14	NR	2.5	1.39, 4.49	
Molecular		Stat Method: multivariable logistic regress				
Epidemiology) study		model	0 01 11 01		8.00.01 08.000.0	
participants with chronic low-level	Population-Level Exposure: 0-242.14 μg/day range					
arsenic exposure	Exposure Surrogate: drinking water	Outcome: basal cell carcinoma				
n cases: 529 n control: 540		lifetime time-weighted average inorganic arse concentration (quintiles), μg/L				
	Exposure Description: drinking water	Exp. Level		adjOR	<u>(CI)</u>	
	samples collected at time of study or	0-0.68	<u>n</u> NR	<u>aujon</u> 1	<u>(Ci)</u> n/a	
	historical data utilized when available	0.68-0.98	NR	1.39	0.89, 2.19	
					-	
	Population-Level Exposure:	0.98-7	NR	1.2	0.77, 1.88	
	1.2 μg/L median, 0.7-13.8 μg/L 25th	7.1-19.43	NR	1.73	0.97, 3.11	
	percentile	19.54-167.29	NR	3.03	1.70, 5.41	
			od: mul	tivariable id	ogistic regressio	
		model				
Lewis et al. (1999)	Exposure Surrogate: drinking water	Outcome: me				
			senic ex		nales), ppb-yea	
Study Type: cohort	Exposure Description: arsenic	Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>	
(retrospective)	concentrations in drinking water	<1000	NR	5.3	n/a	
	determined from Utah state records and	1000-4999	NR	NR	n/a	
Location: United States	an EPA study; arsenic exposure index	≥ 5000	NR	NR	n/a	
(Millard County, Utah)	score calculated individually based on	Stat Meth	od: star	ndardized m	ortality ratios	
lumara councy, otany	number of years residence in each community and median drinking water	cumulative arsenic exposure (males), p			lles), ppb-years	
Population: male and	arsenic concentration in community	Exp. Level	<u>n</u>	SMR	<u>(CI)</u>	
female members of		<1000	NR	0.72	n/a	
Latter-day Saints		1000-4999	NR	0.79	n/a	
church wards	Population-Level Exposure:	≥ 5000	NR	1.06	n/a	
n exposed: 2203	3.5-620 ppb-years range				ortality ratios	
n total: 2203						

	of Observational Epidemiology Studies for				65	
Reference and Study Design	Exposure Measures	posure Measures Results				
<u>Li et al. (2013a)</u>	Exposure Surrogate: drinking water	Outcome: skin	me: skin lesions			
Study Type: cross- sectional Location: China (Tuoketuo County, Inner Mongolia)	Exposure Description: arsenic concentration of each tube well measured and provided by local public health government; cumulative arsenic exposure (CAE) calculated for each subject as: concentration in tube well that subject used in his/her residential	water arsenic concentration, μg/L 84 patients with skin lesions found in the >50-μg group with symptoms of hyperpigmentation and/or depigmentation on the trunk				
Population: residents exposed to arsenic in drinking water n cases: n/a	duration multiplied by duration of water consumption Population-Level Exposure: 0-760 μg/L range					
n control: n/a	0,00 pb/21015c					
Lindberg et al. (2008)	Exposure Surrogate: drinking water	Outcome: Skin	lesion c	ases		
Study Type: case- control (nested) Location: Bangladesh (Matlab)	Exposure Description: cumulative exposure calculated by summing up arsenic concentration multiplied by number of years of usage for all water sources used since 1970	year <u>Exp. Level</u> ≤ 1639 1639-4107 >4107	<u>n</u> NR NR NR	<u>adjOR</u> 1 1.3 3.8	centration, μg/L <u>(CI)</u> n/a 0.9, 2.0 2.7, 5.5 gistic regression	
Population: selected members of Health and	Population-Level Exposure: 1639-4107 μg/L-year range	analysis				
Demographic	Exposure Surrogate: drinking water	Outcome: Skin	lesion c	ases		
Surveillance System (HDSS) n cases: 504 n control: 528	Exposure Description: self-reported water consumption history and water sources used during each calendar year since 1970 (or birth, if later than 1970); water samples from all functional tube wells collected; for surface water drinking source, arsenic concentration set to 0 µg/L; nonfunctioning wells historical exposure reconstructed using average tube well arsenic concentration of village as proxy	average lifetime arsenic exposure cond (tertiles), $\mu g/L$ Exp. Leveln $adjOR$ (Cl) ≤ 80 NR1n/a80-181NR1.40.9			<u>(CI)</u> n/a 0.98, 2.1 2.4, 4.8	
	Population-Level Exposure: 80-181 μg/L range					
	Exposure Surrogate: urine	Outcome: Skin	lesion c	ases		
		percent urinary	DMA n	netabolite	concentration.	

Summary	of Observational Epidemiology Studies for	Health Effect Ca	ategory:	Skin Diseas	es
Reference and Study	Exposure Measures		I	Results	
Design	_				
	Exposure Description: individual spot	%			
	urine samples analyzed for arsenic	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
	speciation	≤ 76	NR	1	n/a
		76-82	NR	0.39	0.28, 0.55
		>82	NR	0.41	0.28, 0.60
	Population-Level Exposure: 9.5-13 % range	Stat Met analysis		tivariate log	gistic regression
		percent urina	ry inorgo	anic arsenic	: metabolite
		concentration	n, %		
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
		≤ 9.5	NR	1	n/a
		9.5-13	NR	0.93	0.65, 1.3
		>13	NR	1.8	1.3, 2.6
		-			
		Stat Method: Multivariate logistic regressio analysis			
		percent urinary MA metabolite concentration,			
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
		≤ 7.9	NR	1	n/a
		7.9-12	NR	1.1	0.74, 1.7
		>12	NR	2.8	1.9, 4.2
					gistic regression
		analysis			
	Exposure Surrogate: urine	Outcome: Skin lesion cases			
	Exposure Description: spot urine	sum of arsenic metabolites concentration urine, μg/L			entration in
	samples collected from individuals and	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
	analyzed for arsenic metabolites	≤ 51	NR	1	n/a
		51-124	NR	0.72	0.51, 1.0
		>124	NR	1.5	1.1, 2.0
	Population-Level Exposure:				gistic regression
	51-124 μg/L range	analysis			
<u>Maden et al. (2011)</u>	Exposure Surrogate: drinking water	Outcome: ars	senicosis	cases	
Study Type: cross-	Exposure Description: tubewell samples	time weighted total arsenic concentration in drinking water, $\mu g/L$			
sectional	collected from individual households;	Exp. Level	<u>n</u>	adjBeta	<u>(CI)</u>
Sectional	total water arsenic calculated using	continuous	NR	2.132	n/a
	exposure duration (based on total age of				c regression;
Location: Nepal	tubewell and years of residence);			rd strategic	-
(Nawalparasi district)				onious mod	
	exposure duration counted from 5 years	1011010111	ε μαι διΠ		
Demulation, westeless:	of age				
Population: residents					
of program areas of	Population-Level Exposure:				

Summary	of Observational Epidemiology Studies for	Health Effect Ca	ategory:	Skin Disea	ses
Reference and Study	Exposure Measures			Results	
Design					
Filters for Families (FFF)	50-50 µg/L range				
in Jahada, Sarawal,					
Sunawal, Sukrauli, and					
Swati (development					
communities) or					
Ramgram					
(municipality)					
n cases: 120					
n control: n/a					
<u>Mazumder et al. (1998)</u>	Exposure Surrogate: drinking water	Outcome: hy	perpigme	entation	
		daily arsenic dose per body weight concentration			
Study Type: cross-	Exposure Description: water samples	(males and fe	males),	ug/kg-day	
sectional	collected from private and public tube	Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>
	wells used for drinking and cooking for	continuous	NR	1.2	0.8, 1.8
Location: India (West	each household; daily dose per body	Stat Met	nod: Pois	son distrib	ution
Bengal)	weight computed by multiplying water arsenic concentration by estimated daily	Outcome: keratosis			
	water intake (based on interview) and	daily arsenic	dose per	body weig	ht concentration
Population: residents	dividing by body weight	(males and fe	males),	ug/kg-day	
of highly contaminated		Exp. Level	<u>n</u>	<u>SMR</u>	<u>(CI)</u>
South 24 Parganas	Population-Level Exposure:	continuous	NR	1.6	1, 2.4
n cases: 7683 n control: n/a	0-73.9 μg/kg-day range	Stat Met	nod: Pois	son distrib	ution
	Exposure Surrogate: drinking water	Outcome: hy	perpigme	entation	
		arsenic conce		in drinking	y water
	Exposure Description: water samples	(females), μg			
	collected from private and public	Exp. Level	<u>n</u>	Prev	<u>(CI)</u>
	tubewells used for drinking and cooking	<50	NR	0.3	n/a
	for each household	50 - 99		0.8	n/a
		100 - 149	NR	5.7	n/a
	Population-Level Exposure:	150 - 199	NR	5.1	n/a
	0-3400 μg/L range	200 - 349	NR	6.5 0.5	n/a
		350 - 499		9.5 5.2	n/a
		500 - 799	NR	5.3	n/a
		≥ 800 µg/L	ND	11 F	
		≥ 800	NR and: Chi	11.5	n/a
		Stat Method: Chi-squared		squared di	SUIDULION
		arsenic concentration in drinking water (males), μg/L			
		Exp. Level	<u>n</u>	Prev	<u>(CI)</u>
		<50	<u>n</u> NR	0.4	n/a
		50 - 99	NR	3.2	n/a
					·· <i>y</i> ~
		100 - 149	NR	11	n/a

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-260Draft: Do Not Cite or Quote

Summary	of Observational Epidemiology Studies for I	Health Effect C	ategory:	Skin Disea	ses
Reference and Study Design	Exposure Measures	posure Measures Results			
200.811		200 - 349	NR	13.1	n/a
		350 - 499	NR	15.7	n/a
		500 - 799	NR	13.8	n/a
		≥ 800	NR	22.7	n/a
				squared di	
		Outcome: ke	ratosis		
		arsenic conce (females), μg		in drinking	g water
		Exp. Level	<u>n</u>	Prev	<u>(CI)</u>
		<50	NR	0	n/a
		50 - 99	NR	0.4	n/a
		100 - 149	NR	1.2	n/a
		150 - 199	NR	2.3	n/a
		200 - 349	NR	2.5	n/a
		350 - 499	NR	2.7	n/a
		500 - 799	NR	3.1	n/a
		≥ 800 μg/L		5.1	n/ a
		≥ 800	NR	8.3	n/a
				squared di	
		arsenic conce μg/L	entration	in drinking	g water (males),
		Exp. Level	<u>n</u>	Prev	<u>(CI)</u>
		<50	NR	0.2	n/a
		50 - 99	NR	1.5	n/a
		100 - 149	NR	1.6	n/a
		150 - 199	NR	4.7	n/a
		200 - 349	NR	4.7	n/a
		200 - 349 350 - 499	NR	4.9 9	n/a
		500 - 499 500 - 799	NR	9 8.9	n/a
		2 800 - 799 ≥ 800	NR	8.9 10.7	n/a
				squared di	
McDonald et al. (2007)	Exposure Surrogate: drinking water	Outcome: Skin lesions arsenic concentration in drinking water, μg/L			
Study Type: case-	Exposure Description: tube well samples	Exp. Level	<u>n</u>	<u>OR</u>	<u>(CI)</u>
control	collected from sources currently used by	0-10	NR	1	n/a
	subjects (three samples collected/source,	11-50	NR	1.33	0.77, 2.28
	highest concentration used)	>51	NR	2.96	1.02, 8.59
Location: Bangladesh					gistic regression
(rural Bangaldesh)	Population-Level Exposure:			(
	0-166 µg/L range				
Population: women					
living in villages					
serviced and selected					

Summary	of Observational Epidemiology Studies for	Health Effect Ca	ategory:	Skin Diseas	ses
Reference and Study Design	Exposure Measures			Results	
by Gonoshashthaya					
Kendra					
n cases: 155					
n control: 155					
Melkonian et al. (2011)	Exposure Surrogate: drinking water	Outcome: skin lesions well water arsenic concentration (quintiles),			
Study Type: cohort	Exposure Description: exposure	Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>
(prospective)	characterized using well-water arsenic	0.1-10	NR	1	n/a
	concentration, daily intake of arsenic	10.1-50	NR	1.08	0.85, 1.38
	from drinking water based on self-report	50.1-100	NR	1.52	1.19, 1.93
Location: Bangladesh	and primary drinking water source;	100.1-200	NR	1.86	1.48, 2.32
(Araihazar)	samples GFAA LOD (5 μg/L) reanalyzed	≥ 200.1	NR	2.69	2.16, 3.35
	with inductively coupled plasma mass			tivariate lo	-
Population: male	spectrometry	regressi			0
Health Effects of		regressi	011		
Arsenic Longitudinal					
Study (HEALS)	Population-Level Exposure:				
participants 6 year	0.1-200.1 μg/L range				
follow-up	Exposure Surrogate: urine	Outcome: ski	n lesions	5	
n exposed: 613		Urinary total	arsenic	quintiles),	µg/g-creatinine
n reference: 3378	Exposure Description: exposure	Exp. Level	<u>n</u>	HR	<u>(CI)</u>
n total: 3991	characterized using creatinine-adjusted	≤ 89	NR	1	n/a
	urinary total arsenic concentration; spot	89.1-159	NR	0.89	0.70, 1.14
	urine samples were obtained from 3,804	159.1-245	NR	1.28	1.02, 1.60
	of the 3,991 subjects	245.1-405	NR	1.38	1.10, 1.73
		>405	NR	1.86	1.50, 2.31
					-
	Population-Level Exposure:	Stat Method: Multivariate log-linear regression			g-iiieai
	89-405 μg/g-creatinine range	regressi	011		
<u>Mitra et al. (2002)</u>	Exposure Surrogate: drinking water	Outcome: mi	ld skin d	isease	
		drinking wat	er arseni	c concentra	ation, mg/L
Study Type: cross-	Exposure Description: water samples	Exp. Level			
sectional	from current tube wells used by the	≤ 0.50	22	82	n/a
Sectional	study participants examined using	0.51-0.99	4	15	n/a
	standard methods; exposure dose based	≥ 1.00	1	4	n/a
Location: Bangladesh	on self reported information of duration			squared te	-
(Barisal)	of use of water at source		iou. cili-	squareu te	51
		drinking wat	er arseni	c concentra	ntion, mg/L
Population:		Exp. Level	<u>n</u>	mean	<u>(CI)</u>
dermatology	Population-Level Exposure:	continuous	NR	0.43	n/a
outpatients of Sher-e-	0.5 mg/L mean 0.21SD		hod: Mai	nn-Whitney	
Bangla Medical College					
Hospital		exposure dos	e (arseni	ic level x ex	posure time)
-		mg/L - yr, mg	ı/L		
n cases: 123 n control: 27		Exp. Level	<u>n</u>	<u>mean</u>	<u>(CI)</u>
		mg/L-yr	NR	7.66	n/a

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-262Draft: Do Not Cite or Quote

Reference and Study Design	Exposure Measures	r Health Effect Category: Skin Diseases Results Stat Method: Mann-Whitney U-test			
Design					
		Outcome: moderate and severe skin disease			
		drinking water arsenic concentration, mg/L			
		Exp. LevelnPrev(Cl) ≤ 0.50 NR66n/a			
		0.51-0.99 NR 29 n/a ≥ 1.00 NR 5 n/a Stat Method: Chi-squared test			
		drinking water arsenic concentration, mg/L			
		Exp. Levelnmean(CI)continuousNR0.52n/aStat Method:Mann-Whitney U-test			
		exposure dose (arsenic level x exposure time) mg/L - yr, mg/L			
		Exp. Levelnmean(CI)mg/L-yrNR8.29n/aStat Method: Mann-Whitney U-test			
<u>Mosaferi et al. (2008)</u>	Exposure Surrogate: drinking water	Outcome: hyperkeratosis			
Study Type: cross- sectional	Exposure Description: total lifetime intake of arsenic, based on arsenic levels measured in villages once each season	total lifetime intake of arsenic, gExp. LevelnadjOR(CI)continuous491.141.039, 1.249Stat Method: Logistic regression			
Location: Iran	for 4 testings) in the villages to obtain mean annual concentration;	Outcome: hyperpigmentation			
(Kurdistan province) Population: residents exposed to arsenic- contaminated water in Bijar County n cases: 752 n control: n/a	questionnaires used to determine water source, consumption history, and changes over time; concentration, questionnaires, interviews and historical data used to calculate total lifetime intake of arsenic	total lifetime intake of arsenic, gExp. LevelnadjOR(CI)continuous201.2541.112, 1.416Stat Method: Logistic regression			
··· · · · · · · · · · · · · · · · · ·	0-3 g range				
<u>Pei et al. (2013)</u>	Exposure Surrogate: urine	Outcome: skin lesions			
Study Type: cross- sectional	Exposure Description: urinary arsenic concentration, spot morning urine samples collected; each sample subjected to two replicate analyses	urinary arsenic concentration, μg/g-creatinineExp. LevelnadjOR(Cl)continuousNR3.8950.497, 30.52Stat Method: multiple regression analysis; Spearman's rank correlation coefficient			
Location: China (Shanxi province)	Population-Level Exposure:				

	F			Na avalle	es
Reference and Study	Exposure Measures		ſ	Results	
Design					
	not available				
Population: residents					
of arsenic endemic					
rural region in Datong					
n cases: 75					
n control: 12					
Pesola et al. (2012)	Exposure Surrogate: drinking water	Outcome: sk	in lesions	;	
		well water a	rsenic coi	ncentration	(quintiles), μg/
Study Type: cross-	Exposure Description: well water arsenic	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>
sectional	concentration	<7	NR	1	n/a
		7 -<39	NR	1.8	1.02, 3.16
Contion: Pangladach	Population Loval Exposures	39 -<91	NR	2.79	1.62, 4.78
Location: Bangladesh	Population-Level Exposure:	91 -<179	NR	3.09	1.82, 5.23
(Araihazar)	7-179 μg/L range	≥ 179	NR	3.94	2.36, 6.58
			-	stic regress	ion; Chi-squared
Population: Health		test for trend			
Effects of Arsenic					
Longitudinal Study					
(HEALS) participants					
n cases: n/a					
n control: n/a					
Pierce et al. (2011)	Exposure Surrogate: drinking water	Outcome: in	cident ski	in lesions	
		water arsenic concentration by dietary pattern:			
Study Type: cohort	Exposure Description: well water arsenic	gourd and ro		-	
(prospective)	concentrations; exposure categorized	Exp. Level	<u>n</u>	HR	<u>(CI)</u>
(r - r /	into quintiles with adjustment to	0.1-10	NR	1	n/a
	corresponded to WHO guideline (10	10.1-50	NR	1.44	0.89, 2.34
Location: Bangladesh	μg/L) and Bangladesh national standard	50.1-100	NR	2.26	1.42, 3.6
(Araihazar)	(50 μg/L); participants categorized by	100.1-200	NR	3.5	2.34, 5.25
	quartiles of dietary intakes for 3	>200	NR	5.3	3.19, 8.81
Population: HEALS	categories(gourd and root, vegetable,	Stat Met	hod: mul	tivariate re	gression
participants in	and animal protein) as measured by food				
Araihazar, Bangladesh	frequency questionnaire			-	lietary pattern:
2000-2009		gourd and ro	-		(0)
n total: 9677	Population-Level Exposure:	Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>
	0.1-200.1 μg/L range	0.1-10	NR	1	n/a
	- r·0/ · 0 -	10.1-50	NR	1.14	0.75, 1.75
		50.1-100	NR	1.65	1.07, 2.57
		100.1-200	NR	1.8	1.23, 2.65
		>200	NR	3.19	2.00, 5.09
				tivariate re	

Reference and Study		dies for Health Effect Category: Skin Disea Results			
Design	Exposure Measures		·	vesuits	
Design		Exp. Level	<u>n</u>	HR	<u>(CI)</u>
		0.1-10	NR	1	n/a
		10.1-50	NR	1.22	0.45, 1.99
		50.1-100	NR	1.58	0.97, 2.59
		100.1-200	NR	2.17	1.45, 3.29
		>200	NR	2.8	1.61, 4.89
		Stat Method: multivariate regression water arsenic concentration by dietary pattern			
		gourd and root quartile 4, μ g/L			
		Exp. Level	<u>n</u>	HR	<u>(CI)</u>
		0.1-10	NR	1	n/a
		10.1-50	NR	0.76	0.52, 1.4
		50.1-100	NR	1.21	0.74, 1.98
		100.1-200	NR	1.43	0.93, 2.2
		>200	NR	3.3	1.92, 5.67
		Stat Method: multivariate regression			
		water arsenic concentration by dietary pattern			
		vegetable qu	artile 1, j	ug/L	
		Exp. Level	<u>n</u>	<u>HR</u>	<u>(CI)</u>
		0.1-10	NR	1	n/a
		10.1-50	NR	0.96	0.55, 1.68
		50.1-100	NR	1.48	0.88, 2.48
		100.1-200	NR	2.63	1.69, 4.12
		>200	NR	5.68	3.39, 9.52
		Stat Met	hod: mul	tivariate re	gression
					dietary patteri
		vegetable qu	-	-	
		Exp. Level	<u>n</u> ND	<u>HR</u>	<u>(CI)</u>
		0.1-10		1	n/a
		10.1-50	NR	1.36	0.89, 2.09
		50.1-100	NR	1.75	1.14, 2.7
		100.1-200	NR	1.89	1.26, 2.83
		>200	NR haduraul	3.72	2.23, 6.21
				tivariate re	_
		water arseni vegetable qu		-	lietary patteri
		Exp. Level	<u>n</u>	HR	<u>(CI)</u>
		0.1-10	NR	1	n/a
		10.1-50	NR	1.39	0.87, 2.24
		50.1-100	NR	1.66	1.02, 2.71
		100.1-200	NR	2.28	1.53, 3.4
		>200	NR	2.9	1.69, 5

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-265Draft: Do Not Cite or Quote

Summary of Observational Epidemiology Studies for Health Effect Category: Skin Diseases **Reference and Study Exposure Measures** Results Design Stat Method: multivariate regression water arsenic concentration by dietary pattern: vegetable quartile 4, μ g/L Exp. Level HR (CI) n 0.1-10 NR 1 n/a 10.1-50 NR 0.82 0.49, 1.36 50.1-100 NR 1.78 1.13, 2.79 100.1-200 NR 1.96 1.35, 2.85 >200 NR 2.39 1.43, 3.97 Stat Method: multivariate regression Rahman et al. (2006a) Exposure Surrogate: drinking water **Outcome: as-related skin lesions** average arsenic exposure concentration (quintiles; females), μg/L Study Type: case-**Exposure Description:** average arsenic Exp. Level n adjOR (CI) control exposure concentration; individuals <10 12 1 n/a provided information on water 10-49 15 0.65, 4.24 1.66 consumption history from 1970 (or birth Location: Bangladesh if after 1970); samples were obtained 50-149 65 3.06 1.39.6.74 (Matlab) from all functioning tube wells, with 150-299 84 4.08 1.86, 8.93 village concentration used as proxy if 3.06, 15.5 ≥ 300 56 6.88 **Population:** individuals well samples unavailable; surface waters Stat Method: multivariate logistic regression drinking water from assigned a concentration of $0 \mu g/L$: average arsenic exposure concentration arsenic-contaminated arsenic concentrations were imputed for (quintiles;males), μg/L tube wells migrants Exp. Level adjOR (CI) n n cases: 504 <10 13 1 n/a n control: 1830 **Population-Level Exposure:** 10-49 38 3.25 1.43.7.38 10-300 µg/L range 50-149 59 2.28 1.04, 4.98 150-299 110 5.41 2.52, 1.62 4.20, 21.8 ≥ 300 52 9.56 Stat Method: multivariate logistic regression Exposure Surrogate: drinking water **Outcome: as-related skin lesions** cumulative arsenic exposure concentration (females), μg/L-year Exposure Description: individuals Exp. Level adjOR (CI) n provided information on water <1000 22 1 n/a consumption history from 1970 (or birth 1000-4999 78 1.1, 3.42 if after 1970); reported information was 1.94 5000-9999 87 4.5 2.54, 7.99 validated using household economic surveys with information of sources of >10000 45 9.19 4.77, 17.7 drinking water; samples were obtained Stat Method: multivariate logistic regression from all functioning tube wells; if tube cumulative arsenic exposure concentration well samples unavailable village (males), µg/L-year concentration was used as proxy; surface Exp. Level <u>n</u> adjOR <u>(CI)</u>

	of Observational Epidemiology Studies for I	
Reference and Study Design	Exposure Measures	Results
U	0 μg/L; arsenic concentrations were imputed for migrants Population-Level Exposure:	<1000 37 1 n/a 1000-4999 75 1.05 0.65, 1.68 5000-9999 119 4.5 2.80, 7.22 >10000 41 10.4 5.27, 20.5 NR NR n/a
	1000-10000 μg/L-year range	≥ 300 Stat Method: multivariate logistic regression
<u>Ranft et al. (2003)</u>	Exposure Surrogate: soil	Outcome: nonmelanoma skin cancer
Study Type: case- control Location: Slovakia region not available Population: Residents of Prievidza District living in vicinity of coal- burning power plant n cases: 210 n control: 201	Exposure Description: arsenic concentrations in soil and house dust collected from random sample of participants' householdsPopulation-Level Exposure: 0.7-139 μg/g rangeExposure Surrogate: urineExposure Description: urinary arsenic concentration; spot urine samples provided at interview; population-level exposure numbers reported are for	arsenic concentration in soil, µg/g Exp. Level n stepwis (CI) e multipl e multipl e n stepwis on n n stat means ratio NR 1.18 n/a Stat Method: stepwise regression analysis Outcome: nonmelanoma skin cancer urinary arsenic concentration, µg/L Exp. Level n stepwis (CI) e multipl e multipl e multipl e multipl
Seow et al. (2012)	creatinine-corrected sum As Population-Level Exposure: 6.07 μg/L geo mean, 1.79SD, 6.07-1.79 μg/L Exposure Surrogate: drinking water	regressi On continuous 210 1.12 n/a Stat Method: stepwise regression analysis Outcome: skin lesion recovery
<u>JEOW EL di. (2012)</u>	LAPUSULE SUITUgate. UTITKINg Water	
Study Type: cohort (prospective) Location: Bangladesh (Pabna)	Exposure Description: arsenic concentration in water, water samples collected from each participant's primary drinking source and data collected on drinking habits, water source, length of use; baseline data collected 2001-2003; samples collected again at follow up	log10 water arsenic concentration (decrease between baseline and follow-up), μg/L Exp. Level n adjOR (Cl) continuous NR 1.22 0.85, 1.78 Stat Method: logistic regression Iog10 water arsenic concentration (baseline), μg/L Even adjOR (Cl)
Population: individuals with arsenic-related skin lesions n total: 550	(2009-2011) Population-Level Exposure: not available	Exp. Level n adjOR (Cl) continuous NR 0.59 0.41, 0.81 Stat Method: logistic regression Outcome: skin lesion severity reduction log10 water arsenic concentration (decrease)

Summary	of Observational Epidemiology Studies for					
Reference and Study Design	Exposure Measures		F	Results		
		between base	eline and	follow-up),	μg/L	
		Exp. Level	<u>n</u>	adjBeta	(CI)	
		continuous	NR	-0.7	-2.18, 0.78	
		Stat Meth	nod: linea	ar regression	n GEE	
		log10 water α μg/L	arsenic co	oncentratio	n (baseline),	
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		continuous	NR	-1.34	-2.85, 0.18	
				ar regression		
	Exposure Surrogate: toenails	Outcome: ski	n lesion	recovery		
		log10 toenail	arsenic	concentratio	on (baseline),	
	Exposure Description: arsenic	µg/g				
	concentration in nail clippings collected	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
	from each participant and sonicated to	continuous	NR	0.2	0.08, 0.44	
	remove contaminants; baseline data	Stat Meth	nod: logis	stic regressio	on	
	collected 2001-2003; samples collected again at follow up (2009-2011)	log10 toenail between base	-			
		Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
	Population-Level Exposure:	continuous	NR	4.49	1.94, 11.1	
	not available	Stat Method: logistic regression				
		Outcome: skin lesion severity reduction				
		log10 toenail μg/g	arsenic (concentratio	on (baseline),	
		Exp. Level	<u>n</u>	<u>adjBeta</u>	<u>(CI)</u>	
		continuous	NR	-0.09	-3.41, 3.22	
		Stat Meth	nod: linea	ar regression	n GEE	
		log10 toenail arsenic concentration (decreas between baseline and follow-up), $\mu g/g$				
		Exp. Level	<u>n</u>	adjBeta	(CI)	
		continuous	NR	-5.22	-8.61, -1.82	
		Stat Meth	nod: linea	ar regression		
(ia et al. (2009)	Exposure Surrogate: drinking water	Outcome: Ski	n lesions	;		
		drinking wate	er arseni	c concentrat	tion, μg/L	
Study Type: cross-	Exposure Description: arsenic	Exp. Level	<u>n</u>	<u>adjOR</u>	<u>(CI)</u>	
sectional	concentration in drinking water;	0-5	NR	1	n/a	
	exposure calculated from single well	5.1-10	NR	2.52	1.47, 4.30	
	water sample collected from each	10.1-20	NR	2.83	1.773, 4.525	
ocation: China	household	20.1-50	NR	3.94	2.78, 5.59	
(Bayingnormen, Shahai		50.1-100	NR	6.03	4.05, 8.97	
village)		100.1-300	NR	8.83	5.77, 13.51	

These draft development materials are for review purposes only and do not constitute Agency policy.April 20145-268Draft: Do Not Cite or Quote

Draft Development	Materials for the IRIS	Toxicological Review o	f Inorganic Arsenic
J 1	3	0 .	, 0

Summary of Observational Epidemiology Studies for Health Effect Category: Skin Diseases							
Reference and Study	Exposure Measures	Results					
Design							
Population: adults and children living in arseniasis-endemic village n cases: 11416 n control: n/a	Population-Level Exposure: 37.94 μg/L mean	>300 Stat M	NR 1ethod: logi	7.94 stic regress	2.73, 23.12 sion model		

--: not reported; n: number of cases (when presented in Results column)

5.16.1 References for Summary of Observational Epidemiology Studies for Health Effect Category: Skin Diseases

- <u>Ahsan, H; Chen, Y; Parvez, F; Zablotska, L; Argos, M; Hussain, I; Momotaj, H; Levy, D; Cheng, Z; Slavkovich, V; van Geen, A; Howe, GR; Graziano, JH.</u> (2006). Arsenic exposure from drinking water and risk of premalignant skin lesions in Bangladesh: Baseline results from the Health Effects of Arsenic Longitudinal Study. Am J Epidemiol 163: 1138-1148. <u>http://dx.doi.org/10.1093/aje/kwj154</u>
- <u>Ahsan, H; Perrin, M; Rahman, A; Parvez, F; Stute, M; Zheng, Y; Milton, AH; Brandt-Rauf, P; van Geen, A;</u> <u>Graziano, J.</u> (2000). Associations between drinking water and urinary arsenic levels and skin lesions in Bangladesh. J Occup Environ Med 42: 1195-1201. <u>http://dx.doi.org/10.1097/00043764-200012000-00016</u>
- <u>Argos, M; Kalra, T; Pierce, BL; Chen, Y; Parvez, F; Islam, T; Ahmed, A; Hasan, R; Hasan, K; Sarwar, G; Levy, D; Slavkovich, V; Graziano, JH; Rathouz, PJ; Ahsan, H. (2011). A prospective study of arsenic exposure from drinking water and incidence of skin lesions in Bangladesh. Am J Epidemiol 174: 185-194. http://dx.doi.org/10.1093/aje/kwr062</u>
- Baastrup, R; Sørensen, M; Balstrøm, T; Frederiksen, K; Larsen, CL; Tjønneland, A; Overvad, K; Raaschou-<u>Nielsen, O.</u> (2008). Arsenic in drinking-water and risk for cancer in Denmark. Environ Health Perspect 116: 231-237. <u>http://dx.doi.org/10.1289/ehp.10623</u>
- Barati, AH; Maleki, A; Alasvand, M. (2010). Multi-trace elements level in drinking water and the prevalence of multi-chronic arsenical poisoning in residents in the west area of Iran. Sci Total Environ 408: 1523-1529. http://dx.doi.org/10.1016/j.scitotenv.2009.12.035
- <u>Bhowmick, S; Halder, D; Kundu, AK; Saha, D; Iglesias, M; Nriagu, J; Guha Mazumder, DN; Roman-Ross, G;</u>
 <u>Chatterjee, D.</u> (2013). Is saliva a potential biomarker of arsenic exposure? A case-control study in West
 Bengal, India. Environ Sci Technol 47: 3326-3332. <u>http://dx.doi.org/10.1021/es303756s</u>
- Breton, CV; Houseman, EA; Kile, ML; Quamruzzaman, Q; Rahman, M; Mahiuddin, G; Christiani, DC. (2006). Gender-specific protective effect of hemoglobin on arsenic-induced skin lesions. Cancer Epidemiol Biomarkers Prev 15: 902-907. <u>http://dx.doi.org/10.1158/1055-9965.EPI-05-0859</u>
- <u>Chen, YC; Guo, YL; Su, HJ; Hsueh, YM; Smith, TJ; Ryan, LM; Lee, MS; Chao, SC; Lee, JY; Christiani, DC.</u> (2003). Arsenic methylation and skin cancer risk in southwestern Taiwan. J Occup Environ Med 45: 241-248. <u>http://dx.doi.org/10.1097/01.jom.0000058336.05741.e8</u>

- Fatmi, Z; Abbasi, IN; Ahmed, M; Kazi, A; Kayama, F. (2013). Burden of skin lesions of arsenicosis at higher exposure through groundwater of taluka Gambat district Khairpur, Pakistan: a cross-sectional survey. Environ Geochem Health 35: 341-346. <u>http://dx.doi.org/10.1007/s10653-012-9498-3</u>
- Fatmi, Z; Azam, I; Ahmed, F; Kazi, A; Gill, AB; Kadir, MM; Ahmed, M; Ara, N; Janjua, NZ; Mitigation, CGA. (2009). Health burden of skin lesions at low arsenic exposure through groundwater in Pakistan. Is river the source? Environ Res 109: 575-581. <u>http://dx.doi.org/10.1016/j.envres.2009.04.002</u>
- <u>Gilbert-Diamond, D; Li, Z; Perry, AE; Spencer, SK; Gandolfi, AJ; Karagas, MR.</u> (2013). A population-based case-control study of urinary arsenic species and squamous cell carcinoma in New Hampshire, USA. Environ Health Perspect 121: 11541160. <u>http://dx.doi.org/10.1289/ehp.1206178</u>
- Guo, JX; Hu, L; Yand, PZ; Tanabe, K; Miyatalre, M; Chen, Y. (2007). Chronic arsenic poisoning in drinking water in Inner Mongolia and its associated health effects. J Environ Sci Health A Tox Hazard Subst Environ Eng 42: 1853-1858. <u>http://dx.doi.org/10.1080/10934520701566918</u>
- <u>Guo, X; Fujino, Y; Ye, X; Liu, J; Yoshimura, T; Group, JIMAPS.</u> (2006a). Association between multi-level inorganic arsenic exposure from drinking water and skin lesions in China. Int J Environ Res Public Health 3: 262-267.
- Guo, X; Liu, Z; Huang, C; You, L. (2006b). Levels of arsenic in drinking-water and cutaneous lesions in Inner Mongolia. J Health Popul Nutr 24: 214-220.
- Hall, M; Chen, Y; Ahsan, H; Slavkovich, V; van Geen, A; Parvez, F; Graziano, J. (2006). Blood arsenic as a biomarker of arsenic exposure: Results from a prospective study. Toxicology 225: 225-233. http://dx.doi.org/10.1016/j.tox.2006.06.010

 Hashim, JH; Radzi, RS; Aljunid, SM; Nur, AM; Ismail, A; Baguma, D; Sthiannopkao, S; Phan, K; Wong, MH;
 Sao, V; Yasin, MS. (2013). Hair arsenic levels and prevalence of arsenicosis in three Cambodian provinces. Sci Total Environ 463-464: 1210-1216. http://dx.doi.org/10.1016/j.scitotenv.2013.04.084

Hsu, LI; Chen, GS; Lee, CH; Yang, TY; Chen, YH; Wang, YH; Hsueh, YM; Chiou, HY; Wu, MM; Chen, CJ. (2013). Use of arsenic-induced palmoplantar hyperkeratosis and skin cancers to predict risk of subsequent internal malignancy. Am J Epidemiol 177: 202-212. <u>http://dx.doi.org/10.1093/aje/kws369</u>

Hsueh, YM; Cheng, GS; Wu, MM; Yu, HS; Kuo, TL; Chen, CJ. (1995). Multiple risk factors associated with arsenic-induced skin cancer: effects of chronic liver disease and malnutritional status. Br J Cancer 71: 109-114. <u>http://dx.doi.org/10.1038/bjc.1995.22</u>

- <u>Hsueh, YM; Chiou, HY; Huang, YL; Wu, WL; Huang, CC; Yang, MH; Lue, LC; Chen, GS; Chen, CJ.</u> (1997). Serum beta-carotene level, arsenic methylation capability, and incidence of skin cancer. Cancer Epidemiol Biomarkers Prev 6: 589-596.
- <u>Karagas, MR; Stukel, TA; Morris, JS; Tosteson, TD; Weiss, JE; Spencer, SK; Greenberg, ER.</u> (2001). Skin cancer risk in relation to toenail arsenic concentrations in a US population-based case-control study. Am J Epidemiol 153: 559-565. <u>http://dx.doi.org/10.1093/aje/153.6.559</u>

Knobeloch, LM; Zierold, KM; Anderson, HA. (2006). Association of arsenic-contaminated drinking-water with prevalence of skin cancer in Wisconsin's Fox River Valley. J Health Popul Nutr 24: 206-213.

Leonardi, G; Vahter, M; Clemens, F; Goessler, W; Gurzau, E; Hemminki, K; Hough, R; Koppova, K; Kumar, R; <u>Rudnai, P; Surdu, S; Fletcher, T.</u> (2012). Inorganic arsenic and Basal cell carcinoma in areas of Hungary, Romania, and Slovakia: A case-control study. Environ Health Perspect 120: 721-726. <u>http://dx.doi.org/10.1289/ehp.1103534</u>

Lewis, DR; Southwick, JW; Ouellet-Hellstrom, R; Rench, J; Calderon, RL. (1999). Drinking water arsenic in Utah: A cohort mortality study. Environ Health Perspect 107: 359-365. http://dx.doi.org/10.1289/ehp.99107359

- Li, X; Li, B; Xi, S; Zheng, Q; Lv, X; Sun, G. (2013). Prolonged environmental exposure of arsenic through drinking water on the risk of hypertension and type 2 diabetes. Environ Sci Pollut Res Int 20: 8151-8161. http://dx.doi.org/10.1007/s11356-013-1768-9
- Lindberg, AL; Rahman, M; Persson, LA; Vahter, M. (2008). The risk of arsenic induced skin lesions in Bangladeshi men and women is affected by arsenic metabolism and the age at first exposure. Toxicol Appl Pharmacol 230: 9-16. <u>http://dx.doi.org/10.1016/j.taap.2008.02.001</u>
- Maden, N; Singh, A; Smith, LS; Maharjan, M; Shrestha, S. (2011). Factors associated with arsenicosis and arsenic exposure status in Nepal: Implications from community based study. J Community Health 36: 76-82. http://dx.doi.org/10.1007/s10900-010-9282-1
- Mazumder, DNG; Haque, R; Ghosh, N; De, BK; Santra, A; Chakraborty, D; Smith, AH. (1998). Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal, India. Int J Epidemiol 27: 871-877. http://dx.doi.org/10.1093/ije/27.5.871
- McDonald, C; Hoque, R; Huda, N; Cherry, N. (2007). Risk of arsenic-related skin lesions in Bangladeshi villages at relatively low exposure: A report from Gonoshasthaya Kendra. Bull World Health Organ 85: 668-673. http://dx.doi.org/10.1590/S0042-96862007000900011
- Melkonian, S; Argos, M; Pierce, BL; Chen, Y; Islam, T; Ahmed, A; Syed, EH; Parvez, F; Graziano, J; Rathouz, PJ; Ahsan, H. (2011). A prospective study of the synergistic effects of arsenic exposure and smoking, sun exposure, fertilizer use, and pesticide use on risk of premalignant skin lesions in Bangladeshi men. Am J Epidemiol 173: 183-191. <u>http://dx.doi.org/10.1093/aje/kwq357</u>
- Mitra, AK; Bose, BK; Kabir, H; Das, BK; Hussain, M. (2002). Arsenic-related health problems among hospital patients in southern Bangladesh. J Health Popul Nutr 20: 198-204.
- Mosaferi, M; Yunesian, M; Dastgiri, S; Mesdaghinia, A; Esmailnasab, N. (2008). Prevalence of skin lesions and exposure to arsenic in drinking water in Iran. Sci Total Environ 390: 69-76. http://dx.doi.org/10.1016/j.scitotenv.2007.09.035
- Pei, Q; Ma, N; Zhang, J; Xu, W; Li, Y; Ma, Z; Li, Y; Tian, F; Zhang, W; Mu, J; Li, Y; Wang, D; Liu, H; Yang, <u>M; Ma, C; Yun, F.</u> (2013). Oxidative DNA damage of peripheral blood polymorphonuclear leukocytes, selectively induced by chronic arsenic exposure, is associated with extent of arsenic-related skin lesions. Toxicol Appl Pharmacol 266: 143-149. <u>http://dx.doi.org/10.1016/j.taap.2012.10.031</u>
- Pesola, GR; Parvez, F; Chen, Y; Ahmed, A; Hasan, R; Ahsan, H. (2012). Arsenic exposure from drinking water and dyspnoea risk in Araihazar, Bangladesh: a population-based study. Eur Respir J. http://dx.doi.org/10.1183/09031936.00042611
- Pierce, BL; Argos, M; Chen, Y; Melkonian, S; Parvez, F; Islam, T; Ahmed, A; Hasan, R; Rathouz, PJ; Ahsan, H. (2011). Arsenic exposure, dietary patterns, and skin lesion risk in Bangladesh: A prospective study. Am J Epidemiol 173: 345-354. <u>http://dx.doi.org/10.1093/aje/kwq366</u>
- Rahman, M; Vahter, M; Sohel, N; Yunus, M; Wahed, MA; Streatfield, PK; Ekström, EC; Persson, LA. (2006). Arsenic exposure and age and sex-specific risk for skin lesions: A population-based case-referent study in Bangladesh. Environ Health Perspect 114: 1847-1852. <u>http://dx.doi.org/10.1289/ehp.9207</u>
- <u>Ranft, U; Miskovic, P; Pesch, B; Jakubis, P; Fabianova, E; Keegan, T; Hergemöller, A; Jakubis, M;</u>
 <u>Nieuwenhuijsen, MJ; Group, ES.</u> (2003). Association between arsenic exposure from a coal-burning power plant and urinary arsenic concentrations in Prievidza District, Slovakia. Environ Health Perspect 111: 889-894. <u>http://dx.doi.org/10.1289/ehp.5838</u>
- Seow, WJ; Pan, WC; Kile, ML; Baccarelli, AA; Quamruzzaman, Q; Rahman, M; Mahiuddin, G; Mostofa, G; Lin, X; Christiani, DC. (2012). Arsenic reduction in drinking water and improvement in skin lesions: a follow-up study in Bangladesh. Environ Health Perspect 120: 1733-1738. <u>http://dx.doi.org/10.1289/ehp.1205381</u>

Xia, Y; Wade, TJ; Wu, K; Li, Y; Ning, Z; Le, XC; He, X; Chen, B; Feng, Y; Mumford, JL. (2009). Well water arsenic exposure, arsenic induced skin-lesions and self-reported morbidity in Inner Mongolia. Int J Environ Res Public Health 6: 1010-1025. <u>http://dx.doi.org/10.3390/ijerph6031010</u>

6 SUMMARY OF RISK OF BIAS EVALUATIONS FOR INORGANIC ARSENIC **ANIMAL STUDIES**

6.1 Risk of Bias Overview - Developmental Effects including Neurodevelopmental

Study			Selection	1	Confo	unding	Pe	erforman	ce	Att.		Dete	ction		SRB	Other
	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
Aggarwal et al. (2007)	Р	+	+	n/a	+	+	+	+	+	++	-	+	+	+	++	++
Ahmad et al. (2013)	Р	-	-	n/a	++	-	++	+	+	++	-	+	++	+	-	++
Chattopadhyay et al. (2002)	S	-	-	n/a	-	+	+	+	+	-	+	n/a	-	-	++	-
<u>Colomina et al. (1997)</u>	Р	+	+	n/a	++	+	++	+	+	-	-	+	+	-	++	++
<u>Gandhi et al. (2012)</u>	Р	-	-	n/a	-	+	+	+	+	++	++	+	-	++	+	+
Markowski et al. (2012)	Р	++	+	n/a	++	+	++	+	+	+	++	+	+	++	++	++
Martinez et al. (2008)	Р	-	-	n/a	+	+	++	+	+	-	+	+	+	+	+	+
Martinez-Finley et al. (2009)	Р	-	-	n/a	-	+	++	+	+	-	++	+	++	+	++	++
Nagaraja and Desiraju (1993)	Р	-	-	n/a	+	+	+	+	+	-	+	-	-	-	-	+
Nagymajtenyi et al. (1985)	Р	-	-	n/a	+	+	+	+	+	+	-	+	-	-	++	-
Ramsey et al. (2013c)	Р	-	-	n/a	+	+	+	+	+	-	+	+	+	+	+	++

These draft development materials are for review purposes only and do not constitute Agency policy. Draft: Do Not Cite or Quote

Study			Selection	1	Confo	unding	Pe	erforman	ice	Att.		Dete	ction		SRB	Other
	Primary (P) or Supporting (S)	tion	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome Assessment)	Confounding (Analysis)	Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
Rodríguez et al. (2002)	Р	-	-	n/a	+	+	+	+	+	+	+	+	-	+	++	++
<u>Xi et al. (2009)</u>	Р	+	+	n/a	-	+	++	+	+	-	-	+	+	+	++	++

6.2 Risk of Bias Overview - Immune System and Lymphatic Effects

Study			Selectior	ı	Confo	unding	P	erforman	ice	Att.		Dete	ction		SRB	Other
	Primary (P) or Supporting (S)		Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome		Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
Das et al. (2012b)	Р	++	+	n/a	+	+	+	+	+	-	+	+	+	+	+	++
Kozul et al. (2009)	Р	-	-	n/a	+	+	++	+	+	-	+	+	-	+	++	++
Nain and Smits (2012)	Р	+	+	n/a	+	+	+	+	+	-	++	+	+	++	+	++
Ramsey et al. (2013b)	Р	-	-	n/a	+	+	+	+	+	++	++	+	-	+	++	++
Sankar et al. (2013)	Р	+	+	n/a	+	+	+	+	+	++	+	+	-	++	+	++
Stępnik et al. (2009)	Р	-	-	n/a	+	+	++	+	+	++	+	+	-	+	++	++
Tokar et al. (2010b)	Р	+	+	n/a	+	+	+	+	+	++	++	+	-	+	+	++
Waalkes et al. (2003)	Р	+	+	n/a	++	+	++	+	+	++	++	+	+	+	+	++
Waalkes et al. (2006a)	Р	+	+	n/a	++	+	++	+	+	++	++	+	+	++	+	++
Waalkes et al. (2006b)	Р	+	+	n/a	++	+	++	+	+	++	++	+	+	++	+	++

6.3 Risk of bias Overview - Liver Effects

Study			Selection	1	Confo	unding	Pe	erforman	ice	Att.		Dete	ction		SRB	Other
	Primary (P) or Supporting (S)	Randomization	Allocation Concealment	Comparison Group	Confounding (Design)	Unintended Exposure	Experimental Conditions	Protocol Deviations	Blinding (During Study)	Missing Outcome Data	Blinding (Outcome		Exposure Characterization	Outcome Assessment	Outcome Reporting	Internal Validity
Nain and Smits (2012)	Р	+	+	n/a	+	+	+	+	+	-	++	+	+	++	+	++
Stępnik et al. (2009)	Р	-	-	n/a	+	+	++	+	+	++	+	+	-	+	++	++
<u>Tokar et al. (2010b)</u>	Р	+	+	n/a	+	+	+	+	+	++	++	+	-	+	+	++
<u>Tokar et al. (2011)</u>	Р	-	-	n/a	++	+	+	+	+	++	++	+	+	++	+	++
Tokar et al. (2012)	Р	+	+	n/a	+	+	+	+	+	++	++	+	+	++	+	++
Waalkes et al. (2003)	Р	+	+	n/a	++	+	++	+	+	++	++	+	+	+	+	++
Waalkes et al. (2004b)	Р	+	+	n/a	++	+	++	+	+	+	++	+	-	++	++	++
Waalkes et al. (2006a)	Р	+	+	n/a	++	+	++	+	+	++	++	+	+	++	+	++
Waalkes et al. (2006b)	Р	+	+	n/a	++	+	++	+	+	++	++	+	+	++	+	++

6.4 References for Risk of Bias Evaluations for Annimal Toxicology Studies

- Aggarwal, M; Wangikar, PB; Sarkar, SN; Rao, GS; Kumar, D; Dwivedi, P; Malik, JK. (2007). Effects of lowlevel arsenic exposure on the developmental toxicity of anilofos in rats. J Appl Toxicol 27: 255-261. http://dx.doi.org/10.1002/jat.1203
- <u>Ahmad, M; Wadaan, MAM; Farooq, M; Daghestani, MH; Sami, AS.</u> (2013). Effectiveness of zinc in modulating perinatal effects of arsenic on the teratological effects in mice offspring. Biol Res 46: 131-138. <u>http://dx.doi.org/10.4067/S0716-97602013000200003</u>
- <u>Chattopadhyay, S; Bhaumik, S; Nag Chaudhury, A; Das Gupta, S.</u> (2002). Arsenic induced changes in growth development and apoptosis in neonatal and adult brain cells in vivo and in tissue culture. Toxicol Lett 128: 73-84. <u>http://dx.doi.org/10.1016/s0378-4274(01)00535-5</u>
- Colomina, MT; Albina, ML; Domingo, JL; Corbella, J. (1997). Influence of maternal stress on the effects of prenatal exposure to methylmercury and arsenic on postnatal development and behavior in mice: A preliminary evaluation. Physiol Behav 61: 455-459. <u>http://dx.doi.org/10.1016/S0031-9384(96)00462-3</u>
- Das, TK; Mani, V; Kaur, H; Kewalramani, N; De, S; Hossain, A; Banerjee, D; Datta, BK. (2012). Effect of vitamin E supplementation on arsenic induced oxidative stress in goats. Bull Environ Contam Toxicol 89: 61-66. <u>http://dx.doi.org/10.1007/s00128-012-0620-0</u>
- Gandhi, DN; Panchal, GM; Patel, KG. (2012). Developmental and neurobehavioural toxicity study of arsenic on rats following gestational exposure. Indian J Exp Biol 50: 147-155.
- Kozul, CD; Ely, KH; Enelow, RI; Hamilton, JW. (2009). Low dose arsenic compromises the immune response to influenza A infection in vivo. Environ Health Perspect 117: 1441-1447. http://dx.doi.org/10.1289/ehp.0900911
- Markowski, VP; Reeve, EA; Onos, K; Assadollahzadeh, M; McKay, N. (2012). Effects of prenatal exposure to sodium arsenite on motor and food-motivated behaviors from birth to adulthood in C57BL6/J mice. Neurotoxicol Teratol 34: 221-231. http://dx.doi.org/10.1016/j.ntt.2012.01.001
- Martinez-Finley, EJ; Ali, AMS; Allan, AM. (2009). Learning deficits in C57BL/6J mice following perinatal arsenic exposure: Consequence of lower corticosterone receptor levels. Pharmacol Biochem Behav 94: 271-277. <u>http://dx.doi.org/10.1016/j.pbb.2009.09.006</u>
- Martinez, EJ; Kolb, BL; Bell, A; Savage, DD; Allan, AM. (2008). Moderate perinatal arsenic exposure alters neuroendocrine markers associated with depression and increases depressive-like behaviors in adult mouse offspring. Neurotoxicology 29: 647-655. <u>http://dx.doi.org/10.1016/j.neuro.2008.05.004</u>
- <u>Nagaraja, TN; Desiraju, T.</u> (1993). Regional alterations in the levels of brain biogenic amines, glutamate, GABA, and GAD activity due to chronic consumption of inorganic arsenic in developing and adult rats. Bull Environ Contam Toxicol 50: 100-107. <u>http://dx.doi.org/10.1007/BF00196547</u>
- Nagymajtenyi, L; Selypes, A; Berencsi, G. (1985). Chromosomal aberrations and fetotoxic effects of atmospheric arsenic exposure in mice. J Appl Toxicol 5: 61-63. <u>http://dx.doi.org/10.1002/jat.2550050204</u>
- Nain, S; Smits, JE. (2012). Pathological, immunological and biochemical markers of subchronic arsenic toxicity in rats. Environ Toxicol 27: 244-254. <u>http://dx.doi.org/10.1002/tox.20635</u>
- Ramsey, KA; Foong, RE; Sly, PD; Larcombe, AN; Zosky, GR. (2013a). Early life arsenic exposure and acute and long-term responses to influenza a infection in mice. Environ Health Perspect 121: 1187-1193. http://dx.doi.org/10.1289/ehp.1306748

These draft development materials are for review purposes only and do not constitute Agency policy.April 20146-5Draft: Do Not Cite or Quote

- <u>Ramsey, KA: Larcombe, AN: Sly, PD: Zosky, GR.</u> (2013b). In utero exposure to low dose arsenic via drinking water impairs early life lung mechanics in mice. Pharmacol Toxicol 14: 13. <u>http://dx.doi.org/10.1186/2050-6511-14-13</u>
- Rodríguez, VM; Carrizales, L; Mendoza, MS; Fajardo, OR; Giordano, M. (2002). Effects of sodium arsenite exposure on development and behavior in the rat. Neurotoxicol Teratol 24: 743-750. http://dx.doi.org/10.1016/S0892-0362(02)00313-6
- Sankar, P; Telang, AG; Suresh, S; Kesavan, M; Kannan, K; Kalaivanan, R; Sarkar, SN. (2013). Immunomodulatory effects of nanocurcumin in arsenic-exposed rats. Int Immunopharmacol 17: 6570. http://dx.doi.org/10.1016/j.intimp.2013.05.019
- Stępnik, M; Stetkiewicz, J; Krajnow, A; Domeradzka, K; Gradecka-Meesters, D; Arkusz, J; Stańczyk, M; Palus, J; Dziubałtowska, E; Sobala, W; Gromadzinska, J; Wasowicz, W; Rydzynski, K. (2009). Carcinogenic effect of arsenate in C57BL/6J/Han mice and its modulation by different dietary selenium status. Ecotoxicol Environ Saf 72: 2143-2152. <u>http://dx.doi.org/10.1016/j.ecoenv.2009.06.005</u>
- Tokar, EJ; Diwan, BA; Waalkes, MP. (2010). Arsenic exposure in utero and nonepidermal proliferative response in adulthood in Tg.AC mice. Int J Toxicol 29: 291-296. <u>http://dx.doi.org/10.1177/1091581810362804</u>
- <u>Tokar, EJ; Diwan, BA; Waalkes, MP.</u> (2012). Renal, hepatic, pulmonary and adrenal tumors induced by prenatal inorganic arsenic followed by dimethylarsinic acid in adulthood in CD1 mice. Toxicol Lett 209: 179-185. <u>http://dx.doi.org/10.1016/j.toxlet.2011.12.016</u>
- Tokar, EJ; Diwan, BA; Ward, JM; Delker, DA; Waalkes, MP. (2011). Carcinogenic effects of "whole-life" exposure to inorganic arsenic in CD1 mice. Toxicol Sci 119: 73-83. <u>http://dx.doi.org/10.1093/toxsci/kfq315</u>
- <u>Waalkes, MP; Liu, J; Ward, JM; Diwan, BA.</u> (2006a). Enhanced urinary bladder and liver carcinogenesis in male CD1 mice exposed to transplacental inorganic arsenic and postnatal diethylstilbestrol or tamoxifen. Toxicol Appl Pharmacol 215: 295-305. <u>http://dx.doi.org/10.1016/j.taap.2006.03.010</u>
- Waalkes, MP; Liu, J; Ward, JM; Powell, DA; Diwan, BA. (2006b). Urogenital carcinogenesis in female CD1 mice induced by in utero arsenic exposure is exacerbated by postnatal diethylstilbestrol treatment. Cancer Res 66: 1337-1345. http://dx.doi.org/10.1158/0008-5472.CAN-05-3530
- <u>Waalkes, MP; Ward, JM; Diwan, BA.</u> (2004). Induction of tumors of the liver, lung, ovary and adrenal in adult mice after brief maternal gestational exposure to inorganic arsenic: Promotional effects of postnatal phorbol ester exposure on hepatic and pulmonary, but not dermal cancers. Carcinogenesis 25: 133-141. <u>http://dx.doi.org/10.1093/carcin/bgg181</u>
- Waalkes, MP: Ward, JM; Liu, J; Diwan, BA. (2003). Transplacental carcinogenicity of inorganic arsenic in the drinking water: Induction of hepatic, ovarian, pulmonary, and adrenal tumors in mice. Toxicol Appl Pharmacol 186: 7-17. http://dx.doi.org/10.1016/S0041-008X(02)00022-4
- Xi, S; Sun, W; Wang, F; Jin, Y; Sun, G. (2009). Transplacental and early life exposure to inorganic arsenic affected development and behavior in offspring rats. Arch Toxicol 83: 549-556. <u>http://dx.doi.org/10.1007/s00204-009-0403-5</u>

7 EVIDENCE TABLES FOR INORGANIC ARSENIC ANIMAL STUDIES

7.1 Summary of Observational Animal Studies for Health Effect Category: Developmental Effects including Neurodevelopmental

Summary of Toxicology Studies for Healt	h Effect Category: Deve odevelopmental	elopmental Effe	cts including						
Reference and Dosing Protocol		esults by Endpo	int						
(Aggarwal et al., 2007)	crown-rump length								
Dosing Design: reproductive/developmental Chemical: Sodium Arsenite - NaAsO2 Species and Strain: rat, Wistar Route of Exposure: oral - gavage Administered Doses: F1, combined (73-	Generation, Sex F1, Combined no statistically signific observed up to 1 mg/								
90/group): 0, 1 mg/kg /day	fetal weight	kg/uay exposure	5						
Dosing Description: P0 dams dosed daily from GD6 through GD15	Generation, Sex F1, Combined no statistically signific up to 1 mg/kg/day ex		Response (g±SE) 4.12(±0.08) 4.05(±0.1) tal weight observed						
	gross anomalies								
	Generation, Sex F1, Combined	<u>Dose(n)</u> 0 (90) 1 (73)	<u>Response (%)</u> 8.89 32.88*						
	skeletal anomalies								
	Generation, Sex F1, Combined	<u>Dose(n)</u> 0 (48) 1 (38)	<u>Response (%)</u> 12.5 21.05*						
	visceral anomalies								
	Generation, Sex F1, Combined no statistically signific observed up to 1mg/F								
(Ahmad et al., 2013)	cliff avoidance	0. 7 1							
Dosing Design: reproductive/developmental Chemical: sodium arsenate - Na2HAsO4 Species and Strain: mice, Swiss Webster Route of Exposure: oral - water Administered Doses: F1, combined (21/group): 0,	Generation, Sex F1, Combined 40 mg/kg-bw/day ars p<0.01) suppressive e observation (PND 1-2	ffect on mean c							
40 mg/kg body weight/day; F1, male (NR): 0, 40	immobility duration								

These draft development materials are for review purposes only and do not constitute Agency policy.April 20147-1Draft: Do Not Cite or Quote

Reference and Dosing Protocol	odevelopmental Re	esults by Endpoin	t
mg/kg body weight/day Dosing Description: P0 dams dosed daily from	Generation, Sex	Dose(n)	Response
GD0 through PND15	F1, Male	0 (10)	<u>(seconds)</u> 73.5
		40 (10)	208*
	movement duration		
	Generation, Sex	<u>Dose(n)</u>	<u>Response</u> (seconds)
	F1, Male	0 (10)	226.5
		40 (10)	92.5*
	number of rears		
	<u>Generation, Sex</u>	<u>Dose(n)</u>	<u>Response</u> (median)
	F1, Male	0 (10)	15 5*
	number of ormer	40 (10)	5
	number of squares cr		Decreter
	<u>Generation, Sex</u>	<u>Dose(n)</u>	<u>Response</u> (median)
	F1, Male	0 (10)	371
		40 (10)	128*
	number of wall rears		
	<u>Generation, Sex</u>	<u>Dose(n)</u>	<u>Response</u> (median)
	F1, Male	0 (10) 40 (10)	33 9*
	number of washes		
	Generation, Sex	<u>Dose(n)</u>	<u>Response</u> (median)
	F1, Male	0 (10) 40 (10)	6 7
	righting reflex	40 (10)	/
	Generation, Sex		
	F1, Combined		. /
	40 mg/kg-bw/day ars p<0.01) suppressive e	ffect on mean rig	••
	observation (PND 1-2	1)	
	rotating reflex		
	Generation, Sex		
	F1, Combined		
	40 mg/kg-bw/day ars		
	p<0.01) suppressive e		ating reflex at each
	observation (PND 1-2	•	
<u>Gandhi et al., 2012</u>)	cliff avoidance observ		_
Dosing Design: reproductive/developmental Chemical: arsenic	<u>Generation, Sex</u>	<u>Dose(n)</u>	<u>Response</u> (PND±SE)
Species and Strain: rat, Wistar	F1, Combined	0 (20)	11(±0.3)
Route of Exposure: oral - gavage		1.5 (20)	11(±0.25)
Administered Doses: F1, combined (20/group): 0,		3 (20)	10.8(±1.27) 10.76(±1.24)

These draft development materials are for review purposes only and do not constitute Agency policy.April 20147-2Draft: Do Not Cite or Quote

Summary of Toxicology Studies for Hea Neu	Ith Effect Category: Deve rodevelopmental	lopmental Effect	ts including
Reference and Dosing Protocol	-	esults by Endpoir	nt
Dosing Description: PO dams dosed daily from	no statistically signific		
GD8 through PND0	observed up to 4.5 m		
0	developmental miles		
	Generation, Sex		
	F1, Combined		
	no statistically signific	ant effect on day	/ of pinna
	detachment, incisors	-	
	opening, ear opening	-	
	observed up to 4.5 m		
	ear twitch observed		
	Generation, Sex	Dose(n)	Response
			(PND±SE)
	F1, Combined	0 (20)	24.48(±0.18)
		1.5 (20)	24.44(±0.2)
		3 (20)	24.6(±0.91)
		4.5 (20)	24.76(±0.92)
	no statistically signific		
	to 4.5 mg/kg		
	free fall righting obse	rved	
	Generation, Sex	<u>Dose(n)</u>	<u>Response</u>
			(PND±SE)
	F1, Combined	0 (20)	24.44(±0.25)
		1.5 (20)	24.36(±0.88)
		3 (20)	24.48(±0.26)
		4.5 (20)	24.36(±0.29)
	no statistically signific	ant effect on fre	e fall righting
	observed up to 4.5 m		
	limb withdrawal refle	exes observed	
	Generation, Sex	<u>Dose(n)</u>	<u>Response</u>
			<u>(PND±SE)</u>
	F1, Combined	0 (20)	23.6(±0.91)
		1.5 (20)	24(±0.18)
		3 (20)	23.56(±0.17)
		4.5 (20)	23.3(±1)
	no statistically signific		b withdrawal
	reflexes observed up		
	morphological anom	alies	
	Generation, Sex		
	F1, Combined		
	no statistically signific		rphological
	anomalies observed u		
	muscular grip strengt		
	Generation, Sex	<u>Dose(n)</u>	Response (sec
		- 4	<u>@9RPM±SE)</u>
	F1, Combined	0 (20)	273.8(±1.5)
		1.5 (20)	270.9(±1.1)
		3 (20)	271.5(±1.3)
		4.5 (20)	270.8(±2.5)
	no statistically signific	ant effect on mu	scular grip strength

These draft development materials are for review purposes only and do not constitute Agency policy. Draft: Do Not Cite or Quote 7-3

Summary of Toxicology Studies for He	ealth Effect Category: Deve eurodevelopmental	elopmental Effect	ts including					
Reference and Dosing Protocol	R	esults by Endpoir	nt					
	observed up to 4.5 m	g/kg						
	open field activity							
	Generation, Sex							
	F1, Combined							
	no statistically significant effect on head elevation, hind							
	limb elevation, rearin	g, fecal boluses, ι	urination, grooming,					
	sniffing, biting and lic	king, head bobbii	ng, auditory startle,					
	pivoting, or gait abno	rmality observed	up to 4.5 mg/kg					
	palmar grasp observe	ed						
	Generation, Sex	<u>Dose(n)</u>	<u>Response</u>					
			(PND±SE)					
	F1, Combined	0 (20)	17.6(±0.25)					
		1.5 (20)	17.44(±0.28)					
		3 (20)	17.36(±0.9)					
		4.5 (20)	17.5(±0.6)					
	no statistically signific	cant effect on pal	mar grasp observed					
	up to 4.5 mg/kg							
	startle reflex observe							
	<u>Generation, Sex</u>	<u>Dose(n)</u>	<u>Response</u> (PND±SE)					
	F1, Combined	0 (20)	25.08(±0.33)					
		1.5 (20)	24.96(±0.37)					
		3 (20)	25.12(±0.37)					
		4.5 (20)	25.04(±0.35)					
	no statistically signific up to 4.5 mg/kg	cant effect on sta	rtle reflex observed					
	surface righting refle	х						
	Generation, Sex							
	F1, Combined							
	no statistically signific	cant effect on sur	face righting reflex					
	observed up to 4.5 m	g/kg						
	T-maze							
	Generation, Sex	<u>Dose(n)</u>	<u>Response (%)</u>					
	F1, Combined	0 (20)	100					
		1.5 (20)	99.91					
		3 (20)	99.54					
		4.5 (20)	99.56					
	no statistically signific							
	the T-maze evaluatio	n up to 4.5 mg/kg	5					
	tail pinch observed	- / >	_					
	Generation, Sex	<u>Dose(n)</u>	Response					
			(PND±SE)					
	F1, Combined	0 (20)	23.64(±0.92)					
		1.5 (20)	22.92(±1.37)					
		3 (20)	23.48(±0.23)					
		4.5 (20)	23.72(±0.8)					
	no statistically signific	cant effect on tail	pinch observed up					
	to 4.5 mg/kg							
(Markowski et al., 2012)	aberrant behaviors (shudder/spasm, i	ntense grooming,					

These draft development materials are for review purposes only and do not constitute Agency policy. Draft: Do Not Cite or Quote 7-4

	h Effect Category: Developmental Effects including developmental
Reference and Dosing Protocol	Results by Endpoint
Dosing Design: reproductive/developmental	dorsoflexion)
Chemical: sodium arsenite - NaAsO2	Generation, Sex
Species and Strain: mice, C57BL/6J	F1, Combined
Route of Exposure: oral - water	all treated groups had a higher incidence of aberrant
Administered Doses: F1, combined (NR): 0, 8, 25,	behaviors from PND17-21
80 ppm; F1, female (NR): 0, 8, 25, 80 ppm; F1,	false alarm response
male (NR): 0, 8, 25, 80 ppm	Generation, Sex
Dosing Description: P0 dams exposed GD4	F1, Combined
through GD18 or PND0 (whichever came first)	significant increase in the false alarm rate in the 8 ppm
	animals during the first 4 sessions
	grip strength
	<u>Generation, Sex</u> F1, Female
	all treated groups had a significant decrease in grip strength
	Generation, Sex
	F1, Male
	all treated groups had a significant decrease in grip
	strength
	intertrial interval response
	Generation, Sex
	F1, Combined
	significant decrease in all treated groups from session 12
	to 24
	lever run rate
	Generation, Sex
	F1, Combined
	arsenic impacted lever run rate with higher-order sex-by-
	RR-by-session-by-exposure interaction [P=0.03] and
	earned food [P=0.01] locomotor counts
	Generation, Sex
	F1, Combined
	no statistically significant effect on locomotor counts
	observed up to 80 ppm at 2 months or puberty
	response rate
	<u>Generation, Sex</u>
	F1, Combined
	arsenic impacted response rate with sex-by-session-by-
	exposure interaction [P=0.03]
	righting reflex
	Generation, Sex
	F1, Combined
	significant decrease in righting reflex in all treatment
	groups
	spontaneous activity
	Generation, Sex
	F1, Combined
	all treated groups had significantly less spontaneous

These draft development materials are for review purposes only and do not constitute Agency policy.April 20147-5Draft: Do Not Cite or Quote

	h Effect Category: Developmental Effects including odevelopmental						
Reference and Dosing Protocol	Results by Endpoint						
	activity						
	startle response						
	Generation, Sex						
	F1, Combined						
	all treated groups had a significantly reduced acoustic						
	startle on PND 13						
(Martinez et al., 2008)	forced swim task (total immobility times, secs)						
Dosing Design: reproductive/developmental	Generation, Sex						
Chemical: sodium arsenate - Na2HAsO4	F1, Combined						
Species and Strain: mice, C57BL/6J	total immobility time was significantly increased in arsenic						
Route of Exposure: oral - water	treated animals (0.05 ppm) compared to controls						
Administered Doses: F1, combined (NR): 0, 0.05	(p<0.001)						
ppm; F1, female (NR): 0, 0.05 ppm; F1, male (NR):	latency to escape						
0, 0.05 ppm	Generation, Sex						
Dosing Description: P0 dams exposed daily 2	F1, Female						
weeks before breeding through weaning (PND23)	perinatal arsenic (0.05 ppm) caused a significant increase						
	in latency to escape in female offspring (p<0.0001)						
	Generation, Sex						
	F1, Male						
	perinatal arsenic (0.05 ppm) caused a significant increase						
	in latency to escape in male offspring (p<0.0001)						
(<u>Martinez-Finley et al., 2009</u>)	8-way radial arm maze						
Dosing Design: reproductive/developmental Chemical: sodium arsenate - Na2HAsO4	Generation, Sex						
Species and Strain: mice, C57BL/6J	F1, Combined significant effect of treatment (p<0.0001) in number of						
Route of Exposure: oral - water	entry errors for arsenic exposed animals over 3 days of						
Administered Doses: F1, combined (NR): 0, 0.055	testing compared to controls at 0.055 ppm						
ppm	novel object exploration						
Dosing Description: PO males and females	Generation, Sex						
exposed daily for 2 weeks before breeding; dams	F1, Combined						
continued treatment until weaning at PND23	latency to approach novel object after acclimation period						
	was significantly slower (p<0.0001) in treated versus						
	control animals; number of entries to center in presence of						
	the novel object was significantly lower than control						
	(p<0.0006) at 0.055 ppm						
	whole brain weight; hippocampal wet weight						
	Generation, Sex						
	F1, Combined						
	no statistically significant effect on whole brain weight or						
	hippocampal wet weight observed at 0.055 ppm						
(<u>Ramsey et al., 2013c</u>)	birth length						
Dosing Design: reproductive/developmental	Generation, Sex Dose(n) Response						
Chemical: Sodium Arsenite - NaAsO2	(mm±SD) 20.1(+4.74)						
Species and Strain: mice, C57BL/6	F1, Combined 0 (NR) 29.1(±1.74)						
Route of Exposure: oral - water	10 (NR) 28.8(±1.94)						
Administered Doses: F1, combined (NR): 0, 10,	$100 (NR) \qquad 28.4(\pm 1.9)^*$						
100 μg/L	significantly lower birth length in fetal mice at 100 ug As/L $(n < 0.001)$ but not 10 ug As/L compared to control (n						
Dosing Description: P0 dams treated daily from	(p < 0.001) but not 10 ug As/L compared to control $(p > 0.47)$						
GD8 through PND0	>0.47)						

These draft development materials are for review purposes only and do not constitute Agency policy.April 20147-6Draft: Do Not Cite or Quote

Reference and Dosing Protocol	Re	sults by Endpoi	nt					
	birth weight							
	Generation, Sex F1, Combined	<u>Dose(n)</u> 0 (NR)	Response (g±SD 1.34(±0.16)					
	significantly lower bir	10 (NR) 100 (NR) th weight in feta	1.35(±0.19) 1.27(±0.18)*					
	100 ug As/L in utero c no significant differen	ompared to con	trol (p <0.001), but					
	exposed to 10 ug As/L	-						
Rodríguez et al., 2002)	body weight of pups	·						
osing Design: reproductive/developmental hemical: sodium arsenite - NaAsO2	Generation, Sex F1, Combined	<u>Dose(n)</u> 0 (11-12)	<u>Response (g±SE</u> 290.49(±18.34)					
pecies and Strain: rat, Sprague-Dawley oute of Exposure: oral - water	body weight significar	-	-					
dministered Doses: F1, combined (29- 2/group): 0, 36.7 mg/L; F1, male (13-15/group):	and continuing until w	veek 17 at 36.7 n	ng/L					
osing Description: P0 dams exposed daily from	eye opening Generation, Sex F1, Combined							
ND1 until weaning; F1 males dosed daily through ND91 (F1 females not directly dosed)	no statistically signific at 36.7 mg/L	ant effect on eye	e opening observed					
	learning tasks - delayed alternation							
	Generation, Sex F1, Male							
	significantly increased (p<0.05) but no signifi		-					
	learning tasks - spont	aneous alternat	ion					
	Generation, Sex F1, Male							
	no statistically signific alternation observed		ontaneous					
	motor coordination Generation, Sex F1. Male							
	no statistically signific observed at 36.7 mg/		otor coordination					
	onset of reflexes: righ		ative geotaxis,					
	pivoting, mid-air righ		-					
	Generation, Sex F1, Combined							
	no statistically signific including righting refle	ex, negative geot	taxis, pivoting, mid-					
	air righting reflex, and 36.7 mg/L	I torelimb grip st	rength observed at					
	pinna detachment							
	Generation, Sex F1, Combined	ant offect on sin	una dotachmont					
	no statistically signific observed at 36.7 mg/		ina uetachiment					

These draft development materials are for review purposes only and do not constitute Agency policy. Draft: Do Not Cite or Quote 7-7

	h Effect Category: Developmental Effects including odevelopmental
Reference and Dosing Protocol	Results by Endpoint
	activity, horizontal activity, vertical movements
	Generation, Sex
	F1, Male
	no statistically significant effect on locomotor variables at
	13 or 17 weeks at 36.7 mg/L
(Rodríguez et al., 2002)	eye opening
Dosing Design: reproductive/developmental	Generation, Sex
Chemical: sodium arsenite - NaAsO2	F1, Combined
Species and Strain: rat, Sprague-Dawley	significantly lower eye opening scores observed at 36.7
Route of Exposure: oral - water	mg/L on PND 14 (p<0.05) on PND 14
Administered Doses: F1, combined (22-	learning tasks - delayed alternation
32/group): 0, 36.7 mg/L; F1, male (11-15/group): 0, 36.7 mg/L	Generation, Sex
Dosing Description: P0 dams exposed daily from	F1, Male
GD15 until weaning; F1 males exposed from	significantly increased mean number of errors observed at 36.7 mg/L (p<0.05); no significant effect on latency
weaning until 13 wks of life (F1 females not	learning tasks - spontaneous alternation
directly dosed)	Generation, Sex
	F1, Male
	no statistically significant effect on spontaneous
	alternation observed at 36.7 mg/L
	mean body weight of pups
	<u>Generation, Sex</u> <u>Dose(n)</u> <u>Response (g±SE)</u>
	F1, Combined 0 (11-12) 290.49(±18.34)
	36.7 (10-11) 276.02(±18.35)*
	significantly reduced overall at 36.7mg/L but no significant
	differences were observed at individual observation times
	motor coordination
	Generation, Sex
	F1, Male
	no statistically significant effect on motor coordination
	observed at 36.7 mg/L
	onset of reflexes: righting reflex, negative geotaxis,
	pivoting, mid-air righting reflex, forelimb grip strength
	Generation, Sex
	F1, Combined
	no statistically significant effect on the onset of reflexes
	observed at 36.7 mg/L
	pinna detachment
	Generation, Sex
	F1, Combined
	significantly more litters showed full pinna detachment at 36.7 mg/L on PND 12 (p<0.05)
	spontaneous locomotor activity: total distance, vertical
	activity, horizontal activity, vertical movements
	Generation, Sex
	F1, Male
	significantly increased vertical activity and vertical
	movements at both 13 and 17 weeks at 36.7 mg/L
	I movements at both 15 and 17 weeks at 50.7 mg/r

These draft development materials are for review purposes only and do not constitute Agency policy.

Reference and Dosing Protocol	R	esults by Endpoi	nt
Ū.	horizontal activity var	, ,	
(Xi et al., 2009)	air righting		
Dosing Design: reproductive/developmental	Generation, Sex	Dose(n)	Response (%)
Chemical: sodium arsenite - NaAsO2	F1, Combined	0 (64)	80.33
Species and Strain: rat, Wistar	,	10 (69)	92.54*
Route of Exposure: oral - water		50 (58)	73.21
Administered Doses: F1, combined (12/group): 0,		100 (58)	68.63
.0, 50, 100 mg/L	auditory startle		
Dosing Description: P0 dams treated daily GD6	Generation, Sex	Dose(n)	<u>Response (%)</u>
hrough PND42; F1 treated daily PND28 through	F1, Combined	0 (64)	98.44
PND42		10 (69)	97.06
		50 (58)	100
		100 (58)	84.31*
	avoidance test: learn		
	Generation, Sex	Dose(n)	<u>Response</u>
			(seconds±SE)
	F1, Combined	0 (12)	157.25(±107.93)
		10 (12)	173.92(±132.58)
		50 (12)	127.5(±129.04)
		100 (12)	116(±136.02)
	avoidance test: long	memory session	: latency of reaction
	Generation, Sex	Dose(n)	<u>Response</u>
			<u>(seconds±SE)</u>
	F1, Combined	0 (12)	166.67(±46.19)
		10 (12)	139.58(±73.19)
		50 (12)	98.83(±85.04)*
		100 (12)	125.08(±81.14)
	avoidance test: short	memory session	n: latency of reaction
	Generation, Sex	<u>Dose(n)</u>	Response
			<u>(seconds±SE)</u>
	F1, Combined	0 (12)	136.25(±65.2)
		10 (12)	129.08(±75.76)
		50 (12)	115.83(±80.25)
		100 (12)	117.5(±79.21)
	cliff avoidance		
	Generation, Sex	Dose(n)	<u>Response (%)</u>
	F1, Combined	0 (64)	55.1
		10 (69)	68.97
		50 (58)	51.79
		100 (58)	56.6
	forelimb hung		
	Generation, Sex	Dose(n)	Response (%)
	F1, Combined	0 (64)	93.75
		10 (69)	97.01
		50 (58)	98.25
		100 (58)	100
	negative geotaxis		_
	Generation, Sex	Dose(n)	<u>Response (%)</u>
	F1, Combined	0 (64)	71.93

These draft development materials are for review purposes only and do not constitute Agency policy.April 20147-9Draft: Do Not Cite or Quote

Reference and Dosing Protocol	D	sults by Endpoin	t
Reference and Dosing Protocol		10 (69)	69.23
		50 (58)	84.21
		100 (58)	63.04
	postnatal body weigh	. ,	05.04
	Generation, Sex	-	
	F1, Combined		
	body weight significar	ntly decreased in	10, 50, and 100
	mg/L arsenic-treated		
	respectively (p<0.05)		, , , , , , , , , , , , , , , , , , , ,
	rotarod test: remain	time	
	Generation, Sex		
	F1, Combined		
	no statistically signific	ant effect on rem	ain time on the ba
	(at 9 and 18 rpm) obs		
	square water maze: I	•	-
	Generation, Sex	Dose(n)	Response
			(seconds±SE)
	F1, Combined	0 (12)	13(±4.81)
		10 (12)	14.08(±6.42)
		50 (12)	16.58(±8.72)
		100 (12)	20.17(±11.46)
	square water maze: I	earning session: t	
	Generation, Sex	<u>Dose(n)</u>	Response
			<u>(seconds±SE)</u>
	F1, Combined	0 (12)	6.67(±1.61)
		10 (12)	8.67(±2.15)
		50 (12)	10.08(±3.12)*
		100 (12)	11.67(±2.9)*
	square water maze: r	-	-
	Generation, Sex	<u>Dose(n)</u>	Response
		0 (1-5)	(seconds±SE)
	F1, Combined	0 (12)	12.08(±3.5)
		10 (12)	11.75(±4.09)
		50 (12)	14.33(±6.47)
		100 (12)	13.08(±5.18)
	square water maze: r	-	
	Generation, Sex	<u>Dose(n)</u>	Response
	F1 Canalain ad	0 (12)	(seconds±SE)
	F1, Combined	0 (12)	5.5(±1.83)
		10 (12)	6.92(±2.11)
		50 (12) 100 (12)	8(±2.92)
	tail huna	100 (12)	8.08(±3.45)
	tail hung	Desc(n)	Bospanso /0/)
	Generation, Sex	$\frac{\text{Dose}(n)}{0.64}$	Response (%)
	F1, Combined	0 (64)	89.06
		10 (69)	92.65
		50 (58)	93.1
	tail pinch	100 (58)	70.77*

These draft development materials are for review purposes only and do not constitute Agency policy. Draft: Do Not Cite or Quote 7-10

	Summary of Toxicology Studies for Health Effect Category: Developmental Effects including Neurodevelopmental		
Reference and Dosing Protocol	R	esults by Endpoin	it
	Generation, Sex	<u>Dose(n)</u>	Response (%)
	F1, Combined	0 (64)	100
		10 (69)	100
		50 (58)	100
		100 (58)	98.18
	visual placing		
	Generation, Sex	<u>Dose(n)</u>	<u>Response (%)</u>
	F1, Combined	0 (64)	83.33
		10 (69)	68.85
		50 (58)	84.62
		100 (58)	60.87*

7.1.1 References for Summary of Observational Epidemiology Studies for Health Effect Category: Developmental Effects including Neurodevelopmental

- Aggarwal, M; Wangikar, PB; Sarkar, SN; Rao, GS; Kumar, D; Dwivedi, P; Malik, JK. (2007). Effects of lowlevel arsenic exposure on the developmental toxicity of anilofos in rats. J Appl Toxicol 27: 255-261. http://dx.doi.org/10.1002/jat.1203
- <u>Ahmad, M; Wadaan, MAM; Farooq, M; Daghestani, MH; Sami, AS.</u> (2013). Effectiveness of zinc in modulating perinatal effects of arsenic on the teratological effects in mice offspring. Biol Res 46: 131-138. http://dx.doi.org/10.4067/S0716-97602013000200003</u>
- Gandhi, DN; Panchal, GM; Patel, KG. (2012). Developmental and neurobehavioural toxicity study of arsenic on rats following gestational exposure. Indian J Exp Biol 50: 147-155.
- Markowski, VP; Reeve, EA; Onos, K; Assadollahzadeh, M; McKay, N. (2012). Effects of prenatal exposure to sodium arsenite on motor and food-motivated behaviors from birth to adulthood in C57BL6/J mice. Neurotoxicol Teratol 34: 221-231. http://dx.doi.org/10.1016/j.ntt.2012.01.001
- Martinez-Finley, EJ; Ali, AMS; Allan, AM. (2009). Learning deficits in C57BL/6J mice following perinatal arsenic exposure: Consequence of lower corticosterone receptor levels. Pharmacol Biochem Behav 94: 271-277. <u>http://dx.doi.org/10.1016/j.pbb.2009.09.006</u>
- Martinez, EJ; Kolb, BL; Bell, A; Savage, DD; Allan, AM. (2008). Moderate perinatal arsenic exposure alters neuroendocrine markers associated with depression and increases depressive-like behaviors in adult mouse offspring. Neurotoxicology 29: 647-655. http://dx.doi.org/10.1016/j.neuro.2008.05.004
- Ramsey, KA; Larcombe, AN; Sly, PD; Zosky, GR. (2013). In utero exposure to low dose arsenic via drinking water impairs early life lung mechanics in mice. Pharmacol Toxicol 14: 13. <u>http://dx.doi.org/10.1186/2050-6511-14-13</u>
- Rodríguez, VM; Carrizales, L; Mendoza, MS; Fajardo, OR; Giordano, M. (2002). Effects of sodium arsenite exposure on development and behavior in the rat. Neurotoxicol Teratol 24: 743-750. http://dx.doi.org/10.1016/S0892-0362(02)00313-6
- Xi, S; Sun, W; Wang, F; Jin, Y; Sun, G. (2009). Transplacental and early life exposure to inorganic arsenic affected development and behavior in offspring rats. Arch Toxicol 83: 549-556. http://dx.doi.org/10.1007/s00204-009-0403-5

These draft development materials are for review purposes only and do not constitute Agency policy.April 20147-11Draft: Do Not Cite or Quote

7.2 Summary of Observational Animal Studies for Health **Effect Category: Immune System and Lymphatic Effects**

Summary of Toxicology Studies for Health E	ffect Category: Imm	une System and Lyr	nphatic Effects
Reference and Dosing Protocol	Results by Endpoint		
(Das et al., 2012b)	lymphocyte stimu		
Dosing Design: chronic (>90 days)	Sex	Dose(n)	Response
Chemical: sodium arsenite - NaAsO2			(unitless±SE)
Species and Strain: goat, not reported	Female	0 (6)	1.286(±0.03)
Route of Exposure: oral - capsule		50 (6)	1.003(±0.01)*
Administered Doses: female (6/group): 0, 50	significantly lower	SI from 270 days or	nward
mg/kg	plasma total Ig co	ncentration	
Dosing Description: administered daily for 1 year	Sex	Dose(n)	Response
			(mg/mL±SE)
	Female	0 (6)	22.28(±0.83)
		50 (6)	17.61(±0.78)*
	significantly increa	ased total Ig at 4 mo	nths; significant
	declining trend at	9-12 months	
(Kozul et al., 2009)	altered cellular nu	umbers in BALF	
Dosing Design: subchronic (30 days to <90 days)	<u>Sex</u>		
Chemical: sodium arsenite - NaAsO2	Male		
Species and Strain: mice, C57BL/6J	at day 7 post-infec	ction, 100-ppb arsen	ic-exposed mice had
Route of Exposure: oral - water	significant increas	e in number of cells,	neutrophils, and
Administered Doses: male (NR): 0, 100 ppb	macrophages in BALF (p <0.001; Figure 4A)		
Dosing Description: animals (6-8/group) treated	dendritic cells mig	gration capacity	
for 5 weeks followed by intranasal inoculation	<u>Sex</u>		
with sublethal dose of influenza virus	Male		
	significant decreas	ificant decrease for mice exposed at 100 ppb in	
		ty toward ADP in tra	inswell assay (p
	<0.001; Figure 7D)		
	total dendritic cells recovered in mediastinal lymph nodes		
	<u>Sex</u>		
	Male		
			n mediastinal lymph
		exposed mice early	
		ost-infection) (p <0.0)1; Figure 7A)
	viral titers		
	<u>Sex</u>		
	Male		
		at 100 ppb significan	
		st-infection (p < 0.05)	; Figure 2)
(Nain and Smits, 2012)	antibody-mediate	<u> </u>	
Dosing Design: chronic (>90 days)	<u>Sex</u>	<u>Dose(n)</u>	Response
Chemical: arsenite - As(OH)3		a (a)	<u>(μg/mL±SE)</u>
Species and Strain: rat, Wistar	Male	0 (6)	981(±144.7)
Route of Exposure: oral - water		0.4 (6)	
Administered Doses: male (6/group): 0, 0.4, 4, 40		4 (6)	625(±104.6)*
ppm		40 (6)	396(±123.4)*

These draft development materials are for review purposes only and do not constitute Agency policy. 7-12 Draft: Do Not Cite or Quote

Summary of Toxicology Studies for Health E	inect Category: Imm		-
Reference and Dosing Protocol		Results by Endpo	int
Dosing Description: ad libitum for 18 weeks	antibody-mediate		
	<u>Sex</u>	<u>Dose(n)</u>	Response
			<u>(μg/mL±SE)</u>
	Male	0 (6)	140(±5.9)
		0.4 (6)	-
		4 (6)	122(±13.8)
		40 (6)	130(±25.2)
	chemiluminescent	ce	
	<u>Sex</u>	Dose(n)	<u>Response</u>
			(absorbance±SE)
	Male	0 (6)	2853(±39.4)
		0.4 (6)	-
		4 (6)	3756(±413.9)
		40 (6)	3275(±37.5)
(Ramsey et al., 2013b)	BALF: total cells, n	. ,	. ,
Dosing Design: reproductive/developmental	lymphocytes	,	
Chemical: sodium arsenite - NaAsO2	Generation, Sex		
Species and Strain: mice, C57BL/6	F1, Combined		
Route of Exposure: oral - water		f arsenic exposure	at 3 days but not at
Administered Doses: F1, combined (NR): 0, 100	-		otal cells and number
μg/L	of macrophages in	•	
Dosing Description: dams exposed GD8 through			inpound-related
weaning; offspring exposed until PND49	effects for BALF pa		
wearing; onspring exposed until PND49	IL-6, IFN-gamma, TNF-alpha, MCP-1, protein, viral titer		
	Generation, Sex		
	F1, Combined no statistically significant effect observed on viral titer at		
		lificant effect obse	rved on viral titer at
	100 μg/L		
(Ramsey et al., 2013b)	BALF: total cells, n	eutrophils, macro	phages, and
Dosing Design: reproductive/developmental	lymphocytes		
Chemical: sodium arsenite - NaAsO2	Generation, Sex		
Species and Strain: mice, C57BL/6	F1, Combined		
Route of Exposure: oral - water	significant effect of arsenic in flu-infected animals for total		
Administered Doses: F1, combined (NR): 0, 100	cells in BALF and m	nacrophages at 3 d	ays post infection;
μg/L	significant interact	ion between arsen	ic exposure and flu
Dosing Description: dams exposed GD8 through	treatment for tota	l cells at 7 days pos	st infection and for
weaning; offspring (infected with influenza at 1	neutrophils at 7 da	iys post infection	
week) exposed until PND49	IL-6, IFN-gamma, 1	[NF-alpha, MCP-1,	protein, viral titer
	Generation, Sex	-	
	F1, Combined		
	significant effect o	f arsenic exposure	in flu-infected
	animals for viral tit		
(Sankar et al., 2013)	delayed-type hype		
Dosing Design: subchronic (30 days to <90 days)	skin thickness)		
Chemical: sodium arsenite - NaAsO2	Generation, Sex	Dose(n)	Response (%±SE)
Species and Strain: rat, Wistar	Male		45(±3.41)
-	ividle	0 (6)	• •
Route of Exposure: oral - water		25 (6)	24.17(±3.27)*
Administered Doses: male (6/group): 0, 25 ppm	secondary antiboo		_
Dosing Description: ad libitum for 42 days	Generation, Sex	Dose(n)	Response
	Male	0 (6)	0.731(±0.02)
	1	25 (6)	0.498(±0.01)*

These draft development materials are for review purposes only and do not constitute Agency policy.April 20147-13Draft: Do Not Cite or Quote

Summary of Toxicology Studies for Health Effect Category: Immune System and Lymphatic Effects			nphatic Effects
Reference and Dosing Protocol	Results by Endpoint		
	T cell stimulation in	dex	
	Generation, Sex	Dose(n)	Response
			<u>(unitless±SE)</u>
	Male	0 (6)	0.559(±0.04)
		25 (6)	0.327(±0.03)*
	significantly decreas		
	proliferation as evide	enced by decrease	ed stimulation index
(<u>Stępnik et al., 2009</u>)	malignant lymphom	a	
Dosing Design: chronic (>90 days)	<u>Sex</u>	<u>Dose(n)</u>	<u>Response</u>
Chemical: sodium arsenate - Na2HAsO4			<u>(incidence)</u>
Species and Strain: mice, C57BL/6J/Han	Female	0 (83)	6/83
Route of Exposure: oral - water		50 (90)	10/90
Administered Doses: female (100/group): 0, 50,		200 (85)	13/85
200, 500 μg/L		500 (90)	22/90*
Dosing Description: animals on normal selenium	malignant lymphom		
diet (low-selenium diet also evaluated) dosed	dependent increase		lts similar for
daily for 24 months	animals fed a low-se		
	thymus, lymph node	e, spleen	
	Sex		
	Female		
	no significant associa		
	exposure (up to 500	µg/L) or selenium	status
(<u>Waalkes et al., 2006b</u>)	lymphoma		<u> </u>
Dosing Design: reproductive/developmental	Generation, Sex	<u>Dose(n)</u>	Response
Chemical: sodium arsenite - NaAsO2	F1 Famala	0 (22)	(incidence)
Species and Strain: mice, CD-1	F1, Female	0 (33)	10/33
Route of Exposure: oral - water Administered Doses: F1, female (35/group): 0, 85		85 (34)	2/34*
ppm			
Dosing Description: P0 dams exposed daily GD8			
through GD18			

7.2.1 References for Summary of Observational Epidemiology Studies for Health Effect Category: : Immune System and Lymphatic Effects

Das, TK; Mani, V; Kaur, H; Kewalramani, N; De, S; Hossain, A; Banerjee, D; Datta, BK. (2012). Effect of vitamin E supplementation on arsenic induced oxidative stress in goats. Bull Environ Contam Toxicol 89: 61-66. <u>http://dx.doi.org/10.1007/s00128-012-0620-0</u>

Kozul, CD; Ely, KH; Enelow, RI; Hamilton, JW. (2009). Low dose arsenic compromises the immune response to influenza A infection in vivo. Environ Health Perspect 117: 1441-1447. http://dx.doi.org/10.1289/ehp.0900911

Nain, S; Smits, JE. (2012). Pathological, immunological and biochemical markers of subchronic arsenic toxicity in rats. Environ Toxicol 27: 244-254. <u>http://dx.doi.org/10.1002/tox.20635</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 20147-14Draft: Do Not Cite or Quote

- Ramsey, KA; Foong, RE; Sly, PD; Larcombe, AN; Zosky, GR. (2013). Early life arsenic exposure and acute and long-term responses to influenza a infection in mice. Environ Health Perspect 121: 1187-1193. http://dx.doi.org/10.1289/ehp.1306748
- Sankar, P; Telang, AG; Suresh, S; Kesavan, M; Kannan, K; Kalaivanan, R; Sarkar, SN. (2013). Immunomodulatory effects of nanocurcumin in arsenic-exposed rats. Int Immunopharmacol 17: 6570. http://dx.doi.org/10.1016/j.intimp.2013.05.019
- Stępnik, M; Stetkiewicz, J; Krajnow, A; Domeradzka, K; Gradecka-Meesters, D; Arkusz, J; Stańczyk, M; Palus, J; Dziubałtowska, E; Sobala, W; Gromadzinska, J; Wasowicz, W; Rydzynski, K. (2009). Carcinogenic effect of arsenate in C57BL/6J/Han mice and its modulation by different dietary selenium status. Ecotoxicol Environ Saf 72: 2143-2152. <u>http://dx.doi.org/10.1016/j.ecoenv.2009.06.005</u>
- Waalkes, MP; Liu, J; Ward, JM; Powell, DA; Diwan, BA. (2006). Urogenital carcinogenesis in female CD1 mice induced by in utero arsenic exposure is exacerbated by postnatal diethylstilbestrol treatment. Cancer Res 66: 1337-1345. <u>http://dx.doi.org/10.1158/0008-5472.CAN-05-3530</u>

7.3 Summary of Observational Animal Studies for Health **Effect Category: Liver Effects**

Summary of Toxicology Studies	s for Health Effect Cate	egory: Liver Effects	5
Reference and Dosing Protocol	Results by Endpoint		t
(Nain and Smits, 2012)	liver histopathology	(degree of vacuol	ization)
Dosing Design: chronic (>90 days)	Sex	Dose(n)	Response
Chemical: arsenite - As(OH)3			(grade±SE)
Species and Strain: rat, Wistar	Male	0 (6)	1.7(±0.21)
Route of Exposure: oral - water		0.4 (6)	2(±0.58)*
Administered Doses: male (6/group): 0, 0.4, 4, 40		4 (6)	2.8(±0.17)*
ppm		40 (6)	3.2(±0.31)*
Dosing Description: ad libitum for 18 weeks			()
(<u>Stepnik et al., 2009</u>)	liver adenoma or ha	emangioma	
Dosing Design: chronic (>90 days)	Sex	Dose(n)	Response
Chemical: sodium arsenate - Na2HAsO4			(incidence)
Species and Strain: mice, C57BL/6J/Han	Female	0 (83)	0/83
Route of Exposure: oral - water		50 (90)	2/90
Administered Doses: female (100/group): 0, 50,		200 (85)	1/85
200, 500 μg/L		500 (90)	3/90
Dosing Description: animals on normal selenium	liver focal nodular h	. ,	
diet (low-selenium diet also evaluated) dosed	Sex	Dose(n)	Response
daily for 24 months		<u></u>	(incidence)
	Female	0 (83)	7/83
		50 (90)	5/90
		200 (85)	6/85
		500 (90)	6/90
	not significant in nor	• •	
	group, significant inc	-	-
	50 μg/L		<i>/</i> / /
(<u>Tokar et al., 2011</u>)	liver adenoma		
Dosing Design: reproductive/developmental	Generation, Sex	Dose(n)	Response
Chemical: sodium arsenite - NaAsO2		<u>_</u>	(incidence)
Species and Strain: mice, CD-1	F1, Female	0 (29)	1/29
Route of Exposure: oral - water	,	6 (29)	1/29
Administered Doses: F1, female (30/group): 0, 6,		12 (28)	2/28
12, 24 ppm; F1, male (30/group): 0, 6, 12, 24 ppm		24 (28)	1/28
Dosing Description: P0 breeding pairs exposed	Generation, Sex	Dose(n)	Response
daily 2 weeks prior to breeding; dams continued		<u>2000()</u>	(incidence)
exposure through gestation and lactation and F1	F1, Male	0 (29)	2/29
offspring continued on treatment until 2 years of	,	6 (29)	3/29
age		12 (28)	3/28
		24 (28)	6/28
	not significant	(_0)	0,20
	liver carcinoma	Dose(n)	Response
		<u>Dose(n)</u>	<u>Response</u> (incidence)
	liver carcinoma Generation, Sex		<u>(incidence)</u>
	liver carcinoma	0 (29)	<u>(incidence)</u> 0/29
	liver carcinoma Generation, Sex	0 (29) 6 (29)	<u>(incidence)</u> 0/29 2/29
	liver carcinoma Generation, Sex	0 (29)	<u>(incidence)</u> 0/29

These draft development materials are for review purposes only and do not constitute Agency policy. 7-16

Summary of Toxicology Studies	s for Health Effect Cate	gory: Liver Effects	5
Reference and Dosing Protocol	Re	esults by Endpoin	t
	Generation, Sex	Dose(n)	<u>Response</u>
			<u>(incidence)</u>
	F1, Male	0 (29)	0/29
		6 (29)	4/29
		12 (28)	6/28*
		24 (28)	6/28*
	liver total adenoma a	ind carcinoma	
	Generation, Sex	Dose(n)	<u>Response</u>
			(incidence)
	F1, Female	0 (29)	1/29
	,	6 (29)	3/29
		12 (28)	4/28
		24 (28)	6/28*
	Generation, Sex	Dose(n)	Response
		<u>- 2001.11</u>	(incidence)
	F1, Male	0 (29)	2/29
		6 (29)	6/29
		12 (28)	7/28
		24 (28)	10/28*
(Tokar et al., 2012)	hepatic adenoma	(-)	- / -
Dosing Design: reproductive/developmental	Generation, Sex	Dose(n)	Response
Chemical: sodium arsenite - NaAsO2	<i>,</i>	<u> </u>	(incidence)
Species and Strain: mice, CD-1	F1, Male	0 (49)	5/49
Route of Exposure: oral - water	,	85 (45)	5/45
Administered Doses: F1, male (50/group): 0, 85	not significant	(-)	-, -
ppm	hepatic total tumors		
Dosing Description: P0 dams exposed daily from	Generation, Sex	Dose(n)	Response
GD8 through GD18		<u> </u>	(incidence)
	F1, Male	0 (49)	8/49
		85 (45)	14/45
	not significant; arseni		•
	compared with contro		
	hepatocellular carcin		70 - 17
	Generation, Sex	Dose(n)	Response
		<u> </u>	(incidence)
	F1, Male	0 (49)	3/49
	,	85 (45)	9/45*
	also significantly incre		
	group compared with		
		,	
	groups		
(Waalkes et al., 2004b)	hepatocellular adeno	ma	
(<u>Waalkes et al., 2004b</u>) Dosing Design: reproductive/developmental	hepatocellular adeno	ma Dose(n)	Response
			<u>Response</u> (incidence)
Dosing Design: reproductive/developmental	hepatocellular adeno Generation, Sex	<u>Dose(n)</u>	
Dosing Design: reproductive/developmental Chemical: sodium arsenite - NaAsO2	hepatocellular adeno	<u>Dose(n)</u> 0 (24)	<u>(incidence)</u> 2/24
Dosing Design: reproductive/developmental Chemical: sodium arsenite - NaAsO2 Species and Strain: mice, C3H	hepatocellular adeno Generation, Sex	<u>Dose(n)</u> 0 (24) 42.5 (23)	<u>(incidence)</u> 2/24 3/23
Dosing Design: reproductive/developmental Chemical: sodium arsenite - NaAsO2 Species and Strain: mice, C3H Route of Exposure: oral - water	hepatocellular adeno Generation, Sex F1, Female	<u>Dose(n)</u> 0 (24) 42.5 (23) 85 (21)	<u>(incidence)</u> 2/24 3/23 3/21
Dosing Design: reproductive/developmental Chemical: sodium arsenite - NaAsO2 Species and Strain: mice, C3H Route of Exposure: oral - water Administered Doses: F1, female (25/group): 0, 42.5, 85 ppm; F1, male (25/group): 0, 42.5, 85	hepatocellular adeno Generation, Sex F1, Female not significant; similar	<u>Dose(n)</u> 0 (24) 42.5 (23) 85 (21) r results in animal	(incidence) 2/24 3/23 3/21 Is treated with TPA
Dosing Design: reproductive/developmental Chemical: sodium arsenite - NaAsO2 Species and Strain: mice, C3H Route of Exposure: oral - water Administered Doses: F1, female (25/group): 0,	hepatocellular adeno Generation, Sex F1, Female	<u>Dose(n)</u> 0 (24) 42.5 (23) 85 (21)	<u>(incidence)</u> 2/24 3/23 3/21

These draft development materials are for review purposes only and do not constitute Agency policy.April 20147-17Draft: Do Not Cite or Quote

Summary of Toxicology Studi			
Reference and Dosing Protocol	R	esults by Endpoi	
		42.5 (23)	12/23
		85 (21)	19/21*
	significant at 85 ppm with TPA	; results similar fo	or animals treated
	hepatocellular carcin	oma	
	Generation, Sex	Dose(n)	Response
		<u></u>	(incidence)
	F1, Female	0 (24)	1/24
	,	42.5 (23)	3/23
		85 (21)	1/21
	not significant; simila		
	Generation, Sex	Dose(n)	Response
			(incidence)
	F1, Male	0 (24)	3/24
		42.5 (23)	8/23
		85 (21)	10/21*
	significant at 85 ppm	; results similar fo	
	with TPA		
	hepatocellular tumo	rs: multiplicity	
	<u>Generation, Sex</u>	<u>Dose(n)</u>	<u>Response</u> (no./animal±SE)
	F1, Female	0 (24)	0.13(±0.07)
		42.5 (23)	0.41(±0.16)
		85 (21)	0.29(±0.14)
	not significant; in ani increase in multiplicit		TPA, significant
	Generation, Sex	Dose(n)	<u>Response</u> (no./animal±SE)
	F1, Male	0 (24)	0.75(±0.16)
		42.5 (23)	1.87(±0.45)*
		85 (21)	2.14(±0.27)*
	significant increase at		ults similar for
	animals treated with		
	hepatocellular tumo		Posponso
	Generation, Sex	<u>Dose(n)</u>	<u>Response</u> (incidence)
	F1, Female	0 (24)	<u>(incidence)</u> 3/24
	TI, Feindle	42.5 (23)	6/23
		42.3 (23) 85 (21)	4/21
	not significant; in ani		
	increase in total tumo		-
	Generation, Sex	Dose(n)	Response
			<u>(incidence)</u>
	F1, Male	0 (24)	12/24
		42.5 (23)	14/23
		85 (21)	19/21*
	significant increase at treated with TPA	t 85 ppm; results	similar for animals
(Waalkes et al., 2006a)	liver adenoma		

These draft development materials are for review purposes only and do not constitute Agency policy. Draft: Do Not Cite or Quote 7-18

Summary of Toxicology Studies	s for Health Effect Cate	gory: Liver Effects	5
Reference and Dosing Protocol		esults by Endpoin	
Chemical: sodium arsenite - NaAsO2			(incidence)
Species and Strain: mice, CD-1	F1, Male	0 (35)	2/35
Route of Exposure: oral - water	(1) Marc	85 (35)	8/35*
Administered Doses: F1, male (35/group): 0, 85	liver carcinoma	03 (33)	0,00
ppm		Deco(n)	Dechance
Dosing Description: P0 dams exposed daily from	Generation, Sex	<u>Dose(n)</u>	<u>Response</u> (incidence)
GD8 through GD18	E1 Mala	0 (35)	0/35
	F1, Male		5/35*
	liver total turners	85 (35)	5/55
	liver total tumors	Deco(n)	Dechange
	Generation, Sex	<u>Dose(n)</u>	<u>Response</u>
		0 (25)	(incidence)
	F1, Male	0 (35)	2/35
		85 (35)	11/35*
(<u>Waalkes et al., 2006b</u>)	liver: total mesenchy		
Dosing Design: reproductive/developmental	Generation, Sex	<u>Dose(n)</u>	<u>Response</u>
Chemical: sodium arsenite - NaAsO2		0 (22)	(incidence)
Species and Strain: mice, CD-1	F1, Female	0 (33)	0/33
Route of Exposure: oral - water		85 (34)	4/34
Administered Doses: F1, female (35/group): 0, 85			
ppm			
Dosing Description: P0 dams exposed daily GD8 through GD18			
(Waalkes et al., 2003)	liver adenoma		
Dosing Design: reproductive/developmental	Generation, Sex	Dose(n)	Response
Chemical: sodium arsenite - NaAsO2			<u>(incidence)</u>
Species and Strain: mice, C3H	F1, Male	0 (24)	7/24
Route of Exposure: oral - water		42.5 (21)	3/21
Administered Doses: F1, female (23-25/group): 0,		85 (23)	6/23
42.5, 85 ppm; F1, male (21-24/group): 0, 42.5, 85	adenoma and carcino		
ppm	resulting in a significa	-	
Dosing Description: P0 dams exposed daily from	adenoma incidence (-
GD8 through GD18	liver adenoma multip	olicity (tumors/m	ouse)
	Generation, Sex	<u>Dose(n)</u>	<u>Response</u>
			<u>(#/mouse±SE)</u>
	F1, Male	0 (24)	0.71(±0.22)
		42.5 (21)	1.43(±0.49)
		85 (23)	3.61(±0.78)*
	liver carcinoma		
	Generation, Sex	<u>Dose(n)</u>	Response
			<u>(incidence)</u>
	F1, Male	0 (24)	3/24
		42.5 (21)	8/21*
		85 (23)	14/23*
	liver carcinoma mult	iplicity (tumors/n	nouse)
	Generation, Sex	<u>Dose(n)</u>	<u>Response</u> (#/mouse±SE)
	F1, Male	0 (24)	0.13(±0.07)
		42.5 (21)	0.42(±0.13)
		85 (23)	1.3(±0.28)*
	liver histological ana		
		-	

These draft development materials are for review purposes only and do not constitute Agency policy.

Summary of Toxicology Studie	s for Health Effect Cate	gory: Liver Effects	5
Reference and Dosing Protocol	R	esults by Endpoin	t
	Generation, Sex	<u>Dose(n)</u>	Response
			<u>(incidence)</u>
	F1, Female	0 (25)	5/25
		42.5 (23)	3/23
		85 (24)	3/24
	liver tumor incidence	and multiplicity u	inaltered by arsenic
	exposure		
	liver histological ana	lysis: carcinoma	
	Generation, Sex	<u>Dose(n)</u>	<u>Response</u>
			<u>(incidence)</u>
	F1, Female	0 (25)	0/25
		42.5 (23)	1/23
		85 (24)	1/24
	liver tumor incidence	and multiplicity u	inaltered by arsenic
	exposure		
	liver total tumor mu		mouse)
	Generation, Sex	<u>Dose(n)</u>	Response
			<u>(#/mouse±SE)</u>
	F1, Male	0 (24)	0.87(±0.25)
		42.5 (21)	1.81(±0.54)
		85 (23)	4.91(±0.92)*
	liver total tumors		
	Generation, Sex	<u>Dose(n)</u>	<u>Response</u>
			<u>(incidence)</u>
	F1, Male	0 (24)	10/24
		42.5 (21)	11/21
		85 (23)	20/23*

7.3.1 References for Summary of Observational Epidemiology Studies for Health Effect Category: Liver Effects

- Nain, S; Smits, JE. (2012). Pathological, immunological and biochemical markers of subchronic arsenic toxicity in rats. Environ Toxicol 27: 244-254. <u>http://dx.doi.org/10.1002/tox.20635</u>
- Stępnik, M; Stetkiewicz, J; Krajnow, A; Domeradzka, K; Gradecka-Meesters, D; Arkusz, J; Stańczyk, M; Palus, J; Dziubałtowska, E; Sobala, W; Gromadzinska, J; Wasowicz, W; Rydzynski, K. (2009). Carcinogenic effect of arsenate in C57BL/6J/Han mice and its modulation by different dietary selenium status. Ecotoxicol Environ Saf 72: 2143-2152. <u>http://dx.doi.org/10.1016/j.ecoenv.2009.06.005</u>
- Tokar, EJ; Diwan, BA; Waalkes, MP. (2012). Renal, hepatic, pulmonary and adrenal tumors induced by prenatal inorganic arsenic followed by dimethylarsinic acid in adulthood in CD1 mice. Toxicol Lett 209: 179-185. http://dx.doi.org/10.1016/j.toxlet.2011.12.016
- Tokar, EJ; Diwan, BA; Ward, JM; Delker, DA; Waalkes, MP. (2011). Carcinogenic effects of "whole-life" exposure to inorganic arsenic in CD1 mice. Toxicol Sci 119: 73-83. <u>http://dx.doi.org/10.1093/toxsci/kfq315</u>

- <u>Waalkes, MP; Liu, J; Ward, JM; Diwan, BA.</u> (2006a). Enhanced urinary bladder and liver carcinogenesis in male CD1 mice exposed to transplacental inorganic arsenic and postnatal diethylstilbestrol or tamoxifen. Toxicol Appl Pharmacol 215: 295-305. <u>http://dx.doi.org/10.1016/j.taap.2006.03.010</u>
- Waalkes, MP; Liu, J; Ward, JM; Powell, DA; Diwan, BA. (2006b). Urogenital carcinogenesis in female CD1 mice induced by in utero arsenic exposure is exacerbated by postnatal diethylstilbestrol treatment. Cancer Res 66: 1337-1345. <u>http://dx.doi.org/10.1158/0008-5472.CAN-05-3530</u>
- <u>Waalkes, MP; Ward, JM; Diwan, BA.</u> (2004). Induction of tumors of the liver, lung, ovary and adrenal in adult mice after brief maternal gestational exposure to inorganic arsenic: Promotional effects of postnatal phorbol ester exposure on hepatic and pulmonary, but not dermal cancers. Carcinogenesis 25: 133-141. http://dx.doi.org/10.1093/carcin/bgg181
- Waalkes, MP; Ward, JM; Liu, J; Diwan, BA. (2003). Transplacental carcinogenicity of inorganic arsenic in the drinking water: Induction of hepatic, ovarian, pulmonary, and adrenal tumors in mice. Toxicol Appl Pharmacol 186: 7-17. http://dx.doi.org/10.1016/S0041-008X(02)00022-4

8 MODE OF ACTION (MOA) LITERATURE SEARCH STRATEGY FOR THE TOXICOLOGICAL REVIEW OF INORGANIC ARSENIC

8.1 Overview of Literature Search Strategy

1	The mode of action literature search strategy began with all references from initial
2	arsenic literature search that were not found in the health effects cluster (see Figure 3.1-
3	1). References from the health effects cluster had already been reviewed and references
4	discussing mode of action identified. The identified mode of action references from the
5	health effect cluster will be considered during evaluation of the mode of action literature.
6	For references not found in the health effects cluster (~24,000), a combination of
7	automated and manual selection process was used to identify relevant mode of action
8	literature. OmniViz reference visualization software was used to form clusters of
9	references using natural language processing. Natural language processing groups
10	references based on language similarity in the title and abstract. To identify references
11	relevant for mode of action, approximately 400 references were used as "seed"
12	references. "Seed" references are those previously identified by experts as relevant to
13	mode of action in peer reviewed inorganic arsenic human health risk assessments.
14	Clusters containing many seed items have a higher probability of relevance to the topics
15	discussed by the references in the seed. Those clusters with a smaller number of seeds
16	have a decreasing probability, and those with none have a low probability of relevance.
17	All the clusters that contain at least one seed reference were reviewed. While this
18	approach does not specifically identify individual references, it does identify groups of
19	references that have a higher probability of relevance.
20	The subset of mode of action clusters will be considered, along with references identified
21	from the original health effects cluster.

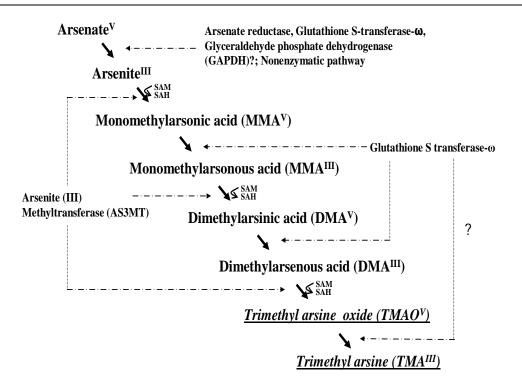
9 INORGANIC ARSENIC MODE OF ACTION (MOA) HYPOTHESIS SUMMARIES

9.1 Preamble

9.1.1 Background

1	The series of tables and summaries that follow provide a foundation for a discussion with
2	stakeholders attending a bimonthly meeting for the Integrated Risk Information System
3	(IRIS). As described in the inorganic assent development plan (ADP), EPA
4	will use an adverse outcome pathway (AOP) framework to inform potential human health
5	effects associated with inorganic arsenic exposures. Information in an AOP framework
6	supports the use of mode of action (MOA) data as a basis for understanding adverse
7	effects (OECD, 2013). AOP and MOA analyses support hazard identification and dose-
8	response analysis decisions and are not in of themselves a requirement for organization of
9	the available health effects information. Each summary and accompanying table below
10	presents one of several hypothesized MOAs that may be relevant to understanding
11	adverse health outcomes following inorganic arsenic exposures in human populations ¹ .
12	EPA defines the term MOA as "a sequence of key events and processes, starting with the
13	interaction of an agent with a cell, proceeding through operational and anatomical
14	changes, and resulting in cancer formation [or other adverse outcomes]" (U.S. EPA,
15	2005). In instances when data are available to establish 1) the initial interaction between
16	an agent and a cell (i.e., molecular initiating event), and 2) an adverse outcome relevant
17	to risk assessment, then a MOA may be similar to an AOP (OECD, 2013; Ankley et al.,
18	2010). In instances when data are not available to establish both of these anchors, then
19	MOA may be used to organize data and identify data gaps. The MOA framework is used
20	consistently throughout these discussion materials in anticipation of subsequently
21	developing AOPs when sufficient data are available.
22	The hypothesized MOAs were selected based on available information from authoritative
23	reports and reviews on inorganic arsenic MOA (Cohen et al., 2013; NRC, 2013; Jomova
24	et al., 2011; Kitchin and Conolly, 2010; Prins, 2008). EPA understands that these MOAs
25	are not exhaustive; discussions during the IRIS bimonthly meeting may help to identify

¹ Efforts to develop summaries and tables for hypothesized MOAs are ongoing; a subset of the MOA discussion materials is available in the current draft.


1	additional MOAs relevant for consideration in understanding adverse health effects of
2	inorganic arsenic, and provide insight on interactions between multiple MOAs that could
3	influence subsequent health effects. This approach anticipates that reviewers of these
4	materials will also identify additional literature to inform evaluations of MOAs relevant
5	to particular health outcomes in the IRIS assessment of inorganic arsenic. The following
6	summaries are not intended to provide a comprehensive presentation of available
7	information, or to present EPA's interpretation of the identified literature; rather these
8	summaries outline information from the identified literature on the main elements (i.e.,
9	molecular initiating events, key events, adverse outcomes) in a set of potentially key
10	MOAs as a foundation for further discussion. As these MOAs are refined, additional
11	documentation will be added based on information provided by reviewers of these
12	materials and the results of EPA's comprehensive literature search. More information on
13	the use of MOA data in the subsequent inorganic arsenic IRIS assessment is available in
14	the ADP.

9.1.2 Considerations relevant across all hypothesized MOAs

- 15 There are a number of cross cutting issues that need to be considered in the evaluation of 16 the various hypothesized MOAs. These include the metabolism of inorganic arsenic, and co-
- 17 toxic and interactive effects.

9.1.2.1 Inorganic arsenic Metabolism

18	The metabolism of inorganic arsenic (Figure 9-1) is relevant to all of the hypothesized
19	MOAs discussed below. However, to reduce redundancy in the presentations, the MOA
20	discussions will begin by identifying the specific metabolites (where known) that interact
21	with specific cellular molecules (where known) in the <i>molecular initiating events</i> for the
22	MOA. Specific metabolic pathways of inorganic arsenic will be discussed for each MOA
23	only to the extent that they are relevant to the evaluation of the MOA, to the explanation
24	or species differences in effects, or in the identification of potentially susceptible
25	populations [IRIS Handbook, Guidelines for carcinogen risk assessment (U.S. EPA,
26	2005), and Inorganic Arsenic ADP].

Source: Modified from Sams et al. (2007).

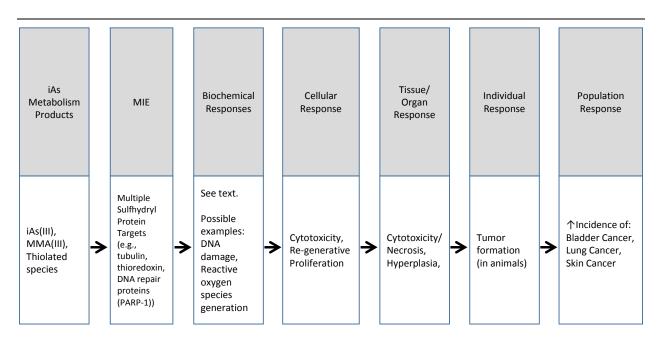
Figure 9-1 Traditional metabolic pathway for inorganic arsenic in humans.

1	The reader may refer to recent reviews (Cohen et al., 2013; Jomova et al., 2011) for more
2	detailed information related to inorganic arsenic metabolism. Key elements of
3	mammalian inorganic arsenic metabolism that bear on internal exposures and dosimetry
4	include the following set of interrelated reactions:
5 6	• Enzymatic or non-biological reductions of pentavalent arsenic species to As(III) and other trivalent metabolites;
7 8	• Oxidative methylation of trivalent species to pentavalent methylarsonic acid (MMA[V]) and dimethylarsinic acid (DMA[V])
9	In rodents and humans, the net result of this "cascade" is to convert the bulk of inorganic
10	arsenic to methylated species through a series of redox reactions. As a result, internal
11	exposures after ingestion of inorganic arsenic tend to consist of mixtures of inorganic
12	arsenic and trivalent methylated species. The exact patterns of internal dose are species-
13	and target-organ specific, and vary based on exposure levels and duration, genetic
14	background. Other minor metabolites (substituted arsines and thiolated metabolites) may

1also be formed under certain conditions, and are postulated to play a role in some aspects2of toxicity (Pinyayev et al., 2011). As noted above, the specifics of metabolic pathways3will be discussed only where investigators identify them as being important aspects of the4MOA. For example, the redox cascade has been implicated in the depletion of cellular5thiol compounds and in the generation of reactive oxygen species; thus, the implications6of these reactions are briefly noted as part of the relevant MOAs.

9.1.2.2 **Co-toxic and interactive effects**

- 7 As noted above, co-toxic and interactive effects between inorganic arsenic and other 8 chemicals or stressors are relevant to many of the MOA summaries that follow. Factors 9 that may generally impact susceptibility to inorganic arsenic exposure are noted here in 10 order to support a discussion on populations that may be at increased risk due to 11 cumulative or synergistic effects of inorganic arsenic and other chemicals or stressors. 12 These factors include: life stage, nutrition, genetics, sex, and pre-existing disease (NRC, 13 2013). In addition, smoking, alcohol consumption, and exposure to mixtures may also 14 increase vulnerability to the effects of inorganic arsenic (NRC, 2013). Inorganic arsenic has also been found to interact with other metals, like cadmium (Huang et al., 2009a), 15 16 and polycylic aromatic hydrocarbons (PAHs) (Fischer et al., 2005; Maier et al., 2002).
- 17 The potential interactions between inorganic arsenic exposure and smoking or other co-18 exposures on individual responses have been assessed in epidemiological studies (Table 19 in Section 10.6). The synergistic interaction between smoking and inorganic arsenic has 20 been found to be greater than additive for skin lesions observed in Bangladesh (Chen et 21 al., 2006a). An interaction between smoking and bladder cancer was also observed in 22 New Hampshire (Karagas et al., 2004). In addition, synergistic effects between fertilizer 23 use and inorganic arsenic exposure in well water were observed for skin lesions in 24 Bangladeshi men participating in the Health Effects of Arsenic Longitudinal Study 25 (HEALS) reported (Melkonian et al., 2011). The HEALS study results further suggested 26 that men in this cohort, exposed to the same level of inorganic arsenic, with a history of 27 smoking and high fertilizer use may be more susceptible to skin lesions than those with 28 no smoking history or fertilizer use. Diets low in folate and other B vitamins have also 29 been associated with increased risks of skin lesions and hypertension (Pilsner et al., 2009; 30 Chen et al., 2007b; Mitra et al., 2004).
- 31As the assessment development process moves forward, a more systematic approach to32integrating information on factors that may have co-toxic and interactive effects with


1 2 inorganic arsenic will be undertaken. Input on this topic from stakeholders attending the IRIS bimonthly meeting would thus useful for EPA.

9.2 Hypothesized MOA: Cytotoxicity and Regenerative Proliferation

3 Relevant Health Effects: Bladder cancer, lung cancer, skin cancer

4	Cohen et al. (2013) have argued that the carcinogenic action of inorganic arsenic in the
5	bladder is due to a mode of action (MOA) that includes cytotoxicity to urothelial cells
6	followed by regenerative proliferation leading eventually to urothelial carcinoma. Cohen
7	et al. (2013) have further argued that this MOA may also apply to lung and skin cancers.
8	Prior to the molecular initiating events in this MOA, it is assumed that inorganic arsenic
9	will be transformed into active metabolites (see Preamble). Under this MOA, exposure of
10	sensitive tissue to the most toxic arsenic species, As(III) and MMA(III), and possibly
11	thiolated species, results in the following sequence of events (Figure 9-2):
12	• Reaction with sulfhydryl groups of specific proteins in the target tissue,
13	• Cytotoxicity caused by the reactive metabolites,
14	• Regenerative proliferation (including hyperplasia) in tissues (e.g., urothelium), and
15	• Development of tumors (<u>Cohen et al., 2013</u>)
16	Cohen et al. (2013) propose that, following ingestion and metabolism of relatively large
17	amounts of inorganic arsenic, the molecular initiating event (MIE) under this MOA is
18	the reaction of arsenic species with protein thiol groups in epithelial cells. A number
19	of specific protein thiol targets have been identified, mostly by in vitro studies, including
20	tubulin, keratin, estrogen receptor- α (ER α), thioredoxin reductase, DNA repair associated
21	proteins including PARP-1, XPA, and XPD. In vitro studies with synthetic peptides also
22	indicate that inorganic arsenic species can react specifically with zinc finger motifs in
23	transcription factors and regulatory proteins (Wnek et al., 2011; Kitchin and Wallace,
24	2008; Qin et al., 2008; Kitchin and Wallace, 2005). The specific protein interactions
25	responsible for the observed cytotoxicity and subsequent proliferation have not been
26	identified, however (Cohen et al., 2013). Variations between species and tissue types in
27	the reactivity of different arsenic species with specific proteins could influence
28	subsequent biochemical responses; as noted above, this mode of action has been
29	investigated primarily in urothelial tissues but Cohen et al. (2013) suggest that it may also
30	apply to lung and skin cancers based on their evaluation of available in vitro, in vivo
31	animal and epidemiology data. As such, differences related to arsenic species and tissue

1 2 may be factors of interest to consider in future research on this MOA in these or other tissues according to (Cohen et al., 2013).

Abbreviations: Inorganic arsenic (iAs); Molecular Initiating Event (MIE); monomethylarsenous (MMA[III]); Poly [ADP-ribose] polymerase 1 (PARP-1)

See Summary Text and Table for references; Figure based on Ankley et al. (2010).

Note: This Figure shows an overview of key events from the initial molecular interaction of arsenic species with sulfhydryl protein targets through a possible population level response. As the assessment development process moves forward additional evidence may provide better understanding of key events in the MOA and the level of evidence available to support connections between key events.

Figure 9-2 Hypothesized mode of action for cytotoxicity and regenerative proliferation.

3	As usually formulated by Cohen et al. (2013), the regenerative proliferation MOA is
4	silent with regard to the <i>biochemical responses</i> (i.e., molecular or genetic mechanisms)
5	underlying the progression from MIE to cytotoxicity and subsequent proliferation to
6	carcinogenic transformation. While some studies suggest that the molecular or genetic
7	mechanisms in this MOA may include DNA strand breaks, altered transcription factor or
8	growth factor activity, and generation of reactive oxygen species (ROS) (Wnek et al.,
9	2011; Wnek et al., 2009; Eblin et al., 2008; Eblin et al., 2006; Simeonova et al., 2002;
10	Simeonova et al., 2000), other evidence from a short-term study suggests that mitigating
11	oxidative stress does not prevent regenerative proliferation, which implies that ROS is
12	not a necessary step in the MOA (Suzuki et al., 2009). Additional studies were not

identified to further support or refute other possible biochemical responses; however, Cohen et al. (2013) suggest that understanding underlying biochemical mechanisms (e.g., oxidative stress, epigenetic effects on DNA and histones), and the direct interaction of arsenic species with cellular signaling pathways is of limited relevance because the doseresponse for the key *cellular responses* (cytotoxicity and proliferation) have been so well established.

1

2

3

4

5

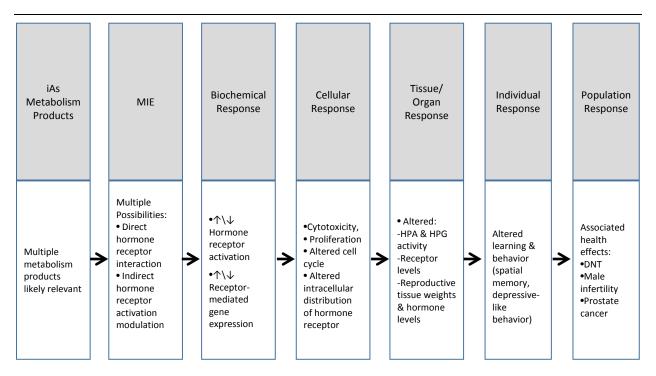
6

- 7 The first proposed key cellular response that Cohen et al. (2013) identify in this MOA is 8 epithelial cell cytotoxicity. Evidence of cytotoxicity comes from a wide range of *in vitro* 9 and in vivo studies. In vitro, the cytotoxicity of arsenic species (i.e., arsenite, MMA(III), 10 DMA(III), and thiol derivatives) has been demonstrated in a number of primary and 11 immortalized mammalian cell lines (Table in Section 10.1) (Suzuki et al., 2010; Eblin et 12 al., 2008; Bredfeldt et al., 2006; Sens et al., 2004; Drobna et al., 2003; Cohen, 2002; 13 Styblo et al., 2000). Cytotoxicity, as measured by LC_{50} or IC_{50} , varies greatly depending 14 on the arsenic species being evaluated and the cell lines employed. In vitro acute 15 cytotoxicity is greatest for the trivalent species (LC/IC50 values in the range of 16 approximately 1-20 µM for As[III], MMA[III], DMA[III]) and lower for the pentavalent 17 analogues (LC/IC₅₀s on the order of $30-1500 \mu$ M). Acute cytotoxicity of trivalent arsenic 18 appears similar in primary cell lines and immortalized (UROTSA) cells. Limited data on 19 the thiol analogues such as DMMAT(V) suggest that its acute toxicity is similar to the 20 trivalent arsenicals (LC₅₀ = $1.4-5.5 \mu$ M in urothelial and bronchioepithelial cells, 21 respectively).
- 22 Cytotoxicity and cellular necrosis has also been observed at the organ or tissue level in 23 vivo in a number of studies where rats and mice were exposed to inorganic arsenic in diet 24 and drinking water (Table in Section 10.1) (Arnold et al., 2013; Yokohira et al., 2011; 25 Suzuki et al., 2010; Yokohira et al., 2010; Suzuki et al., 2008). Data suggest that female 26 rats are more sensitive to cytotoxic effects of inorganic arsenic than male rats or either 27 sex in mice (Suzuki et al., 2008). Exposure via drinking also appears to elicit greater 28 effects on the bladder compared to dietary exposure in rats and mice (Suzuki et al., 2008). 29 Evidence also indicates that cytotoxicity in As3mt knockout mice was generally similar 30 to those seen in the wild type and occurred at similar exposure levels as for As(III); 31 suggesting that methylation was not necessarily a key step in acute cytotoxicity, and that 32 unmethylated As(III) therefore likely played a role in the observed cytotoxic effects 33 (Yokohira et al., 2011, 2010). In vitro studies of different cell lines also support a lack of 34 correlation between arsenic methylation capacity and cytotoxicity (Styblo et al., 2000). 35 Finally, a 14-day study in F344 rats and WT and As3mt knockout C57BL/6 mice found 36 increasing incidence of elevated cytotoxicity scores in the urothelium over time (Arnold

These draft development materials are for review purposes only and do not constitute Agency policy.April 20149-7Draft: Do Not Cite or Quote

- 1 et al., 2013). In rats, one animal showed isolated foci of cytotoxicity in the urothelium 2 after only six hours of exposure, while larger numbers of rats (seven of ten) showed 3 elevated cytotoxicity scores by the end of the experiment (14 days). Cytotoxicity scores 4 were also elevated in both the wild type and As3mt knockout mice beginning at 5 approximately 3 days of exposures. 6 Cohen et al. (2013) propose that the next key event in this MOA is increased cellular 7 (regenerative) proliferation at the organ or tissue level, which was observed in several 8 of the cytotoxicity studies just discussed (Table in Section 10.1). Simeonova et al. (2000) 9 observed urothelial hyperplasia and metaplasia in female C57BL/6 mice exposed to 10 0.01% sodium arsenite in drinking water for four weeks or longer. Hyperplasia was 11 accompanied by a "cobblestone" appearance of the urothelium, but not by necrotic 12 cytotoxicity. Simeonova et al. (2000) subsequently observed urothelial hyperplasia and 13 occasional squamous metaplasia in mice exposed to 50 and 100 µg/L As(III) for eight 14 weeks. Suzuki et al. (2008), reported simple urothelial hyperplasia occurring roughly in 15 parallel with increased cytotoxicity scores in rats and mice exposed to arsenite in food at 16 50-400 ppm or drinking water at 100 ppm for up to ten weeks. Subsequent studies with 17 female rats confirmed a dose-dependent increase in cytotoxicity and urothelial 18 hyperplasia following dietary exposures of 50 or 100 ppm for approximately 3-5 weeks 19 (Suzuki et al., 2010; Suzuki et al., 2009). Yokohira et al. (2010) also observed both 20 urothelial cytotoxicity and hyperplasia in C57BL/6 mice after as few as six days of 21 exposure to 150 ppm arsenite in diet or four weeks exposure to 25 ppm arsenite in 22 drinking water. Simultaneous occurrence of cytotoxicity and hyperplasia was confirmed 23 by SEM observations in one mouse exposed to 150 ppm in food. Arnold et al. (2013) also 24 found the incidence of both urothelial cytotoxicity and "mild simple hyperplasia" 25 increasing over time in female rats exposed to 100 ppm inorganic arsenic in water for 14 26 days. While the number of animals involved was limited, the slight lag (18 hrs) between 27 the earliest detectable increase in cytotoxicity scores and the occurrence of hyperplasia 28 supports the proposed MOA as requiring cytotoxicity as a precursor event to increased 29 (regenerative) proliferation. The focus on low, non-cytotoxic concentrations in in vitro 30 studies, and the use of transformed cell lines for evaluating indicators of proliferation 31 (e.g., reduced doubling time) complicates further substantiating the sequential 32 relationship of cytotoxicity and regenerative proliferation in this MOA (Bredfeldt et al., 33 2006; Sens et al., 2004). 34 Cohen et al. (2013) define the apical *individual response* in this MOA as the
- 34Cohen et al. (2013) define the apical *individual response* in this MOA as the35development of tumors subsequent to regenerative proliferation. A methylated36metabolite, dimethylarsinic acid [DMA(V)], has been found to lead to tumor

1	development in rats but not mice (Arnold et al., 2006) and the incidence of urothelial
2	hyperplasia was also elevated in exposed animals. In contrast to the results for DMA(V),
3	inorganic arsenic has generally not been found to be carcinogenic in conventional rodent
4	bioassays with adult animals (reviewed by Tokar et al., 2010a). Differences in outcomes
5	between exposures to inorganic arsenic and DMA(V) may arise due to metabolism or
6	distribution of the compound in rats, which may not be relevant to metabolism or
7	distribution in humans (Cohen et al., 2013). As discussed below, higher incidences of
8	tumors in human populations with high exposures to inorganic arsenic suggest that this
9	MOA is relevant for understanding adverse health outcomes in humans, and emphasizes
10	the importance of recent efforts to develop new rodent models of inorganic arsenic
11	carcinogenicity (<u>Cohen et al., 2013</u>).
12	In contrast to data in adult animals, inorganic arsenic has been found to cause tumors in
13	rodents after exposures beginning in utero (Table in Section 10.1) (Tokar et al., 2011;
14	Waalkes et al., 2004b; Waalkes et al., 2003). Early life exposures in mice to inorganic
15	arsenic in drinking water resulted in significantly increased incidences of tumors in
16	multiple tissues (Table in Section 10.1) in male and female offspring (Tokar et al., 2011;
17	Waalkes et al., 2004b; Waalkes et al., 2003). Dose-related increases in hyperplasia were
18	also seen in several tissues, including the bladder, ovaries, and uterus of the females
19	(<u>Tokar et al., 2011</u>).
20	Data from in utero exposure studies in animals that show an association between early
21	life exposures to inorganic arsenic and subsequent tumor development suggest that
22	developing children may be an important susceptible population for effects associated
23	with this MOA. Based on findings by Suzuki et al. (2008), females may also have greater
24	susceptibility to effects associated with this MOA, although no other data were identified
25	to support this possibility. Other factors that might contribute to individual susceptibility
26	related to this MOA may include exposures to other substances causing cytotoxicity in
27	the bladder or other target organs. As discussed above, variations in arsenic methylating
28	ability in rodents do not correlate in straightforward manner with cytotoxic responses in
29	the bladder. On the other hand, Chen et al. (Chen et al. (2003b); Chen et al. (2003a))
30	report that increased urinary MMA/DMA levels may be associated with increased risk of
31	skin and bladder cancer, respectively in heavily exposed human populations.
32	With regard to <i>population responses</i> , Cohen et al. also suggest that the available
33	epidemiological studies support the regenerative proliferative mechanism, in that
34	increased arsenic-related cancer risk has only clearly been demonstrated in populations
35	with exposure to relative high doses of inorganic arsenic (reviewed in Cohen et al., 2013)
36	(Table in Section 10.1). This would be consistent with a situation where increased cancer


1	risk only occurred when internal concentrations of As(III) and/or other toxic metabolites
2	reached levels associated with cytotoxicity, followed by regenerative proliferation and
3	tumor development. However, very few epidemiological studies have been conducted
4	with sufficient statistical power to detect small elevations in risk at low exposures and
5	thus uncertainty is associated with the assertion of a threshold exposure below which
6	elevated cancer risks do not occur. A full review of the epidemiological literature related
7	to inorganic arsenic carcinogenicity is discussed separately in other documents prepared
8	for the inorganic arsenic IRIS assessment.

9.3 Hypothesized MOA: Effects Mediated by Endocrine Signaling

Relevant Health Effects: Developmental Neurotoxicity, Male Infertility, Prostate Cancer

9 As discussed in the Preamble, inorganic arsenic metabolism leads to a number of 10 metabolites; however, limited data were identified linking specific metabolites to the 11 adverse health effects associated with the endocrine system. Nevertheless, several 12 adverse health effects following exposure to inorganic arsenic may result from events 13 mediated by the endocrine system (Goggin et al., 2012; Davey et al., 2008; Prins, 2008) 14 (Figure 9-3). The *molecular initiating event* (MIE) in this MOA is a topic of ongoing 15 research but based on literature reviewed for this summary may involve an interaction 16 between inorganic arsenic and an element of the transcription complex for gene 17 activation of nuclear hormone receptors. Specifically, inorganic arsenic may interact or 18 modulate one of the following elements: 1) the hormone binding domain of the hormone 19 receptor, 2) signaling pathways (e.g., mitogen activated protein kinases [MAPKs], 20 extracellular signal-regulated kinases [ERK 1/2]) responsible for posttranslational 21 modification of steroid hormone receptor proteins (e.g., coactivator phosphorylation), or 22 3) histone modifying proteins (i.e., acetylases, deacetylases, methylases) involved in 23 receptor activation (Barr et al., 2009; Rosenblatt and Burnstein, 2009; Stoica et al., 2000). 24 Notably, the first MIE option, interaction with the hormone binding domain, may be 25 specific to estrogen receptor alpha (ER α), while the other possibilities may be more 26 broadly applicable across both steroid receptors (e.g., glucocorticoid receptor [GR], 27 progesterone receptor [PR], and rogen receptor [AR], mineralocorticoids [MR]) and the 28 larger class of nuclear hormone receptors (e.g., thyroid hormone receptor [TR], retinoic 29 acid receptor [RAR]) (Davey et al., 2008; Bodwell et al., 2006; Stoica et al., 2000).

1	Across receptor types, the literature indicates that the MIE is followed by a series of
2	biochemical responses that can be broadly characterized as altering gene activation and
3	subsequent cell signaling mediated by nuclear hormone receptors (Table in Section
4	10.2). In the case of ER α , inorganic arsenic may alter gene activation by inhibiting
5	binding of the natural ligand, estradiol (E2), to the receptor (Stoica et al., 2000). Low
6	levels of inorganic arsenic (1 nM) can then activate the receptor at levels approaching
7	that of E2 (Stoica et al., 2000). Activation of ER α results in altered expression of genes
8	regulated by the receptor (e.g., vitellogenin, pS2, PR), which is measurable at the mRNA
9	and protein levels (Davey et al., 2007; Stoica et al., 2000). Importantly, inorganic arsenic
10	activation of ER α gene transcription is likely mediated by the receptor since treatment
11	with antiestrogen blocks gene transcription mediated by the receptor (Stoica et al., 2000).

Abbreviations: Inorganic arsenic (iAs); molecular initiating events (MIEs); hypothalamic-pituitary-adrenal (HPA); hypothalamic-pituitary-gondal (HPG); developmental neurotoxicity (DNT)

See Summary Text and Table for references; Figure based on Ankley et al. (2010).

Note: Figure hows a high-level summary of key events from the initial molecular interaction through a possible population level response. The arrows link each key event (e.g., individual responses lead to population responses), but do not necessarily link each specific example response (e.g., behavioral changes are not linked to male infertility). Of particular note for this MOA is that evidence at the individual level was only identified for effects related to developmental neurotoxicity, even though population level responses indicate effects in other systems (i.e., reproductive effects). As the assessment development process moves forward additional evidence may provide better understanding of the key events in this MOA and the connections between them.

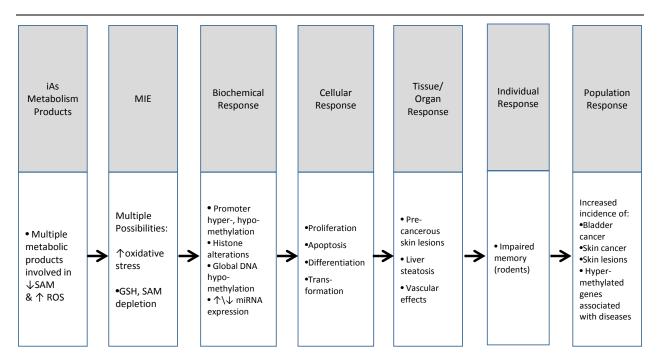
Figure 9-3 Hypothesized mode of action for effects mediated by endocrine signaling.

These draft development materials are for review purposes only and do not constitute Agency policy.April 20149-11Draft: Do Not Cite or Quote

1	While the above sequence of biochemical responses is supported by one group of
2	investigators, others provide evidence that responses at the ER α receptor are similar to
3	those of other nuclear hormone receptors (e.g., GR, PR, TR, RAR) (Davey et al., 2007;
4	Stoica et al., 2000). Under this second possible sequence of events, the MIE likely leads
5	to alterations in posttranslational modifications (e.g., phosphorylation) of coactivator
6	proteins (e.g., TIF2, GRIP1) that are critical for transcriptional activity at response
7	elements for each receptor (e.g., glucocorticoid receptor response elements [GREs]) (Barr
8	et al., 2009; Rosenblatt and Burnstein, 2009); these modifications may result in impaired
9	interactions between coactivators (e.g., CARM1 and GRIP1) (Barr et al., 2009).
10	Alternatively, the MIE may lead to alterations in histone modifications necessary for
11	receptor-mediated gene activation (e.g., lower acetylation or methylation) (Barr et al.,
12	<u>2009</u>). Ultimately, perturbations in the transcriptional complex impair receptor binding to
13	response elements, leading to changes in receptor-mediated gene activation (Barr et al.,
14	2009; Rosenblatt and Burnstein, 2009). Changes in gene activation mediated by inorganic
15	arsenic through this MOA may result in either activation or suppression of gene activity.
16	Where low levels of inorganic arsenic (i.e., nanomolar range) may elevate hormone-
17	mediated gene activation, higher, non-cytotoxic concentrations may suppress hormone-
18	mediated gene activation (Davey et al., 2008; Bodwell et al., 2006; Bodwell et al., 2004).
19	In addition to different outcomes resulting from low versus higher inorganic arsenic
20	exposure levels, differences in levels of hormone receptors may underlie different
21	responses across organ and tissue types (<u>Bodwell et al., 2006</u>).
22	Differences in biochemical responses to inorganic arsenic may ultimately lead to changes
23	in cellular responses (e.g., cell proliferation, cell death) that vary by cell type based on
24	the factors noted above (e.g., receptor levels, ligand levels) (Rosenblatt and Burnstein,
25	2009; Davey et al., 2008; Davey et al., 2007; Stoica et al., 2000) (Table in Section 10.2).
26	Data from three transformed cell lines show variation in the LC50 for cytotoxicity
27	ranging from 3 to 15 µM (Davey et al., 2008; Davey et al., 2007). While most evidence
28	suggests that cytotoxicity and proliferation elicited through this MOA are partially
29	mediated by the natural hormone ligand (E2) (Rosenblatt and Burnstein, 2009; Davey et
30	al., 2008; Davey et al., 2007; Stoica et al., 2000); some evidence suggests that changes in
31	cell number elicited through ER α does not require the natural ligand, E2, and may be
32	mediated by alterations in cell cycle control (Davey et al., 2007; Chow et al., 2004;
33	Stoica et al., 2000). In addition to changes in cell number, inorganic arsenic mediated
34	changes in endocrine signaling may lead to alterations in intracellular hormone

- 1distribution (i.e., shift from cytosol to nucleus) if exposure occurs early in life (e.g.,2during gestation and early postnatal development) (Goggin et al., 2012).
- 3 Changes at the cellular level can ultimately lead to *tissue or organ system responses* that 4 in this MOA include alterations in elements of the hypothalamic-pituitary-adrenal 5 (HPA) axis (e.g., intracellular receptor distribution, protein glycosylation), the 6 hypothalamic-pituitary-gonadal (HPG) axis (e.g., lower concentrations of 7 gonadotropins and sex steroid hormones), testicular toxicity, impaired 8 spermatogenesis, toxicity to the female reproductive system, and hormone-9 dependent tissue remodeling (i.e., morphogenesis) (Goggin et al., 2012; Chatterjee and 10 Chatterii, 2010; Davey et al., 2008; Jana et al., 2006; Sarkar et al., 2003; Chattopadhyay 11 et al., 1999) (Table in Section 10.2). Data supporting alterations in the HPA axis are 12 available from a developing animal model, suggesting that early life exposures to 13 inorganic arsenic may have particular effects at the individual level, as discussed below 14 (Goggin et al., 2012). Still other studies have suggested endocrine-mediated effects of 15 inorganic arsenic exposure on male and female reproductive systems (e.g. decreased 16 reproductive tissue weight, sperm count, infertility, altered activity of ovarian and 17 testicular enzymes, and prostate cancer), which follows from alterations in elements of 18 the HPG axis noted above (Chatterjee and Chatterji, 2010; Rosenblatt and Burnstein, 19 2009; Prins, 2008; Jana et al., 2006; Pant et al., 2004; Sarkar et al., 2003; Chattopadhyay 20 et al., 1999). Changes in morphogenesis were observed in an amphibian model of thyroid 21 hormone (TH) activity that also has important implications for inorganic arsenic effects 22 on TH during the perinatal period of human development (6 months of gestation through 23 early postnatal development) (Goggin et al., 2012).
- 24 Little evidence was identified to link tissue or organ level responses to *individual* 25 responses through this MOA; however, several studies suggest that alterations in GR 26 transcription and subsequent changes in HPA axis activity, such as those outlined above, 27 can lead to **developmental neurotoxicity** (e.g., impaired stress response, depressive-like 28 behaviors) following developmental inorganic arsenic exposure in mice (Goggin et al., 29 2012; Martinez-Finley et al., 2011; Martinez-Finley et al., 2009; Martinez et al., 2008) 30 (Table in Section 10.2). Efforts to carry out a comprehensive literature search are 31 ongoing and may identify additional studies with data relevant to individual level 32 responses resulting from inorganic arsenic effects on the endocrine system.
- 33No data were identified indicating the types of responses that might occur in *susceptible*34*individuals* through this MOA. Given the role of steroid receptors in this MOA,35differences in receptor or steroid levels across lifestages or physiologic conditions may36confer differences in response to inorganic arsenic exposures across individuals and

These draft development materials are for review purposes only and do not constitute Agency policy.April 20149-13Draft: Do Not Cite or Quote


1	provide insight on potentially susceptible individuals (Bodwell et al., 2006). The
2	influence of receptor levels is particularly important in considering developmental
3	inorganic arsenic exposures due to the critical role that TH, RAR and other nuclear
4	hormone receptors play during development coupled with evidence of developmental
5	neurotoxicity in animal models of inorganic arsenic exposure (Goggin et al., 2012;
6	Martinez-Finley et al., 2011; Martinez-Finley et al., 2009; Davey et al., 2008; Martinez et
7	al., 2008). Thus, pregnant women and developing children may be particularly
8	susceptible to adverse outcomes from inorganic arsenic exposure.
9	Responses in susceptible individuals clearly influence responses observed at the
10	population level. To that end, findings in rodents suggesting that endocrine effects may
11	result in developmental neurotoxicity are concordant with findings in the epidemiology
12	literature that show a correlation between early life exposure to inorganic arsenic and
13	cognitive function (Wasserman et al., 2007). Other literature supports higher incidences
14	of male infertility and prostate cancer in populations exposed to inorganic arsenic,
15	although the connections between these observations and effects on the endocrine system
16	are less clear. Ongoing efforts to identify relevant literature may identify additional data
17	to connect inorganic arsenic effects on the endocrine system to population level
18	responses.

9.4 Hypothesized MOA: Effects Mediated By Epigenetic Mechanisms

Relevant Health Effects: Bladder cancer, skin cancer, skin lesions

19	As detailed below, several studies were identified that indicate epigenetic mechanisms
20	may mediate some of the adverse health effects associated with exposure to inorganic
21	arsenic (Figure 9-4). There is a broad consensus in the literature that the depletion of
22	glutathione and S-adenosylmethionine (SAM) during cellular metabolism of inorganic
23	arsenic species are important molecular initiating events (MIEs) of this MOA (Martínez
24	et al., 2011; Ren et al., 2011; Reichard and Puga, 2010). In addition, inorganic arsenic
25	can also elevate levels of reactive oxygen species (ROS), which may in turn deplete
26	SAM, in conjunction with, or separately from SAM depletion that results from inorganic
27	arsenic methylation. Specifically, some evidence suggests that the depletion of
28	glutathione (GSH) due to elevated oxidative stress results in the shunting of S-adenosyl
29	homocysteine in order to replenish GSH, through the transsulfuration pathway, and away
30	from the synthesis of SAM, inducing a shortage of methylation cofactors (reviewed by

1	Reichard and Puga, 2010). Consistent with these findings and with multiple observations
2	of GSH depletion, some investigators interpret the downstream epigenetic changes
3	associated with inorganic arsenic exposure as mainly resulting from oxidative stress
4	effects [(Kitchin and Conolly, 2010); see Oxidative Stress MOA Summary)].
5	The depletion of SAM may lead to one of the most well-studied of arsenic-associated
6	epigenetic effects at the biochemical response level, namely, changes in DNA
7	methylation patterns. Like arsenic 3+ methyltransferase (As3mt), DNA
8	methyltransferases (collectively, DNMTs) use SAM as a methyl donor. Therefore,
9	reduced cellular SAM levels as a result of increased As3mt activity could lead to reduced
10	DNA methylation. Several studies have found reduced levels of DNMT activity or
11	expression in arsenic-exposed cell lines (Reichard et al., 2007; Benbrahim-Tallaa et al.,
12	2005; Zhao et al., 1997). The observed changes in RNA expression levels suggest that
13	factors in addition to SAM depletion may be responsible for changes in DNMT activity
14	(Reichard and Puga, 2010).

Abbreviations: Inorganic arsenic (iAs); molecular initiating events (MIEs); glutathione (GSH); S-adenosylmethionine (SAM); microRNA (miRNA)

See Summary Text and Table for references; Figure based on Ankley et al. (2010).

Note: Figure shows a high-level summary of key events from the initial molecular interaction through a possible population level response. The arrows link each key event (e.g., individual responses lead to population responses), but do not necessarily link each specific example response (e.g., impaired memory is not linked to skin cancer). Of particular note for this MOA is that evidence at the individual level was only identified for effects related to impaired memory, even though population level responses indicate effects in other systems (e.g., bladder, skin). As the assessment development process moves forward additional evidence may provide better understanding of the key events in this MOA and the connections between them.

Figure 9-4 Hypothesized mode of action for epigenetic mechanisms underlying associated health effects of inorganic arsenic exposures.

1	Sufficiently reduced DNMT activity would likely inhibit cells' ability to maintain normal
2	DNA methylation pattern and reduce the overall extent of DNA methylation. Global
3	DNA hypomethylation after inorganic arsenic exposure has indeed been observed in a
4	range of in vivo and in vitro studies (Pilsner et al., 2012; Coppin et al., 2008; Reichard et
5	al., 2007; Benbrahim-Tallaa et al., 2005; Chen et al., 2004b; Sciandrello et al., 2004; Xie
6	et al., 2004; Chen et al., 2001; Zhao et al., 1997) (Table in Section 10.3). Reduced
7	DNMT activity and SAM depletion were seen in some, but not all, of these studies. A
8	small number of studies have also reported global DNA hypermethylation in human
9	populations and animals (Majumdar et al., 2010; Pilsner et al., 2007; Zhong and Mass,
10	2001), but it is not clear whether these studies had sufficient resolution to resolve truly
11	"global" changes from promoter-specific changes, which are discussed below.

These draft development materials are for review purposes only and do not constitute Agency policy.April 20149-16Draft: Do Not Cite or Quote

1	In addition to non-specific reductions in DNA methylation, numerous studies have found
2	changes in specific gene promoter DNA methylation after inorganic arsenic exposure
3	(Ren et al., 2011). DNA hypermethylation in the promoter regions of several tumor
4	suppressor genes has been reported in human cells (Smeester et al., 2011; Chen et al.,
5	2007a; Zhang et al., 2007; Chanda et al., 2006; Marsit et al., 2006b), and in a number of
6	in vivo (Cui et al., 2006a) and in vitro (Jensen et al., 2008; Chai et al., 2007; Fu and Shen,
7	2005; Mass and Wang, 1997) studies (Table in Section 10.3). Of note, hypermethylation
8	in the promoter regions of the tumor suppressor genes, Cdkn2a and Rassf1 were
9	correlated with reduced mRNA expression in lung tissue of mice chronically exposed to
10	As(V) (Cui et al., 2006a), indicating a role for epigenetic alterations in gene expression
11	levels related to malignant transformation. In agreement with most studies analyzing
12	global DNA methylation, hypomethylation has also been observed in Hras and ER α gene
13	promoter regions in livers of mice exposed to As(III) (Chen et al., 2004b; Waalkes et al.,
14	2004a; Okoji et al., 2002). After 18.5 weeks of As(III) exposure in dietary methyl
15	deficient C57BL/6J mice, liver tissue exhibited steatosis and microgranulomas, along
16	with Hras promoter hypomethylation, highlighting an important link between inorganic
17	arsenic exposure and a dietary methyl deficient susceptible population (Okoji et al.,
18	<u>2002</u>). Furthermore, ER α promoter hypomethylation was observed in combination with
19	increased expression of ER α and cyclin D1 (mRNA and protein; biomarkers of
20	hepatocellular lesions and carcinogenesis) in livers of mice chronically exposed to As(III)
21	(Chen et al., 2004b). Taken together, the data suggest a general, but not entirely
22	consistent, pattern of 1) promoter methylation in tumor suppressor and apoptosis-related
23	genes, and 2) hypomethylation of proto-oncogenes and proliferation-related genes. In
24	addition, Jensen et al. [(Jensen et al. (2009b); Jensen et al. (2008))] have observed DNA
25	hypermethylation in promoter regions also subject to histone hypoacetylation (see
26	below). The mechanism by which the specificity of arsenic-associated promoter
27	methylation is established is not known (<u>Ren et al., 2011</u>).
28	A second major epigenetic response to inorganic arsenic exposure that the literature
29	identifies is histone protein modifications. Histone proteins maintain the structure of
30	chromatin and play an important role in gene transcription and repression. The most
31	well-studied chemical modification of histones in response to inorganic arsenic exposure
32	are changes in acetylation and methylation patterns, but evidence also shows an
33	association between inorganic arsenic and increased histone phosphorylation (Ren et al.,

association between inorganic arsenic and increased histone phosphorylation (<u>Ren et al.</u>, <u>2011</u>). Changes in the acetylation pattern of H3 and H4 lysine residues after acute inorganic arsenic exposure have been reported in the following cell lines: mouse adenocarcinoma (<u>Barr et al., 2009</u>), human bladder (<u>Chu et al., 2011</u>; Jo et al., 2009; <u>Jensen et al., 2008</u>), human lung (<u>Li et al., 2003</u>), and human liver (<u>Ramirez et al., 2008</u>)

34

35

36

37

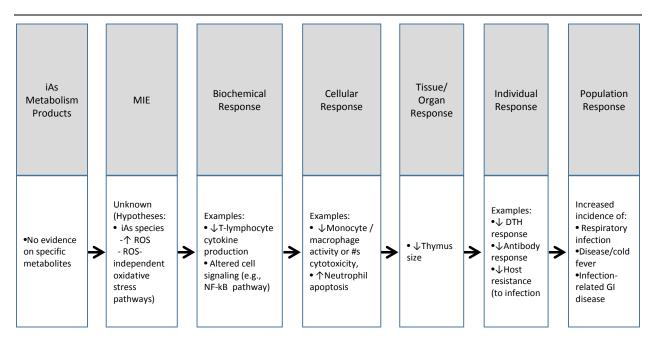
These draft development materials are for review purposes only and do not constitute Agency policy.April 20149-17Draft: Do Not Cite or Quote

1	(Table in Section 10.3). Most in vitro studies report decreased lysine acetylation after
2	inorganic arsenic exposure, which is in agreement with recent studies that described
3	decreased H3K9 acetylation in blood cells of humans exposed to inorganic arsenic
4	through drinking water (Arita et al., 2012; Chervona et al., 2012; Arita and Costa, 2009).
5	However, increased H3K14 acetylation and H3S10 phosphorylation associated with c-
6	Jun and c-Fos chromatin, along with increased expression of c-Jun and c-Fos, were
7	observed in human fibroblasts (Li et al., 2003). c-Jun and c-Fos are important
8	transcriptional mediators of cellular differentiation, proliferation, and apoptosis. The
9	relevance of this finding for environmental exposures is questionable, however, because
10	this study used high and likely non-physiologic As(III) exposures (400 µM), whereas
11	other studies used less than 10 μ M As(III). Increased histone acetylation has been shown
12	to be associated with the inhibition of histone deacetylase activity; however the
13	underlying mechanism of this reduced enzyme activity is not known (Ramirez et al.,
14	<u>2008</u>).
15	Results of other histone modification experiments have been quite variable. Both
16	increased and decreased methylation of H3 arginine and lysine residues were observed in
17	<i>in vitro</i> and <i>in vivo</i> lung and liver models. In contrast, increased H3K9 dimethylation has
18	been reported in human peripheral blood cells (<u>Arita et al., 2012</u> ; <u>Chervona et al., 2012</u>),
19	mouse liver (<u>Suzuki and Nohara, 2013</u>) and human lung adenocarcinoma cells (<u>Zhou et</u>
20	<u>al., 2008</u>) after inorganic arsenic exposure. Of note, histone modifications associated with
20 21	inorganic arsenic exposure have been reported in connection with downstream effects,
21 22	
22 23	including decreased p16 expression in the absence of altered mRNA expression levels
	(Suzuki and Nohara, 2013) and increased HMT G9a protein and mRNA levels (Zhou et
24	al., 2008). Increased phosphorylation of H3S10 was linked with increased expression of
25	c-Jun and c-Fos and upregulation of caspase 10 (<u>Li et al., 2003</u>). Taken together, studies
26	examining histone modifications indicate that inorganic arsenic exposure mediates
27	epigenetic alteration of DNA and histones, followed downstream alterations in gene
28	expressions and, as discussed below, some phenotypic changes in exposed cells.
29	An increasing body of evidence suggests that microRNA expression is altered in response
30	to inorganic arsenic exposure (Kaul et al., 2014; Li et al., 2012; Cao et al., 2011; Marsit
31	et al., 2006a) (Table in Section 10.3). MicroRNAs, which generally suppress the
32	translation of mRNA into protein and enhance mRNA degradation, are both up- and
33	downregulated (often in the same model system) after inorganic arsenic exposure. Recent
34	evidence links altered microRNA expression to downstream effects and adverse events.
35	For example, the downregulation of hsa-miRNA-19a has been associated with cell
36	growth arrest and apoptosis (Cao et al., 2011). More importantly, the upregulation of hsa-

- 1 miR-21 in response to As-induced ROS has been linked to carcinogenic transformation, a 2 likely epigenetic mediated MOA linked to changes in microRNA expression (Ling et al., 3 2012). As discussed above, findings in different test systems are often inconsistent, and 4 the correlations of epigenetic changes with downstream effects of gene expression and 5 cell phenotype are just beginning to be elucidated. 6 Altered *cellular phenotypes*, including malignant transformation, have been associated 7 with epigenetic changes following inorganic arsenic exposure in several studies (Table in 8 Section 10.3). In addition to the transformation of embryonic lung fibroblasts noted 9 above (Ling et al., 2012), the malignant transformation of p53 knocked down human 10 bronchial epithelial cells has been associated with downregulated hsa-miR-200b via 11 increased DNA promoter methylation (Wang et al., 2011b). Jensen et al. (2009a; 2009b; 12 2008) also report epigenetic changes (parallel changes in DNA promoter methylation and 13 histone acetylation) in selected genes in parallel with the development of malignant 14 phenotype in human urothelial cells. Moreover, epigenetic alternations after inorganic 15 arsenic exposure have been reported in connection with *tissue or organ system* 16 responses, including skin lesions in humans (Banerjee et al., 2013; Pilsner et al., 2009) 17 and liver effects in mice, such as steatosis, microgranulomas, and hepatocellular 18 carcinoma (Chen et al., 2004b; Waalkes et al., 2004a; Okoji et al., 2002). Organ system 19 responses have been associated with both DNA hyper- (Banerjee et al., 2013) and 20 hypomethylation (Pilsner et al., 2009; Chen et al., 2004b; Waalkes et al., 2004a; Okoji et 21 al., 2002). 22 While *individual responses* have been widely reported after inorganic arsenic exposure, 23 there are relatively few studies linking responses at the individual level to epigenetic 24 changes. As discussed below, there are some data connecting health effects associated 25 with inorganic arsenic exposures and epigenetic changes in population-based studies. 26 One study on response at the individual level in animals did evaluate inorganic arsenic 27 induced epigenetic changes in relation to cognitive function and found contextual 28 memory deficits in rats exposed during gestation and early postnatal development 29 (Martínez et al., 2011). Ongoing efforts to complete a comprehensive literature search 30 may identify additional studies that link inorganic arsenic exposure to epigenetic changes 31 and subsequent health effects.
- 32Based on available mechanistic and in vivo studies, a range of factors affecting33*individual variations in susceptibility* may relate to epigenetic mechanisms underlying34adverse health effects of inorganic arsenic exposures (Table in Section 10.3). These35include dietary deficiencies, life stage susceptibility, gender, genetics, and smoking.36Several studies have investigated the relationships between dietary sufficiency and

These draft development materials are for review purposes only and do not constitute Agency policy.April 20149-19Draft: Do Not Cite or Quote

1	epigenetic changes associated with inorganic arsenic exposure. Low folate status has
2	been associated with the development of skin lesions in Bangladeshi adults (Pilsner et al.,
3	2007), as well as Hras promoter DNA hypomethylation, steatosis and microgranulomas
4	in livers of mice exposed to inorganic arsenic (Okoji et al., 2002). While the proposed
5	epigenetic MOAs suggest that dietary intake of methionine and folate intake would
6	positively correlate with DNA methylation, conflicting evidence has been reported.
7	Associations between increases in DNA methylation and inorganic arsenic exposure were
8	only observed in individuals with adequate folate status (Pilsner et al., 2007). Moreover,
9	Lambrou et al. found that the exposure-response relationship between inorganic arsenic
10	exposure and changes in DNA methylation in ALU retrotranspon elements (thought to be
11	involved in cancer and other diseases) varied depending on folate intake (Lambrou et al.,
12	2012). Study subjects were elderly males from the Normative Aging Study whose arsenic
13	exposures had been relatively low. Evidence also suggests adverse effects related to
14	folate supplementation and subsequent high fetal exposure to reactive As metabolites,
15	where reduced fetal weights and altered fetal liver DNA methylation was observed after
16	in utero exposure from mouse dams fed a high folate diet (Tsang et al., 2012).
17	In utero exposures to inorganic arsenic have been a major focus of efforts to identify
18	susceptible life stages for epigenetic effects of As exposure. Studies in rodents have
19	detected DNA hypomethylation (Martínez et al., 2011; Waalkes et al., 2004a) and
20	numerous DNA methylation changes at specific loci (Tsang et al., 2012). Interestingly,
21	the analysis of cord blood of inorganic arsenic exposed mothers revealed the upregulation
22	of 12 miRNAs linked to cancer, diabetes, and immune response signaling pathways
23	(Rager et al., 2014). Limited studies have attempted to evaluate the effect of gender on
24	epigenetic changes associated with inorganic arsenic exposure. In one study, DNA
25	methylation status differed between genders in mice exposed to As(III) independent of
26	cellular SAM levels (Nohara et al., 2011). Another study reported a potential genetic
27	susceptibility related to epigenetic changes after inorganic arsenic exposure. In
28	peripheral blood samples of Argentinian women, an AS3MT haplotype associated with
29	efficient inorganic arsenic metabolism revealed increased methylation of the AS3MT
30	gene region and reduced AS3MT mRNA expression (Engström et al., 2013). The
31	methylation status and expression of other genes on the same haplotype block as AS3MT
32	were also altered, being either upregulated or downregulated, and the authors suggested
33	that these genes may also be involved in inorganic arsenic metabolism or responses to
34	inorganic arsenic exposure.
35	The susceptible individual responses linked to genetic factors in different populations
36	may shed light on <i>population responses</i> associated with the epigenetic mechanisms of


1	inorganic arsenic-induced adverse health outcomes. In addition, changes in DNA
2	methylation patterns (hyper- or hypomethylation) have be identified in humans with skin
3	and bladder cancers (Chanda et al., 2006; Marsit et al., 2006b). Pilsner et al. (2009) found
4	a relationship between global DNA hypomethylation and the risk of inorganic arsenic-
5	induced skin lesions. Smeester et al. (2011) identified 182 genes whose promoter regions
6	were consistently hypermethylated in a Mexican population with arsenicosis symptoms
7	(skin lesions). Notably, they identified a network of 17 highly-methylated tumor
8	suppressor and related genes (the "suppressome"), and suggested that downregulation of
9	these genes increased the risk of inorganic arsenic-associated adverse effects. Future
10	research may strengthen existing evidence related to susceptible individuals, including
11	those with dietary methyl deficiencies or genetic polymorphisms, and reveal additional
12	factors that influence subsequent population level responses.

9.5 Hypothesized MOA: Immune Mediated Effects

Relevant Health Effects: Suppression of humoral immunity (i.e., decreased antibody response), Suppression of innate immunity (decreased macrophage function), Respiratory infection, Gastrointestinal infection, Contact hypersensitivity response

13	Several adverse health effects following exposure to inorganic arsenic may result from
14	events mediated by the immune system, including: suppression of humoral immunity
15	(decreased antibody response), suppression of macrophage function, and other aspects of
16	innate immunity (Figure 9-5). The molecular initiating event (MIE) for arsenic immune-
17	mediated effects is unknown, although available literature indicates that it likely includes
18	a pathway that leads to reactive oxygen species (ROS) generation and a pathway that is
19	unrelated to ROS. Because oxidative stress (and the generation of ROS) is covered in a
20	separate MOA, it will only be discussed briefly here with an indication as to where it may
21	play a role in immune-mediated effects. Specifically, there is evidence that apoptosis of
22	T-cells [e.g., (Gupta et al., 2003)] as well as monocytes/macrophages [e.g., (Park et al.,
23	2003)] is ROS dependent indicating that oxidative stress may contribute to effects on
24	both humoral and innate immunity. However, the molecular initiating events for most
25	immune and immune-mediated effects are unknown with evidence that some do not rely
26	on ROS production. For example recent studies by Bourdonnay et al. (2009) have
27	demonstrated that arsenic trioxide alters macrophage gene expression in human
28	macrophages (prepared from peripheral blood mononuclear cells (PBMC) from healthy
29	donors) through redox-sensitive signaling pathways that are independent of ROS
30	production.

 contribute to immune-mediated inorganic arsenic effects (Table in Section 10.4). First, there is considerable evidence that inorganic arsenic exposure decreases the production of cytokines by stimulated T-lymphocytes, particularly secretion of interleukin-2 (IL-2) 	of
4 cytokines by stimulated T-lymphocytes, particularly secretion of interleukin-2 (IL-2)	of
5 demonstrated at the graterin and gDNA level. In appendic agencies at curbs decreased H. 2	
5 demonstrated at the protein and mRNA level. Inorganic arsenic not only decreased IL-2	
6 secretion in culture conditions with T-cell superantigens (e.g., PHA or ConA), but more	
7 importantly in studies where T-cells were stimulated with antibodies to CD3/CD28,	
8 which mimic the biological function of natural antigens activating T-cells through T-cell	
9 receptor engagement. Following activation, IL-2 stimulates survival of antigen-specific	
10 T-cells, expansion of antigen-selected T-cells, differentiation, and development of	
11 immunologic memory. Therefore, arsenic-induced inhibition of IL-2 as well as decreased	1
12 T-cell proliferation [e.g., (Vega et al., 1999; Gonsebatt et al., 1994)] suggests altered	
13 biochemical responses that would contribute to reduced antibody responses. Evidence for	r
14 reduced IL-2 secretion includes populations with chronic inorganic arsenic exposure	
15 (<u>Biswas et al., 2008</u> ; <u>Soto-Peña et al., 2006</u>) as well as in vitro arsenic exposure of cells	
16 from healthy individuals (Morzadec et al., 2012; Galicia et al., 2003; Vega et al., 1999)	
17 mouse in vivo and in vitro studies (<u>Cho et al., 2012</u> ; <u>Soto-Peña and Vega, 2008</u> ; <u>Conde e</u>	<u>t</u>
18 <u>al., 2007</u>), and from non-mammalian models including chickens (<u>Das et al., 2011</u>).	

Abbreviations: Inorganic arsenic (iAs); molecular initiating event (MIE); reactive oxygen species (ROS); delayed-type hypersensitivity (DTH)

See Summary Text and Table for references; figure based on Ankley et al. (2010).

Note: Figure shows a high-level summary of key events from the initial molecular interaction through a possible population level response. As the assessment development process moves forward additional evidence may provide better understanding of the key events in the MOA and the connections between them.

Figure 9-5 Hypothesized mode of action for effects mediated by the immune system.

1	There is also consistent evidence that inorganic arsenic reduces T-cell secretion of other
2	cytokines including interferon-gamma (IFN- γ) and less consistent evidence for reduced
3	IL-4, IL-5, IL-10, and IL-12. Together, evidence suggests that inorganic arsenic alters a
4	wide variety of immune cellular signals and pathways that relate to both innate and
5	humoral immunity. In general these cytokines have multiple roles that impact both innate
6	and humoral immune responses. For example, IFN- γ is important for antigen presentation
7	by macrophages and reductions in IFN- γ may therefore contribute to reduced antibody
8	response. IFN- γ also directly inhibits viral replication and contributes to multiple aspects
9	of the innate immune system including natural killer (NK) cell activity and lysosome
10	activity of macrophages.
11	Other biochemical responses include altered cell signaling in NF- κ B (Zheng et al., 2012;
12	Lemarie et al., 2006) and decreased transcription factor ERG2 (Bourdonnay et al., 2009).
13	Lemarie et al. (2006) reported that arsenic trioxide induced apoptosis of human
14	peripheral blood derived monocytes during macrophage differentiation via a NF- κ B-

dependent pathway. Bourdonnay et al. (2009) also reported arsenic trioxide-associated inhibition of human macrophage differentiation. The authors suggest that the observed effects on macrophages are likely to be mediated by reduced expression of EGR2, which was independent of ROS production.

1

2

3

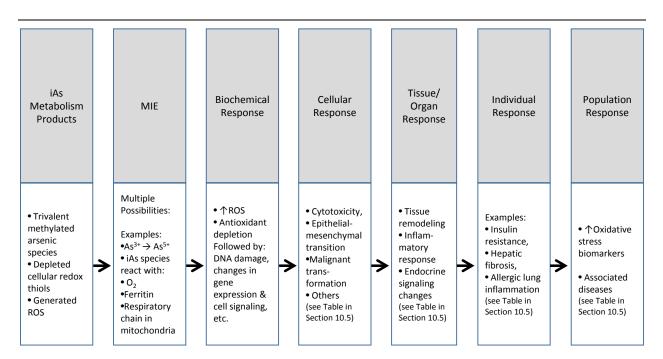
4

- 5 There are a number of studies reporting *cellular phenotypic changes* associated with 6 inorganic arsenic exposure that support a link between biochemical responses and tissue 7 or individual responses for immune-mediated arsenic effects. Many of the studies outline 8 effects on monocytes or macrophages including decreased recruitment in mice [e.g., 9 (Patterson et al., 2004)], reduced differentiation in humans (Lemarie et al., 2006), altered 10 morphology in mice and humans (Banerjee et al., 2009; Bishayi and Sengupta, 2003), 11 and increased apoptosis in mice and humans (Lemarie et al., 2006; Park et al., 2003; de la 12 Fuente et al., 2002). Phenotypic changes also included adverse changes in measures of 13 macrophage functional responses including decreased adhesion, reduced chemotaxis, 14 decreased phagocytosis of bacterial challenge, and reduced generation of ROS (Banerjee 15 et al., 2009; Aggarwal et al., 2008; Ghosh et al., 2006; Arkusz et al., 2005; Bishayi and 16 Sengupta, 2003; Sengupta and Bishayi, 2002). These cellular phenotypic changes were 17 associated with inorganic arsenic exposure in vitro to cells from healthy individuals [e.g., 18 (de la Fuente et al., 2002)], experimental animals exposed to inorganic arsenic in drinking 19 water [e.g., catfish (Ghosh et al., 2006); chickens (Aggarwal et al., 2008) and mice 20 (Sengupta and Bishavi, 2002)], and humans from inorganic arsenic-exposed populations 21 [e.g., (Banerjee et al., 2009)]. There are several studies that also reported increased 22 apoptosis of human neutrophils (Binet and Girard, 2008), human T-cells (Gupta et al., 23 2003), and mouse B-cells (Harrison and McCoy, 2001) following in vitro arsenic 24 exposure.
- 25 There are primary (i.e., bone and thymus) and secondary (spleen, lymph nodes, and 26 mucosal associated tissue) immune organs; however, immune cells are distributed 27 throughout the body and travel extensively through blood and lymph. Therefore there 28 may be important system-wide changes in local cell populations or function that are not 29 readily apparent when categorized at a tissue or organ response level. The one organ-30 level arsenic-related response observed that is likely to contribute to immune-mediated 31 arsenic effects is decreased size of the thymus, which as the site of T-cell maturation is an 32 important part of humoral immunity. As a single parameter, thymus size is an immune 33 cell measure with low predictive value for immunotoxicity; however it may lend support 34 to altered immune function indicated by other assays (Luster et al., 1992), particularly 35 immune functional measures such as T-cell mediated antibody response. Thymus size in 36 children from the Metlab region of Bangladesh was negatively associated with maternal

1 arsenic exposure determined at 8 and 30 weeks of gestation (Moore et al., 2009; Ragib et 2 al., 2009). Decreased absolute, but not relative, thymus size was also reported in chickens 3 exposed to 3.7 ppm sodium arsenite in drinking water (Aggarwal et al., 2008). 4 There are multiple inorganic arsenic-associated *individual responses* that represent 5 adverse functional immune changes as part of the immune-mediated arsenic effects. 6 Multiple studies report arsenic-associated suppression of the T-cell dependent antibody 7 response or response to a T-cell antigen such as sheep red blood cells (SRBCs) or 8 keyhole limpet hemocyanin (KLH). Male mice exposed to 1 or 50 μ g/m³ arsenic trioxide 9 for 14 days, or 0.5-10 ppm sodium arsenite in drinking water had reduced T-cell 10 dependent antibody response to SRBC (Nain and Smits, 2012; Blakley et al., 1980). Male 11 Wistar rats exposed to sodium 0.4-40 ppm arsenite in drinking water had reduced IgG 12 antibody response to KLH, but no change in IgM response (Burchiel et al., 2009). 13 Arsenic-associated reductions in antibody response to SRBCs were also observed in 14 catfish as was decreased antibody response to antigen challenge with virus (F-strain RD-15 F) in chickens (Aggarwal et al., 2008; Ghosh et al., 2007a). 16 Several studies report that inorganic arsenic exposure suppresses the delayed type 17 hypersensitivity (DTH) response. These hypersensitivity assays all require coordination between multiple cytokine signals and two principal cell types: antigen presenting cells 18 19 (e.g., macrophages or Langerhans cell) and T-cells. Sankar et al. (2013) reported that 20 exposure to 25 ppm sodium arsenite in drinking water for 42 days resulted in decreased 21 DTH to KLH measured by changes in footpad thickness in male Wistar rats. 22 Savabiesfahani et al. (1998) reported suppression of the related endpoint of decreased 23 phytohemagglutinin hypersensitivity response by rump skin fold thickness after exposure 24 of cotton rats to 5 or 10 ppm sodium arsenite. A decreased DTH response to DNCB or 25 PHA-P was also observed in chickens exposed to 3.7 ppm sodium arsenite for 60 days 26 (Aggarwal et al., 2008). Inorganic arsenic exposure of mice at 50 mg/l for 4 weeks was 27 associated with reduced contact hypersensitivity response following sensitization with 28 2, 4-dinitroflurobenzene (DNFB) (Patterson et al., 2004). 29 Host resistance assays such as the response to viral challenge requires integration of 30 innate and adaptive immune response. For example, early reactions to viral challenge 31 include aspects of innate immunity such as recruitment of macrophages and neutrophils 32 to the lung to initiate phagocytosis, secrete cytokines and begin the process of antigen 33 processing and presentation for a strong humoral immune response. Mice exposed to 100 34 ppb sodium arsenite in drinking water displayed a significantly altered pattern of 35 neutrophil and macrophage recruitment into the lung as determined by bronchoalveolar 36 lavage fluid (BALF) with decreased neutrophils and macrophages through 3 days post

1	
1	infection and increased numbers of macrophages and neutrophils 7 days post infection
2	(Kozul et al., 2009). The resulting virus titers in inorganic arsenic exposed mice were
3	higher as were other signs of morbidity to respiratory influenza A (H1N1) virus.
4	Inorganic arsenic exposure is also associated with decreased bacterial clearance in
5	multiple animal models including mice (Bishayi and Sengupta, 2003), catfish (Ghosh et
6	<u>al., 2007a</u>), and zebrafish (<u>Nayak et al., 2007</u>).
7	Suppression of host resistance assays, delayed-type hypersensitivity, and T-cell
8	dependent antibody response are considered among the best assays for determining
9	chemical immunotoxicity, particularly when there are indications that multiple functional
10	parameters are effected (WHO, 2012; U.S. EPA, 1998), and there is evidence that
11	inorganic arsenic exposure is associated with immune suppression by all three measures.
12	Few susceptible individual response factors have been identified that are likely to
13	contribute to immune-mediated inorganic arsenic effects. However, given the importance
14	for cytokine communication and coordination of immune function, gene polymorphisms
15	relating to cytokine function are logical candidates. Banerjee et al. (2011) reported an
16	association between polymorphisms in TNF- α (-308G/A) and IL-10 (-3575T/A)
17	promoters and inorganic arsenic-associated respiratory effects and conjunctivitis.
18	Individuals with GA/AA (-308 TNF- α) and TA/AA (-3575 IL10) genotypes were at
19	higher risk of developing inorganic arsenic-associated conjunctivitis and respiratory
20	effects, as well as inorganic arsenic-induced skin lesions. In a related study by the same
21	research group, Bhattacharjee et al. (2013) reported that polymorphisms in the NALP2
22	gene also modify risk of inorganic arsenic-associated respiratory disease.
23	Inorganic arsenic-associated increases in respiratory disease, incidence of colds or fever,
24	and diarrhea represent population level responses with a strong link to immune-
25	mediated inorganic arsenic effects. Increased relative risk of lower respiratory tract
26	infection for children of mothers with higher urinary arsenic levels was reported in
27	several studies of the Matlab region of Bangladesh (Rahman et al., 2011; Raqib et al.,
28	2009). A similar increase in relative risk of both upper and lower respiratory tract
29	infection and number of colds treated with prescription medications was reported in
30	children from a New Hampshire Birth Cohort correlated with maternal urinary arsenic
31	levels at 24-28 weeks of gestation (Farzan et al., 2013). The Rahman et al. (2011) study
32	reported an increased relative risk of diarrhea in the children of arsenic-exposed mothers
33	in Bangladesh and the Farzan et al. (2013) study reported a non-significant arsenic-
34	associated increase in diarrhea symptoms lasting two or more days or requiring doctor
35	visit [RR=1.9 (95% CI: 0.9, 3.9) and RR=3.5 (95% CI: 0.8, 15.4)]. Although most of
36	these disease-related endpoints were in children, one of the Bangladesh cohorts reported

These draft development materials are for review purposes only and do not constitute Agency policy.April 20149-26Draft: Do Not Cite or Quote


1 2 increased number of days with fever and increased number of days of diarrhea in the pregnant mothers (<u>Raqib et al., 2009</u>).

9.6 Hypothesized MOA: Oxidative Stress

Relevant Health Effects: Cardiovascular Disease, Diabetes, Liver Disease, Lung Cancer, Bladder Cancer, Neurotoxicity, Non-Malignant Respiratory Disease, Pregnancy Outcomes, Renal Disease, Skin Cancer, and Skin Lesions

5methylated species, (2) depletion of cellular thiols that are involved in maintaining6cellular redox balance, and (3) the generation of reactive oxygen species (ROS). Sever7adverse health effects following exposure to inorganic arsenic may thus result from8events mediated by oxidative stress (Flora, 2011; Jomova et al., 2011; Kitchin and9Conolly, 2010) (Figure 9-6). The molecular initiating event (MHE) in this MOA is a10topic of ongoing research but likely includes one of the following: 1) intermediate arsis11species (e.g., dimethylarsine) react with molecular oxygen, 2) methylated arsenic speci12react with ferritin, 3) arsenite oxidizes to arsenate, and 4) inorganic arsenic interacts w13complexes in the mitochondrial electron transport chain and/ or antioxidant enzymes14(e.g., nicotinamide adenine dinucleotide phosphate-oxidase [NADPH oxidase]) (Li et a152014; Flora, 2011).16While multiple MIEs are possible for this MOA, each one will result in a biochemical17response that consists of perturbing the redox balance in the cell through: 1) generation18ROS (e.g., superoxide, H2O2, hydroxyl radical), and 2) depletion of antioxidant defense202011; Kitchin and Conolly, 2010; De Vizcaya-Ruiz et al., 2009). Each set of responses21ROS generation and redox depletion, can initially involve a separate set of reactions, b22both are intricately linked such that elevated ROS levels can deplete redox enzymes an23vice versa (Flora, 2011; Jomova et al., 2011; Kitchin and Conolly, 2010). Moreover,24although the generation of RO	3	As discussed in the Preamble, mammalian metabolism of inorganic arsenic involves a
6 cellular redox balance, and (3) the generation of reactive oxygen species (ROS). Sever 7 adverse health effects following exposure to inorganic arsenic may thus result from 8 events mediated by oxidative stress (Flora, 2011; Jomova et al., 2011; Kitchin and 9 Conolly, 2010) (Figure 9-6). The molecular initiating event (MIE) in this MOA is a 10 topic of ongoing research but likely includes one of the following: 1) intermediate arsit 11 species (e.g., dimethylarsine) react with molecular oxygen, 2) methylated arsenic speci 12 react with ferritin, 3) arsenite oxidizes to arsenate, and 4) inorganic arsenic interacts w 13 complexes in the mitochondrial electron transport chain and/ or antioxidant enzymes 14 (e.g., nicotinamide adenine dinucleotide phosphate-oxidase [NADPH oxidase]) (Li et a 15 2014; Flora, 2011). 16 While multiple MIEs are possible for this MOA, each one will result in a biochemical 17 response that consists of perturbing the redox balance in the cell through: 1) generation 18 ROS (e.g., superoxide, H2O2, hydroxyl radical), and 2) depletion of antioxidant defense 19 (e.g., glutathione [GSH], ascorbate, superoxide dismutase) (Flora, 2011; Jomova et al., 2011; Kitchin and Conolly, 2010; De Vizcaya-Ruiz et al., 2009). Each set of responses 21 ROS generation and redox depletion, can	4	cascade of oxidation-reduction reactions whose net results are (1) generation of trivalent
7adverse health effects following exposure to inorganic arsenic may thus result from8events mediated by oxidative stress (Flora, 2011; Jomova et al., 2011; Kitchin and9Conolly, 2010) (Figure 9-6). The molecular initiating event (MIE) in this MOA is a10topic of ongoing research but likely includes one of the following: 1) intermediate arsin11species (e.g., dimethylarsine) react with molecular oxygen, 2) methylated arsenic speci12react with ferritin, 3) arsenite oxidizes to arsenate, and 4) inorganic arsenic interacts w13complexes in the mitochondrial electron transport chain and/ or antioxidant enzymes14(e.g., nicotinamide adenine dinucleotide phosphate-oxidase [NADPH oxidase]) (Li et al.152014; Flora, 2011).16While multiple MIEs are possible for this MOA, each one will result in a biochemical17response that consists of perturbing the redox balance in the cell through: 1) generation18ROS (e.g., superoxide, H2O2, hydroxyl radical), and 2) depletion of antioxidant defense19(e.g., glutathione [GSH], ascorbate, superoxide dismutase) (Flora, 2011; Jomova et al.,202011; Kitchin and Conolly, 2010; De Vizcaya-Ruiz et al., 2009). Each set of responses21ROS generation and redox depletion, can initially involve a separate set of reactions, b22both are intricately linked such that elevated ROS levels can deplete redox enzymes an23vice versa (Flora, 2011; Jomova et al., 2011; Kitchin and Conolly, 2010). Moreover,24although the generation of ROS or depletion of antioxidant defenses may occur in25multiple tissue types, the su	5	methylated species, (2) depletion of cellular thiols that are involved in maintaining
8events mediated by oxidative stress (Flora, 2011; Jomova et al., 2011; Kitchin and9Conolly, 2010) (Figure 9-6). The molecular initiating event (MIE) in this MOA is a10topic of ongoing research but likely includes one of the following: 1) intermediate arsis11species (e.g., dimethylarsine) react with molecular oxygen, 2) methylated arsenic speci12react with ferritin, 3) arsenite oxidizes to arsenate, and 4) inorganic arsenic interacts w13complexes in the mitochondrial electron transport chain and/ or antioxidant enzymes14(e.g., nicotinamide adenine dinucleotide phosphate-oxidase [NADPH oxidase]) (Li et a152014; Flora, 2011).16While multiple MIEs are possible for this MOA, each one will result in a biochemical17response that consists of perturbing the redox balance in the cell through: 1) generation18ROS (e.g., superoxide, H2O2, hydroxyl radical), and 2) depletion of antioxidant defense202011; Kitchin and Conolly, 2010; De Vizcaya-Ruiz et al., 2009). Each set of responses21ROS generation and redox depletion, can initially involve a separate set of reactions, b22both are intricately linked such that elevated ROS levels can deplete redox enzymes an23vice versa (Flora, 2011; Jomova et al., 2011; Kitchin and Conolly, 2010). Moreover,24although the generation of ROS or depletion of antioxidant defenses may occur in25multiple tissue types, the subsequent redox response is likely tissue dependent due to26differences in constitutive levels of redox enzymes and peptides across cell types (e.g.,27higher constitutive gluta	6	cellular redox balance, and (3) the generation of reactive oxygen species (ROS). Several
9Conolly, 2010) (Figure 9-6). The molecular initiating event (MIE) in this MOA is a10topic of ongoing research but likely includes one of the following: 1) intermediate arsin11species (e.g., dimethylarsine) react with molecular oxygen, 2) methylated arsenic speci12react with ferritin, 3) arsenite oxidizes to arsenate, and 4) inorganic arsenic interacts w13complexes in the mitochondrial electron transport chain and/ or antioxidant enzymes14(e.g., nicotinamide adenine dinucleotide phosphate-oxidase [NADPH oxidase]) (Li et a152014; Flora, 2011).16While multiple MIEs are possible for this MOA, each one will result in a biochemical17response that consists of perturbing the redox balance in the cell through: 1) generation18ROS (e.g., superoxide, H2O2, hydroxyl radical), and 2) depletion of antioxidant defense202011; Kitchin and Conolly, 2010; De Vizcaya-Ruiz et al., 2009). Each set of responses21ROS generation and redox depletion, can initially involve a separate set of reactions, b22both are intricately linked such that elevated ROS levels can deplete redox enzymes an23vice versa (Flora, 2011; Jomova et al., 2011; Kitchin and Conolly, 2010). Moreover,24although the generation of ROS or depletion of antioxidant defenses may occur in25multiple tissue types, the subsequent redox response is likely tissue dependent due to26differences in constitutive levels of redox enzymes and peptides across cell types (e.g.,27higher constitutive glutathione levels in lung fibroblasts compared to keratinocytes)	7	adverse health effects following exposure to inorganic arsenic may thus result from
10topic of ongoing research but likely includes one of the following: 1) intermediate arsin11species (e.g., dimethylarsine) react with molecular oxygen, 2) methylated arsenic speci12react with ferritin, 3) arsenite oxidizes to arsenate, and 4) inorganic arsenic interacts w13complexes in the mitochondrial electron transport chain and/ or antioxidant enzymes14(e.g., nicotinamide adenine dinucleotide phosphate-oxidase [NADPH oxidase]) (Li et a152014; Flora, 2011).16While multiple MIEs are possible for this MOA, each one will result in a biochemical17response that consists of perturbing the redox balance in the cell through: 1) generation18ROS (e.g., superoxide, H2O2, hydroxyl radical), and 2) depletion of antioxidant defense19(e.g., glutathione [GSH], ascorbate, superoxide dismutase) (Flora, 2011; Jomova et al.,202011; Kitchin and Conolly, 2010; De Vizcaya-Ruiz et al., 2009). Each set of responses21ROS generation and redox depletion, can initially involve a separate set of reactions, b22both are intricately linked such that elevated ROS levels can deplete redox enzymes an23vice versa (Flora, 2011; Jomova et al., 2011; Kitchin and Conolly, 2010). Moreover,24although the generation of ROS or depletion of antioxidant defenses may occur in25multiple tissue types, the subsequent redox response is likely tissue dependent due to26differences in constitutive levels of redox enzymes and peptides across cell types (e.g.,27higher constitutive glutathione levels in lung fibroblasts compared to keratinocytes)	8	events mediated by oxidative stress (Flora, 2011; Jomova et al., 2011; Kitchin and
11species (e.g., dimethylarsine) react with molecular oxygen, 2) methylated arsenic speci12react with ferritin, 3) arsenite oxidizes to arsenate, and 4) inorganic arsenic interacts w13complexes in the mitochondrial electron transport chain and/ or antioxidant enzymes14(e.g., nicotinamide adenine dinucleotide phosphate-oxidase [NADPH oxidase]) (Li et a152014; Flora, 2011).16While multiple MIEs are possible for this MOA, each one will result in a biochemical17response that consists of perturbing the redox balance in the cell through: 1) generation18ROS (e.g., superoxide, H2O2, hydroxyl radical), and 2) depletion of antioxidant defem19(e.g., glutathione [GSH], ascorbate, superoxide dismutase) (Flora, 2011; Jomova et al.,202011; Kitchin and Conolly, 2010; De Vizcaya-Ruiz et al., 2009). Each set of responses21ROS generation and redox depletion, can initially involve a separate set of reactions, b22both are intricately linked such that elevated ROS levels can deplete redox enzymes an23vice versa (Flora, 2011; Jomova et al., 2011; Kitchin and Conolly, 2010). Moreover,24although the generation of ROS or depletion of antioxidant defenses may occur in25multiple tissue types, the subsequent redox response is likely tissue dependent due to26differences in constitutive levels of redox enzymes and peptides across cell types (e.g.,27higher constitutive glutathione levels in lung fibroblasts compared to keratinocytes)	9	Conolly, 2010) (Figure 9-6). The molecular initiating event (MIE) in this MOA is a
12react with ferritin, 3) arsenite oxidizes to arsenate, and 4) inorganic arsenic interacts with13complexes in the mitochondrial electron transport chain and/ or antioxidant enzymes14(e.g., nicotinamide adenine dinucleotide phosphate-oxidase [NADPH oxidase]) (Li et a152014; Flora, 2011).16While multiple MIEs are possible for this MOA, each one will result in a biochemical17response that consists of perturbing the redox balance in the cell through: 1) generation18ROS (e.g., superoxide, H2O2, hydroxyl radical), and 2) depletion of antioxidant defens19(e.g., glutathione [GSH], ascorbate, superoxide dismutase) (Flora, 2011; Jomova et al.,202011; Kitchin and Conolly, 2010; De Vizcaya-Ruiz et al., 2009). Each set of responses21ROS generation and redox depletion, can initially involve a separate set of reactions, b22both are intricately linked such that elevated ROS levels can deplete redox enzymes an23vice versa (Flora, 2011; Jomova et al., 2011; Kitchin and Conolly, 2010). Moreover,24although the generation of ROS or depletion of antioxidant defenses may occur in25multiple tissue types, the subsequent redox response is likely tissue dependent due to26differences in constitutive levels of redox enzymes and peptides across cell types (e.g.,27higher constitutive glutathione levels in lung fibroblasts compared to keratinocytes)	10	topic of ongoing research but likely includes one of the following: 1) intermediate arsine
13complexes in the mitochondrial electron transport chain and/ or antioxidant enzymes14(e.g., nicotinamide adenine dinucleotide phosphate-oxidase [NADPH oxidase]) (Li et a152014; Flora, 2011).16While multiple MIEs are possible for this MOA, each one will result in a biochemical17response that consists of perturbing the redox balance in the cell through: 1) generation18ROS (e.g., superoxide, H2O2, hydroxyl radical), and 2) depletion of antioxidant defens19(e.g., glutathione [GSH], ascorbate, superoxide dismutase) (Flora, 2011; Jomova et al.,202011; Kitchin and Conolly, 2010; De Vizcaya-Ruiz et al., 2009). Each set of responses21ROS generation and redox depletion, can initially involve a separate set of reactions, b22both are intricately linked such that elevated ROS levels can deplete redox enzymes an23vice versa (Flora, 2011; Jomova et al., 2011; Kitchin and Conolly, 2010). Moreover,24although the generation of ROS or depletion of antioxidant defenses may occur in25multiple tissue types, the subsequent redox response is likely tissue dependent due to26differences in constitutive levels of redox enzymes and peptides across cell types (e.g.,27higher constitutive glutathione levels in lung fibroblasts compared to keratinocytes)	11	species (e.g., dimethylarsine) react with molecular oxygen, 2) methylated arsenic species
14(e.g., nicotinamide adenine dinucleotide phosphate-oxidase [NADPH oxidase]) (Li et a 2014; Flora, 2011).16While multiple MIEs are possible for this MOA, each one will result in a biochemical response that consists of perturbing the redox balance in the cell through: 1) generation ROS (e.g., superoxide, H2O2, hydroxyl radical), and 2) depletion of antioxidant defensive (e.g., glutathione [GSH], ascorbate, superoxide dismutase) (Flora, 2011; Jomova et al., 2002011; Kitchin and Conolly, 2010; De Vizcaya-Ruiz et al., 2009). Each set of responses ROS generation and redox depletion, can initially involve a separate set of reactions, b both are intricately linked such that elevated ROS levels can deplete redox enzymes an vice versa (Flora, 2011; Jomova et al., 2011; Kitchin and Conolly, 2010). Moreover, although the generation of ROS or depletion of antioxidant defenses may occur in multiple tissue types, the subsequent redox response is likely tissue dependent due to differences in constitutive levels of redox enzymes and peptides across cell types (e.g., higher constitutive glutathione levels in lung fibroblasts compared to keratinocytes)	12	react with ferritin, 3) arsenite oxidizes to arsenate, and 4) inorganic arsenic interacts with
152014; Flora, 2011).16While multiple MIEs are possible for this MOA, each one will result in a biochemical response that consists of perturbing the redox balance in the cell through: 1) generation ROS (e.g., superoxide, H2O2, hydroxyl radical), and 2) depletion of antioxidant defens (e.g., glutathione [GSH], ascorbate, superoxide dismutase) (Flora, 2011; Jomova et al., 2002011; Kitchin and Conolly, 2010; De Vizcaya-Ruiz et al., 2009). Each set of responses ROS generation and redox depletion, can initially involve a separate set of reactions, b both are intricately linked such that elevated ROS levels can deplete redox enzymes an vice versa (Flora, 2011; Jomova et al., 2011; Kitchin and Conolly, 2010). Moreover, although the generation of ROS or depletion of antioxidant defenses may occur in multiple tissue types, the subsequent redox response is likely tissue dependent due to differences in constitutive levels of redox enzymes and peptides across cell types (e.g., higher constitutive glutathione levels in lung fibroblasts compared to keratinocytes)	13	complexes in the mitochondrial electron transport chain and/ or antioxidant enzymes
16While multiple MIEs are possible for this MOA, each one will result in a biochemical17response that consists of perturbing the redox balance in the cell through: 1) generation18ROS (e.g., superoxide, H2O2, hydroxyl radical), and 2) depletion of antioxidant defens19(e.g., glutathione [GSH], ascorbate, superoxide dismutase) (Flora, 2011; Jomova et al.,202011; Kitchin and Conolly, 2010; De Vizcaya-Ruiz et al., 2009). Each set of responses21ROS generation and redox depletion, can initially involve a separate set of reactions, b22both are intricately linked such that elevated ROS levels can deplete redox enzymes an23vice versa (Flora, 2011; Jomova et al., 2011; Kitchin and Conolly, 2010). Moreover,24although the generation of ROS or depletion of antioxidant defenses may occur in25multiple tissue types, the subsequent redox response is likely tissue dependent due to26differences in constitutive levels of redox enzymes and peptides across cell types (e.g.,27higher constitutive glutathione levels in lung fibroblasts compared to keratinocytes)	14	(e.g., nicotinamide adenine dinucleotide phosphate-oxidase [NADPH oxidase]) (Li et al.,
17response that consists of perturbing the redox balance in the cell through: 1) generation18ROS (e.g., superoxide, H2O2, hydroxyl radical), and 2) depletion of antioxidant defens19(e.g., glutathione [GSH], ascorbate, superoxide dismutase) (Flora, 2011; Jomova et al.,202011; Kitchin and Conolly, 2010; De Vizcaya-Ruiz et al., 2009). Each set of responses21ROS generation and redox depletion, can initially involve a separate set of reactions, b22both are intricately linked such that elevated ROS levels can deplete redox enzymes an23vice versa (Flora, 2011; Jomova et al., 2011; Kitchin and Conolly, 2010). Moreover,24although the generation of ROS or depletion of antioxidant defenses may occur in25multiple tissue types, the subsequent redox response is likely tissue dependent due to26differences in constitutive levels of redox enzymes and peptides across cell types (e.g.,27higher constitutive glutathione levels in lung fibroblasts compared to keratinocytes)	15	<u>2014; Flora, 2011</u>).
18ROS (e.g., superoxide, H2O2, hydroxyl radical), and 2) depletion of antioxidant defens19(e.g., glutathione [GSH], ascorbate, superoxide dismutase) (Flora, 2011; Jomova et al.,202011; Kitchin and Conolly, 2010; De Vizcaya-Ruiz et al., 2009). Each set of responses21ROS generation and redox depletion, can initially involve a separate set of reactions, b22both are intricately linked such that elevated ROS levels can deplete redox enzymes an23vice versa (Flora, 2011; Jomova et al., 2011; Kitchin and Conolly, 2010). Moreover,24although the generation of ROS or depletion of antioxidant defenses may occur in25multiple tissue types, the subsequent redox response is likely tissue dependent due to26differences in constitutive levels of redox enzymes and peptides across cell types (e.g.,27higher constitutive glutathione levels in lung fibroblasts compared to keratinocytes)	16	While multiple MIEs are possible for this MOA, each one will result in a biochemical
 (e.g., glutathione [GSH], ascorbate, superoxide dismutase) (Flora, 2011; Jomova et al., 20 2011; Kitchin and Conolly, 2010; De Vizcaya-Ruiz et al., 2009). Each set of responses 21 ROS generation and redox depletion, can initially involve a separate set of reactions, b 22 both are intricately linked such that elevated ROS levels can deplete redox enzymes an 23 vice versa (Flora, 2011; Jomova et al., 2011; Kitchin and Conolly, 2010). Moreover, 24 although the generation of ROS or depletion of antioxidant defenses may occur in 25 multiple tissue types, the subsequent redox response is likely tissue dependent due to 26 differences in constitutive levels of redox enzymes and peptides across cell types (e.g., 27 higher constitutive glutathione levels in lung fibroblasts compared to keratinocytes) 	17	response that consists of perturbing the redox balance in the cell through: 1) generation of
20 2011; Kitchin and Conolly, 2010; De Vizcaya-Ruiz et al., 2009). Each set of responses 21 ROS generation and redox depletion, can initially involve a separate set of reactions, b 22 both are intricately linked such that elevated ROS levels can deplete redox enzymes an 23 vice versa (Flora, 2011; Jomova et al., 2011; Kitchin and Conolly, 2010). Moreover, 24 although the generation of ROS or depletion of antioxidant defenses may occur in 25 multiple tissue types, the subsequent redox response is likely tissue dependent due to 26 differences in constitutive levels of redox enzymes and peptides across cell types (e.g., 27 higher constitutive glutathione levels in lung fibroblasts compared to keratinocytes)	18	ROS (e.g., superoxide, H2O2, hydroxyl radical), and 2) depletion of antioxidant defenses
ROS generation and redox depletion, can initially involve a separate set of reactions, b both are intricately linked such that elevated ROS levels can deplete redox enzymes an vice versa (Flora, 2011; Jomova et al., 2011; Kitchin and Conolly, 2010). Moreover, although the generation of ROS or depletion of antioxidant defenses may occur in multiple tissue types, the subsequent redox response is likely tissue dependent due to differences in constitutive levels of redox enzymes and peptides across cell types (e.g., higher constitutive glutathione levels in lung fibroblasts compared to keratinocytes)	19	(e.g., glutathione [GSH], ascorbate, superoxide dismutase) (Flora, 2011; Jomova et al.,
 both are intricately linked such that elevated ROS levels can deplete redox enzymes an vice versa (Flora, 2011; Jomova et al., 2011; Kitchin and Conolly, 2010). Moreover, although the generation of ROS or depletion of antioxidant defenses may occur in multiple tissue types, the subsequent redox response is likely tissue dependent due to differences in constitutive levels of redox enzymes and peptides across cell types (e.g., higher constitutive glutathione levels in lung fibroblasts compared to keratinocytes) 	20	2011; Kitchin and Conolly, 2010; De Vizcaya-Ruiz et al., 2009). Each set of responses,
 vice versa (Flora, 2011; Jomova et al., 2011; Kitchin and Conolly, 2010). Moreover, although the generation of ROS or depletion of antioxidant defenses may occur in multiple tissue types, the subsequent redox response is likely tissue dependent due to differences in constitutive levels of redox enzymes and peptides across cell types (e.g., higher constitutive glutathione levels in lung fibroblasts compared to keratinocytes) 	21	ROS generation and redox depletion, can initially involve a separate set of reactions, but
 although the generation of ROS or depletion of antioxidant defenses may occur in multiple tissue types, the subsequent redox response is likely tissue dependent due to differences in constitutive levels of redox enzymes and peptides across cell types (e.g., higher constitutive glutathione levels in lung fibroblasts compared to keratinocytes) 	22	both are intricately linked such that elevated ROS levels can deplete redox enzymes and
 multiple tissue types, the subsequent redox response is likely tissue dependent due to differences in constitutive levels of redox enzymes and peptides across cell types (e.g., higher constitutive glutathione levels in lung fibroblasts compared to keratinocytes) 	23	vice versa (Flora, 2011; Jomova et al., 2011; Kitchin and Conolly, 2010). Moreover,
 26 differences in constitutive levels of redox enzymes and peptides across cell types (e.g., 27 higher constitutive glutathione levels in lung fibroblasts compared to keratinocytes) 	24	although the generation of ROS or depletion of antioxidant defenses may occur in
27 higher constitutive glutathione levels in lung fibroblasts compared to keratinocytes)	25	multiple tissue types, the subsequent redox response is likely tissue dependent due to
	26	differences in constitutive levels of redox enzymes and peptides across cell types (e.g.,
28 (<u>Snow et al., 2005</u>). In turn, while oxidative stress may be a MOA common to several	27	higher constitutive glutathione levels in lung fibroblasts compared to keratinocytes)
	28	(Snow et al., 2005). In turn, while oxidative stress may be a MOA common to several

1 2 adverse health effects, the context (i.e., cell type) in which oxidative stress occurs will influence the health effect(s) that are ultimately observed.

Abbreviations: Inorganic arsenic (iAs); molecular initiating event (MIE); reactive oxygen species (ROS)

See Summary Text and Table for references; Figure based on Ankley et al. (2010).

Note: Figure shows key events from the initial molecular interaction through a possible population level response. Note that arrows link each key event (e.g., individual responses lead to population responses), but do not necessarily link each specific example response (e.g., insulin resistance is not linked to all of the diseases included in the Table in Section 10.5). As the assessment development process moves forward additional evidence may provide a better understanding of the key events in this MOA and the connections between them.

Figure 9-6 Hypothesized mode of action for effects mediated by oxidative stress.

3	To that end, numerous <i>biochemical</i> responses can occur within cells following the
4	generation of ROS and depletion of antioxidant defenses, including changes in: protein
5	expression, enzyme activity, lipid oxidation, DNA damage, gene expression and cell
6	signaling (Table in Section 10.5). For instance, alterations in protein expression levels
7	have been observed in multiple tissue types. While observations of increased protein
8	expression levels related to antioxidant defense (e.g., Cu/Zn Superoxide dismutase
9	[SOD], nuclear factor [erythroid-derived 2]-like 2 [Nrf2]) (Zhao et al., 2012; Zheng et al.,
10	<u>2012</u> ; <u>Li et al., 2011</u>) and DNA repair (e.g., DNA polymerase β) (<u>reviewed in Snow et</u>
11	al., 2005) may occur across multiple cell types, other observations of elevated protein
12	levels may be specific to specific cells (e.g., Platelet endothelial cell adhesion molecule

- [PCAM-1]) (Straub et al., 2008). Cell-type specific changes in protein expression or other
 biochemical responses once again highlight how one MOA may play a role in multiple
 adverse health outcomes and provide insight in subsequent steps of the assessment
 development process (see the Inorganic arsenic ADP for more information).
- 5 For many of the biochemical responses noted above, the concentration and duration of 6 inorganic arsenic exposure, and subsequent redox imbalance, may influence the ultimate 7 cellular response. Based on the literature reviewed, there appears to be a possible pattern 8 of generally adaptive cellular responses (e.g., increases in DNA base excision repair 9 genes and antioxidant enzymes) at relatively low exposures, whereas higher 10 concentrations may result in adverse cellular responses (e.g., decreases in DNA excision 11 repair proteins) (Snow et al., 2005). The exposure at which disruption of cellular 12 homeostasis occurs varies greatly across cell lines, and thus the specific concentration 13 range that confers adaptive versus adverse cellular responses is a topic of ongoing 14 research (Clewell et al., 2011; Flora, 2011; Gentry et al., 2010). Similarly, the changes in 15 protein expression, enzyme activity, or DNA damage can be very time-dependent [e.g., 16 elevated DNA repair enzyme activity at ≤ 48 hrs of inorganic arsenic exposure, compared 17 to basal activity levels after72-120 hrs exposure (Snow et al., 2005)] (Medeiros et al., 18 2012; Clewell et al., 2011; Eblin et al., 2008; Eblin et al., 2006).
- 19 Separate from the consideration of exposure duration is the duration of a biochemical 20 response that inorganic arsenic may elicit in a cell. Two aspects of response duration are 21 important to examine. First, short-lived, reversible responses such as elevated ROS levels 22 likely lead to distinct outcomes from prolonged, irreversible responses such as DNA 23 damage or epigenetic alterations that persist after inorganic arsenic exposure is stopped 24 (Flora, 2011; Wnek et al., 2009). Second, inorganic arsenic exposure may modulate the 25 natural duration of a response, thus turning an adaptive response to an adverse response. 26 For instance, evidence suggests that inorganic arsenic exposure may result in prolonged 27 activation of the Nrf2 transcription factor pathway compared to when the pathway is 28 activated by natural compounds (e.g., sulforaphane, tert-butylhyrdoquinone) (reviewed in 29 Lau et al., 2013). The Nrf2 pathway is activated by oxidative stress and plays a key role 30 in antioxidant defense; however, prolonged activation of the Nrf2 pathway can lead to 31 sustained cell growth and is associated with cancer in several tissues (e.g., breast, 32 bladder, skin) (reviewed in Lau et al., 2013). Recent data indicate that inorganic arsenic 33 exposure may mimic constitutive Nrf2 activation found in several tumor types (reviewed 34 in Lau et al., 2013). The mechanism through which inorganic arsenic exposure leads to 35 subsequent activation of Nrf2 is an area of ongoing research; yet, evidence suggests that 36 unlike natural compounds, which activate Nrf2 by inhibiting its ubiquitination through

1	direct interaction with Keap1 (Kelch-like ECH associated protein 1), inorganic arsenic
2	may activate Nrf2 through a Keap1-independent mechanism (reviewed in Lau et al.,
3	2013). Further, data indicate that Nrf2 activators which act through interaction with
4	KEAP1 can mitigate toxic effects of inorganic arsenic exposure both in vitro and in vivo
5	(Tao et al., 2013; Zhao et al., 2012; Wang et al., 2007b). Data from multiple cell types
6	suggest that the Nrf2 pathway plays a critical role in antioxidant response to inorganic
7	arsenic exposure (see examples in the Table in Section 10.5) (reviewed in Lau et al.,
8	2013). As discussed further below, data also suggest that individuals with genetic or
9	epigenetic alternations in the Nrf2 pathway may be more susceptible to inorganic arsenic
10	exposure. Together, data suggest that Nrf2 plays a critical, though complex, role in
11	inorganic arsenic mediated oxidative stress response and subsequent health effects.
12	Similar to observations of prolonged Nrf2 activation, data also suggest that inorganic
13	arsenic promotes stabilization of the transcription factor HIF-1 α ; thus leading to
14	prolonged transcriptional activation of downstream targets (e.g., vascular endothelial
15	growth factor [VEGF]) (<u>Li et al., 2014</u>). Downstream targets of HIF-1 α can play a key
16	role in malignant transformation and carcinogenesis by promoting angiogenesis,
17	dedifferentiation, and glycolysis (Li et al., 2014). Prolonged HIF-1 α activation following
18	inorganic arsenic exposure is dependent on increases in ROS produced primarily by the
19	mitochondrial electron transport chain, possibly through inorganic arsenic activation of
20	NADPH oxidase at the cell surface (Li et al., 2014). Together with data on Nrf2
21	activation, evidence that inorganic arsenic perturbs HIF-1 α transcriptional activity via
22	ROS production provides insight on how subsequent changes at the cellular or tissue/
23	organ levels may be quite distinct despite being initiated through a common MOA.
24	Biological responses such as those discussed above can lead to a several <i>cellular</i>
25	responses, such as cell death, malignant transformation, or epithelial-mesenchymal
26	transition (EMT) (Table in Section 10.5). For example, elevated levels of apoptosis

transition (EMT) (Table in Section 10.5). For example, elevated levels of apoptosis 20 27 have been observed in multiple cell types across in vitro and in vivo models (e.g., Zhao et 28 al., 2012; Zheng et al., 2012). In contrast, EMT or other changes in cell membrane 29 structures represent phenotypic changes that are likely more unique to particular cell 30 types (i.e., epithelial cells). Importantly, manifestation of phenotypic changes in one cell 31 type (i.e., epithelial cells) may be informative for understanding adverse effects in 32 multiple tissue or organ systems. For instance, data from Straub et al. (2008) show lower 33 levels of membrane porosity due to elevated cell-junction protein expression (PECAM-1) 34 in liver sinusoidal epithelial cells, which may also have relevance for understanding 35 vascular remodeling in the cardiovascular system following inorganic arsenic exposures. 36 Other tissue or organ level responses associated with oxidative stress following inorganic

arsenic exposures include **inflammatory response, endocrine signaling, and vascular remodeling** (Table in Section 10.5).

1

2

- 3 The types of organ or tissue level responses noted above are associated with adverse 4 health outcomes at the level of the *individual response*. Adverse health effects for which 5 there is evidence of association with oxidative stress response following inorganic arsenic 6 exposures include: bladder cancer, cardiovascular disease, diabetes, liver disease, 7 lung cancer, neurotoxicity, non-malignant respiratory disease, pregnancy outcomes, 8 renal disease, skin cancer, and skin lesions. The level of evidence supporting the 9 various steps of the oxidative stress MOA (i.e., from molecular initiating event to adverse 10 outcome) is variable. Based on an initial literature review, health outcomes with data 11 available across multiple points in the oxidative stress MOA include: cardiovascular 12 disease, lung inflammation, and skin disease (cancer or lesions). The identification of 13 additional literature in an ongoing literature search may provide more support across the 14 MOA for other health outcomes, or these may represent areas for future research. 15 Importantly, information on an oxidative stress MOA for one health effect may provide 16 insight on how this MOA could apply to other health effects. For instance, data suggest 17 that inorganic arsenic can activate the epidermal growth factor receptor (EGFR) through 18 the generation of ROS, and thus data showing EGFR activation in both an in vitro model 19 of human lung cells and serum samples from liver cancer patients may provide insight on 20 the role of this MOA in both lung and liver cancers [(Sung et al., 2012; Wu et al., 1999), 21 reviewed in (Flora, 2011)]. In addition, multiple MOAs may be relevant for some health 22 outcomes such as hepatotoxicity, which is associated with inflammatory response and 23 metabolic changes as well as oxidative stress (reviewed in Flora, 2011); data also suggest 24 that the oxidative stress may act interdependently with a MOA involving sulfhydryl 25 protein binding in the development of bladder cancer following inorganic arsenic 26 exposures (Wnek et al., 2011). Finally, mechanisms involved in the oxidative stress 27 MOA [e.g., activation of mitogen activated protein kinase [MAPK] signaling pathway 28 (Ling et al., 2012)] may subsequently influence epigenetic mechanisms, and thus interact 29 with the epigenetic MOA (see Epigenetic Summary for details). Further research may 30 provide greater understanding of how the oxidative stress MOA interacts with other 31 MOAs in health outcomes associated with inorganic arsenic exposures.
- 32Additional information on interactions between the oxidative stress MOA and other33factors may be particularly useful in identifying *susceptible individual responses*.34Current data support a key role for Nrf2 pathway activation (examples in the Table in35Section 10.5) (reviewed in Lau et al., 2013); where data suggest inorganic arsenic36exposure may lead to prolonged pathway activation that is similar to constitutive

These draft development materials are for review purposes only and do not constitute Agency policy.April 20149-31Draft: Do Not Cite or Quote

1	activation of the pathway associated with skin squamous cell carcinoma in humans (Kim
2	et al., 2010 cited in, Zhao et al., 2012). In turn, individuals with mutations in the Nrf2
3	pathway (particularly Nrf2 or KEAP1) that confer constitutive activation of the pathway
4	may have higher levels of susceptibility following inorganic arsenic activation of the
5	pathway (Zhao et al., 2012). In addition, elevated levels of NADPH oxidase activity in
6	in vitro and in vivo liver models suggests that genetic or epigenetic alterations of this
7	enzyme could influence individual response to inorganic arsenic exposure (Straub et al.,
8	2008). Indeed, polymorphisms in the NADPH oxidase p22 subunit are hypothesized to
9	contribute to inorganic arsenic-related hypertension in Taiwan [(Hsueh et al., 2005) as
10	cited in (Straub et al., 2008)]. Additional factors that may interact with this MOA include
11	diabetes, smoking, alcohol and co-exposures to cadmium (Table in Section 10.5). Future
12	research may identify other factors that influence individual susceptibility and subsequent
13	population level responses.
14	The prevalence of the genetic factors noted above in different populations may provide
15	insight on differences in <i>population responses</i> to inorganic arsenic exposure for health
16	outcomes like skin cancer or cardiovascular disease. Recent work demonstrates that
17	biomarkers of oxidative stress (e.g., malondialdehyde or other lipid peroxidation
18	products, 8-oxo-G, 8-Hydroxy-guanine or other oxidative DNA damage products) can
19	help connect population level responses to the occurrence of adverse health effects
20	mediated through this MOA (reviewed in Flora, 2011; De Vizcaya-Ruiz et al., 2009).
21	Several studies have thus used biomarkers to confirm an association between inorganic
22	arsenic exposure and elevated oxidative stress [e.g., (Pi et al., 2002; Wu et al., 2001)].
23	However, associations between disease in populations exposed to inorganic arsenic and
24	oxidative stress still primarily rely on observational population studies combined with
25	indicators of oxidative stress in in vitro and/or in vivo studies in cell or tissue types
26	relevant to the disease (e.g., cardiomyocytes for cardiovascular disease). Despite the
27	observed associations between oxidative stress biomarkers and population health
28	outcomes, a clear connection between inorganic arsenic-induced elevations in oxidative
29	stress and subsequent disease is still lacking and contributions from other MOAs cannot
30	be ruled out.

31

10 PRELIMINARY MECHANISTIC AND SUSCEPTIBILITY DATA TABLES

10.1 Preliminary Data on Effects Mediated By Cytotoxicity and Regenerative Proliferation

Relevant Health Effects: Bladder, lung, and skin cancer

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration) ^a	References		
Molecular Initiating events							
Reactions with GSH and other non-protein thiols	Glutathione, cysteine, lipoic acid conjugates	Many	Humans, rodents, in vitro	Environmentally relevant and higher exposures	(<u>Cohen et al., 2013</u>)		
Reaction with thiols/ dithiols in specific proteins	Inorganic arsenic binding with tubulin, keratin, ER-α and related receptors, PARP-1, thio-redoxin reductase, As3mt, KEAP-1, many studies of zinc finger proteins, peptides; IkB kinase; EGFR, Shc; tyrosine phosphatases, ubiquitination enzymes; XPA, XPD (NER enzymes)	Not applicable	In vitro binding of As(III) to synthetic peptides	Kds =~1-30 µg/L (↓Kd with ↑cysteine residues)	(<u>Kitchin and</u> <u>Wallace, 2008</u> , <u>2005</u>), (<u>Qin et al.,</u> <u>2008</u>)		
	Reduced PARP activity, restored by co-incubation with Zn	Urothelium (Human)	UROtsa cells	50 nM MMA(III) (12 -52 wks)	(<u>Wnek et al., 2011</u> ; <u>Wnek et al., 2009</u>)		
Biochemical Responses							
See summary text					(<u>Cohen et al., 2013</u>)		

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration) ^a	References			
<u>Cellular Responses</u>								
Cytotoxicity/ viability	24-hour viability (mitochondrial dehydrogenase assay)	Urothelium (Human)	UROTSA, other cell lines	Arsenite IC_{50} for UROTSA = 17.8 μ M, 3.2 μ M for bronchial cells, 10 μ M for rat hepatocytes, >20 μ M for human hepatocytes, keratinocytes (24 hr)	(<u>Styblo et al., 2000</u>)			
Cytotoxicity/ viability (continued)	24-hour viability (mitochondrial dehydrogenase assay)	Multiple	Primary human, rat hepatocytes, 13 mam- malian cell lines	$IC_{50}s$ (24 hrs): As(III) = 1-100 μ M; MMA(III): 0.4 - 5.5 μ M; DMA(III): 0.4 - >20 μ M; most sensitive cell line: MB4 (human leukemia-derived)	(<u>Styblo et al., 2000</u>)			
	Cell viability (light microscopy); 95% mortality at low exposure, >99% mortality at two highest exposures	Urothelium (Human)	UROtsa cells	1 μM As(III) (30 – 48 days) 4, 8 μM As(III) (30 days)	(<u>Sens et al., 2004</u>)			
	Viability (MTT) assay	Urothelium (Human)	UROtsa cells	IC ₅₀ ~5 μM MMA(III) (24-72 hr) "threshold" for viability & morphology changes: ~2 μM	(<u>Bredfeldt et al.,</u> 2006)			
	Viability ↓ 42% (Trypan blue assay) *reduction, partially abolished by ROS scavengers	Urothelium (Human)	UROtsa cells	1 μM As(III) (24 hr)	(<u>Eblin et al., 2008</u>)			
	Viability ↓ (Trypan blue assay) *reduction, partially abolished by NADPH oxidase inhibitor, but other antioxidants	Urinary bladder epithelium (Rat)	MYP3 rat cell line	1 μM As(III) (3 days)	(<u>Suzuki et al., 2009</u>)			
	Viability ↓ (Trypan blue assay)	Urinary bladder epithelium (Rat)	MYP3 rat cell line	LC50: 0.75 µM As(III) (3 days)	(<u>Suzuki et al., 2010</u>)			

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration) ^a	References
		Ureter epithelium (Human)	1T1 human cell line	8.3 μM As(III) (3 days)	
Proliferation	Reduced doubling time (43.1 hr to 22.1 hr)	Urothelium (Human)	UROtsa cells	1 μM As(III) (>60 days)	(<u>Sens et al., 2004</u>)
	Reduced doubling time (42 hr to 27 hr)	Urothelium (Human)	UROtsa cells	50 nM MMA(III) (12weeks)	(<u>Bredfeldt et al.,</u> 2006)
	Reduced doubling time (42 hr to 21 hr)	Urothelium (Human)	UROtsa cells	50 nM MMA(III) (52 wks)	(<u>Bredfeldt et al.,</u> 2006)
	个thymidine uptake	Urothelium (Human)	UROtsa cells	2 or 4 μM sodium arsenite (48-72 hr)	(<u>Simeonova et al.,</u> 2000)
	↑S-phase cells ↓G ₀ /G ₁ cells			2 or 4 μM sodium arsenite (24 hr)	
Malignant transformation	Colony formation in soft agar, tumor formation after hetero- transplantation	Urothelium (Human)	UROtsa cells	1 μM As(III) (60 days, followed by repeated passages in As-free medium)	(<u>Sens et al., 2004</u>)
	Colony formation in soft agar	Urothelium (Human)	UROtsa cells	50 nM MMA(III) (24 or 52 wks)	(<u>Bredfeldt et al.,</u> 2006)
	Differentiation to squamous epithelium with poorly defined cell membranes, multinucleate cells;	Urothelium (Human)	UROtsa cells	50 nM MMA(III) (52 wks)	(<u>Bredfeldt et al.,</u> 2006)
	tumor formation after hetero- transplantation in SCID mice; ↑proliferative biomarker (Ki-67) in tumors				
<u>Tissue/ Or</u>	rgan Responses	·	• •		
Tissue Cytotoxicity/ Necrosis	Mild-moderate urothelial cytotoxicity (observed by scanning electron microscopy [SEM])	Urothelium (Rat; Mouse)	F344 rats, C57BL/6 mice	100 μg/L As(III) in drinking water (2 wks) ; or 50-400 μg/g in diet (2-10 wks)	(<u>Suzuki et al., 2008</u>

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration) ^a	References
	Urothelial cytotoxicity, (observed by SEM) *Cytotoxicity reduced by NADPH oxidase inhibitor, apocyanin(250 mg/L)	Urothelium (Rat)	F344 rats (Female)	100 ppm As(III) in diet (20 days)	(<u>Suzuki et al., 2009</u>)
Tissue Cytotoxicity/ Necrosis (continued)	Urothelial cytotoxicity, necrosis (observed by SEM)	Urothelium (Rat)	F344 rats (Female)	Dose-response ~10- 50 ppm As(III) in diet (5 wks) (NOEL: 1-10 ppm; significant at ≤ 50 ppm)	(<u>Suzuki et al., 2010</u>)
	Urothelial cytotoxicity, necrosis (observed by SEM) *cytotoxicity in KO compared to WT in same treatment groups	Urothelium (Mouse)	Wild Type (WT) and arsenic methyl- transferase (As3mt) KO mice (Female)	100 ppm As(III) in diet (6 days), followed by 50 ppm in drinking water (3 days)	(<u>Yokohira et al.,</u> <u>2010</u>)
	Urothelial cytotoxicity, necrosis (observed by SEM) *cytotoxicity in KO compared to WT in same treatment groups	Urothelium (Mouse)	WT and As3mt KO mice (Female)	10-25 ppm As(III) in drinking water (4 wks)	(<u>Yokohira et al.,</u> <u>2011</u>)
	Mild-moderate urothelial cytotoxicity (observed by SEM)	Urothelium (Rat)	F344 rats (Female)	100 ppm As(III) in drinking water (6 hr-14 days)	(<u>Arnold et al., 2013</u>)
	*severity increased over time	Urothelium (Mouse)	C57BL/6 WT and As3mt KO mice (Female)	25 ppm As(III) in drinking water (6 hr – 14 days)	
Tissue regeneration/ Hyperplasia	Mild-moderate urothelial hyperplasia (male and female rats, male mice)	Urothelium (Rat; Mouse)	F344 rats; C57BL/6 mice	100 µg/L As(III) in water; 50-400 µg/g in diet (2-10 wks)	(<u>Suzuki et al., 2008</u>)
	Urothelial hyperplasia *No effect of co- exposure to NADPH oxidase inhibitor	Urothelium (Rat)	F344 rats (Female)	100 ppm As(III) in diet (20 days)	(<u>Suzuki et al., 2009</u>)

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration) ^a	References
	Urothelial hyperplasia	Urothelium (Rat)	F344 rats (Female)	~10-100 ppm As(III) in diet (5 weeks) (NOEL: 1-10 ppm; significant at ≤ 50 ppm)	(<u>Suzuki et al., 2010</u>)
Tissue regeneration/ Hyperplasia (continued)	Mild-moderate hyperplasia, *greater severity in KO strain, but NOEL of 1 ppm in both strains;	Urothelium (Mouse)	WT and As3mt KO mice (Female)	50 ppm As(III) in drinking water (6 days); or 10-25 ppm As(III) in drinking water (4 wks)	(<u>Yokohira et al.,</u> 2011)
	Mild to moderate bladder hyperplasia (cancer bioassay)	Urinary bladder (Rat)	F344 rats	40 or 100 ppm DMA(V) in feed (2 yrs)	(<u>Arnold et al., 2006</u>)
	Urinary bladder hyperplasia *observed at all exposure levels in males; only observed in lowest exposure group in females	Urinary bladder (Mouse)	CD-1 mice	6, 12, 24 ppm sodium arsenite (2 weeks prior to parental mating through 2 years in adulthood)	(<u>Tokar et al., 2011</u>)
	Urothelial hyperplasia *increased severity & incidence over time	Bladder epithelium (Rat)	F344 rats (Female)	100 ppm As(III) in drinking water (24 hr-14 days)	(<u>Arnold et al., 2013</u>)
Hyperplasia and Metaplasia	Urothelial hyperplasia, occasional metaplasia	Urinary Bladder (Mouse)	C57/BL-6 mice (Female)	0.01% sodium arsenite in drinking water (4 wks)	(<u>Simeonova et al.,</u> 2000)

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration) ^a	References			
Individual Respons	Individual Responses							
Tumor development (animals)	Urothelial cell papillomas *statistically significant positive trend if combine male & female Urothelial cell carcinomas *statistically significant positive trend in females if male & female data combined (low incidence in males precludes statistical analysis	Urinary Bladder (Rat)	F344 rats	2-100 ppm DMA(V) in feed (2 yrs)	(<u>Arnold et al., 2006</u>)			
	No increase in tumor incidence	Urinary Bladder (Mouse)	B6C3F1 mice	8, 40, 200, or 500 ppm DMA(V) in feed (2 yrs)	(<u>Arnold et al., 2006</u>)			
Tumor development (animals) (continued)	dose-related ↑ in: hepatocellular carcinomas, adrenal tumors (male offspring); lung carcinomas, ovarian tumors, proliferative lesions of oviduct and uterus (female offspring)	Multiple Tissues (Mouse)	C3H mice	42.5, 85 ppm sodium arsenite in drinking water (gestation days 8- 18)	(<u>Waalkes et al.,</u> <u>2004b; Waalkes et</u> al., 2003)			
	Increased tumor incidence of liver, lung, gall bladder, adrenal gland kidney (male offspring); Liver, lung, ovary, uterus (female offspring)	Multiple Tissues (Mouse)	CD-1 mice	6, 12, 24 ppm sodium arsenite (2 weeks prior parental to mating through2 yrs in adulthood)	(<u>Tokar et al., 2011</u>)			
Susceptible Individ	luals							
Reduced As methylation capacity	Subjects with lower secondary methylation indices had higher risk of skin and bladder cancer	Skin Urinary bladder (Human)	Human Population	Cumulative inorganic arsenic intake 0-20 mg/L- year	(<u>Chen et al., 2003b;</u> <u>Chen et al., 2003a</u>)			

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration) ^a	References
Cytotoxicity, regenerative proliferation associated with urinary calculi	Observations of mild cytotoxicity, regenerative proliferation after exposure to calculi- inducing substances	Urinary bladder (Human)	Animals and human population	Drugs (humans) and wax implants (animals)	(<u>Cohen, 2002</u>)
UV-exposure	 ↑UV-induced DNA strand breaks ↓ UV-induced DNA repair enzyme activity 	Skin (Human)	HaCat cells	1 μM sodium arsenite (24 hr) 2 μM sodium arsenite (24 hr)	(<u>Qin et al., 2008</u>)
Human Population	n Responses				
Inorganic arsenic- associated cancer risk (bladder, lung, skin)	Elevated risks of bladder, lung, and skin cancer in chronically inorganic arsenic-exposed populations (multiple epidemiological studies); primarily limited to populations with water As levels >100 μg/L; limited data suggest urinary inorganic arsenic at levels found to be cytotoxic in rodents are associated with elevated risks.	Multiple tissues (Human)	Humans	Wide range of exposure levels and durations	Reviewed in: (<u>Cohen et al.,</u> 2013), (<u>Gibb et al., 2011</u>), (<u>Schoen et al.,</u> 2004), (<u>NRC, 1999</u>)

^aExposure duration abbreviations: minutes (min), hours (hr), days (d), weeks (wks), years (yr)

10.2Preliminary Data on Effects Mediated By Endocrine Signaling

Relevant Health Effects: Developmental Neurotoxicity, Male Infertility, Prostate Cancer

Key Events	Observations	Organ System	Test System	Dose (Exposure Duration) ^a	References			
Molecular Initiating	Molecular Initiating Events							
Interaction with hormone binding domain in hormone receptors	 ↑reporter activity of ERα hormone binding domain *inhibited by antiestrogen 	Kidney (Monkey)	COS-1 cells	1 μM sodium arsenite (24 hr)	(<u>Barr et al.,</u> 2009; <u>Rosenblatt</u> and <u>Burnstein,</u> 2009; <u>Stoica</u> et al., 2000)			
Modulate signaling pathways (e.g., mitogen activated protein kinases [MAPKs, extracellular signal- regulated kinases [ERK1/2]) responsible for posttranslation al modification of coactivators or steroid hormone receptors	Hypothesis	Not applicable (N/A)	N/A	N/A	(<u>Barr et al.,</u> <u>2009</u> ; <u>Rosenblatt</u> <u>and</u> <u>Burnstein,</u> <u>2009</u>)			

Key Events	Observations	Organ System	Test System	Dose (Exposure Duration) ^a	References
Modulate histone modifying proteins (e.g., acetylases, methylases) responsible for posttranslation al modification of coactivators or steroid hormone receptors	Hypothesis	N/A	N/A	N/A	(<u>Barr et al.,</u> 2009; <u>Rosenblatt</u> and <u>Burnstein,</u> 2009)
Biochemical Respo					
Alterations in Nucle Androgen Receptor	ear Hormone Receptor I	Mediated Gene Activo	ition		
↓AR amino and carboxyl (N-C) termini interaction	↓luciferase activity in mammalian two-hybrid assay	Prostate (Human)	PC3 cells (human prostate cancer cells)	5 μM arsenic trioxide (ATO) (24 hr)	(<u>Rosenblatt</u> and <u>Burnstein,</u> 2009)
↓AR coactivator- stimulated N-C interaction	↓luciferase activity in mammalian two-hybrid assay	Prostate (Human)	PC3 cells (human prostate cancer cells)	5 μΜ ΑΤΟ (24 hr)	(<u>Rosenblatt</u> <u>and</u> <u>Burnstein,</u> 2009)
↓AR coactivator recruitment to chromatin	↓ immuno- precipitation of TIF2 at Prostate- Specific Antigen (PSA) promoter	Prostate (Human)	LNCaP cells (human prostate cancer cells)	5 μΜ ΑΤΟ (24 hr)	(<u>Rosenblatt</u> <u>and</u> <u>Burnstein,</u> 2009)
↓AR recruitment to chromatin	↓ chromatin immuno- precipitation of AR at PSA promoter	Prostate (Human)	LNCaP cells	5 μΜ ΑΤΟ (24 hr)	(<u>Rosenblatt</u> <u>and</u> <u>Burnstein,</u> <u>2009</u>)
↓AR-mediated gene activation	↓ androgen response element luciferase activity (ARE or PSA)	Prostate (Human)	PC3, LNCaP, or LAPC4 cells (human prostate cancer cells)	1-5 μΜ ΑΤΟ (48 hr)	(<u>Rosenblatt</u> <u>and</u> <u>Burnstein,</u> 2009)

Key Events	Observations	Organ System	Test System	Dose (Exposure Duration) ^a	References
	↓ androgen response element luciferase activity	Testes (Mice)	TM4 mouse Sertoli cells	2 μΜ ΑΤΟ (48 hr)	(<u>Rosenblatt</u> <u>and</u> <u>Burnstein,</u> <u>2009</u>)
	↓ PSA mRNA	Prostate (Human)	LNCaP cells	2 μΜ ΑΤΟ (48 hr)	(<u>Rosenblatt</u> <u>and</u> <u>Burnstein,</u> <u>2009</u>)
Estrogen Receptor	(ER)				
Inhibition of estradiol binding to ERα	↓[3H]estradiol binding *not seen in work by Chow et al., <u>Chow et al.</u> (2004) using ERα competitive screening kit	Breast (Human)	Human breast cancer MCF-7 cells	Ki: 0.5nM sodium arsenite (18 hr)	(<u>Stoica et al.,</u> 2000)
	No ↓[3H]estradiol binding	Breast (Human)	Biochemical assay (screening kit)	100-200 nM ATO (not specified)	(<u>Chow et al.,</u> 2004)
↑ERα activation	↑estrogen response element reporter construct activity in ERα	Kidney (Monkey)	COS-1 cells	1 nm-10 μM sodium arsenite (24 hr)	(<u>Stoica et al.,</u> 2000)
Altered ER- mediated gene activation	↓vitellogenin expression (mRNA)	Liver (Chicken)	Chick Embryo	10 – 50 μmol/kg As(III) (4 hr) 10 μmol/kg E2 (3 hr)	(<u>Davey et al.,</u> <u>2007</u>)
	↓ Estrogen Response Element expression (luciferase expression or mRNA)	Breast (Human)	Human breast cancer MCF-7 cells	2.5 μM As(III) (EC50) (24 hr)	(<u>Davey et al.,</u> <u>2007</u>)
	↓GREB1 basal (mRNA)	Breast (Human)	Human breast cancer MCF-7 cells	5 μM As(III) (EC50) (24 hr)	(<u>Davey et al.,</u> 2007)

Key Events	Observations	Organ System	Test System	Dose (Exposure Duration) ^a	References
	↓GREB1-E2 induced (mRNA)	Breast (Human)	Human breast cancer MCF-7 cells	5 μM As(III) (EC50) (24 hr)	(<u>Davey et al.,</u> <u>2007</u>)
	↓ERα basal (mRNA)	Breast (Human)	Human breast cancer MCF-7 cells	5 μM As(III) (EC50) (24 hr)	(<u>Davey et al.,</u> <u>2007; Stoica</u> <u>et al., 2000</u>)
Altered ER- mediated gene activation	↓ERα basal (mRNA	Breast (Human)	Human breast cancer MCF-7 cells	2 μΜ ΑΤΟ (24 or 48 hr)	(<u>Chow et al.,</u> <u>2004</u>)
(continued)	↓ERα hormone induced (mRNA) *synergistic ↓ with E2	Breast (Human)	Human breast cancer MCF-7 cells	2 μΜ ΑΤΟ + 10 nM estradiol (24 or 48 hr)	(<u>Chow et al.,</u> 2004)
	↓ Estrogen Response Element expression (luciferase expression)	Breast (Human)	Human breast cancer MCF-7 cells	2 μM ATO (24 or 48 hr) 2 μM ATO + 10 nM estradiol (24 or 48 hr)	(<u>Chow et al.,</u> 2004)
	↓c-myc protein ↓c-myc protein induced by E2	Breast (Human)	Human breast cancer MCF-7 cells	2 μM ATO (48 hr) 2 μM ATO + 10 nM estradiol	(<u>Chow et al.,</u> 2004)
	个pS2 (mRNA) *个blocked by antiestrogen	Breast (Human)	Human breast cancer MCF-7 cells	(48 hr) 1μM sodium arsenite (24 hr)	(<u>Stoica et al.,</u> 2000)
↓ER-mediated protein levels	↓ERα protein	Breast (Human)	Human breast cancer MCF-7 cells	0.1, 1, or 5 μM sodium arsenite (24 hr)	(<u>Stoica et al.,</u> 2000)
	↓ERα protein	Breast (Human)	Human breast cancer MCF-7 cells	2 μΜ ΑΤΟ (48 hr)	(<u>Chow et al.,</u> 2004)
	↓ERα hormone induced protein *synergistic↓ with E2			2 μΜ ΑΤΟ + 10 nM 17β- estradiol (48 hr)	
	个progesterone receptor protein *个blocked by antiestrogen	Breast (Human)	Human breast cancer MCF-7 cells	1 μM sodium arsenite (24 hr)	(<u>Stoica et al.,</u> 2000)

Key Events	Observations	Organ System	Test System	Dose (Exposure Duration) ^a	References
	↓ Vascular Endothelial Growth Factor protein (mRNA and protein)	Uterus (Rat)	Sprague- Dawley rats (Female)	4 µg/ml sodium arsenite (28 days)	(<u>Chatterjee</u> and Chatterji, 2010)
Glucocorticoid Rece	ptor (GR)				
Altered histone post- translational co-activator protein activity at GR- regulated promoter	↓ protein methyltransfera se (CARM1) / coactivator (GRIP1) interaction	Tumor (Mouse)	1470.2 cells (mouse adenocarcino ma derived)	8 μM sodium arsenite + 5 nM dexamethaso ne (Dex) (30 min)	(<u>Barr et al.,</u> <u>2009</u>)
Altered histone post- translational modifications at GR- regulated promoter	↓ acetylation (H3K18ac) ↓methylation (H3R17me)	Tumor (Mouse)	1470.2 cells (mouse adenocarcino ma derived)	8 μM sodium arsenite + 5 nM Dex (15 min)	(<u>Barr et al.,</u> 2009)
↓chromatin remodeling at GR regulated promoter	↓A Sac1 endonuclease cleavage site access	Tumor (Mouse)	1470.2 cells (mouse adenocarcino ma derived)	8 μM sodium arsenite + 5 nM Dex (30 and 60 min)	(<u>Barr et al.,</u> <u>2009</u>)
↓GR binding to glucocorticoid response elements (GREs)	↓GR binding to GREs in H-Ras and Raf-1 promoters (chromatin immuno- precipitation) *no ↓binding in vitro	Developing Brain (Mouse)	C57BL/6 mice	50 ppb sodium arsenite (2 weeks prior to gestation + through weaning)	(<u>Martinez-</u> <u>Finley et al.,</u> <u>2011</u>)
↓ transcription initiation at GR-regulated	↓ reporter gene mRNA initiation	Tumor (Mouse)	1470.2 cells (mouse adenocarcino ma derived)	8 μM sodium arsenite + 5 nM Dex (120 min)	(<u>Barr et al.,</u> <u>2009</u>)
promoter	↓ endogenous GR-regulated mRNA (serum glucocorticoid kinase [SGK]) initiation	Tumor (Mouse)	1470.2 cells (mouse adenocarcino ma derived)	8 μM sodium arsenite + 5 nM Dex (120 min)	(<u>Barr et al.,</u> <u>2009</u>)

Key Events	Observations	Organ System	Test System	Dose (Exposure Duration) ^a	References
↑/↓GR mediated gene transcription	↓reporter gene activity (MMTV- chloramphenico l acetyl transferase [MMTV-CAT])	Tumor (Mouse)	1470.2 cells (mouse adenocarcino ma derived)	0.5-8 μM sodium arsenite + 100 nM Dex (4 hr)	(<u>Barr et al.,</u> <u>2009</u>)
	↑ reporter gene activity (G2T- luciferase construct)	Liver (Rat)	EDR3 cells (hepatoma cell line)	<1 µM sodium arsenite + 50 nM Dex (18 hr)	(<u>Bodwell et</u> <u>al., 2006</u>)
	↓ reporter gene activity (G2T- luciferase construct)			≤ 1-3 µM sodium arsenite + 50 nM Dex (18 hr)	
Mineralocorticoid R	eceptor (MR)				
↑/↓MR- mediated gene transcription	↑ reporter gene activity (G2T- luciferase construct)	Liver (Rat)	EDR3 cells (hepatoma cell line)	<1 µM sodium arsenite + 0.5 nM aldosterone (18 hr)	(<u>Bodwell et</u> <u>al., 2006</u>)
	↓ reporter gene activity (G2T- luciferase construct)			≤ 1-3 μM sodium arsenite + 0.5 nM aldosterone (18 hr)	
Progesterone Recep	otor (PR)				
↑/↓PR- mediated gene transcription	↑ reporter gene activity (G2T- luciferase construct)	Liver (Rat)	EDR3 cells (hepatoma cell line)	<1 µM sodium arsenite + 50 nM progesterone (18 hr)	(<u>Bodwell et</u> <u>al., 2006</u>)
	↓ reporter gene activity (G2T- luciferase construct)			≤ 1-3 μM sodium arsenite + 50 nM progesterone (18 hr)	
Thyroid Hormone R	eceptor (TR)				

Key Events	Observations	Organ System	Test System	Dose (Exposure Duration) ^a	References
Altered TR gene induction	↓TR response element- luciferase (TRE- luc)	Pituitary (Rat)	GH3 rat pituitary tumor cells	0.5-2 μM As(III) + 2 nM Thyroid Hormone (T3) (24 hr)	(<u>Davey et al.,</u> 2008)
	↑DIO1	Pituitary (Rat)	GH3 rat pituitary tumor cells	0.1-1 μM As(III) + 2 nM T3 (6 hr)	(<u>Davey et al.,</u> <u>2008</u>)
	↓DIO1			2 μM As(III) + 2 nM T3 (6 hr)	
	↑DIO1			1-2 μM As(III) +2 nM T3 (24 hr)	
Retinoic acid Recept	or (RAR)			-	
Altered RAR- mediated gene activation	↑ Retinoic acid inducible RAR response element(RARE)- luciferase expression induced by all trans-retinoic acid (ATRA)	Embryo (Human)	NTERA-2 (N2) human embryonic carcinoma cells	0.05-0.025 μM As(III) (24 hr)	(<u>Davey et al.,</u> <u>2008</u>)
	↓ RARE- luciferase expression induced by ATRA	Embryo (Human)	N2 cells	2.0 μM As(III) (24 hr)	(<u>Davey et al.,</u> <u>2008</u>)
	个CYP26A induced by ATRA	Embryo (Human)	N2 cells	0.01 μM As(III) (24 hr)	(<u>Davey et al.,</u> <u>2008</u>)
	↓ CYP26A induced by ATRA			≤ 0.025 μM As(III) (24 hr)	

Key Events	Observations	Organ System	Test System	Dose (Exposure Duration) ^a	References
Alterations in Cell	Signaling Pathways Mec	liated by Hormone Re	ceptors		
Mitogen- activated protein kinase (MAPK) pathway alterations	↓H-Ras & Raf-1 mRNA *no↓ in protein	Developing Brain (Mouse)	C57BL/6 mice (Postnatal day 35)	50 ppb sodium arsenite (2 weeks prior to gestation + through weaning on postnatal day [PND] 23)	(<u>Martinez-</u> <u>Finley et al.,</u> 2011)
	↓phosphorylat ed-ERK	Developing Brain (hypothalamu s; Mouse)	C57BL/6 mice (Postnatal day 35)	50 ppb sodium arsenite (2 weeks prior to gestation + through weaning on PND 23)	(<u>Martinez-</u> <u>Finley et al.,</u> 2011)
Cellular Response	<u>s</u>				
Cytotoxicity	↓colony forming ability	Breast (Human)	Human breast cancer MCF-7 cells	15 μM As(III) (LC50) (24 hr); or 25 μM As(III) (LC50) + 50 pM E2 (24 hr)	(<u>Davey et al.,</u> <u>2007</u>)
			Human breast cancer MCF-7 cells	2 μM ATO + 10 nM 17β- estradiol (IC50) (72 hr) *reduced viability as compared to E2 alone	(<u>Chow et al.,</u> 2004)
Cytotoxicity (continued)	↓colony forming ability (continued)	Breast (Human) (continued)	Human breast cancer MCF-7 cells	8 μΜ ΑΤΟ (IC50) (24 hr) 1-2 μΜ ΑΤΟ (IC50) (72 hr)	(<u>Chow et al.,</u> <u>2004</u>)

Key Events	Observations	Organ System	Test System	Dose (Exposure Duration) ^a	References
			Human breast cancer MDA- MB-231 cells	17 μM ATO (IC50) (24 hr) 4-8 μM ATO (IC50) (72 hr)	(<u>Chow et al.,</u> 2004)
		Embryo	NTERA-2 (N2) human embryonic carcinoma cells	3 μM As(III) (LC50) (24 hr)	(<u>Davey et al.,</u> 2008)
		Pituitary (Rat)	GH3 rat pituitary tumor cells	5-10 μM As(III) (LC50) (24 hr)	(<u>Davey et al.,</u> <u>2008</u>)
Proliferation	个colony forming ability	Pituitary (Rat)	GH3 rat pituitary tumor cells	0.01-1 μM As(III) + 10 nM thyroid hormone (T3) (24 hr)	(<u>Davey et al.,</u> 2008)
	↑cell number *growth inhibited by antiestrogen	Breast (Human)	Human breast cancer MCF-7 cells	1 μM sodium arsenite (5 - 8 days)	(<u>Stoica et al.,</u> 2000)
	↓ cell number	Prostate (Human)	LNCaP, or LAPCaP-R1 cells (human prostate cancer cells)	5 μM ATO (3 days and 5 days)	(<u>Rosenblatt</u> <u>and</u> <u>Burnstein,</u> <u>2009</u>)
Altered cell cycle	21%↓ G1 phase cells 8%↓ S phase cells 12%↓ G2/M phase cells	Breast (Human)	Human breast cancer MCF-7 cells	2 μM ATO (48 hr; greater effect at 72 hr)	(<u>Chow et al.,</u> 2004)
	26%↑ G1 phase cells 8%↓ S phase cells 10%↓ G2/M phase cells	Breast (Human)	Human breast cancer MCF-7 cells	2 μM ATO + 10 nM 17β- estradiol (48 hr) *reduced viability as compared to	(<u>Chow et al.,</u> <u>2004</u>)
	↓G1 cell cycle proteins (cyclin D1 and CDK4) mRNA	Uterus (Rat)	Sprague- Dawley rats (Female)	4 μg/ml sodium arsenite (28 days)	(<u>Chatterjee</u> <u>and Chatterji,</u> <u>2010</u>)

Key Events	Observations	Organ System	Test System	Dose (Exposure Duration) ^ª	References
Altered hormone receptor distribution	No change in cytosolic MR protein ↓nuclear MR protein	Developing Brain (Hippo- campus) (Mouse)	C57BL/6 mice (PND 35-40)	55 ppb sodium arsenate (2 weeks prior to gestation through PND 23)	(<u>Martinez-</u> <u>Finley et al.,</u> 2009)
	↓ cytosolic GR protein ↓nuclear GR protein	Developing Brain (Hippo- campus) (Mouse)	C57BL/6 mice (PND 35-40)	55 ppb sodium arsenate (2 weeks prior to gestation through PND 23)	(<u>Martinez-</u> <u>Finley et al.,</u> 2009)
	↓ cytosolic GR protein ↑nuclear GR protein	Developing Brain (hypothalamu s; Mouse)	C57BL/6 mice (PND 31-40)	50 ppb sodium arsenate (2 weeks prior to gestation through weaning on PND 21)	(<u>Goggin et al.,</u> <u>2012</u>)
Tissue or Organ Syst	tem Responses	1	1	1	
Altered hypothalamic- pituitary- adrenal (HPA) axis activity	↑corticotrophin releasing factor	Developing Brain (hypo- thalamus; Mouse)	C57BL/6 mice (PND 31-40)	50 ppb sodium arsenate (2 weeks prior to gestation through weaning on PND 21)	(<u>Goggin et al.,</u> <u>2012</u>)
	↑base-line corticosterone	Plasma (Mouse)	C57BL/6 mice (PND 35)	50 ppb sodium	(<u>Goggin et al.,</u> <u>2012</u>)
	(CORT)		C57BL/6 mice (PND 75-90)	arsenate (2 weeks prior to gestation through weaning on PND 21 or 23)	(<u>Martinez et</u> <u>al., 2008</u>)

Key Events	Observations	Organ System	Test System	Dose (Exposure Duration) ^a	References
	↑plasma corticosterone	Plasma (Rat)	Albino rats (Male)	5 mg/kg/day sodium arsenite (6 days/wk for 4 wks)	(<u>Jana et al.,</u> <u>2006</u>)
Altered hypothalamic- pituitary- gonadal (HPG) axis activity	Dose dependent ↓ in: plasma hormone levels (luteinizing hormone [LH], follicle- stimulating hormone [FSH], testosterone;	Plasma (Rat)	Wistar rats (Male)	5 or 6 mg/kg/day sodium arsenite (26 days)	(<u>Sarkar et al.,</u> 2003)
	↓ in plasma LH, FSH, testosterone	Plasma (Rat)	Albino rats (Male)	5 mg/kg/day sodium arsenite (6 days/wk for 4 wks)	(<u>Jana et al.,</u> <u>2006</u>)
Altered hypothalamic- pituitary- gonadal (HPG) axis activity (continued)	↓serum estradiol levels	Serum (Rat)	Sprague- Dawley rats (Female)	0.4, 4, 40 or 80 μg/ml sodium arsenite (14 -56 days)	(<u>Chatterjee</u> <u>and Chatterji,</u> <u>2010</u>)
	↓ serum LH, FSH levels	Serum (Rat)	Sprague- Dawley rats (Female)	4 μg/ml sodium arsenite (28 days)	(<u>Chatterjee</u> <u>and Chatterji,</u> <u>2010</u>)
	 ↓ plasma estradiol, LH, FSH levels *No effects detected at 16 days of exposure 	Plasma (Rat)	Sprague- Dawley rats (Female)	0.4 ppm sodium arsenite (16 or 28 days)	(<u>Chattopadhy</u> <u>ay et al.,</u> <u>1999</u>)

Key Events	Observations	Organ System	Test System	Dose (Exposure Duration) ^a	References
Testicular toxicity	 ↓ in: paired testicular weights; and testicular testosterone; Altered testicular enzyme levels; germ cell degeneration at stage VII *Effects alleviated by co- administration of human chorionic gonadotrophin **Effects enhanced by co- administration of oestradiol 	Male reproductive organs (Rat)	Albino rats (Male)	5 mg/kg/day sodium arsenite (6 days/wk for 4 wks)	(<u>Jana et al.,</u> <u>2006</u>)
	 ↓ testicular weights, sperm count and motility, altered testicular enzyme activities 	Male reproductive organs (Mouse)	Swiss albino mice (Male)	53.39 μmol/L sodium arsenite (365 days)	(<u>Pant et al.,</u> <u>2004</u>)
Impaired Spermatogene sis	Dose dependent ↓ in: reproductive organ weight; epididymal sperm count; and degeneration of germ cells at stage VII	Male reproductive organs (Rat)	Wistar rats (Male)	5 or 6 mg/kg/day sodium arsenite (26 days)	(<u>Sarkar et al.,</u> <u>2003</u>)
Female reproductive toxicity	↓uterine weight; altered uterine morphology	Female reproductive organs (Rat)	Sprague- Dawley rats (Female)	4 μg/ml sodium arsenite (28 days)	(<u>Chatterjee</u> and Chatterji, 2010)
	↓ uterine, ovary and vagina weights, ovarian enzymes *No effects detected at 16 days of exposure	Female reproductive organs (Rat)	Sprague- Dawley rats (Female)	0.4 ppm sodium arsenite (16 or 28 days)	(<u>Chattopadhy</u> <u>ay et al.,</u> <u>1999</u>)

Key Events	Observations	Organ System	Test System	Dose (Exposure Duration) ^a	References
Altered protein glycosylation	↓fully glycosylated 11β- Hydroxysteroid Dehydrogenase Type 1	Developing Brain (hippo- campus; Mouse)	C57BL/6 mice (PND 75- 90)	50 ppb sodium arsenate (2 weeks prior to gestation through weaning on PND 21)	(<u>Goggin et al.,</u> <u>2012</u>)
Altered receptor levels		C57BL/6 mice (PND 31-40)	50 ppb sodium arsenate (2 weeks prior to gestation through weaning on PND 21)	(<u>Goggin et al.,</u> <u>2012</u>)	
	↓ corticotrophin -releasing factor receptor	Adult Brain (hippocampus ; Mouse)	C57BL/6 mice (PND 75 - 90)	50 ppb sodium arsenate (2 weeks prior to gestation through PND 23)	(<u>Martinez et</u> <u>al., 2008</u>)
	↓ estrogen receptor mRNA and protein	Uterus (Rat)	Sprague- Dawley rats (Female)	4 μg/ml sodium arsenite (28 days)	(<u>Chatterjee</u> and Chatterji, 2010)
Altered receptor sensitivity	个specific binding to serotonin receptor (5HT- 1A)	Adult Brain (hippo- campus; Mouse)	C57BL/6 mice (PND 75 - 90)	50 ppb sodium arsenate (2 weeks prior to gestation through PND 23)	(<u>Martinez et</u> <u>al., 2008</u>)
Altered neurotransmitt er levels	↑ dopamine ↓ noradrenaline ↓5-HT	Adult Brain (hypothalamu s, pituitary; rat)	Albino rats (Male)	5 mg/kg/day sodium arsenite (6 days/wk for 4 wks)	(<u>Jana et al.,</u> 2006)
Impaired morphogenesis	↓T3-dependent tail fin resorption	Tail (Xenopus laevis)	Ex-vivo (Xenopus laevis tails)	0.05-4 μM As(III) + 10 nM T3 (4 days)	(<u>Davey et al.,</u> <u>2008</u>)

Key Events	Observations	Organ System	Test System	Dose (Exposure Duration) ^a	References		
Individual Response							
Impaired spatial learning and memory	Novel Object Test ↑time to recognize presence of novel object ↓entries in presence of novel object 8-way Radial Arm Maze ↑entry errors	Mouse	C57BL/6 mice (PND 35-40)	55 ppb sodium arsenate (2 weeks prior to gestation through PND 23)	(<u>Martinez-</u> <u>Finley et al.,</u> <u>2009</u>)		
Altered stress response	↑ base-line corticosterone (CORT) Blunted CORT increase following stressor	Plasma (Mouse)	C57BL/6 mice (PND 35)	50 ppb sodium arsenate (2 weeks prior to gestation through weaning on PND 21)	(<u>Goggin et al.,</u> <u>2012</u>)		
Depressive like behavior	Learned Helplessness Task ↑latency to escape in	Mouse	C57BL/6 mice (PND 75 - 90)	50 ppb sodium arsenate (2 weeks prior to gestation through PND 23)	(<u>Martinez et</u> <u>al., 2008</u>)		
	Forced Swim Test ↑immobility	Mouse	C57BL/6 mice (PND 75 - 90)	50 ppb sodium arsenate (2 weeks prior to gestation through PND 23)	(<u>Martinez et</u> <u>al., 2008</u>)		

Key Events	Observations	Organ System	Test System	Dose (Exposure Duration) ^a	References
Susceptible Individu	<u>als</u>				
Developing children	Indicators of developmental neurotoxicity in rodents coupled with lower cogitative performance in epidemiology studies	See rows above and below for animal and epidemiologic al data, respectively	Rats or human population	Varies	(Goggin et al., 2012; Martinez- Finley et al., 2009; Martinez et al., 2008; Wasserman et al., 2007)
Population Level Re	<u>sponse</u>				
Developmental neurotoxicity	 ↓ performance on Wechsler Preschool & Primary Scale of Intelligence 	Brain (Human)	6-year-old children (Araihazar, Bangladesh)	Mean 120.1 μg/L in urine (not specified)	(<u>Wasserman</u> et al., 2007)
Male infertility	Abnormal sperm, ↓ sperm count, sperm mobility	(Human & animal model)	Human and animal models	Varies	(<u>Rosenblatt</u> and Burnstein, 2009)
	↑ male infertility	Reproductive system (Human)	Human population	Varies	(<u>Shen et al.,</u> <u>2013</u>)
Prostate Cancer	↑ prostate cancer mortality associated with inorganic arsenic exposures	Prostate (Human)	Human population	Varies	Reviewed in (<u>Prins, 2008</u>)

^aExposure duration abbreviations: minutes (min), hours (hr), days (d), weeks (wks), years (yr)

10.3Preliminary Data on Effects Mediated by Epigenetic Mechanisms

Relevant Health Effects: Bladder cancer, skin cancer, skin lesions

Key Events	Observations	Observation Organ System	Test System Observed in	Dose (Exposure duration) ^a	References
Molecular Initiating Events					
↓S-adenosyl-methionine (SAM)	SAM depletion associated with methylation, reduction of inorganic arsenic species	Multiple	Multiple	Multiple	Reviewed in (<u>Reichard and</u> <u>Puga, 2010</u>), (<u>Martínez et al.,</u> <u>2011),(Ren et</u> <u>al., 2011</u>)
↓SAM unrelated to inorganic arsenic methylation	↓SAM in cells with low capacity to methylate inorganic arsenic; ↑expression of transsulfuration enzymes in glutathione (GSH) synthesis	Prostate (Human)	Transformed prostate epithelial cell line (RPWE-1)	5 μM arsenite (16 wks)	Coppin et al., 2008 Reviewed in (<u>Reichard and</u> <u>Puga, 2010</u>)
个oxidative stress and subsequent GSH depletion	↑reactive oxygen species (ROS); ↑oxidation of GSH	Multiple	Multiple	Multiple	Reviewed in (<u>Reichard and</u> <u>Puga, 2010</u>)
	transformation of HELF cells via 个ROS ->ERK/NFKB activation ->hsa- miR-21 upregulation	Embryonic lung (Human)	Embryonic lung fibroblasts (HELF)	1 μM sodium arsenite (up to 30 cell passages)	(<u>Ling et al.,</u> 2012)
Biochemical Responses			·		
Altered DNA methyltransferases (DNMTs) activity	 ↓ DNMT activity (no change in DNMT mRNA expression), associated with hypomethylation 	Prostate (Human)	Human prostate epithelial cells (RWPE-1)	5 μM As(III) (29 weeks)	(<u>Benbrahim-</u> <u>Tallaa et al.,</u> <u>2005</u>)
	SAM depletion, ↓ expression of DNMT1 and DNMT3, global hypomethylation	Skin (Human)	Human HaCat keratinocytes	up to 5 μM As(III) (3 days)	(<u>Reichard et al.,</u> <u>2007</u>)

These draft development materials are for review purposes only and do not constitute Agency policy.April 201410-23Draft: Do Not Cite or Quote

Key Events	Observations	Observation Organ System	Test System Observed in	Dose (Exposure duration) ^a	References
Global DNA methylation changes	Hypermethylation only in folate adequate individuals	Blood (Human)	Peripheral blood lymphocyte (PBL) DNA	2-250 µg/L As(III) (>4 yrs)	(<u>Pilsner et al.,</u> <u>2007</u>)
	Hypermethylation	Blood (Human)	PBL DNA	250-500 μg/L As(III) (>6 months, mean = 10 yrs)	(<u>Majumdar et</u> <u>al., 2010</u>)
	Hypomethylation	Skin/Blood (Human)	PBL DNA in individuals with skin lesions	2-250 μg/L (As[III]) (>2 yrs)	(<u>Pilsner et al.,</u> <u>2009</u>)
Global DNA methylation changes (<i>continued</i>)	hypomethylation, increased GSH and decreased SAM levels	Prostate (Human)	Human prostate epithelial cells (RWPE-1)	5 μM As(III) (16 wks)	(<u>Coppin et al.,</u> <u>2008</u>)
	hypomethylation, decreased DNMT activity with no change in DNMT mRNA expression	Prostate (Human)	Human prostate epithelial cells (RWPE-1)	5 μM As(III) (29 wks)	(<u>Benbrahim-</u> <u>Tallaa et al.,</u> 2005)
	hypomethylation	Skin (Human)	HaCaT keratinocytes	0.2 μM (4 wks)	(<u>Reichard et al.,</u> 2007)
	hypomethylation	Liver (Rat)	Rat liver epithelial cells (TRL 1215)	125-500 nM As(III) (18 wks)	(<u>Zhao et al.,</u> <u>1997</u>)
	hypomethylation (after 1 day) and chromosomal instability (8 weeks)	Lung (Hamster)	Chinese hamster cells (V79-Cl3)	10 μM As(III) (1 day - 8 wks)	(<u>Sciandrello et</u> <u>al., 2004</u>)
	hypomethylation, increased expression of ERα and cyclin CD1 mRNA and protein	Liver (Mouse)	129/SvJ mice	45 ppm As(III) (48 wks)	(<u>Chen et al.,</u> 2004b)
	hypomethylation, gene expression changes	Liver (Mouse)	Homozygous Tg.AC mice	150 ppm As(III); 200 ppm As(V); 1500 ppm MMA(V); or 1200 ppm DMA(V) (17 wks)	(<u>Xie et al., 2004</u>)

Key Events	Observations	Observation Organ System	Test System Observed in	Dose (Exposure duration) ^a	References
	hypomethylation; correlation with c- myc gene expression, tumor formation in nude mice	Liver (Rat)	Rat liver epithelial cells (TRL 1215)	125-500 nM As(III) (18 wks)	(<u>Chen et al.,</u> <u>2001</u>)
	hypo and hypermethylation	Kidney and lung (Human)	kidney (UOK) and lung epithelial type II (A549) cell lines	As(III) (various)	(<u>Zhong and</u> <u>Mass, 2001</u>)
	Altered methylation patterns in repetitive DNA elements (high in Alu and low in LINE- 1 with higher inorganic arsenic exposure)	Blood (Human)	elderly men; blood leukocyte DNA methylation	0.02-1.45 μg/g toenail arsenic (unspecified) ^b	(<u>Lambrou et al.,</u> <u>2012</u>)
Global DNA methylation changes (<i>continued</i>)	个Global methylation	Brain cortex and hippocampus (Rat)	Wistar Rats	3 ppm sodium arsenite; or 36 ppm sodium arsenite (10 days prior to gestation through 1 month postnatal development)	(<u>Martínez et al.,</u> <u>2011</u>)
	Hypomethylation	Brain cortex (Rat)	Wistar Rats	3 ppm sodium arsenite; or 36 ppm sodium arsenite (10 days prior to gestation through 3 or 4 months postnatal development)	(<u>Martínez et al.,</u> <u>2011</u>)
Gene specific methylation changes	182 hypermethylated genes (17 = tumor suppressor); 1 hypomethylated gene	Skin and Blood (Human)	PBL DNA (Zimapan, Mexico)	110 µg As/L (mean) (>2 yrs)	(<u>Smeester et al.,</u> <u>2011</u>)

Key Events	Observations	Observation Organ System	Test System Observed in	Dose (Exposure duration) ^a	References
	Aberrant DNA methylation; cellular transformation	Bladder (Human)	Human bladder cell line (UROtsa)	50 nM MMA(III) (12, 24 wks)	(<u>Wnek et al.,</u> <u>2010</u>)
	altered DNA methylation of 455 promoters (primarily hypomethylation), associated with urinary iAs	Urine and blood (Human)	Human Urine (16 females in Zimapan, Hildago, Mexico)	3.6-31.8 ng Total As/mL in urine (10.7 ng/mL [mean]) (unspecified)	(<u>Bailey et al.,</u> 2013)
	DAPK promoter hypermethylation	Bladder (Human)	Human bladder, kidney, ureter tumors from urothelial carcinoma patients (Southwest Taiwan)	Unspecified high doses from well water (unspecified)	(<u>Chen et al.,</u> <u>2007a</u>)
	p53, p16 promoter hypermethylation (dose-dependent),	Blood (Human) associated with skin lesions	Human PBL (West Bengal, India)	>50 μg/L As in drinking water (≤ 6 months)	(<u>Chanda et al.,</u> <u>2006</u>)
	hypomethylation in highest exposure group			highest group: 300-1000 As μg/L in drinking water (≤ 6 months)	
Gene specific methylation changes (<i>continued</i>)	p16 promoter hypermethylation	Blood (Human)	Human PBL in patients with arseniasis (Guizhou Province, China)	Unspecified doses from use of unventilated coal stove with high As (unspecified)	(<u>Zhang et al.,</u> <u>2007</u>)
	RASSF1A, PRSS3 promoter hypermethylation	Bladder (Human)	Human Bladder tumors (New Hampshire, U.S.)	>0.26 µg/g toenail As (unspecified)	(<u>Marsit et al.,</u> <u>2006b</u>)
	DBC1, FAM83A, ZSCAN12, C1QTNF6 promoter hypermethylation	Bladder (Human)	UROtsa urothelial cells	1 μM As(III), or 50 nM MMA(III) (52 wks)	(<u>Jensen et al.,</u> <u>2008</u>)
	WNT5A promoter hypermethylation	Bladder (Human)	UROtsa urothelial cells	1 μM As(III), or 50 nM MMA(III) (52 wks)	(<u>Jensen et al.,</u> <u>2009b</u>)

Key Events	Observations	Observation Organ System	Test System Observed in	Dose (Exposure duration) ^a	References
	DAPK promoter hypermethylation and reduced expression	Bladder (Human)	Uroepithelial cells (SV-HUC-1)	2,4,10 μM As(III) (2 days)	(<u>Chai et al.,</u> <u>2007</u>)
	p16 promoter hypermethylation	Immune System (Human)	Myeloma cells (U266)	1,2 μM As ₂ O ₃ (3 days)	(<u>Fu and Shen,</u> <u>2005</u>)
	p53 promoter hypermethylation	Lung (Human)	Lung adenocarcinoma cells (A549)	0.8-2 μM As(III), or 30- 300 μM As(V) (1 wk)	(<u>Mass and</u> <u>Wang, 1997</u>)
	c-myc, c-Ha-ras promoter hypomethylation	Embryo (Hamster)	Syrian hamster embryo cells	3-10 μM As(III), or 50-150 μM As(V) (2 ds)	(<u>Takahashi et</u> <u>al., 2002</u>)
	p16, RASSF1 promoter hypermethylation, ↓ expression of p16 and RASSF1, increased occurrence of lung adenocarcinoma	Lung (Mouse)	A/J mice	1, 10, 100 ppm As(V) (18 months)	(<u>Cui et al.,</u> 2006a)
	p16, RASSF1A, E- cadherin, GSTP1 promoter hypomethylation	Liver (Human)	HepG2 and Huh-7 liver cells	2-10 μM As(III) (3 days)	(<u>Cui et al.,</u> <u>2006b</u>)
	c-Ha-ras promoter hypomethylation in dietary methyl deficient mice, steatosis and microgranulomas	Liver (Mouse)	C57BL/6J mice	2.6-14.6 μg As(III)/g body weight/day (18.5 wks)	(<u>Okoji et al.,</u> <u>2002</u>)
Gene specific methylation changes (continued)	ERα promoter hypomethylation	Liver (Mouse)	C3H mice (Adult male with hepatocellular carcinoma [HCC] after only in utero exposure)	85 ppm As(III) (gestational day [GD] 8 – 18)	(<u>Waalkes et al.,</u> <u>2004a</u>)
	ERα promoter hypomethylation, ↑ expression of ERα and cyclin CD1 mRNA and protein	Liver (Mouse)	129/SvJ mice	45 ppm As(III) (48 wks)	(<u>Chen et al.,</u> <u>2004b</u>)

Key Events	Observations	Observation Organ System	Test System Observed in	Dose (Exposure duration) ^a	References
	hyper- and hypomethylation of VHL promoter	Kidney (Human)	Human kidney cells (UOK123, UOK109, UOK121)	IC_{30} , IC_{50} , or IC_{80} of each cell line: 7 – 93 μ M As(III) (4 wks)	(<u>Zhong and</u> <u>Mass, 2001</u>)
Histone modification	↓ acetylation (H3K18ac) ↓methylation (H3R17me)	Tumor (Mouse)	1470.2 cells (mouse adenocarcinoma derived)	8 μM sodium arsenite + 5 nM Dex (15 min)	(<u>Barr et al.,</u> <u>2009</u>)
	↑ histone acetylation (H3; lysine 14) and phosphorylation (H3; serine 10) at c- jun and c-fos chromatin, increased expression of c-jun and c-fos	Lung (Human)	Human fibroblasts (WI-38 cells)	400 μM As(III), (up to 1 hr)	(<u>Li et al., 2003</u>)
	 ↑ histone H3acetylation (H3K9); inhibition of HDAC activity 	Liver (Human)	Human hepatoma HepG2 cells	5-10 μM As(III) (1 day)	(<u>Ramirez et al.,</u> <u>2008</u>)
	↓ histone acetylation: H4K16, H3K9, K14, K18, K23	Bladder (Human)	Human uroepithelial cells (UROtsa)	1-10 μM As(III) or 0.3-3 μM MMA(III) (up to 1 day)	(<u>Chu et al.,</u> <u>2011</u>)
	↓ H4; lysine 16 acetylation	Bladder (Human)	Human bladder epithelial cells (UROtsa)	150 μM As(III), or 300 μM MMA(III) (1 day)	(<u>Jo et al., 2009</u>)
	 	Bladder (Human)	UROtsa and URO- ASSC urothelial cells	1 μM As(III), or 50 nM MMA(III) (52 wks)	(<u>Jensen et al.,</u> <u>2008</u>)

Key Events	Observations	Observation Organ System	Test System Observed in	Dose (Exposure duration) ^a	References
Histone modification (<i>continued</i>)	<pre>↑permissive transcription histone modifications (DiMeK4; AcH3) ↓repressive transcription histone modifications (TriMeK27, DiMeK9)</pre>	Bladder (Human)	UROtsa and URO- ASSC urothelial cells	1 μM As(III), or 50 nM MMA(III) (52 wks)	(<u>Jensen et al.,</u> <u>2009b</u>)
	 ↓ H3K27 trimethylation, ↑ H3K9 dimethylation and H3K4 trimethylation (increase in HMT G9a protein and mRNA levels) 	Lung (Human)	A549 human lung adenocarcinoma cells	0.1-10 μM As(III) (1 day)	(<u>Zhou et al.,</u> <u>2008</u>)
	↑ H3K4 trimethylation, maintained after inorganic arsenic removal = inherited through cell division	Lung (Human)	A549 human lung adenocarcinoma cells	0.1-1 μM As(III) (1 or 7 days)	(<u>Zhou et al.,</u> <u>2009</u>)
	个 H2AX phosphorylation	Skin (Human)	Melanoma cells (RPMI7591)	1, 2.5, or 5 μΜ As(III) (1 day)	(<u>Zykova et al.,</u> <u>2006</u>)
	↑ H3K9me2 and ↓ H3K9ac with increased urinary inorganic arsenic; other histone marks correlated with water inorganic arsenic in gender specific manner	Blood (Human)	Peripheral blood mononuclear cells (Bangladesh cohort [n=40])	91.5 µg/L urinary inorganic arsenic (median) (unspecified)	(<u>Chervona et al.,</u> <u>2012); (Arita et</u> <u>al., 2012</u>)
	↑ H3K9me2; ↓ p16INK4a expression; no change in promoter DNA methylation	Liver (Mouse)	C57BI/6J mice	50 ppm sodium arsenite (6 months)	(<u>Suzuki and</u> Nohara, 2013)
Altered MicroRNA expression	Upregulation of hsa-miR- 22,34a,221,222 and downregulation of hsa-miR-210	Immune system (Human)	Human immortalized lymphoblast cells (TK6 cell line)	≤ 2 μM As(III) (6 days)	(<u>Marsit et al.,</u> <u>2006a</u>)

Key Events	Observations	Observation Organ System	Test System Observed in	Dose (Exposure duration) ^a	References
	downregulation of miRNA-19a - cell growth arrest and apoptosis	Bladder (Human)	T24 human bladder carcinoma cells	4 μM As ₂ O ₃ (24 hr)	(<u>Cao et al.,</u> <u>2011</u>)
Altered MicroRNA expression (continued)	upregulation of hsa- miR-2909; molecular responses linked to immune response	Immune system (Human)	Peripheral blood mononuclear cells (PBMCs)	2 μM sodium arsenite (48 hr)	(<u>Kaul et al.,</u> 2014)
	85 miRNA upregulated, 52 downregulated; predicted to be involved in regulating phosphoproteins and alternative gene splicing	Vascular system (Human)	Umbilical vein endothelial cells (HUVECs)	20 μM sodium arsenite (24 hr)	(<u>Li et al., 2012</u>)
	hsa-miR-21 upregulation	Embryonic, lung (Human)	Embryonic lung fibroblast (HELF)	1 μM sodium arsenite (up 30 cell passages)	(<u>Ling et al.,</u> <u>2012</u>)
Cellular Phenotypic Chang	ies				
Malignant transformation	transformation of HELF cells via increased ROS - >ERK/NFKB activation ->hsa- miR-21 upregulation	Embryonic, lung (Human)	Embryonic lung fibroblast (HELF)	1 μM sodium arsenite (up 30 cell passages)	(<u>Ling et al.,</u> <u>2012</u>)
	transformation of p53 knocked down HBECs; downregulated hsa- miR-200b via promoter methylation	Lung (human)	p53(low) human bronchial epithelial cells	2.5 μM sodium arsenite (16 wks)	(<u>Wang et al.,</u> <u>2011b</u>)
	Altered H3 and H4 acetylation during malignant transformation	Bladder (Human)	UROtsa and URO- ASSC urothelial cells	1 μM As(III), or 50 nM MMA(III) (52 wks)	(<u>Jensen et al.,</u> 2008)

Key Events	Observations	Observation Organ System	Test System Observed in	Dose (Exposure duration) ^a	References
	Increase in "permissive" histone modifications AcH3 and DiMeK4; repressive modifications TriMeK27 and DiMeK9 were decreased → non- canonical WNT5A signaling and malignant transformation	Bladder (Human)	UROtsa and URO- ASSC urothelial cells	50 nM MMA(III) (24+ wks)	(<u>Jensen et al.,</u> <u>2009b</u>)
Malignant transformation (continued)	Genome-wide changes in promoter DNA methylation, increasing with duration of exposure, in parallel with phenotypic changes (transformation)	Bladder (Human)	UROtsa and URO- ASSC urothelial cells	1 μM As(III), or 50 nM MMA(III) (up to 52 wks)	(<u>Jensen et al.,</u> <u>2009a</u>)
Tissue/Organ Responses					
Skin Lesions	Development of skin lesions associated with inorganic arsenic exposure and PBL hypomethylation	Skin/Blood (Human)	PBL DNA in individuals with skin lesions (Araihazar, Bangladesh)	121 μg/L urinary As (>2 yrs)	(<u>Pilsner et al.,</u> 2009)
	Risk of skin lesions associated with DAPK and p16 hypermethylation	Skin and blood (Human)	PBL DNA in individuals (West Bengal, India)	567.25 μg/L mean urinary As(III) (with lesions) Mean urine As(III) 495.48 μg/L mean urinary As(III) (w/o lesions), 567.25 μg/L (with lesions)	(<u>Banerjee et al.,</u> <u>2013</u>)
Adverse liver effects	Hepatic steatosis with DNA hypomethylation	Liver (Mouse)	129/SvJ mice	45 ppm As(III) (48 wks)	(<u>Chen et al.,</u> <u>2004b</u>)

Key Events	Observations	Observation Organ System	Test System Observed in	Dose (Exposure duration) ^a	References
	Hepatocellular carcinoma	Liver (Mouse)	Adult male C3H mice with HCC after only in utero exposure	85 ppm As(III) (gestational day [GD] 8 – 18)	(<u>Waalkes et al.,</u> <u>2004a</u>)
	Steatosis and microgranulomas with c-Ha-ras promoter hypomethylation in dietary methyl deficient mice	Liver (Mouse)	C57BL/6J mice	2.6-14.6 μg As(III)/g body weight/day (18.5 wks)	(<u>Okoji et al.,</u> <u>2002</u>)
Individual Responses					
Contextual memory deficits	 ↓ freezing behavior *highest dose group: significant at all time points 2 -4 months of age Lowest dose group: significant at 1 time point at 2 months of age; all time 	Whole animal (Rat)	Wistar Rats	3 or 36 ppm sodium arsenite, (10 days prior to gestation through 1, 2, 3, or 4 months postnatal development)	(<u>Martínez et al.,</u> 2011)
	points 3 & 4 months of age				
Susceptible Individual res	ponse				
Diet (e.g., deficiencies in methyl, folate, methionine)	Altered DNA methylation patterns in repetitive Alu and LINE DNA elements (high Alu methylation correlated with high inorganic arsenic exposure in low folate condition, and vice versa) following low levels of environmental exposure	Blood (Human; Elderly men)	Blood leukocyte DNA in human cohort study	0.02-1.45 μg/g toenail arsenic (unspecified)	(<u>Lambrou et al.,</u> 2012)
	Hypermethylation, modified by folate	Blood (Human)	PBL DNA	2-250 μg/L As(III) (>4 yrs)	(<u>Pilsner et al.,</u> <u>2007</u>)
	development of skin lesions associated with low folate	Skin/Blood (Human)	PBL DNA in individuals with skin lesions	2-250 μg/L As(III) (>2 yrs)	(<u>Pilsner et al.,</u> 2009)

Key Events	Observations	Observation Organ System	Test System Observed in	Dose (Exposure duration) ^a	References
	c-Ha-ras promoter hypomethylation, steatosis and microgranulomas	Liver (Mouse)	C57BL/6J mice	2.6-14.6 μg iAs (III)/g body weight/day (18.5 weeks)	(<u>Okoji et al.,</u> <u>2002</u>)
	5357 CpG islands altered with high maternal folate + inorganic arsenic	Fetal liver (Mouse)	CD-1 mice (Pregnant females)	85 ppm As(III) (GD 8-18) + High maternal folate intake (11 mg/kg) (GD 5-18)	(<u>Tsang et al.,</u> <u>2012</u>)
Life stage (in utero exposure)	global hypomethylation w/ high exposure, PP1 promoter hypomethylation, reduced fear memory	Brain (rat)	Wistar rats	3 or 36 ppm sodium arsenite (gestation to 4 months postnatal development)	(<u>Martínez et al.,</u> <u>2011</u>)
	ERα promoter hypomethylation, HCC	Liver (Mouse)	C3H mice (Adult; male)	85 ppm As(III) (GD 8 – 18)	(<u>Waalkes et al.,</u> <u>2004a</u>)
	12 miRNAs upregulated (linked to cancer, diabetes and immune response signaling pathways)	Blood (Human)	cord blood (Mexican women's cohort)	0.456-236 μg/L inorganic arsenic in maternal drinking water inorganic arsenic range of 0.456-236 μg/L; maternal urine inorganic arsenic range of 6.2-319.7 μg/L inorganic arsenic in maternal urine (unspecified)	(<u>Rager et al.,</u> <u>2014</u>)
	5357 CpG islands altered with high maternal folate + inorganic arsenic	Fetal liver (Mouse)	CD-1 mice (Pregnant females)	85 ppm As(III) (GD 8-18) + High maternal folate intake (11 mg/kg) for (GD 5-18)	(<u>Tsang et al.,</u> <u>2012</u>)

Key Events	Observations	Observation Organ System	Test System Observed in	Dose (Exposure duration) ^a	References
Gender	Males: ↓DNA methylation; ↓DNMT1 expression (no change in SAM content) Females: ↑DNA methylation in females (no change in DNMT1 levels) ↓SAM content	liver (Mouse)	C57BL/6J mice	50 ppm sodium arsenite + methyl- deficient diet ad libitum (5 months)	(<u>Nohara et al.,</u> <u>2011</u>)
Genetics	AS3MT haplotype associated with efficient inorganic arsenic metabolism, methylation of AS3MT gene region and reduced AS3MT mRNA expression	Blood / Skin (Human)	Human peripheral blood (Argentinian women)	188 μg/L mean total urinary arsenic (unspecified)	(<u>Engström et al.,</u> 2013)
Population response					
Hypermethylation of genes related to diseases associated with inorganic arsenic (e.g., cancer, heart disease, diabetes)	182 hypermethylated genes related to tumor suppression (e.g., forkhead box F1 [FoxF1], matrix metallopeptidase 15 [MMP15])	Peripheral blood lymphocytes (Human)	Females (n= 8) with inorganic arsenical skin lesions in Zimapan, Hidalgo State, Mexico; compared to females (n=8) without lesions	63.47 μg/g total arsenic in urinary creatinine (average) (unspecified)	(<u>Smeester et al.,</u> 2011)
Inorganic arsenic induced bladder cancer risk	Promoter methylation silencing of tumor suppressor genes (p16, RASSF1A, PRSS3) and soluble Frizzled receptor proteins (SFRPs) in 30-50% of bladder cancer cases	Bladder tumors (Human)	Participants in population-based case-control of bladder cancer in New Hampshire, U.S.	≤ 0.26 µg/g toenail arsenic (unspecified)	(<u>Marsit et al.,</u> <u>2006c; Marsit et</u> <u>al., 2006b</u>)

Key Events	Observations	Observation Organ System	Test System Observed in	Dose (Exposure duration) ^a	References
Inorganic arsenic- induced skin cancer risk	Dose-related increase in hypermethylation of p53 gene in inorganic arsenic exposed individuals compared to controls & individuals with inorganic arsenic- induced skin cancer patients	Blood (Human)	Human subjects in Kolkata, India (individuals with inorganic arsenic associated skin cancer & nonarsenic cancer)	Controls: <50 µg/L inorganic arsenic in drinking water Exposed: 51-1000 µg/L inorganic arsenic in drinking water (9.5 – 19 yrs)	(<u>Chanda et al.,</u> 2006)
Inorganic arsenic induced skin lesions	development of skin lesions associated with low folate	Skin/Blood (Human)	PBL DNA in individuals with skin lesions	2-250 μg/L As(III) (>2 yrs)	(<u>Pilsner et al.,</u> <u>2009</u>)

^aAbbreviations used for exposure durations: minutes (min), hours (hr), days (d), weeks (wks)

^bExposure durations are characterized as "unspecified" when a study does not explicitly state the exposure duration

10.4Preliminary Data on Effects Mediated By the Immune System

Relevant Health Effects: Suppression of humoral immunity (i.e., decreased antibody response), Suppression of innate immunity (decreased macrophage function), Respiratory infection, Gastrointestinal infection, Contact hypersensitivity response

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration) ^a	References			
Molecular Initiatir	Molecular Initiating Events							
Molecular initiatin	g events for inorganic ars	enic immunotoxi	city are unknown.					
	me suggestion that genera OS-dependent pathway [e				cell apoptosis			
system which are ass trioxide alters macro	so evidence the effects on sociated with macrophage phage gene expression the s of inorganic arsenic (<u>Bou</u>	function) are unr rough a pathway	elated to increased independent of ROS	production of ROS. For ex	ample arsenic			
Biochemical Respo	onses							
↓ATP-mediated Ca(2+) signaling	↓wound-induced healing and peak Ca(2+)	Lung (Human)	Immortalized human bronchial epithelial cells (16HBE14o-) in vitro	0, 130, or 330 nM arsenic as sodium arsenite (4-5 wk)	(<u>Sherwoo</u> <u>d et al.,</u> <u>2013</u>)			
	√wound-induced total Ca(2+) signaling	Lung (Mice)	C57Bl6 male mice ex vivo	50 ppb sodium arsenite drinking water (4 wk)	(<u>Sherwoo</u> <u>d et al.,</u> <u>2013</u>)			
	√wound-induced healing, Ca(2+), and # cells in Ca(2+) wave	Lung (Human)	Immortalized human bronchial epithelial cells (16HBE140-) in vitro	0.8 or 3.9 μM sodium arsenite (24 hr)	(<u>Sherwoo</u> <u>d et al.,</u> 2011)			
↓ production of interleukin-2 (IL- 2), interferon- gamma (IFN- gamma)	↓IL-2, ↓IFNy, and ↓IL-4 secreted protein from splenocytes in culture, ConA or anti-CD3 stimulated	Spleen (Mice)	C57BI6 male mice in vitro [young or aged mice (IL- 10 also ↓ from old mice)]	0, 0.03, 0.06, 0.13, 0.25, 0.50, 1, 2 μM Sodium arsenite (48 hr)	(<u>Cho et</u> <u>al., 2012</u>)			

These draft development materials are for review purposes only and do not constitute Agency policy.April 201410-36Draft: Do Not Cite or Quote

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration) ^a	References
	↓IL-2, ↓IFNγ, ↓ IL- 4 and ↓IL-12 secreted protein from splenocytes in culture, ConA or anti-CD3/CD28 stimulated	Spleen (Mice)	Male C57BI/6N mice in vivo	0, 0.01, 0.1, 1mg/kg sodium arsenite i.g. (30 days)	(<u>Soto-</u> <u>Peña and</u> <u>Vega,</u> 2008)
	↓IL-2, ↓IFNγ secreted protein and mRNA level from splenocytes in culture anti- CD3/CD28 stimulated	Primary T- cells (Human)	Human T-cells from PBMCs from healthy donors in vitro	0, 0.25, 0.50, 1, 2 μM Sodium arsenite (6 or 24hr)	(<u>Morzade</u> <u>c et al.,</u> <u>2012</u>)
 	↓IL-2 secreted protein levels from PHA-stimulated mononuclear cells; no difference in IFNγ, IL-4, IL-10	Primary monocytes differentiat ed in 6 days into macrophag es (Human)	Human monocytes from PBMCs from children (6-10) living in central Mexico chronically exposed to As in drinking water	Low exposure group: Girls: 11.8 µg/l Boys: 15.6 µg/l urinary As (mean) High exposure group: Girls: 88.2 µg/l Boys: 84.4 µg/l) urinary As (mean) (unspecified) ^b	(<u>Soto-</u> <u>Peña et</u> <u>al., 2006</u>)
	↓IL-2 secreted protein levels from PHA-stimulated mononuclear cells	Primary mononucle ar cells (Human)	Human PBMCs from healthy donors in vitro	0, 0.01, 0.1, 1 μM Sodium arsenite (24 – 48 hr)	(<u>Galicia et</u> <u>al., 2003</u>)
	↓IL-2 secreted protein level PHA- stimulated mononuclear cells	Primary mononucle ar cells (Human)	Human PBMCs from healthy donors in vitro	0, 0.01, 0.1, 1μM Sodium arsenite (24-48 hr)	(<u>Vega et</u> <u>al., 1999</u>)
	↓IL-2 at protein and mRNA level ↓IL-2 splenocytes in culture, PHA- stimulated	Spleen (Mice)	C57Bl6 female mice in vitro	0, 1, 10 μM sodium arsenite (12, 24, 48 hr)	(<u>Conde et</u> <u>al., 2007</u>)
	\downarrow IL-2, \downarrow IFN γ , \downarrow IL- 4, \downarrow TNF α , \downarrow IL-10, \downarrow IL-5 secreted protein in culture, ConA stimulated	Primary T- cells (Human)	Human T-cells from PBMCs from exposed and unexposed donors	20 individuals with skin lesions compared to 18 unexposed	(<u>Biswas et</u> <u>al., 2008</u>)
	↓IL-2 secreted	Spleen	Chicken in	1 and 10 μM	(<u>Das et</u>

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration) ^a	References
	protein from splenocytes in culture, and both↓IL-2↓IFNγ at mRNA level, ConA stimulated	(Chicken)	vitro	sodium arsenite (24, 48, 72 hr)	<u>al., 2011</u>)
↓proliferation of lymphocytes	↓ConA-stimulated T-cell proliferation in culture [³ H] TdR incorporation	Primary T- cells (Human)	Human T-cells from PBMCs from exposed and unexposed donors	20 individuals with skin lesions compared to 18 unexposed	(<u>Biswas et</u> <u>al., 2008</u>)
	√ConA-stimulated T-cell proliferation in culture [³ H] TdR incorporation	Spleen (Rats)	Male Wistar rats in vivo	25 ppm sodium arsenite in drinking water (42 days)	(<u>Sankar et</u> <u>al., 2013</u>)
	Slower proliferation response to PHA- T- cell in culture [³ H] TdR incorporation	Primary T- cells (Human)	Human T-cells from PBMCs from exposed (33 individuals from an area in Mexico) and unexposed (30) donors	Exposed: 412 µg/l As in water (758±364 µg/l total As in urine) Unexposed: 37µg/l in water (37±37µg/l total As in urine)	(<u>Gonseba</u> <u>tt et al.,</u> <u>1994</u>)
↓proliferation of lymphocytes (continued)	↓PHA-stimulated T- cell proliferation in culture [³ H] TdR incorporation	Primary mononucle ar cells (Human)	Human PBMCs from healthy donors in vitro	0, 0.01, 0.1, 1μΜ Sodium arsenite (24-48 hr)	(<u>Vega et</u> <u>al., 1999</u>)
	↓PHA-stimulated T- cell proliferation in culture [³ H] TdR incorporation	Primary monocytes differentiat ed in 6 days into macrophag es (Human)	Human monocytes from PBMCs from children (6-10) living in central Mexico chronically exposed to As in drinking water	Low exposure group: Girls: 11.8 µg/l Boys: 15.6 µg/l urinary As (mean) High exposure group: Girls: 88.2 µg/l Boys: 84.4 µg/l) urinary As (mean)	(<u>Soto-</u> <u>Peña et</u> <u>al., 2006</u>)
Cell signaling change	NF-кВ (↑phosphorylated p65)	Lung (Mice)	Nrf2-WT and Nrf2-KO mice in vivo	0.48 mg/m ³ synthetic dust [10% arsenic trioxide + inert dust] (30 min/day/14d)	(<u>Zheng et</u> <u>al., 2012</u>)

These draft development materials are for review purposes only and do not constitute Agency policy.April 201410-38Draft: Do Not Cite or Quote

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration) ^a	References
	NF-кВ (↓ DNA binding of p65 NF- кВ)	Primary monocytes and pro- monocyte cell line (Human)	Human monocytes from PBMCs from healthy donors and pro- monocytic U937 cell line in vitro	0.25-1 μM arsenic trioxide (1, 2, 3, 4, 6 days)	(<u>Lemarie</u> <u>et al.,</u> 2006)
	↓enzymatic activity of lysosomal protease cathepsin L	Primary lymphocyt es (Human)	Human PBMCs from blood of healthy volunteers In vitro	0, 1, 2, 3, 4, 5μM arsenic trioxide (48hr)	(<u>Gupta et</u> <u>al., 2003</u>)
	↓transcription factor ERG2	Primary monocytes differentiat ed into macrophag es (Human)	Human monocytes from PBMCs from healthy donors in vitro	1μM arsenic trioxide (48, 72 hr)	(<u>Bourdon</u> <u>nay et al.,</u> <u>2009</u>)
	↑basal phosphorylation of Lck and Fyn kinases and ↑ phosphorylation of Lck and Fyn after stimulation by antibodies to CD3/CD28 in splenocytes	Spleen (Mice)	Male C57BI/6N mice in vivo	0, 0.01, 0.1, 1 mg/kg sodium arsenite intra-gastric (30 days)	(<u>Soto-</u> <u>Peña and</u> <u>Vega,</u> <u>2008</u>)

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration) ^a	References
Cellular Phenoty	pic Changes		·		
↓monocyte/ macrophage activity or number	↓monocyte recruitment to peritoneal cavity following thioglycollate stimulation	Macrophag es (Mice)	Female balb/c mice in vivo	50 mg/L sodium metaarsenite in drinking water (4 wks)	(<u>Patterso</u> <u>n et al.,</u> <u>2004</u>)
	↓ differentiation monocytes to macrophages by expression of transferrin receptor CD71	Primary monocytes and pro- monocyte cell line (Human)	Human monocytes from PBMCs from healthy donors and pro- monocytic U937 cell line in vitro	0.25-1 μM arsenic trioxide (1, 2, 3, 4, 6 days)	(<u>Lemarie</u> <u>et al.,</u> <u>2006</u>)
	↑apoptosis of splenic macrophages indicated by DNA fragmentation	Spleen (Mice)	Male Swiss albino mice in vivo	0.5 sodium arsenite mg/kg bw/day (15 days)	(<u>Sengupta</u> <u>and</u> <u>Bishayi,</u> <u>2002</u>)
	↑apoptosis of monocytes, macrophages by Annexin V-Alexa568 (A5) and SG co- staining	Primary monocytes and pro- monocyte cell line (Human)	Human monocytes from PBMCs from healthy donors and pro- monocytic U937 cell line in vitro	0.25-1µM arsenic trioxide (1, 2, 3, 4, 6 days)	(<u>Lemarie</u> <u>et al.,</u> <u>2006</u>)
	↑ basal apoptosis of monocytes, macrophages by PI staining and analysis for hypodiploid cells	Primary monocytes (Human)	Human monocytes from children chronically exposed to As and nearby unexposed children	Urinary As range from 94 to 240µg/g- creatinine exposed children living in town near gold mine, 17-34µg/g- creatinine in nearby unexposed children	(<u>de la</u> <u>Fuente et</u> <u>al., 2002</u>)
	↑ apoptosis of monocytes, macrophages by DNA content assay, Annexin V binding, DNA fragmentation, TUNEL	Primary monocytes (Human)	Human monocytes from PBMCs from healthy donors in vitro	0, 1, 5, 15,30, 50, 75, 100μM sodium arsenite (12, 36, 48, 72 hr)	(<u>de la</u> <u>Fuente et</u> al., 2002)

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration) ^a	References
↓monocyte/ macrophage activity or number (continued)	\uparrow macrophage cell rounding, \downarrow adhesion, \downarrow phagocytosis of <i>S</i> . <i>typhimurium</i> in 3h, \downarrow NO ⁻ and O ₂ ⁻ following LPS stimulation overnight	Primary monocytes differentiat ed in 6 days into macrophag es (Human)	Human monocytes from PBMCs from individuals) in West Bengal India with skin lesions (n= 70) chronically exposed to As in drinking water (Murshidabad) and unexposed (n=64) (West Midnapore	Exposed individuals: 50 to 1,200 µg/L aresenic in drinking water levels Unexposed individuals: levels 3 to 10 µg/L inorganic arsenic in drinking water	(<u>Banerjee</u> <u>et al.,</u> <u>2009</u>)
	Splenic macrophages ↓ NO ⁻ and O ₂ ⁻ after LPS stimulation, ↓ macrophage adhesion, ↓ chemotaxis, ↓ phagocytosis of SRBCs	Spleen (Mice)	Male Swiss albino mice in vivo	0.5 sodium arsenite mg/kg bw/day (15 days)	(<u>Sengupta</u> and Bishayi, 2002)
	↓macrophage phagocytosis of A. hydrophila	Macrophag es (Catfish)	Catfish in vivo	42.42 μM arsenic trioxide (21 days)	(<u>Ghosh et</u> <u>al., 2006</u>)
	↑macrophage abnormal morphology, ↓adhesion, ↓chemotaxis	Spleen (Mice)	Male Swiss albino mice in vivo	0.5 mg/kg bw (intraperitoneal injection) sodium arsenite (15 days)	(<u>Bishayi</u> <u>and</u> <u>Sengupta,</u> 2003)
	↓ monocyte /macrophage ROS after PMA, ↓ NO ⁻ after RD-F or LPS stimulation	Primary monocytes (Chicken)	Chicken monocytes from PBMCs in vivo	3.7 ppm sodium arsenite in drinking water (10, 20, 30, 40, 60 days)	(<u>Aggarwal</u> <u>et al.,</u> 2008)
	↓ monocyte /macrophage ROS after PMA, ↓ NO ⁻ after LPS stimulation	Spleen and peritoneal macrophag es (Mice)	Female c57BL7J/Han mice	0, 0.5, 5, 50 sodium hydrogen arsenate (12 wks)	(<u>Arkusz et</u> <u>al., 2005</u>)
	个apoptosis of monocytes, macrophages by	Primary monocytes and pro-	Human monocytes pro-	0, 0.5, 1, 2.5, 5μM tetraarsenic oxide and diarsenic oxide	(<u>Park et</u> <u>al., 2003</u>)

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration) ^a	References
	Annexin V—FITC and PI staining	monocyte cell line (Human)	monocytic U937 cell line in vitro	(0, 2, 4, 6, 8, 10, 12 hr)	
个neutrophil apoptosis	↑neutrophil apoptosis determined by CD16 shedding independent of MAPKs	Human (Lung)	Human neutrophils from venous blood of healthy volunteers In vitro	5 μM arsenic trioxide (.25 – 180 minutes)	(<u>Binet and</u> <u>Girard,</u> 2008)
个T-lymphocyte apoptosis	个T-cell apoptosis determined by TUNEL assay	Primary lymphocyt es (Human)	Human PBMCs from blood of healthy volunteers In vitro	0, 1, 2, 3, 4, 5 μM arsenic trioxide (48 hr)	(<u>Gupta et</u> <u>al., 2003</u>)
个 B-lymphocyte apoptosis	个B-cell apoptosis determined by Annexin V assay	Lymphocyt es (Mice)	Mouse B cell lymphoma line TA3 In vitro	0, 0.8, 4, 20, 100, 500 μM sodium arsenite (18 hr)	(<u>Harrison</u> <u>and</u> <u>McCoy,</u> <u>2001</u>)
↓Langerhans cell migration	↓activated Langerhans cells in cervical lymph nodes of DNFB- sensitized mice by fluorescence- activated sorting	Immune, Skin (Mice)	Female balb/c mice in vivo	50 mg/l sodium metaarsenite in drinking water (4 wks)	(<u>Patterso</u> <u>n et al.,</u> 2004)
Tissue/ Organ Res	ponses				
↓Thymus size	↓Thymus size assessed sonographically	Thymus (Human)	Children in Matlab region of Bangladesh cohort	Maternal arsenic metabolites in urine at weeks 8 and 30 of gestation	(<u>Moore e</u> <u>al., 2009</u> ; <u>Raqib et</u> <u>al., 2009</u>)
	↓absolute, not relative thymus weight	Thymus (Chicken)	Chickens in vivo	3.7 ppm sodium arsenite in drinking water (10, 20, 30, 40, 60 days)	(<u>Aggarwal</u> <u>et al.,</u> <u>2008</u>)
Individual Respon	ses				
↓delayed-type hypersensitivity (DTH) response	↓DTH to KLH by footpad thickness	lmmune function (Rats)	Male Wistar rats in vivo	25 ppm sodium arsenite in drinking water (42 days)	(<u>Sankar e</u> <u>al., 2013</u>)
	↓DTH to 2,4- dinitro-1- chlorobenzene (DNCB) or PHA-P by	Immune function (Chicken)	Chickens in vivo	3.7 ppm sodium arsenite in drinking water (10, 20, 30, 40, 60	(<u>Aggarwa</u> <u>et al.,</u> <u>2008</u>)

These draft development materials are for review purposes only and do not constitute Agency policy.April 201410-42Draft: Do Not Cite or Quote

Key Events	Observations skin thickness	Organ system	Test System	Dose (Exposure Duration) ^a days)	References
	↓ phytohemagglutin in hypersensitivity response by skin thickness	Immune function (Rats)	Male cotton rats	0, 5, 10 ppm sodium arsenite (6 wks)	(<u>Savabiea</u> <u>sfahani et</u> al., 1998)
↓ antibody response	↓ decreased antibody response by ELISA to vaccination with disease virus (F- strain; RD-F)	Immune function (Chicken)	Chickens in vivo	3.7 ppm sodium arsenite in drinking water (10, 20, 30, 40, 60 days)	(<u>Aggarwal</u> <u>et al.,</u> 2008)
↓ antibody response (continued)	↓antibody response by agglutination to bacterial (<i>A.</i> <i>hydrophila</i>) challenge; ↓antigen-specific plaque-forming cells to SRBC	Immune function (Catfish)	Catfish in vivo	42.42 μM arsenic trioxide (150 days)	(<u>Ghosh et</u> <u>al.,</u> <u>2007a</u>)
	↓antibody response to SRBC by PFC	Immune function (Mice)	Male c57bl/6N mice in vivo	50 μg/m ³ and 1 mg/m ³ nose only inhalation arsenic trioxide (14 days)	(<u>Burchiel</u> <u>et al.,</u> <u>2009</u>)
	↓antibody response for IgG at day 14 to KLH by ELISA; not significant in IgM at day 5	Immune function (Mice)	Male Wistar rats in vivo	0, 0.4, 4, 40 ppm sodium arsenite in drinking water (18 wks)	(<u>Nain and</u> <u>Smits,</u> 2012)
	↓antibody response to SRBC by PFC	Immune function (Mice)	Male white Swiss cross mice in vivo	0, 0.5, 2, 10 ppm sodium arsenite in drinking water (3 wks)	(<u>Blakley</u> <u>et al.,</u> <u>1980</u>)
↓host resistance (to infection)	 ↓ ability to decrease bacteria load (<i>C. batrachus</i>), ↑ tissue damage, slower recovery, ↑ mortality 	Immune function (Catfish)	Catfish in vivo	42.42 μM arsenic trioxide (150 days)	(<u>Ghosh et</u> <u>al.,</u> <u>2007a</u>)
	↓ blood and splenic clearance bacterial (S. aureus) challenge	Immune function (Mice)	Male Swiss albino mice in vivo	Sodium arsenite (p.5 mg/kg bw (ip) (15 days)	(<u>Bishayi</u> <u>and</u> <u>Sengupta,</u> <u>2003</u>)
	↓ability to clear viral (snakehead	Immune function	Zebrafish in	2 or 10ppb sodium arsenite in water	(<u>Nayak et</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 201410-43Draft: Do Not Cite or Quote

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration) ^a	References
	rhabovirus) or bacterial (<i>E.</i> <i>tarda</i>)load	(Zebrafish)	vivo	(4 days starting at 1 cell stage)	<u>al., 2007</u>)
	Respiratory infection 个 influenza virus titer and 个virus- related morbidity	Immune function (Mice)	Male C57bl/6j mice in vivo	100ppb sodium arsenite in drinking water (5 wks)	(<u>Kozul et</u> <u>al., 2009</u>)
↓contact sensitization response	↓Lymph node proliferation; ↓ear swelling to DNFB	lmmune, Skin (Mice)	Female balb/c mice in vivo	50 mg/l sodium metaarsenite in drinking water (4 wks)	(<u>Patterso</u> <u>n et al.,</u> <u>2004</u>)
Susceptible indivi	dual response				
NALP2 gene polymorphism (C/A +A/A) of NLP2 A1052E SNPs	NALP2 gene polymorphism modifies inorganic arsenic-associated respiratory disease	Immune / Respiratory (Human)	Individuals from West Bengal all with inorganic arsenic exposure; case-control study divided by presence of inorganic arsenic- related skin lesions	Exposure assessed by inorganic arsenic content of drinking water and urine samples	(<u>Bhattach</u> <u>arjee et</u> <u>al., 2013</u>)
TNFα and IL10 gene polymorphism (-308G/A and - 3575T/A)	GA/AA TNFα genotype had higher risk of developing inorganic arsenic- induced conjunctivitis and respiratory effects; TNFα (pro- inflammatory cytokine) and IL10 (anti-inflammatory cytokine) gene polymorphisms modify serum TNFα and IL10 levels	Immune / Respiratory / eye (Human)	Individuals from West Bengal all with inorganic arsenic exposure; case-control study divided by presence of inorganic arsenic- related skin lesions	Arsenic exposure assessed in urine	(<u>Banerjee</u> <u>et al.,</u> <u>2011</u>)
Population Respo	onse				
Respiratory infection	↑ relative risk of lower respiratory tract infection, ↑ relative risk of	Immune/ Respiratory (Human)	Children in Matlab region of Bangladesh MINIM	262 – 977 μg/L maternal arsenic metabolites in urine (average)	(<u>Rahman</u> <u>et al.,</u> <u>2011</u>)

These draft development materials are for review purposes only and do not constitute Agency policy. Draft: Do Not Cite or Quote 10-44

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration) ^a	References
	sever lower respiratory tract infection		cohort	compared to <39 μg/L maternal arsenic metabolites in urine	
	个acute respiratory infection	Immune/ Respiratory (Human)	Children in Matlab region of Bangladesh cohort	152.4, 145.8 μg/L maternal arsenic metabolites in urine (mean) at weeks 8 and 30 gestation	(<u>Raqib et</u> <u>al., 2009</u>)
	↑ relative risk of lower and upper respiratory tract infection requiring physician visit or prescription medication, and ↑respiratory symptoms,	Immune/ Respiratory (Human)	Children New Hampshire Birth Cohort	6 μg/L maternal urinary As levels (mean) at 24-28 weeks gestation	(<u>Farzan et</u> <u>al., 2013</u>)
Disease/cold fever	↑ days of fever	Immune (Human)	Pregnant mothers in Matlab region of Bangladesh cohort	152.4, 145.8 μg/L maternal arsenic metabolites in urine (mean) at weeks 8 and 30 gestation	(<u>Raqib et</u> <u>al., 2009</u>)
	个colds treated with prescription	lmmune (Human)	Children New Hampshire Birth Cohort	6 μg/L maternal urinary As levels(mean) at 24- 28 weeks gestation	(<u>Farzan et</u> <u>al., 2013</u>)
Infection- related GI disease	↑ relative risk of diarrhea	Immune/ gastro- intestinal (Human)	Children in Matlab region of Bangladesh MINIM cohort	262 – 977 μg/L maternal arsenic metabolites in urine (average) compared to <39 μg/L maternal arsenic metabolites in urine	(<u>Rahman</u> <u>et al.,</u> 2011)
	↑ days of diarrhea	Immune/ gastro- intestinal (Human)	Pregnant mothers in Matlab region of Bangladesh cohort	152.4, 145.8 μg/L maternal arsenic metabolites in urine (mean) at weeks 8 and 30 gestation	(<u>Raqib et</u> <u>al., 2009</u>)
	↑ diarrhea symptoms lasting two or more days or requiring doctors visit were associated but not significant [RR=1.9(0.9,3.9) and	Immune/ Respiratory (Human)	Children New Hampshire Birth Cohort	6 μg/L maternal urinary As levels (mean) at 24-28 weeks gestation	(<u>Farzan et</u> <u>al., 2013</u>)

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration) ^a	References
	RR=3.5 (0.8,15.4)]				

^aAbbreviations used for exposure durations: minutes (min), hours (hr), days (d), weeks (wks)

^bExposure durations are characterized as "unspecified" when a study does not explicitly state the exposure duration

10.5Preliminary Data on Effects Mediated By Oxidative Stress

Relevant Health Effects: Cardiovascular Disease, Diabetes, Liver Disease, Lung Cancer, Bladder Cancer, Neurotoxicity, Non-Malignant Respiratory Disease, Pregnancy Outcomes, Renal Disease, Skin Cancer, and Skin Lesions

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration)	References
Molecular Initiating	<u>Events</u>		•		
Reaction with O ₂ (intermediate arsine species; e.g., dimethylarsine)	↑free radicals (e.g., Dimethylarsenic peroxyl radical [(CH ₃) ₂ AsOO], superoxide anion)	Multiple (See Review Article)	Multiple (See Review Article)	Multiple (See Review Article)	Reviewed in (<u>Flora, 2011</u>)
Reaction with ferritin (Methylated-As)	Redox-active Fe release	Multiple (See Review Article)	Multiple (See Review Article)	Multiple (See Review Article)	Reviewed in (<u>Flora, 2011</u>)
Oxidation of As(III) to As(V)	H ₂ O ₂ formation followed by Fenton reaction (hydroxyl radical formation)	Multiple (See Review Article)	Multiple (See Review Article)	Multiple (See Review Article)	Reviewed in (<u>Flora, 2011;</u> Jomova and <u>Valko, 2011</u>)
Reactions with NADPH oxidase	↓ROS with NADPH inhibitor	Liver (Human)	Human immortalized liver cell line HL-7702	Diphenylene- iodonium chloride (DPI) (30 min pretreatment) + 5 µM arsenite (2 hr)	(<u>Li et al.,</u> <u>2014</u>); Reviewed in (<u>Flora, 2011</u>)
Reactions with mitochondrial respiratory chain	↓ROS with mitochondrial respiratory chain inhibitor	Liver (Human)	Human immortalized liver cell line HL-7702	Rotenone (30 min pretreatment) + 5 μM arsenite (2 hr)	(<u>Li et al.,</u> <u>2014</u>); Reviewed in (<u>Flora, 2011</u>)
Biochemical Respon	<u>ses</u>				
Generation of reactive oxygen species	↓dichlorofluorescein diacetate (peroxides)	Skin (Human)	HaCaT transformed keratinocytes	0.5 μM trivalent arsenic (As[III]) (24 hr)	(<u>Snow et al.,</u> <u>2005</u>)

These draft development materials are for review purposes only and do not constitute Agency policy.April 201410-47Draft: Do Not Cite or Quote

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration)	References
		Lung (Human)	WI38 human diploid lung fibroblast	0.5 μM trivalent arsenic (As[III]) (24 hr)	
	↑H ₂ O ₂ ↑Superoxide	Lung (Rat)	Lung Epithelial Cells (LECs)	≤ 1 µM sodium arsenite (30 min)	(<u>Li et al.,</u> <u>2011</u>)
	个Superoxide	Liver (Mouse)	Liver Sinusoidal Endothelial Cells (SECs)	2.5 – 5 μM arsenite (30 min)	(<u>Straub et al.,</u> 2008)
Generation of reactive oxygen species (<i>continued</i>)	↑ 2',7'-dichlorofluorescein- diacetate (DCFH-DA)	Liver (Human)	Human immortalized liver cell line HL-7702	5 μM arsenite (2 hr)	(<u>Li et al.,</u> <u>2014</u>)
	↑H ₂ O ₂ *co-treatment with anti- oxidants prevents ↑	Liver (Rat)	Wistar Rats (Male, albino) (liver microsomes)	100 ppm sodium arsenite (30 days)	(<u>Ramanathan</u> <u>et al., 2003</u>)
		Kidney (Rat)	Wistar Rats (Male, albino) (kidney microsomes)	100 ppm sodium arsenite (30 days)	(<u>Ramanathan</u> <u>et al., 2003</u>)
	Dose dependent 个CM- H ₂ DCFDA fluorescence (general ROS indicator) * co-treatment with anti- oxidants mitigates 个 *latent 个 with MMA(III) compared with As(III) (no 个 at 10 min)	Urothelium (Human)	UROtsa cells	1-100 μM NaAsO ₂ (10 min) 50 500 nM MMA(III) (30 min)	(<u>Eblin et al.,</u> <u>2006</u>)
	个CM-H ₂ DCFDA * co-treatment with anti- oxidants mitigates 个	Urothelium (Human)	UROtsa cells	10 μM NaAsO ₂ (10 min) 500 nM MMA(III)	(<u>Eblin et al.,</u> <u>2008</u>)
				(10 min)	
	Time-dependent 个CM- H ₂ DCFDA fluorescence *significant 个 only at 12 weeks	Urothelium (Human)	UROtsa cells	50 nM MMA(III) (4 - 12 weeks)	(<u>Wnek et al.,</u> <u>2011</u>)

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration)	References
Mitochondrial Activity Changes	个colocalization of ROS & mitochondria staining	Liver (Human)	Human immortalized liver cell line HL-7702	5 μM arsenite (2 hr)	(<u>Li et al.,</u> <u>2014</u>)
Alteration in glutathione and other non-	↓ GSH	Brain (Mouse)	Swiss Mice (Male albino)	0.5 or 1 As ₂ O ₃ mg/kg (45 days)	(<u>Rao and</u> <u>Avani, 2004</u>)
enzymatic antioxidant levels		Brain (Rat)	Sprague Dawley Rats (Male)	0.05, 0.10, 0.30, 3.0 ppm Na ₃ AsO ₄ (40 days)	(<u>Chaudhuri</u> <u>et al., 1999</u>)
		Lung (Rat)	Lung Epithelial Cells (LECs)	2 μM sodium arsenite (≤ 30 min)	(<u>Li et al.,</u> <u>2011</u>)
Alteration in glutathione and other non- enzymatic antioxidant levels	↓GSH ↓Ascorbic acid ↓α-tocopherol *co-treatment with anti-	Liver (Rat)	Wistar Rats (Male, albino) (liver microsomes)	100 ppm sodium arsenite (30 days)	(<u>Ramanathan</u> <u>et al., 2003</u>)
(continued)	oxidants prevents ↓	Kidney (Rat)	Wistar Rats (Male, albino) (kidney microsomes)	100 ppm sodium arsenite (30 days)	(<u>Ramanathan</u> <u>et al., 2003</u>)
	↑GSH	Pancreas (Rat)	Wistar Rats (Male)	1.7 mg/kg NaAs ⁺³ O ₂ (every 12 hr/ 90 days)	(<u>Izquierdo-</u> <u>Vega et al.,</u> <u>2006</u>)
		Pancreas (Rat)	INS-1(832/13) cells (Rat β-cells)	0.25 -0.5 μM arsenite (96 hr)	(<u>Fu et al.,</u> <u>2010</u>)
		Lung (Rat)	Lung Epithelial Cells (LECs)	2 μM sodium arsenite (2-8 hr)	(<u>Li et al.,</u> <u>2011</u>)
Depletion of micronutrients	↓ascorbate ↓ Fe(II)	Liver (Human)	Human immortalized liver cell line HL-7702	5 μM arsenite (12 hr)	(<u>Li et al.,</u> <u>2014</u>)
Enzyme Activity Changes	↓SOD dismutase ↓catalase	Brain (Mouse)	Swiss Mice (Male albino)	0.5 or 1 mg/kg As ₂ O ₃ (45 days)	(<u>Rao and</u> <u>Avani, 2004</u>)
	↓SOD dismutase ↓catalase ↓glutathione reductase	Brain (Rat)	Sprague Dawley Rats (Male)	0.05, 0.10, 0.30, 3.0 ppm Na ₃ AsO ₄ (40 days)	(<u>Chaudhuri</u> <u>et al., 1999</u>)

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration)	References
	↑DNA ligase	Lung (Human)	WI38 human diploid lung fibroblast	0.5 – 1 μM As(III) (24 to 120 hr)	Reviewed in (<u>Snow et al.,</u> <u>2005</u>)
	↓ DNA ligase			5 or 10 μM As(III) (24 to 120 hr)	
	Rac1-GTPase activation NADPH Oxidase activation (Nox2-based)	Liver (Mouse)	C57BL/6 Tac Mice (In-vivo and ex- vivo liver sinusoidal endothelial cells [SECs])	In vivo: 250 ppb sodium arsenite (5 wk) Ex vivo: 2.5 μM sodium arsenite (8 hr)	(<u>Straub et al.,</u> <u>2008</u>)
	↑ NADPH Oxidase (inferred) ↑Propyl hydroxylase (PHDs) (inactivates HIF-1α)	Liver (Human)	Human immortalized liver cell line HL-7702	5 μM arsenite (12 hr)	(<u>Li et al.,</u> <u>2014</u>)
Enzyme Activity Changes (continued)	 ↑ haem oxygenase ↓ Cytochrome P450 ↓ Cytochrome b5 ↓ NADPH-cyt P450 reductase 	Liver (Rat)	Wistar Rats (Male, albino) (liver microsomes)	100 ppm sodium arsenite (30 days)	(<u>Ramanathan</u> <u>et al., 2003</u>)
	*↑/↓ mitigated by antioxidants	Kidney (Rat)	Wistar Rats (Male, albino) (kidney microsomes)	100 ppm sodium arsenite (30 days)	(<u>Ramanathan</u> <u>et al., 2003</u>)
	↓thioredoxin reductase (TrxR)	Pancreas (Rat)	Wistar Rats (Male)	1.7 mg/kg NaAs ⁺³ O ₂ (every 12 hr/ 90 days)	(<u>Izquierdo-</u> <u>Vega et al.,</u> <u>2006</u>)
	 ↓ poly(ADP-ribose) polymerase-1 (PARP-1) * ↑ activity if MMA(III) exposure is discontinued for 2 weeks prior to measurement in cells previously exposed for 4 or 8 weeks 	Urothelium (Human)	UROtsa cells	50 nM MMA(II) (4-12 weeks)	(<u>Wnek et al.,</u> 2011)
Protein expression and/or level changes	Western Blot: ↑Base excision repair proteins (DNA polymerase β, DNA ligase I)	Skin (Human)	Human Keratinocyte Cells (HaCaT)	0.1 - 1 μM As(III) (24 hr)	Reviewed in (<u>Snow et al.,</u> <u>2005</u>)

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration)	References
	↓ Base excision repair proteins			5 - 10 μM As(III) (24 hr)	
	Western Blot: ↑Base excision repair proteins (DNA polymerase β, DNA ligase I)	Lung (Human)	WI38 human diploid lung fibroblast	0.1 - 1 μM As(III) (24 hr)	Reviewed in (<u>Snow et al.,</u> 2005)
	↓ Base excision repair proteins			5 - 10 μM As(III) (24 hr)	
	mRNA & Western Blot: 个NRF1 个NRF2	Skin (Human)	Immortalized human keratinocyte cells (HaCaT)	>5 μM inorganic arsenite (As[III]) (6 hr)	(<u>Zhao et al.,</u> <u>2012</u>)
Protein expression and/or level changes (continued)	Western Blot: ↑Nrf2	Lung (Mouse)	Mice (unspecified strain; wild type and Nrf2- knockout)	0.48 mg/m ³ synthetic dust [10% arsenic trioxide + inert background dust] (30 min/day /14 days)	(<u>Zheng et al.,</u> <u>2012</u>)
	Western Blot: ↑Cu/Zn SOD, thioredoxin *mitigated by antioxidants	Lung (Rat)	Lung Epithelial Cells (LECs)	2 μM sodium arsenite (16 weeks)	(<u>Li et al.,</u> <u>2011</u>)
	Immunofluorescence: 个PECAM-1	Liver (Mouse)	C57BL/6 Tac Mice (In-vivo and ex- vivo liver sinusoidal endothelial cells [SECs])	In vivo: 250 ppb sodium arsenite (5 wk) Ex vivo: 1-5 μM sodium arsenite (8 hr)	(<u>Straub et al.,</u> 2008)
	Western Blot: ↑HIF-1α	Liver (Human)	Human immortalized liver cell line HL-7702	5 μM arsenite (12 hr)	(<u>Li et al.,</u> <u>2014</u>)
	Western Blot: 个VEGF	Liver (Human)	Human immortalized liver cell line HL-7702	1—5 μM arsenite (12 hr)	(<u>Li et al.,</u> <u>2014</u>)

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration)	References
	Western Blot: ↑Nrf nuclear fraction *↑ARE luciferase activity; ↑expression of downstream targets mRNA (e.g., Hmox1, NAD(P)H, catalase)	Pancreas (Rat)	INS-1(832/13) cells (Rat β-cells)	0.25 -0.5 μM arsenite (96 hr)	(<u>Fu et al.,</u> <u>2010</u>)
	Western Blot: ↑Hsp70 (stress protein)	Urothelium (Human)	UROtsa cells	1 μM NaAsO ₂ (30 min) 10 μM NaAsO ₂ (30-240 min)	(<u>Eblin et al.,</u> <u>2006</u>)
				50 nM – 5 μM MMA(III) (30 – 240 min)	
	Western Blot: ↑metallothionein (stress protein)			1 μM NaAsO ₂ (240 min) 10 μM NaAsO ₂ (30-240 min)	
				50 nM – 5 μM MMA(III) (30 – 240 min)	
Protein expression and/or level changes (continued)	mRNA & Western Blot: 个PARP-1 *no effect on expression if MMA(III) exposure is discontinued for 2 weeks prior to measurement in cells previously exposed for 4 or 8 weeks	Urothelium (Human)	UROtsa cells	50 nM MMA(III) (4-12 weeks)	(<u>Wnek et al.,</u> <u>2011</u>)
	Western blot: ↑ Cox-2 *levels normalize by 24 hr **co-treatment with SOD or melatonin block induction; no effect of catalase	Urothelium (Human)	UROtsa cells	1 μM sodium arsenite (4 hr); or 50 nM MMA(III) (4 hr)	(<u>Eblin et al.,</u> 2008)
	mRNA:	Urothelium (Human)	UROtsa cells	1 μM sodium arsenite (4 hr); or 50 nM MMA(III) (4 hr)	(<u>Eblin et al.,</u> <u>2008</u>)

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration)	References
	Western blot: ↓Mn SOD *no change in Mn SOD with As(III) treatment; very little change in catalase with either As(III) or MMA(III) treatments	Urothelium (Human)	UROtsa cells	50 nM MMA(III) (1 to 24 hr)	(<u>Eblin et al.,</u> 2008)
	Western blot: ↑Cu/Zn SOD *↓after 24 hr MMA(III) exposure	Urothelium (Human)	UROtsa cells	1 μM sodium arsenite (0.5 -24 hr) 50 nM MMA(III) (0.5 -4 hr)	(<u>Eblin et al.,</u> 2008)
Cell membrane disruption	↑Lipid peroxidation	Brain (Mouse)	Swiss Mice (male albino)	0.5 or 1 mg/kg As ₂ O ₃ (45 days)	(<u>Rao and</u> <u>Avani, 2004</u>)
		Brain (Rat)	Sprague Dawley Rats (Male)	0.05, 0.10, 0.30, 3.0 ppm Na ₃ AsO ₄ (40 days)	(<u>Chaudhuri</u> <u>et al., 1999</u>)
		Liver (Mouse)	BALB/c Mice (Male)	3.2 mg/L As(III) [/] As(V) (6 months)	(<u>Santra et al.,</u> 2000)
		Liver (Rat)	Wistar Rats (Male, albino) (liver microsomes)	100 ppm sodium arsenite (30 days)	(<u>Ramanathan</u> <u>et al., 2003</u>)
Cell membrane disruption (continued)	个Lipid peroxidation (continued)	Kidney (Rat)	Wistar Rats (Male, albino) (Kidney microsomes)	100 ppm sodium arsenite (30 days)	(<u>Ramanathan</u> <u>et al., 2003</u>)
		Pancreas (Rat)	Wistar Rats (Male)	1.7 mg/kg NaAs ⁺³ O ₂ (every 12 hr/ 90 days)	(<u>Izquierdo-</u> <u>Vega et al.,</u> <u>2006</u>)
DNA, chromosomal damage	Oxidative DNA damage (个anti-8-Oxo-dG staining)	Lung (Mouse)	Mice (unspecified strain; wild type and Nrf2- knockout)	0.48 mg/m ³ synthetic dust [10% arsenic trioxide + inert background dust] (30 min/day /14 days)	(<u>Zheng et al.,</u> <u>2012</u>)

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration)	References
	Oxidative DNA damage (个 8-OHdG staining)	Blood (Human)	Human Population	10.88 to 19.05 μg/gCr urinary arsenic (40-70 yrs)	(<u>Pei et al.,</u> <u>2013</u>)
	Oxidative DNA damage (↑anti-8-Oxo-dG levels measured by HPLC/ECD)	Urothelium (Human)	UROtsa cells	1 – 10 μM NaAsO ₂ (30 min)	(<u>Eblin et al.,</u> 2006)
				50 nM MMA(III) (30) 50 nM – 5 μM MMA(III) (60 min)	
	↓anti-8-Oxo-dG levels measured by HPLC/ECD			1 – 10 μM NaAsO ₂ (60 min)	
	个DNA single-strand breaks (comet assay and flow cytometry)	Urothelium (Human)	UROtsa cells	50 nM MMA(II) (4-12 weeks)	(<u>Wnek et al.,</u> <u>2011</u>)
Gene expression changes	↑NRF2 & ARE dependent genes (HMOX-1, NQo1, GCLC, GCLM, SRX)	Skin (Human)	Immortalized human keratinocyte cells (HaCaT)	1.25-40 μM inorganic arsenite (As[III]) (6 hr)	(<u>Zhao et al.,</u> <u>2012</u>)
	↑Nrf2 targets (NQ01, γGCS, HO-1)	Lung (Mouse)	Mice (unspecified strain; wild type and Nrf2- knockout)	0.48 mg/m ³ synthetic dust [10% arsenic trioxide + inert background dust] (30 min/day /14 days)	(<u>Zheng et al.,</u> <u>2012</u>)
Gene expression changes (continued)	Altered gene expression related to: oxidative stress (↑HMOX1); protein folding (↓FKB5) Thioredoxin reductase (↑TXNRDI) Metallothinonine regulation (↑MT1E) DNA damage sensing (↓DDB2) Thioredoxin (↑TXN) Cell adhesion/growth (↑LGALS8) Immune response (↓THBD)	Urothelium (Human)	Human uroepithelial cells from kidney donor ureter segments	6 μM As(III) +MMA ^v +DMA ^v (24 hr); or 6 μM As(III) +MMA ³⁺ +DMA ³⁺ (24 hr)	(<u>Yager et al.,</u> <u>2013; Clewell</u> <u>et al., 2011</u>)

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration)	References
	Alterations in genes related to: inflammatory signaling, epithelial-to-mesenchymal transition, cell cycle control, and apoptosis/survival signaling	Urothelium (Human)	Human uroepithelial cells from kidney donor ureter segments	0.06 μM inorganic arsenic and trivalent or pentavalent metabolites (24 hr)	(<u>Clewell et</u> <u>al., 2011</u>)
	↑adaptive gene response (delay apoptosis, preinflammatory)	Various	Various	≤ 0.01 µM various arsenic species (various exposure durations)	(<u>Gentry et</u> <u>al., 2010</u>) Review
	Altered gene expression related to: Oxidative stress, proteotoxicity, inflammation, and proliferative signaling, DNA repair, cell cycle, G2/M checkpoint control, and induction of apoptosis	Various	Various	0.1 – 10 μM various arsenic species (various exposure durations)	(<u>Gentry et</u> <u>al., 2010</u>) Review
	Altered apoptotic gene expression	Various	Various	10 – 100 μM various arsenic species (various exposure durations)	(<u>Gentry et</u> <u>al., 2010)</u> Review
	760 Alternations in gene expression, generally related to: Oxidative stress (e.g., NQO1) Lipid metabolism (e.g., ALDH2) Inflammatory response (e.g., IL8, MAPK1)	Urothelium (Human)	UROtsa cells	1 μΜ ΜΜΑ(III) (24 hr)	(<u>Bailey et al.</u> , <u>2012</u>)
Gene expression changes (continued)	176 alternations in gene expression, generally related to: Oxidative stress (e.g., TNF) Lipid metabolism (e.g., AKT3) Inflammatory response (e.g., IL8, IL6)	Urothelium (Human)	UROtsa cells	1 μΜ DMA(III) (24 hr)	(<u>Bailey et al.</u> 2012)
	Genes in ERK 1/2 MAPK- & NF-KB signaling pathways	Urothelium (Human)	UROtsa cells	1 μΜ ΜΜΑ(III) or DMA(III) (24 hr)	(<u>Bailey et al.</u> <u>2012</u>)
Cell signaling changes	Transcript	ion Factors (e.g.,	Nrf2, HIF-1α, NF-κ	B)	Reviewed in (<u>Flora, 2011</u>)

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration)	References
(Numerous; examples provided here—see review article for details)	NF-кВ (个р-р65)	Lung (Mouse)	Mice (unspecified strain; wild type and Nrf2- knockout)	0.48 mg/m ³ synthetic dust [10% arsenic trioxide + inert background dust] (30 min/day /14 days)	(<u>Zheng et al.,</u> <u>2012</u>)
	Mitoge	n-activated proteir	n kinases (MAPKs)		Reviewed in (<u>Flora, 2011</u>)
	Erk (Ras, Raf, MEK, ERK activation)	Lung (Rat)	Lung Epithelial Cells (LECs)	100 μM B[α]P (24hr) 2 μM sodium arsenite (16 wks)	(<u>Li et al.,</u> 2011)
		Tyrosine phosph	orylation		Reviewed in (<u>Flora, 2011</u>)
	个p- Epidermal Growth Factor Receptor	Lung (Human)	Transformed human bronchial cells (BEAS)	500 μM sodium arsenite (20 min)	(<u>Wu et al.,</u> <u>1999</u>)
<u>Cellular Responses</u>				·	
Cytotoxicity/ viability, proliferation, apoptosis	↑cytotoxicity ↑apoptosis	Skin (Human)	Immortalized human keratinocyte cells (HaCaT)	>10 µM As(III) (24 hr)	(<u>Zhao et al.,</u> <u>2012</u>)
	↓cell viability *↑ mitigated by natural Nrf2-inducer	Lung (Human)	Human bronchial epithelium cells (16HBE140)	≤ 1 μM As(III) (48 hr)	(<u>Tao et al.,</u> <u>2013</u>)
	个 TUNEL labeling	Lung (Mouse)	Mice (unspecified strain; wild type and Nrf2- knockout)	0.48 mg/m ³ synthetic dust [10% arsenic trioxide + inert background dust] (30 min/day /14 days)	(<u>Zheng et al.,</u> 2012)
Cytotoxicity/ viability, proliferation,	↑ proliferation	Lung (Rat)	Lung Epithelial Cells (LECs)	2 μM sodium arsenite (24 hr)	(<u>Li et al.,</u> <u>2011</u>)

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration)	References
apoptosis (continued)	 ↑cell viability ↓cell viability *reduced Nrf2 expression sensitizes cells to viability change; activation of Nrf2 mitigates effects 	Bladder (Human)	Human bladder urothelium cell line (UROtsa)	5 -10 μM As(III) (24 hr) 20-80 μM As(III) (24 hr)	(<u>Wang et al.,</u> <u>2007b</u>)
	\downarrow cell viability *co-treatment with antioxidants other than catalase prevents \downarrow	Bladder (Human)	Human bladder urothelium cell line (UROtsa)	1 μM sodium arsenite, (24 hr)	(<u>Eblin et al.,</u> <u>2008</u>)
	No \downarrow cell viability			50 nM MMA(III) (24 hr)	
Epithelial- mesenchymal transition	Colony formation, ↓epithelial protein markers ↑mesenchymal protein markers *mitigated by antioxidant treatment	Lung (Rat)	Lung Epithelial Cells (LECs)	100 μM B[α]P (24hr) 2 μM sodium arsenite (16 wks)	(<u>Li et al.,</u> <u>2011</u>)
Cell matrix changes	↓ porosity	Liver (Mouse)	C57BL/6 Tac Mice (In-vivo and ex- vivo liver sinusoidal endothelial cells [SECs])	In vivo: 250 ppb sodium arsenite (5 wk) Ex vivo: 1-5 µM sodium arsenite (8 hr)	(<u>Straub et al.,</u> <u>2008</u>)
Functional Changes	↓insulin production ↓glucagon production	Pancreas (Rat)	Wistar Rats (Male)	1.7 mg/kg NaAs ⁺³ O ₂ (every 12 hr/ 90 days)	(<u>Izquierdo-</u> <u>Vega et al.,</u> <u>2006</u>)
	↓insulin secretion in response to glucose ↑insulin secretion in response to potasium chloride	Pancreas (Rat)	INS-1(832/13) cells (Rat β-cells)	0.25 -0.5 μM arsenite (96 hr)	(<u>Fu et al.,</u> <u>2010</u>)
Malignant transformation	↑multinucleated cells, morphological changes (confocal microscopy) tumor formation in in vivo xenografts	Urothelium (Human)	UROtsa cells	0.05 μΜ ΜΜΑ(III) (24 -52 weeks)	(<u>Bredfeldt et</u> <u>al., 2006</u>)

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration)	References
<u>Tissue/ Organ Respo</u>	onses				
Tissue remodeling	↑ Alveolar septa thickening, collagen deposition, fibroblast proliferation, pneumocyte hyperplasia;	Lung (Mouse)	Mice (unspecified strain; wild type and Nrf2- knockout)	0.48 mg/m ³ synthetic dust [10% arsenic trioxide + inert background dust] (30 min/day /14 days)	(<u>Zheng et al.,</u> <u>2012</u>)
Inflammatory response	 ↑ inflammatory cells in BAL fluid ↑TNF-α, IL-6 in BAL fluid ↑Th2 cytokines (IL-3, IL-4) ↑chemokines (TGF-β, MCP-1) *↑ mitigated by natural Nrf2-inducer 	Lung (Mouse)	Mice (unspecified strain; wild type and Nrf2- knockout)	0.48 mg/m ³ synthetic dust [10% arsenic trioxide + inert background dust] (30 min/day /14 days)	(<u>Zheng et al.,</u> <u>2012</u>)
	↑ TNF-α, IL-1β, IFNγ	Placenta (Human)	Human Population	>60 µg/L urinary arsenic at gestational week 30	(<u>Ahmed et</u> <u>al., 2011</u>)
Vascular remodeling	Sinusoidal capillarization ↓nutrient/ waste exchange	Liver (Mouse)	C57BL/6 Tac Mice (In vivo and ex vivo liver sinusoidal endothelial cells [SECs])	In vivo: 250 ppb sodium arsenite (5 wk) Ex vivo: 8 hr	(<u>Straub et al.,</u> <u>2008</u>)
Endocrine signaling changes	个fasting serum glucose 个blood insulin	Pancreas (Rat)	Wistar Rats (Male)	1.7 mg/kg NaAs ⁺³ O ₂ (every 12 hr/90 days)	(<u>Izquierdo-</u> <u>Vega et al.,</u> <u>2006</u>)
Individual Response	<u>s</u>				
Diabetes (Inferred from insulin resistance)	Insulin resistance	Blood (Rat)	Wistar Rats (Male)	1.7 mg/kg NaAs ⁺³ O ₂ (every 12 hr/ 90 days)	(<u>Izquierdo-</u> <u>Vega et al.,</u> <u>2006</u>)
Liver disease	Hepatic fibrosis	Liver (Mouse)	BALB/c Mice (Male)	3.2 mg/L (15 months)	(<u>Santra et al.,</u> 2000) Reviewed in (<u>Flora, 2011</u>)

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration)	References
Non-malignant respiratory disease	Allergic lung inflammation	Lung (Mouse)	Mice (unspecified strain; wild type and Nrf2- knockout)	0.48 mg/m ³ synthetic dust [10% arsenic trioxide + inert background dust] (30 min/day /14 days)	(<u>Zheng et al.,</u> 2012)
Susceptible individu	al response				
KEAP1 and/or NRF2 mutations	↑ NRF2 activity in skin cancer patients	Skin	Human population	Not applicable	(<u>Kim et al.,</u> <u>2010</u>) cited in (<u>Zhao et</u> <u>al., 2012</u>)
NADPH oxidase p22 subunit polymorphisms	↑hypertension risk in individuals with polymorphisms & high inorganic arsenic exposure	Cardio- vascular system	Human population	0.7 – 0.93 mg/L median inorganic arsenic in well water (>6 months)	(<u>Hsueh et al.,</u> <u>2005</u>); Cited in (<u>Straub et</u> <u>al., 2008</u>)
Diabetics	↓thioredoxin reductase (TrxR)	Pancreas (Rat)	Wistar Rats (Male)	1.7 mg/kg NaAs ⁺³ O ₂ (every 12 hr/ 90 days)	(<u>Izquierdo-</u> <u>Vega et al.,</u> <u>2006</u>); <u>Schulze et al.</u> (2004)
Alcohol	Ethanol may augment oxidative stress and induction of angiogenic factors that would promote tumor growth	Cardiovascular system	Human microvascular endothelial (HMVEC) cells	1-5uM arsenite in presence or absence of 0.1% EtOH. 24 hour experiments	(<u>Klei and</u> <u>Barchowsky,</u> 2008)
Population Respons	<u>e</u> ^a			·	
Elevated oxidative stress	↑superoxide in plasma (chemiluminescence method) ↓Plasma antioxidants	Plasma (Human)	Human Population (Taiwan)	9.60 µg/L Average arsenic blood levels (Average age: 64 years)	(<u>Wu et al.,</u> 2001)
Elevated oxidative stress	↑serum lipid peroxides ↓non-protein sulfhydryl levels in whole blood	Blood (Human)	Human population (Inner Mongolia, China,)	0.41 mg/L Average arsenic blood levels (average: 18 years)	(<u>Pi et al.,</u> <u>2002</u>)
Cardiovascular disease	Peripheral vascular disease, ischemic heart disease, acute myocardial infarction, atherosclerosis, hypertension	Cardiovascular system	Human population	Varies	Cited by (<u>Straub et al.,</u> <u>2008</u>) Reviewed in (<u>Flora, 2011</u>)

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration)	References
Bladder cancer	Elevated incidence of bladder cancer in populations exposed to relatively high inorganic arsenic concentrations (>100 µg/L in drinking water)	Bladder	Human population	Varies but generally >100 µg/L in drinking water	Reviewed in (<u>Cohen et al.,</u> 2013)
Diabetes	Multiple measures (e.g., insulin resistance)	Endocrine system	Human population	Various	(<u>Maull et al.,</u> 2012); cited in (<u>Fu et al.,</u> 2010)
Liver Cancer	↑serum Epidermal Growth Factor Receptor in liver cancer patients	Serum	Human Case Controls	Average 0.5 -0.6 mg/L inorganic arsenic in drinking water	(<u>Sung et al.,</u> <u>2012</u>)
Liver disease	Portal hypertension, noncirrhotic liver fibrosis	Liver	Human population	Various	Cited in (<u>Straub et al.,</u> <u>2008</u>)
	Hepatic fibrosis, portal hypertension	Liver	Human population	Various	(<u>Santra et al.,</u> <u>1999</u>); Reviewed in (<u>Flora, 2011</u>)
Lung Cancer	Inferred from EGFR activation in BEAS cells and 个EGFR in serum of liver cancer patients	Lung	Human population	Various	(<u>Sung et al.,</u> 2012; <u>Wu et</u> al., 1999)
Neurotoxicity	Peripheral neuropathy	Nervous system	Human population	Various	Cited by (<u>Rao</u> and Avani, 2004)
Non-malignant respiratory disease	Allergic lung inflammation	Lung	Human population	Various	Cited in (<u>Zheng et al.,</u> <u>2012</u>)
Pregnancy outcomes	preeclampsia, pre-term birth, chorioamnionitis, brain white matter damage, chronic lung disease in preterm infants	Placenta (Human)	Human population	Various	Cited in (<u>Ahmed et</u> <u>al., 2011</u>)
Renal disease	Urinary cancer Renal insufficiency, necrosis, failure	Kidney	Human population	Various	Reviewed in (<u>Flora, 2011</u>)
Skin Disease (Bowmen's Disease, cancer)	个oxidative DNA adducts (8-OHdG) 个skin lesions	Skin	Human population	Various	(<u>Pei et al.,</u> 2013) Reviewed in (<u>Yu et al.,</u> 2006)

				Dose (Exposure	
Key Events	Observations	Organ system	Test System	Duration)	References

^aNote: Associations between disease in populations exposed to inorganic arsenic and oxidative stress relies primarily on observational population studies combined with indicators of oxidative stress in in vitro and/or in vivo studies in cell or tissue types relevant to the disease (e.g., cardiomyocytes for cardiovascular disease). Data directly linking inorganic arsenic exposure to disease through an oxidative stress MOA were not identified at the population level, although biomarkers of oxidative stress in populations exposed to inorganic arsenic have been identified.

10.6Preliminary Data on Potential Interactions between Inorganic Arsenic Exposure and Other Chemicals or Stressors

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration) ^a	References		
Susceptible Individuals							
Smoking	Multiple epidemiological studies have found smoking interacts with inorganic arsenic exposure to increase lung and bladder cancer risk	Lung Urinary bladder (Human)	Human Population	Variable	(<u>Cohen et al.,</u> <u>2013</u>) review		
	Synergistic interaction of smoking andinorganic arsenic ingestion with skin lesions	Skin (Human)	Human population	Variable	(<u>Chen et al.,</u> <u>2006a</u>); (<u>Melkonian et</u> <u>al., 2011</u>)		
	Synergistic interaction between inorganic arsenic exposure and smoking in mortality from heart disease	Heart disease (Human)	Bangladesh	25.3-114 ppb	(<u>Chen et al.,</u> <u>2011b</u>)		
	Interaction between smoking and bladder- cancer risk (↑ odds ratio in ever smokers compared to never smokers; greater ↑ in odds ratio for smokers with shorter duration of As exposure compared to smokers with longer exposure duration)	Bladder (Human)	Human population (New Hampshire)	 >0.330 µg/g toenail As conc. (Inorganic arsenic: 16.5 yrs [average]; Smoking: <15 yrs or ≤ 15 yrs) 	(<u>Karagas et al.,</u> <u>2004</u>)		
Co-exposures	Synergistic effects between fertilizer use and inorganic arsenic levels in drinking water for skin lesions; longer duration of fertilizer use associated with higher hazard ratio	Skin (Human)	Human population (Bangladesh)	 >50 μg/L total arsenic in water (As: 10 yrs [mean]; Fertilizer: <10 yrs) >10 μg/L total arsenic in water (As: 10 yrs [mean]; Fertilizer: >10 yrs) 	(<u>Melkonian et</u> <u>al., 2011</u>)		

Key Events	Observations	Organ system	Test System	Dose (Exposure Duration) ^a	References
	Cd and As have cumulative effects on renal tubule leakage	Kidney	Humans	Mean concentration of Cd: 1.21.ppb and As: 5.7ppb	(<u>Huang et al.,</u> <u>2009a</u>)
Diet	Low vegetable fiber, low calcium, low folate and low animal protein may increase risk of skin lesions	Skin (Human)	Human Population (West Bengal, India)	<500 μg/L total arsenic (unspecified)	(<u>Mitra et al.,</u> 2004)
	Poor nutritional status (low body weight) associated with increased risk of skin lesions	Skin (Human)	Human Population (West Bengal, India)	<73.0 μg/kg/day total arsenic (unspecified)	(<u>Mazumder et</u> <u>al., 1998</u>)
	Lower body-mass index associated with increased risk of skin lesions	Skin (Human)	Human Population (Bangladesh)	Variable	(<u>Milton et al.,</u> <u>2004</u>); (<u>Ahsan et</u> <u>al., 2006</u>)
	Lower dietary intake of folate and other B vitamins led to a stronger positive association between exposure and hypertension	Hypertension (Human)	Human population (Bangladesh)	<864 ppb	(<u>Chen et al.,</u> <u>2007b</u>)
	Development of skin lesions associated with low folate	Skin/Blood (human)	Peripheral blood lymphocyte DNA in individuals with skin lesions	2-250 μg/L As(III) (>2 years)	(<u>Pilsner et al.,</u> <u>2009</u>)
	Non-toxic inorganic arsenic exposure leads to enhanced inorganic arsenic accumulation when combined with Se-deficiency; could affect fetal brain development	Brain (Developing Mouse)	Pregnant ICR mice	58 μmol/kg/day sodium arsenite +/-Se-deficient diet	(<u>Miyazaki et al.,</u> <u>2005</u>)

10.7References for Mode of Action Hypothesis Summaries and Preliminary Adverse Outcome Pathway Tables

- <u>Aggarwal, M; Naraharisetti, SB; Dandapat, S; Degen, GH; Malik, JK.</u> (2008). Perturbations in immune responses induced by concurrent subchronic exposure to arsenic and endosulfan. Toxicology 251: 51-60. <u>http://dx.doi.org/10.1016/j.tox.2008.07.050</u>
- <u>Ahmed, S; Mahabbat-E Khoda, S; Rekha, RS; Gardner, RM; Ameer, SS; Moore, S; Ekström, EC; Vahter, M;</u> <u>Raqib, R.</u> (2011). Arsenic-associated oxidative stress, inflammation, and immune disruption in human placenta and cord blood. Environ Health Perspect 119: 258-264. <u>http://dx.doi.org/10.1289/ehp.1002086</u>
- <u>Ahsan, H; Chen, Y; Parvez, F; Zablotska, L; Argos, M; Hussain, I; Momotaj, H; Levy, D; Cheng, Z; Slavkovich, V; van Geen, A; Howe, GR; Graziano, JH.</u> (2006). Arsenic exposure from drinking water and risk of premalignant skin lesions in Bangladesh: Baseline results from the Health Effects of Arsenic Longitudinal Study. Am J Epidemiol 163: 1138-1148. <u>http://dx.doi.org/10.1093/aje/kwj154</u>
- Ankley, GT; Bennett, RS; Erickson, RJ; Hoff, DJ; Hornung, MW; Johnson, RD; Mount, DR; Nichols, JW; <u>Russom, CL; Schmieder, PK; Serrano, JA; Tietge, JE; Villeneuve, DL.</u> (2010). Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment [Review]. Environ Toxicol Chem 29: 730-741. <u>http://dx.doi.org/10.1002/etc.34</u>
- <u>Arita, A; Costa, M.</u> (2009). Epigenetics in metal carcinogenesis: Nickel, arsenic, chromium and cadmium [Review]. Metallomics 1: 222-228. <u>http://dx.doi.org/10.1039/B903049b</u>
- <u>Arita, A; Shamy, MY; Chervona, Y; Clancy, HA; Sun, H; Hall, MN; Qu, Q; Gamble, MV; Costa, M.</u> (2012).
 The effect of exposure to carcinogenic metals on histone tail modifications and gene expression in human subjects [Review]. J Trace Elem Med Biol 26: 174-178. <u>http://dx.doi.org/10.1016/j.jtemb.2012.03.012</u>
- <u>Arkusz, J; Stańczyk, M; Lewińiska, D; Stepnik, M.</u> (2005). Modulation of murine peritoneal macrophage function by chronic exposure to arsenate in drinking water. Immunopharmacol Immunotoxicol 27: 315-330. <u>http://dx.doi.org/10.I08I/IPH-200067947</u>
- <u>Arnold, LL; Eldan, M; Nyska, A; van Gemert, M; Cohen, SM.</u> (2006). Dimethylarsinic acid: Results of chronic toxicity/oncogenicity studies in F344 rats and in B6C3F1 mice. Toxicology 223: 82-100. <u>http://dx.doi.org/10.1016/j.tox.2006.03.013</u>
- <u>Arnold, LL; Suzuki, S; Yokohira, M; Kakiuchi-Kiyota, S; Pennington, KL; Cohen, SM.</u> (2013). Time Course of Urothelial Changes in Rats and Mice Orally Administered Arsenite. Toxicol Pathol. <u>http://dx.doi.org/10.1177/0192623313489778</u>
- Bailey, KA; Wallace, K; Smeester, L; Thai, SF; Wolf, DC; Edwards, SW; Fry, RC. (2012). Transcriptional modulation of the ERK1/2 MAPK and NF-KB pathways in human urothelial cells after trivalent arsenical exposure: implications for urinary bladder cancer. J Can Res Updates 1: 57-68. <u>http://dx.doi.org/10.6000/1929-2279.2012.01.01.10</u>
- Bailey, KA; Wu, MC; Ward, WO; Smeester, L; Rager, JE; García-Vargas, G; Del Razo, LM; Drobná, Z; Stýblo, <u>M; Fry, RC.</u> (2013). Arsenic and the epigenome: interindividual differences in arsenic metabolism related to distinct patterns of DNA methylation. J Biochem Mol Toxicol 27: 106-115. <u>http://dx.doi.org/10.1002/jbt.21462</u>
- Banerjee, N; Banerjee, S; Sen, R; Bandyopadhyay, A; Sarma, N; Majumder, P; Das, JK; Chatterjee, M; Kabir, SN; Giri, AK. (2009). Chronic arsenic exposure impairs macrophage functions in the exposed individuals. J Clin Immunol 29: 582-594. <u>http://dx.doi.org/10.1007/s10875-009-9304-x</u>

- Banerjee, N; Nandy, S; Kearns, JK; Bandyopadhyay, AK; Das, JK; Majumder, P; Basu, S; Banerjee, S; Sau, TJ; States, JC; Giri, AK. (2011). Polymorphisms in the TNF-α and IL10-gene promoters and risk of arsenic-induced skin lesions and other non-dermatological health effects. Toxicol Sci 121: 132-139. http://dx.doi.org/10.1093/toxsci/kfr046
- Banerjee, N; Paul, S; Sau, TJ; Das, JK; Bandyopadhyay, A; Banerjee, S; Giri, AK. (2013). Epigenetic Modifications of DAPK and p16 Genes Contribute to Arsenic-Induced Skin Lesions and Non-Dermatological Health Effects. Toxicol Sci 135: 300-308. http://dx.doi.org/10.1093/toxsci/kft163
- Barr, FD; Krohmer, LJ; Hamilton, JW; Sheldon, LA. (2009). Disruption of histone modification and CARM1 recruitment by arsenic represses transcription at glucocorticoid receptor-regulated promoters. PLoS ONE 4: e6766. <u>http://dx.doi.org/10.1371/journal.pone.0006766</u>
- Benbrahim-Tallaa, L; Waterland, RA; Styblo, M; Achanzar, WE; Webber, MM; Waalkes, MP. (2005). Molecular events associated with arsenic-induced malignant transformation of human prostatic epithelial cells: Aberrant genomic DNA methylation and K-ras oncogene activation. Toxicol Appl Pharmacol 206: 288-298. <u>http://dx.doi.org/10.1016/j.taap.2004.11.017</u>
- Bhattacharjee, P; Das, N; Chatterjee, D; Banerjee, A; Das, JK; Basu, S; Banerjee, S; Majumder, P; Goswami, P; Giri, AK. (2013). Association of NALP2 polymorphism with arsenic induced skin lesions and other health effects. Mutat Res Genet Toxicol Environ Mutagen 755: 1-5. http://dx.doi.org/10.1016/j.mrgentox.2013.04.010
- <u>Binet, F; Girard, D.</u> (2008). Novel human neutrophil agonistic properties of arsenic trioxide: involvement of p38 mitogen-activated protein kinase and/or c-jun NH2-terminal MAPK but not extracellular signal-regulated kinases-1/2. J Leukoc Biol 84: 1613-1622. <u>http://dx.doi.org/10.1189/jlb.0708421</u>
- <u>Bishayi, B; Sengupta, M.</u> (2003). Intracellular survival of Staphylococcus aureus due to alteration of cellular activity in arsenic and lead intoxicated mature Swiss albino mice. Toxicology 184: 31-39. http://dx.doi.org/10.1016/s0300-483x(02)00549-8
- Biswas, R; Ghosh, P; Banerjee, N; Das, JK; Sau, T; Banerjee, A; Roy, S; Ganguly, S; Chatterjee, M; Mukherjee, A; Giri, AK. (2008). Analysis of T-cell proliferation and cytokine secretion in the individuals exposed to arsenic. Hum Exp Toxicol 27: 381-386. <u>http://dx.doi.org/10.1177/0960327108094607</u>
- Blakley, BR; Sisodia, CS; Mukkur, TK. (1980). The effect of methylmercury, tetraethyl lead, and sodium arsenite on the humoral immune response in mice. Toxicol Appl Pharmacol 52: 245-254. http://dx.doi.org/10.1016/0041-008X(80)90111-8
- Bodwell, JE; Gosse, JA; Nomikos, AP; Hamilton, JW. (2006). Arsenic disruption of steroid receptor gene activation: Complex dose-response effects are shared by several steroid receptors. Chem Res Toxicol 19: 1619-1629. <u>http://dx.doi.org/10.1021/tx060122q</u>
- Bodwell, JE; Kingsley, LA; Hamilton, JW. (2004). Arsenic at very low concentrations alters glucocorticoid receptor (GR)-mediated gene activation but not GR-mediated gene repression: Complex dose-response effects are closely correlated with levels of activated GR and require a functional GR DNA binding domain. Chem Res Toxicol 17: 1064-1076. http://dx.doi.org/10.1021/tx0499113
- Bourdonnay, E; Morzadec, C; Fardel, O; Vernhet, L. (2009). Redox-sensitive regulation of gene expression in human primary macrophages exposed to inorganic arsenic. J Cell Biochem 107: 537-547. http://dx.doi.org/10.1002/jcb.22155
- Bredfeldt, TG; Jagadish, B; Eblin, KE; Mash, EA; Gandolfi, AJ. (2006). Monomethylarsonous acid induces transformation of human bladder cells. Toxicol Appl Pharmacol 216: 69-79. http://dx.doi.org/10.1016/j.taap.2006.04.011

Burchiel, SW; Mitchell, LA; Lauer, FT; Sun, X; Mcdonald, JD; Hudson, LG; Liu, KJ. (2009). Immunotoxicity and biodistribution analysis of arsenic trioxide in C57Bl/6 mice following a 2-week inhalation exposure. Toxicol Appl Pharmacol 241: 253-259. <u>http://dx.doi.org/10.1016/j.taap.2009.09.019</u>

- Cao, Y; Yu, SL; Wang, Y; Guo, GY; Ding, Q; An, RH. (2011). MicroRNA-dependent regulation of PTEN after arsenic trioxide treatment in bladder cancer cell line T24. Tumor Biology 32: 179-188. http://dx.doi.org/10.1007/s13277-010-0111-z
- <u>Chai, CY; Huang, YC; Hung, WC; Kang, WY; Chen, WT.</u> (2007). Arsenic salts induced autophagic cell death and hypermethylation of DAPK promoter in SV-40 immortalized human uroepithelial cells. Toxicol Lett 173: 48-56. <u>http://dx.doi.org/10.1016/j.toxlet.2007.06.006</u>
- <u>Chanda, S; Dasgupta, UB; GuhaMazumder, D; Gupta, M; Chaudhuri, U; Lahiri, S; Das, S; Ghosh, N; Chatterjee,</u>
 <u>D.</u> (2006). DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicol Sci 89: 431-437. <u>http://dx.doi.org/10.1093/toxsci/kfj030</u>
- Chatterjee, A: Chatterji, U. (2010). Arsenic abrogates the estrogen-signaling pathway in the rat uterus. Reprod Biol Endocrinol 8: 80. <u>http://dx.doi.org/10.1186/1477-7827-8-80</u>
- <u>Chattopadhyay, S; Ghosh, S; Chaki, S; Debnath, J; Ghosh, D.</u> (1999). Effect of sodium arsenite on plasma levels of gonadotrophins and ovarian steroidogenesis in mature albino rats: duration-dependent response. J Toxicol Sci 24: 425-431.
- Chaudhuri, AN; Basu, S; Chattopadhyay, S; Das Gupta, S. (1999). Effect of high arsenic content in drinking water on rat brain. Indian J Biochem Biophys 36: 51-54.
- <u>Chen, H; Li, S; Liu, J; Diwan, BA; Barrett, JC; Waalkes, MP.</u> (2004). Chronic inorganic arsenic exposure induces hepatic global and individual gene hypomethylation: Implications for arsenic hepatocarcinogenesis. Carcinogenesis 25: 1779-1786. <u>http://dx.doi.org/10.1093/carcin/bgh161</u>
- <u>Chen, H; Liu, J; Zhao, CQ; Diwan, BA; Merrick, BA; Waalkes, MP.</u> (2001). Association of c-myc overexpression and hyperproliferation with arsenite-induced malignant transformation. Toxicol Appl Pharmacol 175: 260-268. <u>http://dx.doi.org/10.1006/taap.2001.9253</u>
- <u>Chen, WT; Hung, WC; Kang, WY; Huang, YC; Chai, CY.</u> (2007a). Urothelial carcinomas arising in arseniccontaminated areas are associated with hypermethylation of the gene promoter of the death-associated protein kinase. Histopathology 51: 785-792. <u>http://dx.doi.org/10.1111/j.1365-2559.2007.02871.x</u>
- <u>Chen, Y; Factor-Litvak, P; Howe, GR; Graziano, JH; Brandt-Rauf, P; Parvez, F; van Geen, A; Ahsan, H.</u> (2007b). Arsenic exposure from drinking water, dietary intakes of B vitamins and folate, and risk of high blood pressure in Bangladesh: A population-based, cross-sectional study. Am J Epidemiol 165: 541-552. <u>http://dx.doi.org/10.1093/aje/kwk037</u>
- <u>Chen, Y; Graziano, JH; Parvez, F; Hussain, I; Momotaj, H; van Geen, A; Howe, GR; Ahsan, H.</u> (2006). Modification of risk of arsenic-induced skin lesions by sunlight exposure, smoking, and occupational exposures in Bangladesh. Epidemiology 17: 459-467. <u>http://dx.doi.org/10.1097/01.ede.0000220554.50837.7f</u>
- <u>Chen, Y; Graziano, JH; Parvez, F; Liu, M; Slavkovich, V; Kalra, T; Argos, M; Islam, T; Ahmed, A; Rakibuz-Zaman, M; Hasan, R; Sarwar, G; Levy, D; van Geen, A; Ahsan, H.</u> (2011). Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study. B M J (Online) 342: d2431. <u>http://dx.doi.org/10.1136/bmj.d2431</u>
- Chen, YC; Guo, YL; Su, HJ; Hsueh, YM; Smith, TJ; Ryan, LM; Lee, MS; Chao, SC; Lee, JY; Christiani, DC. (2003a). Arsenic methylation and skin cancer risk in southwestern Taiwan. J Occup Environ Med 45: 241-248. http://dx.doi.org/10.1097/01.jom.0000058336.05741.e8
- Chen, YC; Su, HJ; Guo, YL; Hsueh, YM; Smith, TJ; Ryan, LM; Lee, MS; Christiani, DC. (2003b). Arsenic methylation and bladder cancer risk in Taiwan. Cancer Causes Control 14: 303-310. http://dx.doi.org/10.1023/A:1023905900171
- <u>Chervona, Y; Hall, MN; Arita, A; Wu, F; Sun, H; Tseng, HC; Ali, E; Uddin, MN; Liu, X; Zoroddu, MA;</u> <u>Gamble, MV; Costa, M.</u> (2012). Associations between arsenic exposure and global posttranslational histone modifications among adults in Bangladesh. Cancer Epidemiol Biomarkers Prev 21: 2252-2260. <u>http://dx.doi.org/10.1158/1055-9965.EPI-12-0833</u>

- Cho, Y; Ahn, KH; Back, MJ; Choi, JM; Ji, JE; Won, JH; Fu, Z; Jang, JM; Kim, DK. (2012). Age-related effects of sodium arsenite on splenocyte proliferation and Th1/Th2 cytokine production. Arch Pharm Res 35: 375-382. http://dx.doi.org/10.1007/s12272-012-0219-3
- <u>Chow, SKY; Chan, JYW; Fung, KP.</u> (2004). Suppression of cell proliferation and regulation of estrogen receptor alpha signaling pathway by arsenic trioxide on human breast cancer MCF-7 cells. J Endocrinol 182: 325-337. http://dx.doi.org/10.1677/joe.0.1820325
- Chu, F; Ren, X; Chasse, A; Hickman, T; Zhang, L; Yuh, J; Smith, MT; Burlingame, AL. (2011). Quantitative mass spectrometry reveals the epigenome as a target of arsenic. Chem Biol Interact 192: 113-117. http://dx.doi.org/10.1016/j.cbi.2010.11.003
- <u>Clewell, H; Efremenko, A; Black, M; Thomas, R; Wilga, P; Arnold, L; Gentry, PR; Yager, J.</u> (2011). Arsenic induced gene expression changes in primary human uroepithelial cells. Toxicol Lett 205: S43-S43. <u>http://dx.doi.org/10.1016/j.toxlet.2011.05.170</u>
- Cohen, SM. (2002). Comparative pathology of proliferative lesions of the urinary bladder. Toxicol Pathol 30: 663-671. <u>http://dx.doi.org/10.1080/01926230290166751</u>
- Cohen, SM; Arnold, LL; Beck, BD; Lewis, AS; Eldan, M. (2013). Evaluation of the carcinogenicity of inorganic arsenic [Review]. Crit Rev Toxicol 43: 711-752. <u>http://dx.doi.org/10.3109/10408444.2013.827152</u>
- Conde, P; Acosta-Saavedra, LC; Goytia-Acevedo, RC; Calderon-Aranda, ES. (2007). Sodium arsenite-induced inhibition of cell proliferation is related to inhibition of IL-2 mRNA expression in mouse activated T cells. Arch Toxicol 81: 251-259. http://dx.doi.org/10.1007/s00204-006-0152-7
- <u>Coppin, JF; Qu, W; Waalkes, MP.</u> (2008). Interplay between cellular methyl metabolism and adaptive efflux during oncogenic transformation from chronic arsenic exposure in human cells. J Biol Chem 283: 19342-19350. <u>http://dx.doi.org/10.1074/jbc.M802942200</u>
- Cui, X; Wakai, T; Shirai, Y; Hatakeyama, K; Hirano, S. (2006a). Chronic oral exposure to inorganic arsenate interferes with methylation status of p16INK4a and RASSF1A and induces lung cancer in A/J mice. Toxicol Sci 91: 372-381. <u>http://dx.doi.org/10.1093/toxsci/kfj159</u>
- Cui, X; Wakai, T; Shirai, Y; Yokoyama, N; Hatakeyama, K; Hirano, S. (2006b). Arsenic trioxide inhibits DNA methyltransferase and restores methylation-silenced genes in human liver cancer cells. Hum Pathol 37: 298-311. http://dx.doi.org/10.1016/j.humpath.2005.10.013
- Das, S; Pan, D; Bera, AK; Rana, T; Bhattacharya, D; Bandyapadyay, S; De, S; Sreevatsava, V; Bhattacharya, S; Das, SK; Bandyopadhayay, S. (2011). Sodium arsenite mediated immuno-disruption through alteration of transcription profile of cytokines in chicken splenocytes under in vitro system. Mol Biol Rep 38: 171-176. <u>http://dx.doi.org/10.1007/s11033-010-0091-5</u>
- Davey, JC; Bodwell, JE; Gosse, JA; Hamilton, JW. (2007). Arsenic as an endocrine disruptor: Effects of arsenic on estrogen receptor-mediated gene expression in vivo and in cell culture. Toxicol Sci 98: 75-86. <u>http://dx.doi.org/10.1093/toxsci/kfm013</u>
- Davey, JC; Nomikos, AP; Wungjiranirun, M; Sherman, JR; Ingram, L; Batki, C; Lariviere, JP; Hamilton, JW. (2008). Arsenic as an endocrine disruptor: arsenic disrupts retinoic acid receptor-and thyroid hormone receptor-mediated gene regulation and thyroid hormone-mediated amphibian tail metamorphosis. Environ Health Perspect 116: 165-172. <u>http://dx.doi.org/10.1289/ehp.10131</u>
- <u>de la Fuente, H; Portales-Perez, D; Baranda, L; Diaz-Barriga, F; Saavedra-Alanis, V; Layseca, E; Gonzalez-Amaro, R.</u> (2002). Effect of arsenic, cadmium and lead on the induction of apoptosis of normal human mononuclear cells. Clin Exp Immunol 129: 69-77. <u>http://dx.doi.org/10.1046/j.1365-2249.2002.01885.x</u>
- De Vizcaya-Ruiz, A; Barbier, O; Ruiz-Ramos, R; Cebrian, ME. (2009). Biomarkers of oxidative stress and damage in human populations exposed to arsenic [Review]. Mutat Res Genet Toxicol Environ Mutagen 674: 85-92. <u>http://dx.doi.org/10.1016/j.mrgentox.2008.09.020</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 201410-67Draft: Do Not Cite or Quote

- Drobna, Z; Jaspers, I; Thomas, DJ; Styblo, M. (2003). Differential activation of AP-1 in human bladder epithelial cells by inorganic and methylated arsenicals. FASEB J 17: 67-69. <u>http://dx.doi.org/10.1096/fj.02-0287fje</u>
- Eblin, KE; Bowen, ME; Cromey, DW; Bredfeldt, TG; Mash, EA; Lau, SS; Gandolfi, AJ. (2006). Arsenite and monomethylarsonous acid generate oxidative stress response in human bladder cell culture. Toxicol Appl Pharmacol 217: 7-14. <u>http://dx.doi.org/10.1016/j.taap.2006.07.004</u>
- Eblin, KE; Hau, AM; Jensen, TJ; Futscher, BW; Gandolfi, AJ. (2008). The role of reactive oxygen species in arsenite and monomethylarsonous acid-induced signal transduction in human bladder cells: Acute studies. Toxicology 250: 47-54. <u>http://dx.doi.org/10.1016/j.tox.2008.05.018</u>
- Engström, KS; Hossain, MB; Lauss, M; Ahmed, S; Raqib, R; Vahter, M; Broberg, K. (2013). Efficient arsenic metabolism--the AS3MT haplotype is associated with DNA methylation and expression of multiple genes around AS3MT. PLoS ONE 8: e53732. http://dx.doi.org/10.1371/journal.pone.0053732
- Farzan, SF; Korrick, S; Li, Z; Enelow, R; Gandolfi, AJ; Madan, J; Nadeau, K; Karagas, MR. (2013). In utero arsenic exposure and infant infection in a United States cohort: A prospective study. Environ Res 126: 24-30. http://dx.doi.org/10.1016/j.envres.2013.05.001
- Fischer, JM; Robbins, SB; Al-Zoughool, M; Kannamkumarath, SS; Stringer, SL; Larson, JS; Caruso, JA; <u>Talaska, G; Stambrook, PJ; Stringer, JR.</u> (2005). Co-mutagenic activity of arsenic and benzo[a]pyrene in mouse skin. Mutat Res Genet Toxicol Environ Mutagen 588: 35-46. <u>http://dx.doi.org/10.1016/j.mrgentox.2005.09.003</u>
- Flora, SJ. (2011). Arsenic-induced oxidative stress and its reversibility [Review]. Free Radic Biol Med 51: 257-281. http://dx.doi.org/10.1016/j.freeradbiomed.2011.04.008
- Fu, HY; Shen, JZ. (2005). [Hypermethylation of CpG island of p16 gene and arsenic trioxide induced p16 gene demethylation in multiple myeloma]. Chinese Journal of Internal Medicine 44: 411-414.
- Fu, J; Woods, CG; Yehuda-Shnaidman, E; Zhang, Q; Wong, V; Collins, S; Sun, G; Andersen, ME; Pi, J. (2010). Low-level arsenic impairs glucose-stimulated insulin secretion in pancreatic beta cells: involvement of cellular adaptive response to oxidative stress. Environ Health Perspect 118: 864-870. <u>http://dx.doi.org/10.1289/ehp.0901608</u>
- <u>Galicia, G; Leyva, R; Tenorio, EP; Ostrosky-Wegman, P; Saavedra, R.</u> (2003). Sodium arsenite retards proliferation of PHA-activated T cells by delaying the production and secretion of IL-2. Int Immunopharmacol 3: 671-682. <u>http://dx.doi.org/10.1016/S1567-5769(03)00049-3</u>
- <u>Gentry, PR; Mcdonald, TB; Sullivan, DE; Shipp, AM; Yager, JW; Clewell HJ, I.</u> (2010). Analysis of genomic dose-response information on arsenic to inform key events in a mode of action for carcinogenicity [Review]. Environ Mol Mutagen 51: 1-14. <u>http://dx.doi.org/10.1002/em.20505</u>
- <u>Ghosh, D; Bhattacharya, S; Mazumder, S.</u> (2006). Perturbations in the catfish immune responses by arsenic: Organ and cell specific effects. Comp Biochem Physiol C Toxicol Pharmacol 143: 455-463. <u>http://dx.doi.org/10.1016/j.cbpc.2006.04.010</u>
- <u>Ghosh, D; Datta, S; Bhattacharya, S; Mazumder, S.</u> (2007). Long-term exposure to arsenic affects head kidney and impairs humoral immune responses of Clarias batrachus. Aquat Toxicol 81: 79-89. http://dx.doi.org/10.1016/j.aquatox.2006.11.004
- <u>Gibb, H; Haver, C; Gaylor, D; Ramasamy, S; Lee, JS; Lobdell, D; Wade, T; Chen, C; White, P; Sams, R.</u> (2011). Utility of recent studies to assess the National Research Council 2001 estimates of cancer risk from ingested arsenic [Review]. Environ Health Perspect 119: 284-290. <u>http://dx.doi.org/10.1289/Ehp.1002427</u>
- <u>Goggin, SL; Labrecque, MT; Allan, AM.</u> (2012). Perinatal exposure to 50 ppb sodium arsenate induces hypothalamic-pituitary-adrenal axis dysregulation in male C57BL/6 mice. Neurotoxicology 33: 1338-1345. <u>http://dx.doi.org/10.1016/j.neuro.2012.08.010</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 201410-68Draft: Do Not Cite or Quote

- Gonsebatt, ME; Vega, L; Montero, R; Garcia-Vargas, G; Del Razo, LM; Albores, A; Cebrian, ME; Ostrosky-Wegman, P. (1994). Lymphocyte replicating ability in individuals exposed to arsenic via drinking water. Mutat Res 313: 293-299. <u>http://dx.doi.org/10.1016/0165-1161(94)90059-0</u>
- <u>Gupta, S; Yel, L; Kim, D; Kim, C; Chiplunkar, S; Gollapudi, S.</u> (2003). Arsenic trioxide induces apoptosis in peripheral blood T lymphocyte subsets by inducing oxidative stress: a role of Bcl-2. Mol Cancer Ther 2: 711-719.
- <u>Harrison, MT; McCoy, KL.</u> (2001). Immunosuppression by arsenic: A comparison of cathepsin L inhibition and apoptosis. Int Immunopharmacol 1: 647-656. <u>http://dx.doi.org/10.1016/S1567-5769(00)00048-5</u>
- Hsueh, YM; Lin, P; Chen, HW; Shiue, HS; Chung, CJ; Tsai, CT; Huang, YK; Chiou, HY; Chen, CJ. (2005). Genetic polymorphisms of oxidative and antioxidant enzymes and arsenic-related hypertension. J Toxicol Environ Health A 68: 1471-1484. <u>http://dx.doi.org/10.1080/15287390590967414</u>
- Huang, M; Choi, SJ; Kim, DW; Kim, NY; Park, CH; Yu, SD; Kim, DS; Park, KS; Song, JS; Kim, H; Choi, BS; Yu, IJ; Park, JD. (2009). Risk assessment of low-level cadmium and arsenic on the kidney. J Toxicol Environ Health A 72: 1493-1498. <u>http://dx.doi.org/10.1080/15287390903213095</u>
- Izquierdo-Vega, JA; Soto, CA; Sanchez-Pena, LC; De Vizcaya-Ruiz, A; Del Razo, LM. (2006). Diabetogenic effects and pancreatic oxidative damage in rats subchronically exposed to arsenite. Toxicol Lett 160: 135-142. http://dx.doi.org/10.1016/j.toxlet.2005.06.018
- Jana, K; Jana, S; Samanta, PK. (2006). Effects of chronic exposure to sodium arsenite on hypothalamo-pituitarytesticular activities in adult rats: possible an estrogenic mode of action. Reprod Biol Endocrinol 4: 1-13. http://dx.doi.org/10.1186/1477-7827-4-9
- Jensen, TJ; Novak, P; Eblin, KE; Gandolfi, AJ; Futscher, BW. (2008). Epigenetic remodeling during arsenicalinduced malignant transformation. Carcinogenesis 29: 1500-1508. <u>http://dx.doi.org/10.1093/carcin/bgn102</u>
- Jensen, TJ; Novak, P; Wnek, SM; Gandolfi, AJ; Futscher, BW. (2009a). Arsenicals produce stable progressive changes in DNA methylation patterns that are linked to malignant transformation of immortalized urothelial cells. Toxicol Appl Pharmacol 241: 221-229. http://dx.doi.org/10.1016/j.taap.2009.08.019
- Jensen, TJ; Wozniak, RJ; Eblin, KE; Wnek, SM; Gandolfi, AJ; Futscher, BW. (2009b). Epigenetic mediated transcriptional activation of WNT5A participates in arsenical-associated malignant transformation. Toxicol Appl Pharmacol 235: 39-46. <u>http://dx.doi.org/10.1016/j.taap.2008.10.013</u>
- Jo, WJ; Loguinov, A; Wintz, H; Chang, M; Smith, AH; Kalman, D; Zhang, L; Smith, MT; Vulpe, CD. (2009). Comparative functional genomic analysis identifies distinct and overlapping sets of genes required for resistance to monomethylarsonous acid (MMAIII) and arsenite (As(III)) in yeast. Toxicol Sci 111: 424-436. http://dx.doi.org/10.1093/toxsci/kfp162
- Jomova, K; Jenisova, Z; Feszterova, M; Baros, S; Liska, J; Hudecova, D; Rhodes, CJ; Valko, M. (2011). Arsenic: Toxicity, oxidative stress and human disease [Review]. J Appl Toxicol 31: 95-107. http://dx.doi.org/10.1002/jat.1649
- Jomova, K; Valko, M. (2011). Advances in metal-induced oxidative stress and human disease [Review]. Toxicology 283: 65-87. <u>http://dx.doi.org/10.1016/j.tox.2011.03.001</u>
- Karagas, MR; Tosteson, TD; Morris, JS; Demidenko, E; Mott, LA; Heaney, J; Schned, A. (2004). Incidence of transitional cell carcinoma of the bladder and arsenic exposure in New Hampshire. Cancer Causes Control 15: 465-472. <u>http://dx.doi.org/10.1023/B:CACO.0000036452.55199.a3</u>
- Kaul, D; Sharma, S; Sharma, M; Arora, M; Arora, M. (2014). Arsenic programmes cellular genomic-immunity through miR-2909 RNomics. Gene 536: 326-331. <u>http://dx.doi.org/10.1016/j.gene.2013.12.004</u>

<u>Kim, YR; Oh, JE; Kim, MS; Kang, MR; Park, SW; Han, JY; Eom, HS; Yoo, NJ; Lee, SH.</u> (2010). Oncogenic NRF2 mutations in squamous cell carcinomas of oesophagus and skin. J Pathol 220: 446-451. <u>http://dx.doi.org/10.1002/path.2653</u>

- <u>Kitchin, KT; Conolly, R.</u> (2010). Arsenic-induced carcinogenesis--oxidative stress as a possible mode of action and future research needs for more biologically based risk assessment [Review]. Chem Res Toxicol 23: 327-335. <u>http://dx.doi.org/10.1021/tx900343d</u>
- Kitchin, KT; Wallace, K. (2005). Arsenite binding to synthetic peptides based on the Zn finger region and the estrogen binding region of the human estrogen receptor-[alpha]. Toxicol Appl Pharmacol 206: 66-72. http://dx.doi.org/10.1016/j.taap.2004.12.010
- Kitchin, KT; Wallace, K. (2008). The role of protein binding of trivalent arsenicals in arsenic carcinogenesis and toxicity [Review]. J Inorg Biochem 102: 532-539. <u>http://dx.doi.org/10.1016/j.jinorgbio.2007.10.021</u>
- <u>Klei, LR; Barchowsky, A.</u> (2008). Positive signaling interactions between arsenic and ethanol for angiogenic gene induction in human microvascular endothelial cells. Toxicol Sci 102: 319-327. <u>http://dx.doi.org/10.1093/toxsci/kfn003</u>
- Kozul, CD; Ely, KH; Enelow, RI; Hamilton, JW. (2009). Low dose arsenic compromises the immune response to influenza A infection in vivo. Environ Health Perspect 117: 1441-1447. http://dx.doi.org/10.1289/ehp.0900911
- Lambrou, A; Baccarelli, A; Wright, RO; Weisskopf, M; Bollati, V; Amarasiriwardena, C; Vokonas, P; Schwartz, J. (2012). Arsenic exposure and DNA methylation among elderly men. Epidemiology 23: 668-676. http://dx.doi.org/10.1097/EDE.0b013e31825afb0b
- Lau, A; Whitman, SA; Jaramillo, MC; Zhang, DD. (2013). Arsenic-mediated activation of the Nrf2-Keap1 antioxidant pathway [Review]. J Biochem Mol Toxicol 27: 99-105. <u>http://dx.doi.org/10.1002/jbt.21463</u>
- Lemarie, A; Morzadec, C; Merino, D; Micheau, O; Fardel, O; Vernhet, L. (2006). Arsenic trioxide induces apoptosis of human monocytes during macrophagic differentiation through nuclear factor-κB-related survival pathway down-regulation. J Pharmacol Exp Ther 316: 304-314. <u>http://dx.doi.org/10.1124/jpet.105.092874</u>.
- Li, G; Lee, LS; Li, M; Tsao, SW; Chiu, JF. (2011). Molecular changes during arsenic-induced cell transformation. J Cell Physiol 226: 3225-3232. http://dx.doi.org/10.1002/jcp.22683
- Li, J; Gorospe, M; Barnes, J; Liu, Y. (2003). Tumor promoter arsenite stimulates histone H3 phosphoacetylation of proto-oncogenes c-fos and c-jun chromatin in human diploid fibroblasts. J Biol Chem 278: 13183-13191. http://dx.doi.org/10.1074/jbc.M300269200
- Li, X; Shi, Y; Wei, Y; Ma, X; Li, Y; Li, R. (2012). Altered expression profiles of microRNAs upon arsenic exposure of human umbilical vein endothelial cells. Environ Toxicol Pharmacol 34: 381-387. http://dx.doi.org/10.1016/j.etap.2012.05.003
- Li, YN; Xi, MM; Guo, Y; Hai, CX; Yang, WL; Qin, XJ. (2014). NADPH oxidase-mitochondria axis-derived ROS mediate arsenite-induced HIF-1α stabilization by inhibiting prolyl hydroxylases activity. Toxicol Lett 224: 165-174. <u>http://dx.doi.org/10.1016/j.toxlet.2013.10.029</u>
- Ling, M; Li, Y; Xu, Y; Pang, Y; Shen, L; Jiang, R; Zhao, Y; Yang, X; Zhang, J; Zhou, J; Wang, X; Liu, Q. (2012). Regulation of miRNA-21 by reactive oxygen species-activated ERK/NF-κB in arsenite-induced cell transformation. Free Radic Biol Med 52: 1508-1518. <u>http://dx.doi.org/10.1016/j.freeradbiomed.2012.02.020</u>
- Luster, MI; Portier, C; Pait, DG; White, KL, Jr; Gennings, C; Munson, AE; Rosenthal, GJ. (1992). Risk assessment in immunotoxicology: I: Sensitivity and predictability of immune tests. Fundam Appl Toxicol 18: 200-210. <u>http://dx.doi.org/10.1016/0272-0590(92)90047-L</u>
- Maier, A; Schumann, BL; Chang, X; Talaska, G; Puga, A. (2002). Arsenic co-exposure potentiates benzo[a]pyrene genotoxicity. Mutat Res Genet Toxicol Environ Mutagen 517: 101-111. http://dx.doi.org/10.1016/S1383-5718(02)00057-8

Majumdar, S; Chanda, S; Ganguli, B; Mazumder, DNG; Lahiri, S; Dasgupta, UB. (2010). Arsenic exposure induces genomic hypermethylation. Environ Toxicol 25: 315-318. <u>http://dx.doi.org/10.1002/tox.20497</u>

- Marsit, CJ; Eddy, K; Kelsey, KT. (2006a). MicroRNA responses to cellular stress. Cancer Res 66: 10843-10848. http://dx.doi.org/10.1158/0008-5472.CAN-06-1894
- Marsit, CJ; Karagas, MR; Danaee, H; Liu, M; Andrew, A; Schned, A; Nelson, HH; Kelsey, KT. (2006b). Carcinogen exposure and gene promoter hypermethylation in bladder cancer. Carcinogenesis 27: 112-116. http://dx.doi.org/10.1093/carcin/bgi172
- Marsit, CJ; Karagas, MR; Schned, A; Kelsey, KT. (2006c). Carcinogen exposure and epigenetic silencing in bladder cancer. Ann N Y Acad Sci 1076: 810-821. <u>http://dx.doi.org/10.1196/annals.1371.031</u>
- Martinez-Finley, EJ; Ali, AMS; Allan, AM. (2009). Learning deficits in C57BL/6J mice following perinatal arsenic exposure: Consequence of lower corticosterone receptor levels. Pharmacol Biochem Behav 94: 271-277. <u>http://dx.doi.org/10.1016/j.pbb.2009.09.006</u>
- <u>Martinez-Finley, EJ; Goggin, SL; Labrecque, MT; Allan, AM.</u> (2011). Reduced expression of MAPK/ERK genes in perinatal arsenic-exposed offspring induced by glucocorticoid receptor deficits. Neurotoxicol Teratol 33: 530-537. <u>http://dx.doi.org/10.1016/j.ntt.2011.07.003</u>
- Martinez, EJ; Kolb, BL; Bell, A; Savage, DD; Allan, AM. (2008). Moderate perinatal arsenic exposure alters neuroendocrine markers associated with depression and increases depressive-like behaviors in adult mouse offspring. Neurotoxicology 29: 647-655. <u>http://dx.doi.org/10.1016/j.neuro.2008.05.004</u>
- Martínez, L; Jiménez, V; García-Sepúlveda, C; Ceballos, F; Delgado, JM; Niño-Moreno, P; Doniz, L; Saavedra-Alanís, V; Castillo, CG; Santoyo, ME; González-Amaro, R; Jiménez-Capdeville, ME. (2011). Impact of early developmental arsenic exposure on promotor CpG-island methylation of genes involved in neuronal plasticity. Neurochem Int 58: 574-581. <u>http://dx.doi.org/10.1016/j.neuint.2011.01.020</u>
- Mass, MJ; Wang, L. (1997). Arsenic alters cytosine methylation patterns of the promoter of the tumor suppressor gene p53 in human lung cells: a model for a mechanism of carcinogenesis. Mutat Res Rev Mutat Res 386: 263-277. <u>http://dx.doi.org/10.1016/S1383-5742(97)00008-2</u>
- Maull, EA; Ahsan, H; Edwards, J; Longnecker, MP; Navas-Acien, A; Pi, J; Silbergeld, EK; Styblo, M; Tseng, CH; Thayer, KA; Loomis, D. (2012). Evaluation of the association between arsenic and diabetes: A National Toxicology Program workshop review. Environ Health Perspect 120: 1658-1670. http://dx.doi.org/10.1289/ehp.1104579
- Mazumder, DNG; Haque, R; Ghosh, N; De, BK; Santra, A; Chakraborty, D; Smith, AH. (1998). Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal, India. Int J Epidemiol 27: 871-877. http://dx.doi.org/10.1093/ije/27.5.871
- Medeiros, M; Zheng, X; Novak, P; Wnek, SM; Chyan, V; Escudero-Lourdes, C; Gandolfi, AJ. (2012). Global gene expression changes in human urothelial cells exposed to low-level monomethylarsonous acid. Toxicology 291: 102-112. <u>http://dx.doi.org/10.1016/j.tox.2011.11.002</u>
- Melkonian, S; Argos, M; Pierce, BL; Chen, Y; Islam, T; Ahmed, A; Syed, EH; Parvez, F; Graziano, J; Rathouz, PJ; Ahsan, H. (2011). A prospective study of the synergistic effects of arsenic exposure and smoking, sun exposure, fertilizer use, and pesticide use on risk of premalignant skin lesions in Bangladeshi men. Am J Epidemiol 173: 183-191. <u>http://dx.doi.org/10.1093/aje/kwq357</u>
- Milton, AH; Hasan, Z; Shahidullah, SM; Sharmin, S; Jakariya, MD; Rahman, M; Dear, K; Smith, W. (2004). Association between nutritional status and arsenicosis due to chronic arsenic exposure in Bangladesh. International Journal of Environmental Research 14: 99-108. http://dx.doi.org/10.1080/0960312042000209516
- Mitra, SR; Mazumder, DN; Basu, A; Block, G; Haque, R; Samanta, S; Ghosh, N; Smith, MM; von Ehrenstein, OS; Smith, AH. (2004). Nutritional factors and susceptibility to arsenic-caused skin lesions in West Bengal, India. Environ Health Perspect 112: 1104-1109. <u>http://dx.doi.org/10.1289/ehp.6841</u>

- Miyazaki, K; Watanabe, C; Mori, K; Yoshida, K; Ohtsuka, R. (2005). The effects of gestational arsenic exposure and dietary selenium deficiency on selenium and selenoenzymes in maternal and fetal tissues in mice. Toxicology 208: 357-365. <u>http://dx.doi.org/10.1016/j.tox.2004.11.030</u>
- Moore, SE; Prentice, AM; Wagatsuma, Y; Fulford, AJC; Collinson, AC; Raqib, R; Vahter, M; Persson, LA; Arifeen, SE. (2009). Early-life nutritional and environmental determinants of thymic size in infants born in rural Bangladesh. Acta Paediatr 98: 1168-1175. <u>http://dx.doi.org/10.1111/j.1651-2227.2009.01292.x</u>
- Morzadec, C; Bouezzedine, F; Macoch, M; Fardel, O; Vernhet, L. (2012). Inorganic arsenic impairs proliferation and cytokine expression in human primary T lymphocytes. Toxicology 300: 46-56. http://dx.doi.org/10.1016/j.tox.2012.05.025
- Nain, S; Smits, JE. (2012). Pathological, immunological and biochemical markers of subchronic arsenic toxicity in rats. Environ Toxicol 27: 244-254. <u>http://dx.doi.org/10.1002/tox.20635</u>
- Nayak, AS; Lage, CR; Kim, CH. (2007). Effects of low concentrations of arsenic on the innate immune system of the zebrafish (Danio rerio). Toxicol Sci 98: 118-124. <u>http://dx.doi.org/10.1093/toxsci/kfm072</u>
- Nohara, K; Baba, T; Murai, H; Kobayashi, Y; Suzuki, T; Tateishi, Y; Matsumoto, M; Nishimura, N; Sano, T. (2011). Global DNA methylation in the mouse liver is affected by methyl deficiency and arsenic in a sex-dependent manner. Arch Toxicol 85: 653-661. <u>http://dx.doi.org/10.1007/s00204-010-0611-z</u>
- <u>NRC</u> (National Research Council). (1999). Arsenic in drinking water. Washington, DC: National Academy Press. <u>http://www.nap.edu/catalog/6444.html</u>
- NRC (National Research Council). (2013). Critical aspects of EPA's IRIS assessment of inorganic arsenic: Interim report. Washington, D.C: The National Academies Press.
- <u>OECD</u> (Organisation for Economic Co-operation and Development). (2013). Guidance document on developing and assessing adverse outcome pathways. (ENV/JM/MONO(2013)6). Paris, FR: Organisation for Economic Co-operations and Development. http://search.oecd.org/officialdocuments/displaydocumentpdf/?cote=env/jm/mono(2013)6&doclanguage=en
- Okoji, RS; Yu, RC; Maronpot, RR; Froines, JR. (2002). Sodium arsenite administration via drinking water increases genome-wide and Ha-ras DNA hypomethylation in methyl-deficient C57BL/6J mice. Carcinogenesis 23: 777-785. http://dx.doi.org/10.1093/carcin/23.5.777
- Pant, N; Murthy, RC; Srivastava, SP. (2004). Male reproductive toxicity of sodium arsenite in mice. Hum Exp Toxicol 23: 399-403. <u>http://dx.doi.org/10.1191/0960327104ht467oa</u>
- Park, IC; Park, MJ; Woo, SH; Lee, HC; An, S; Gwak, HS; Lee, SH; Hong, SI; Bae, IJ; Seo, KM; Rhee, CH. (2003). Tetraarsenic oxide induces apoptosis in U937 leukemic cells through a reactive oxygen speciesdependent pathway. Int J Oncol 23: 943-948.
- Patterson, R; Vega, L; Trouba, K; Bortner, C; Germolec, D. (2004). Arsenic-induced alterations in the contact hypersensitivity response in Balb/c mice. Toxicol Appl Pharmacol 198: 434-443. http://dx.doi.org/10.1016/j.taap.2003.10.012
- Pei, Q; Ma, N; Zhang, J; Xu, W; Li, Y; Ma, Z; Li, Y; Tian, F; Zhang, W; Mu, J; Li, Y; Wang, D; Liu, H; Yang, M; Ma, C; Yun, F. (2013). Oxidative DNA damage of peripheral blood polymorphonuclear leukocytes, selectively induced by chronic arsenic exposure, is associated with extent of arsenic-related skin lesions. Toxicol Appl Pharmacol 266: 143-149. <u>http://dx.doi.org/10.1016/j.taap.2012.10.031</u>
- <u>Pi, J; Yamauchi, H; Kumagai, Y; Sun, G; Yoshida, T; Aikawa, H; Hopenhayn-Rich, C; Shimojo, N.</u> (2002). Evidence for induction of oxidative stress caused by chronic exposure of Chinese residents to arsenic contained in drinking water. Environ Health Perspect 110: 331-336.
- Pilsner, JR; Hall, MN; Liu, X; Ilievski, V; Slavkovich, V; Levy, D; Factor-Litvak, P; Yunus, M; Rahman, M; Graziano, JH; Gamble, MV. (2012). Influence of prenatal arsenic exposure and newborn sex on global methylation of cord blood DNA. PLoS ONE 7: e37147. <u>http://dx.doi.org/10.1371/journal.pone.0037147</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 201410-72Draft: Do Not Cite or Quote

- <u>Pilsner, JR; Liu, X; Ahsan, H; Ilievski, V; Slavkovich, V; Levy, D; Factor-Litvak, P; Graziano, JH; Gamble,</u> <u>MV.</u> (2007). Genomic methylation of peripheral blood leukocyte DNA: influences of arsenic and folate in Bangladeshi adults. Am J Clin Nutr 86: 1179-1186.
- <u>Pilsner, JR; Liu, X; Ahsan, H; Ilievski, V; Slavkovich, V; Levy, D; Factor-Litvak, P; Graziano, JH; Gamble, MV.</u> (2009). Folate deficiency, hyperhomocysteinemia, low urinary creatinine, and hypomethylation of leukocyte DNA are risk factors for arsenic-induced skin lesions. Environ Health Perspect 117: 254-260. http://dx.doi.org/10.1289/ehp.11872
- <u>Pinyayev, TS; Kohan, MJ; Herbin-Davis, K; Creed, JT; Thomas, DJ.</u> (2011). Preabsorptive metabolism of sodium arsenate by anaerobic microbiota of mouse cecum forms a variety of methylated and thiolated arsenicals. Chem Res Toxicol 24: 475-477. <u>http://dx.doi.org/10.1021/tx200040w</u>
- Prins, GS. (2008). Endocrine disruptors and prostate cancer risk [Review]. Endocr Relat Cancer 15: 649-656. http://dx.doi.org/10.1677/ERC-08-0043
- <u>Qin, XJ; Hudson, LG; Liu, W; Timmins, GS; Liu, KJ.</u> (2008). Low concentration of arsenite exacerbates UVRinduced DNA strand breaks by inhibiting PARP-1 activity. Toxicol Appl Pharmacol 232: 41-50. <u>http://dx.doi.org/10.1016/j.taap.2008.05.019</u>
- <u>Rager, JE; Bailey, KA; Smeester, L; Miller, SK; Parker, JS; Laine, JE; Drobná, Z; Currier, J; Douillet, C;</u> <u>Olshan, AF; Rubio-Andrade, M; Stýblo, M; García-Vargas, G; Fry, RC.</u> (2014). Prenatal arsenic exposure and the epigenome: Altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood. Environ Mol Mutagen 55: 196-208. <u>http://dx.doi.org/10.1002/em.21842</u>
- <u>Rahman, A; Vahter, M; Ekström, EC; Persson, LA.</u> (2011). Arsenic exposure in pregnancy increases the risk of lower respiratory tract infection and diarrhea during infancy in Bangladesh. Environ Health Perspect 119: 719-724. <u>http://dx.doi.org/10.1289/ehp.1002265</u>
- <u>Ramanathan, K; Shila, S; Kumaran, S; Panneerselvam, C.</u> (2003). Protective role of ascorbic acid and alphatocopherol on arsenic-induced microsomal dysfunctions. Hum Exp Toxicol 22: 129-136. <u>http://dx.doi.org/10.1191/0960327103ht329oa</u>
- Ramirez, T; Brocher, J; Stopper, H; Hock, R. (2008). Sodium arsenite modulates histone acetylation, histone deacetylase activity and HMGN protein dynamics in human cells. Chromosoma 117: 147-157. http://dx.doi.org/10.1007/s00412-007-0133-5
- Rao, MV; Avani, G. (2004). Arsenic induced free radical toxicity in brain of mice. Indian J Exp Biol 42: 495-498.
- <u>Raqib, R; Ahmed, S; Sultana, R; Wagatsuma, Y; Mondal, D; Hoque, AM; Nermell, B; Yunus, M; Roy, S;</u> <u>Persson, LA; Arifeen, SE; Moore, S; Vahter, M.</u> (2009). Effects of in utero arsenic exposure on child immunity and morbidity in rural Bangladesh. Toxicol Lett 185: 197-202. <u>http://dx.doi.org/10.1016/j.toxlet.2009.01.001</u>
- Reichard, JF; Puga, A. (2010). Effects of arsenic exposure on DNA methylation and epigenetic gene regulation [Review]. Epigenomics 2: 87-104. <u>http://dx.doi.org/10.2217/Epi.09.45</u>
- Reichard, JF; Schnekenburger, M; Puga, A. (2007). Long term low-dose arsenic exposure induces loss of DNA methylation. Biochem Biophys Res Commun 352: 188-192. <u>http://dx.doi.org/10.1016/j.bbrc.2006.11.001</u>
- Ren, X; McHale, CM; Skibola, CF; Smith, AH; Smith, MT; Zhang, L. (2011). An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis [Review]. Environ Health Perspect 119: 11-19. http://dx.doi.org/10.1289/ehp.1002114
- Rosenblatt, AE; Burnstein, KL. (2009). Inhibition of androgen receptor transcriptional activity as a novel mechanism of action of arsenic. Mol Endocrinol 23: 412-421. <u>http://dx.doi.org/10.1210/me.2008-0235</u>

- Sams, R; Wolf, DC; Ramasamy, S; Ohanian, E; Chen, J; Lowit, A. (2007). Workshop overview: Arsenic research and risk assessment. Toxicol Appl Pharmacol 222: 245-251. http://dx.doi.org/10.1016/j.taap.2007.01.007
- Sankar, P; Telang, AG; Suresh, S; Kesavan, M; Kannan, K; Kalaivanan, R; Sarkar, SN. (2013). Immunomodulatory effects of nanocurcumin in arsenic-exposed rats. Int Immunopharmacol 17: 6570. http://dx.doi.org/10.1016/j.intimp.2013.05.019
- Santra, A; Das Gupta, J; De, BK; Roy, B; Guha Mazumder, DN. (1999). Hepatic manifestations in chronic arsenic toxicity. Indian J Gastroenterol 18: 152-155.
- Santra, A; Maiti, A; Das, S; Lahiri, S; Charkaborty, SK; Mazumder, DNG. (2000). Hepatic damage caused by chronic arsenic toxicity in experimental animals. J Toxicol Clin Toxicol 38: 395-405. http://dx.doi.org/10.1081/CLT-100100949
- Sarkar, M; Chaudhuri, GR; Chattopadhyay, A; Biswas, NM. (2003). Effect of sodium arsenite on spermatogenesis, plasma gonadotrophins and testosterone in rats. Asian J Androl 5: 27-31.
- Savabieasfahani, M; Lochmiller, RL; Rafferty, DP; Sinclair, JA. (1998). Sensitivity of wild cotton rats (Sigmodon hispidus) to the immunotoxic effects of low-level arsenic exposure. Arch Environ Contam Toxicol 34: 289-296.
- Schoen, A; Beck, B; Sharma, R; Dube, E. (2004). Arsenic toxicity at low doses: epidemiological and mode of action considerations [Review]. Toxicol Appl Pharmacol 198: 253-267. <u>http://dx.doi.org/10.1016/j.taap.2003.10.011</u>
- Schulze, PC; Yoshioka, J; Takahashi, T; He, Z; King, GL; Lee, RT. (2004). Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. J Biol Chem 279: 30369-30374. http://dx.doi.org/10.1074/jbc.M400549200
- <u>Sciandrello, G; Caradonna, F; Mauro, M; Barbata, G.</u> (2004). Arsenic-induced DNA hypomethylation affects chromosomal instability in mammalian cells. Carcinogenesis 25: 413-417. http://dx.doi.org/10.1093/carcin/bgh029
- Sengupta, M; Bishayi, B. (2002). Effect of lead and arsenic on murine macrophage response. Drug Chem Toxicol 25: 459-472. <u>http://dx.doi.org/10.1081/DCT-120014796</u>
- Sens, DA; Park, S; Gurel, V; Sens, MA; Garrett, SH; Somji, S. (2004). Inorganic cadmium- and arsenite-induced malignant transformation of human bladder urothelial cells. Toxicol Sci 79: 56-63. <u>http://dx.doi.org/10.1093/toxsci/kfh086</u>
- Shen, H; Xu, W; Zhang, J; Chen, M; Martin, FL; Xia, Y; Liu, L; Dong, S; Zhu, YG. (2013). Urinary metabolic biomarkers link oxidative stress indicators associated with general arsenic exposure to male infertility in a Han Chinese population. Environ Sci Technol 47: 88438851. <u>http://dx.doi.org/10.1021/es402025n</u>
- Sherwood, CL; Lantz, RC; Boitano, S. (2013). Chronic arsenic exposure in nanomolar concentrations compromises wound response and intercellular signaling in airway epithelial cells. Toxicol Sci 132: 222-234. <u>http://dx.doi.org/10.1093/toxsci/kfs331</u>
- Sherwood, CL; Lantz, RC; Burgess, JL; Boitano, S. (2011). Arsenic alters ATP-dependent Ca2+ signaling in human airway epithelial cell wound response. Toxicol Sci 121: 191-206. <u>http://dx.doi.org/10.1093/toxsci/kfr044</u>
- Simeonova, PP; Wang, S; Hulderman, T; Luster, MI. (2002). c-Src-dependent activation of the epidermal growth factor receptor and mitogen-activated protein kinase pathway by arsenic. Role in carcinogenesis. J Biol Chem 277: 2945-2950. <u>http://dx.doi.org/10.1074/jbc.M109136200</u>
- Simeonova, PP; Wang, S; Toriuma, W; Kommineni, V; Matheson, J; Unimye, N; Kayama, F; Harki, D; Ding, M; Vallyathan, V; Luster, MI. (2000). Arsenic mediates cell proliferation and gene expression in the bladder epithelium: association with activating protein-1 transactivation. Cancer Res 60: 3445-3453.

These draft development materials are for review purposes only and do not constitute Agency policy.April 201410-74Draft: Do Not Cite or Quote

- Smeester, L; Rager, JE; Bailey, KA; Guan, X; Smith, N; García-Vargas, G; Del Razo, LM; Drobná, Z; Kelkar, H; Stíyblo, M; Fry, RC. (2011). Epigenetic changes in individuals with arsenicosis. Chem Res Toxicol 24: 165-167. <u>http://dx.doi.org/10.1021/tx1004419</u>
- Snow, ET; Sykora, P; Durham, TR; Klein, CB. (2005). Arsenic, mode of action at biologically plausible low doses: What are the implications for low dose cancer risk? [Review]. Toxicol Appl Pharmacol 207: S557-S564. <u>http://dx.doi.org/10.1016/j.taap.2005.01.048</u>
- <u>Soto-Peña, GA; Luna, AL; Acosta-Saavedra, L; Conde, P; López-Carrillo, L; Cebrián, ME; Bastida, M;</u>
 <u>Calderón-Aranda, ES; Vega, L.</u> (2006). Assessment of lymphocyte subpopulations and cytokine secretion in children exposed to arsenic. FASEB J 20: 779-781. <u>http://dx.doi.org/10.1096/fj.05-4860fje</u>
- Soto-Peña, GA: Vega, L. (2008). Arsenic interferes with the signaling transduction pathway of T cell receptor activation by increasing basal and induced phosphorylation of Lck and Fyn in spleen cells. Toxicol Appl Pharmacol 230: 216-226. <u>http://dx.doi.org/10.1016/j.taap.2008.02.029</u>
- Stoica, A; Pentecost, E; Martin, MB. (2000). Effects of arsenite on estrogen receptor-alpha expression and activity in MCF-7 breast cancer cells. Endocrinology 141: 3595-3602.
- Straub, AC; Clark, KA; Ross, MA; Chandra, AG; Li, S; Gao, X; Pagano, PJ; Stolz, DB; Barchowsky, A. (2008). Arsenic-stimulated liver sinusoidal capillarization in mice requires NADPH oxidase-generated superoxide. J Clin Invest 118: 3980-3989. <u>http://dx.doi.org/10.1172/JCI35092</u>
- Styblo, M; Del Razo, LM; Vega, L; Germolec, DR; LeCluyse, EL; Hamilton, GA; Reed, W; Wang, C; Cullen, WR; Thomas, DJ. (2000). Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 74: 289-299. <u>http://dx.doi.org/10.1007/s002040000134</u>
- Sung, TI; Wang, YJ; Chen, CY; Hung, TL; Guo, HR. (2012). Increased serum level of epidermal growth factor receptor in liver cancer patients and its association with exposure to arsenic. Sci Total Environ 424: 74-78. <u>http://dx.doi.org/10.1016/j.scitotenv.2012.02.079</u>
- Suzuki, S; Arnold, LL; Ohnishi, T; Cohen, SM. (2008). Effects of inorganic arsenic on the rat and mouse urinary bladder. Toxicol Sci 106: 350-363. <u>http://dx.doi.org/10.1093/toxsci/kfn184</u>
- Suzuki, S; Arnold, LL; Pennington, KL; Chen, B; Naranmandura, H; Le, XC; Cohen, SM. (2010). Dietary administration of sodium arsenite to rats: relations between dose and urinary concentrations of methylated and thio-metabolites and effects on the rat urinary bladder epithelium. Toxicol Appl Pharmacol 244: 99-105. http://dx.doi.org/10.1016/j.taap.2009.12.026
- Suzuki, S; Arnold, LL; Pennington, KL; Kakiuchi-Kiyota, S; Cohen, SM. (2009). Effects of co-administration of dietary sodium arsenite and an NADPH oxidase inhibitor on the rat bladder epithelium. Toxicology 261: 41-46. <u>http://dx.doi.org/10.1016/j.tox.2009.04.042</u>
- Suzuki, T; Nohara, K. (2013). Long-term arsenic exposure induces histone H3 Lys9 dimethylation without altering DNA methylation in the promoter region of p16(INK4a) and down-regulates its expression in the liver of mice. J Appl Toxicol 33: 951-958. <u>http://dx.doi.org/10.1002/jat.2765</u>
- <u>Takahashi, M; Barrett, JC; Tsutsui, T.</u> (2002). Transformation by inorganic arsenic compounds of normal Syrian hamster embryo cells into a neoplastic state in which they become anchorage-independent and cause tumors in newborn hamsters. Int J Cancer 99: 629-634. <u>http://dx.doi.org/10.1002/ijc.10407</u>
- Tao, S; Zheng, Y, i; Lau, A; Jaramillo, MC; Chau, BT; Lantz, RC; Wong, P, akK; Wondrak, GT; Zhang, DD. (2013). Tanshinone I Activates the Nrf2-Dependent Antioxidant Response and Protects Against As(III)-Induced Lung Inflammation In Vitro and In Vivo. Antioxid Redox Signal 19: 1647-1661. <u>http://dx.doi.org/10.1089/ars.2012.5117</u>
- Tokar, EJ; Benbrahim-Tallaa, L; Ward, JM; Lunn, R; Sams, RL; Waalkes, MP. (2010). Cancer in experimental animals exposed to arsenic and arsenic compounds [Review]. Crit Rev Toxicol 40: 912-927. http://dx.doi.org/10.3109/10408444.2010.506641

These draft development materials are for review purposes only and do not constitute Agency policy.April 201410-75Draft: Do Not Cite or Quote

- Tokar, EJ; Diwan, BA; Ward, JM; Delker, DA; Waalkes, MP. (2011). Carcinogenic effects of "whole-life" exposure to inorganic arsenic in CD1 mice. Toxicol Sci 119: 73-83. <u>http://dx.doi.org/10.1093/toxsci/kfq315</u>
- <u>Tsang, V; Fry, RC; Niculescu, MD; Rager, JE; Saunders, J; Paul, DS; Zeisel, SH; Waalkes, MP; Stýblo, M;</u> <u>Drobná, Z.</u> (2012). The epigenetic effects of a high prenatal folate intake in male mouse fetuses exposed in utero to arsenic. Toxicol Appl Pharmacol 264: 439-450. <u>http://dx.doi.org/10.1016/j.taap.2012.08.022</u>
- <u>U.S. EPA</u> (U.S. Environmental Protection Agency). (1998). Health effects test guidelines OPPTS 870.7800 immunotoxicity. (EPA 712-C-98-351). Washington, DC: Prevention, Pesticides and Toxic Substances, U.S. Environmental Protection Agency. http://www.epa.gov/ocspp/pubs/frs/publications/Test_Guidelines/series870.htm
- U.S. EPA (U.S. Environmental Protection Agency). (2005). Guidelines for carcinogen risk assessment. (EPA/630/P-03/001F). Washington, DC: U.S. Environmental Protection Agency, Risk Assessment Forum. http://www.epa.gov/cancerguidelines/
- <u>Vega, L; Ostrosky-Wegman, P; Fortoul, TI; Díaz, C; Madrid, V; Saavedra, R.</u> (1999). Sodium arsenite reduces proliferation of human activated T-cells by inhibition of the secretion of interleukin-2. Immunopharmacol Immunotoxicol 21: 203-220. <u>http://dx.doi.org/10.3109/08923979909052758</u>
- Waalkes, MP; Liu, J; Chen, H; Xie, Y; Achanzar, WE; Zhou, YS; Cheng, ML; Diwan, BA. (2004a). Estrogen signaling in livers of male mice with hepatocellular carcinoma induced by exposure to arsenic in utero. J Natl Cancer Inst 96: 466-474. <u>http://dx.doi.org/10.1093/jnci/djh070</u>
- <u>Waalkes, MP; Ward, JM; Diwan, BA.</u> (2004b). Induction of tumors of the liver, lung, ovary and adrenal in adult mice after brief maternal gestational exposure to inorganic arsenic: Promotional effects of postnatal phorbol ester exposure on hepatic and pulmonary, but not dermal cancers. Carcinogenesis 25: 133-141. http://dx.doi.org/10.1093/carcin/bgg181
- Waalkes, MP; Ward, JM; Liu, J; Diwan, BA. (2003). Transplacental carcinogenicity of inorganic arsenic in the drinking water: Induction of hepatic, ovarian, pulmonary, and adrenal tumors in mice. Toxicol Appl Pharmacol 186: 7-17. <u>http://dx.doi.org/10.1016/S0041-008X(02)00022-4</u>
- Wang, XJ; Sun, Z; Chen, W; Eblin, KE; Gandolfi, JA; Zhang, DD. (2007). Nrf2 protects human bladder urothelial cells from arsenite and monomethylarsonous acid toxicity. Toxicol Appl Pharmacol 225: 206-213. http://dx.doi.org/10.1016/j.taap.2007.07.016
- Wang, Z; Zhao, Y; Smith, E; Goodall, GJ; Drew, PA; Brabletz, T; Yang, C. (2011). Reversal and prevention of arsenic-induced human bronchial epithelial cell malignant transformation by microRNA-200b. Toxicol Sci 121: 110-122. http://dx.doi.org/10.1093/toxsci/kfr029
- Wasserman, GA; Liu, XH; Parvez, F; Ahsan, H; Factor-Litvak, P; Kline, J; Van Geen, A; Slavkovich, V; Lolacono, NJ; Levy, D; Cheng, ZQ; Graziano, JH. (2007). Water arsenic exposure and intellectual function in 6-year-old children in Araihazar, Bangladesh. Environ Health Perspect 115: 285-289. http://dx.doi.org/10.1289/ehp.9501
- <u>WHO</u> (World Health Organization). (2012). Guidance for immunotoxicity risk assessment for chemicals. (Harmonization Project Document No. 10). Geneva, Switzerland. <u>http://www.inchem.org/documents/harmproj/harmproj/harmproj10.pdf</u>
- Wnek, SM; Jensen, TJ; Severson, PL; Futscher, BW; Gandolfi, AJ. (2010). Monomethylarsonous acid produces irreversible events resulting in malignant transformation of a human bladder cell line following 12 weeks of low-level exposure. Toxicol Sci 116: 44-57. <u>http://dx.doi.org/10.1093/toxsci/kfq106</u>

Wnek, SM; Kuhlman, CL; Camarillo, JM; Medeiros, MK; Liu, KJ; Lau, SS; Gandolfi, AJ. (2011). Interdependent genotoxic mechanisms of monomethylarsonous acid: role of ROS-induced DNA damage and poly(ADP-ribose) polymerase-1 inhibition in the malignant transformation of urothelial cells. Toxicol Appl Pharmacol 257: 1-13. <u>http://dx.doi.org/10.1016/j.taap.2011.08.029</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 201410-76Draft: Do Not Cite or Quote

- <u>Wnek, SM; Medeiros, MK; Eblin, KE; Gandolfi, AJ.</u> (2009). Persistence of DNA damage following exposure of human bladder cells to chronic monomethylarsonous acid. Toxicol Appl Pharmacol 241: 202-209. <u>http://dx.doi.org/10.1016/j.taap.2009.08.016</u>
- Wu, MM; Chiou, HY; Wang, TW; Hsueh, YM; Wang, IH; Chen, CJ; Lee, TC. (2001). Association of blood arsenic levels with increased reactive oxidants and decreased antioxidant capacity in a human population of northeastern Taiwan. Environ Health Perspect 109: 1011-1017. <u>http://dx.doi.org/10.2307/3454955</u>
- Wu, W: Graves, LM: Jaspers, I: Devlin, RB: Reed, W: Samet, JM. (1999). Activation of the EGF receptor signaling pathway in human airway epithelial cells exposed to metals. Am J Physiol 277: L924-L931.
- Xie, Y; Trouba, KJ; Liu, J; Waalkes, MP; Germolec, DR. (2004). Biokinetics and subchronic toxic effects of oral arsenite, arsenate, monomethylarsonic acid, and dimethylarsinic acid in v-Ha-ras transgenic (Tg.AC) mice. Environ Health Perspect 112: 1255-1263. <u>http://dx.doi.org/10.1289/txg.7152</u>
- Yager, JW; Gentry, PR; Thomas, RS; Pluta, L; Efremenko, A; Black, M; Arnold, LL; McKim, JM; Wilga, P; Gill, G; Choe, KY; Clewell, HJ. (2013). Evaluation of gene expression changes in human primary uroepithelial cells following 24-Hr exposures to inorganic arsenic and its methylated metabolites. Environ Mol Mutagen 54: 82-98. <u>http://dx.doi.org/10.1002/em.21749</u>
- Yokohira, M; Arnold, LL; Pennington, KL; Suzuki, S; Kakiuchi-Kiyota, S; Herbin-Davis, K; Thomas, DJ; Cohen, SM. (2010). Severe systemic toxicity and urinary bladder cytotoxicity and regenerative hyperplasia induced by arsenite in arsenic (+3 oxidation state) methyltransferase knockout mice. A preliminary report. Toxicol Appl Pharmacol 246: 1-7. http://dx.doi.org/10.1016/j.taap.2010.04.013
- Yokohira, M; Arnold, LL; Pennington, KL; Suzuki, S; Kakiuchi-Kiyota, S; Herbin-Davis, K; Thomas, DJ; Cohen, SM. (2011). Effect of sodium arsenite dose administered in the drinking water on the urinary bladder epithelium of female arsenic (+3 oxidation state) methyltransferase knockout mice. Toxicol Sci 121: 257-266. <u>http://dx.doi.org/10.1093/toxsci/kfr051</u>
- Yu, HS; Liao, WT; Chai, CY. (2006). Arsenic carcinogenesis in the skin [Review]. J Biomed Sci 13: 657-666. http://dx.doi.org/10.1007/s11373-006-9092-8
- Zhang, AH; Bin, HH; Pan, XL; Xi, XG. (2007). Analysis of p16 gene mutation, deletion and methylation in patients with arseniasis produced by indoor unventilated-stove coal usage in Guizhou, China. J Toxicol Environ Health A 70: 970-975. <u>http://dx.doi.org/10.1080/15287390701290808</u>
- Zhao, CQ; Young, MR; Diwan, BA; Coogan, TP; Waalkes, MP. (1997). Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. PNAS 94: 10907-10912.
- Zhao, R; Hou, Y; Zhang, Q; Woods, CG; Xue, P; Fu, J; Yarborough, K; Guan, D; Andersen, ME; Pi, J. (2012). Cross-regulations among NRFs and KEAP1 and effects of their silencing on arsenic-induced antioxidant response and cytotoxicity in human keratinocytes. Environ Health Perspect 120: 583-589. <u>http://dx.doi.org/10.1289/ehp.1104580</u>
- Zheng, Y; Tao, S; Lian, F; Chau, BT; Chen, J; Sun, G; Fang, D; Lantz, RC; Zhang, DD. (2012). Sulforaphane prevents pulmonary damage in response to inhaled arsenic by activating the Nrf2-defense response. Toxicol Appl Pharmacol 265: 292-299. http://dx.doi.org/10.1016/j.taap.2012.08.028
- Zhong, CX; Mass, MJ. (2001). Both hypomethylation and hypermethylation of DNA associated with arsenite exposure in cultures of human cells identified by methylation-sensitive arbitrarily-primed PCR. Toxicol Lett 122: 223-234. <u>http://dx.doi.org/10.1016/S0378-4274(01)00365-4</u>
- Zhou, X; Li, Q; Arita, A; Sun, H; Costa, M. (2009). Effects of nickel, chromate, and arsenite on histone 3 lysine methylation. Toxicol Appl Pharmacol 236: 78-84. <u>http://dx.doi.org/10.1016/j.taap.2009.01.009</u>
- Zhou, X; Sun, H; Ellen, TP; Chen, H; Costa, M. (2008). Arsenite alters global histone H3 methylation. Carcinogenesis 29: 1831-1836. <u>http://dx.doi.org/10.1093/carcin/bgn063</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 201410-77Draft: Do Not Cite or Quote

Zykova, TA; Zhu, F; Lu, C; Higgins, L; Tatsumi, Y; Abe, Y; Bode, AM; Dong, Z. (2006). Lymphokineactivated killer T-cell-originated protein kinase phosphorylation of histone H2AX prevents arsenite-induced apoptosis in RPMI7951 melanoma cells. Clin Cancer Res 12: 6884-6893. <u>http://dx.doi.org/10.1158/1078-0432.CCR-06-0410</u>

11 ALL REFERENCES

- Adams, JB; Audhya, T; Mcdonough-Means, S; Rubin, RA; Quig, D; Geis, E; Gehn, E; Loresto, M; Mitchell, J; Atwood, S; Barnhouse, S; Lee, W. (2013). Toxicological status of children with autism vs. neurotypical children and the association with autism severity. Biol Trace Elem Res 151: 171-180. http://dx.doi.org/10.1007/s12011-012-9551-1
- Ades, AE; Kazantzis, G. (1988). Lung cancer in a non-ferrous smelter: the role of cadmium. Br J Ind Med 45: 435-442. <u>http://dx.doi.org/10.1136/oem.45.7.435</u>
- Aelion, CM; Davis, HT; Lawson, AB; Cai, B; Mcdermott, S. (2013). Associations of estimated residential soil arsenic and lead concentrations and community-level environmental measures with mother-child health conditions in South Carolina. Health Place. <u>http://dx.doi.org/10.1016/j.healthplace.2012.04.005</u>
- <u>Aggarwal, M; Naraharisetti, SB; Dandapat, S; Degen, GH; Malik, JK.</u> (2008). Perturbations in immune responses induced by concurrent subchronic exposure to arsenic and endosulfan. Toxicology 251: 51-60. <u>http://dx.doi.org/10.1016/j.tox.2008.07.050</u>
- Aggarwal, M; Wangikar, PB; Sarkar, SN; Rao, GS; Kumar, D; Dwivedi, P; Malik, JK. (2007). Effects of lowlevel arsenic exposure on the developmental toxicity of anilofos in rats. J Appl Toxicol 27: 255-261. http://dx.doi.org/10.1002/jat.1203
- <u>Ahamed, S; Kumar Sengupta, M; Mukherjee, A; Amir Hossain, M; Das, B; Nayak, B; Pal, A; Chandra</u> <u>Mukherjee, S; Pati, S; Nath Dutta, R; Chatterjee, G; Mukherjee, A; Srivastava, R; Chakraborti, D.</u> (2006a). Arsenic groundwater contamination and its health effects in the state of Uttar Pradesh (UP) in upper and middle Ganga plain, India: a severe danger. Sci Total Environ 370: 310-322. http://dx.doi.org/10.1016/j.scitotenv.2006.06.015</u>
- <u>Ahamed, S; Sengupta, MK; Mukherjee, SC; Pati, S; Mukherjeel, A; Rahman, MM; Hossain, MA; Das, B;</u> <u>Nayakl, B; Pal, A; Zafar, A; Kabir, S; Banu, SA; Morshed, S; Islam, T; Rahman, MM; Quamruzzaman, Q;</u> <u>Chakraborti, D.</u> (2006b). An eight-year study report on arsenic contamination in groundwater and health effects in Eruani village, Bangladesh and an approach for its mitigation. J Health Popul Nutr 24: 129-141.
- <u>Ahmad, M; Wadaan, MAM; Farooq, M; Daghestani, MH; Sami, AS.</u> (2013). Effectiveness of zinc in modulating perinatal effects of arsenic on the teratological effects in mice offspring. Biol Res 46: 131-138. http://dx.doi.org/10.4067/S0716-97602013000200003</u>
- <u>Ahmad, SA; Khatun, F; Sayed, MH; Khan, MH; Aziz, R; Hossain, MZ; Faruquee, MH.</u> (2006). Electrocardiographic abnormalities among arsenic-exposed persons through groundwater in Bangladesh. J Health Popul Nutr 24: 221-227.
- <u>Ahmad, SA; Sayed, MHS, U; Barua, S; Khan, MH; Faruquee, MH; Jalil, A; Hadi, SA; Talukder, HK.</u> (2001). Arsenic in drinking water and pregnancy outcomes. Environ Health Perspect 109: 629-631. <u>http://dx.doi.org/10.2307/3455038</u>
- Ahmad, SA; Sayed, MHS, U; Hadi, SA; Faruquee, MH; Khan, MH; Jalil, MA; Ahmed, R; Khan, AW. (1999). Arsenicosis in a village in Bangladesh. Int J Environ Health Res 9: 187-195. http://dx.doi.org/10.1080/09603129973155
- <u>Ahmed, S; Ahsan, KB; Kippler, M; Mily, A; Wagatsuma, Y; Hoque, AMW; Ngom, PT; El Arifeen, S; Raqib, R;</u> <u>Vahter, M.</u> (2012). In utero arsenic exposure is associated with impaired thymic function in newborns possibly via oxidative stress and apoptosis. Toxicol Sci 129: 305-314. <u>http://dx.doi.org/10.1093/toxsci/kfs202</u>
- <u>Ahmed, S; Mahabbat-E Khoda, S; Rekha, RS; Gardner, RM; Ameer, SS; Moore, S; Ekström, EC; Vahter, M;</u> <u>Raqib, R.</u> (2011). Arsenic-associated oxidative stress, inflammation, and immune disruption in human placenta and cord blood. Environ Health Perspect 119: 258-264. <u>http://dx.doi.org/10.1289/ehp.1002086</u>

- <u>Ahsan, H; Chen, Y; Parvez, F; Zablotska, L; Argos, M; Hussain, I; Momotaj, H; Levy, D; Cheng, Z; Slavkovich, V; van Geen, A; Howe, GR; Graziano, JH.</u> (2006). Arsenic exposure from drinking water and risk of premalignant skin lesions in Bangladesh: Baseline results from the Health Effects of Arsenic Longitudinal Study. Am J Epidemiol 163: 1138-1148. <u>http://dx.doi.org/10.1093/aje/kwj154</u>
- <u>Ahsan, H; Perrin, M; Rahman, A; Parvez, F; Stute, M; Zheng, Y; Milton, AH; Brandt-Rauf, P; van Geen, A;</u> <u>Graziano, J.</u> (2000). Associations between drinking water and urinary arsenic levels and skin lesions in Bangladesh. J Occup Environ Med 42: 1195-1201. <u>http://dx.doi.org/10.1097/00043764-200012000-00016</u>
- <u>Akbal, A; Yılmaz, H; Tutkun, E.</u> (2013). Arsenic exposure associated with decreased bone mineralization in male. Aging Male1-3. <u>http://dx.doi.org/10.3109/13685538.2013.819326</u>
- Ali, N; Hoque, MA; Haque, A; Salam, KA; Karim, MR; Rahman, A; Islam, K; Saud, ZA; Khalek, MA; Akhand, AA; Hossain, M; Mandal, A; Karim, MR; Miyataka, H; Himeno, S; Hossain, K. (2010). Association between arsenic exposure and plasma cholinesterase activity: a population based study in Bangladesh. Environ Health 9: 36. http://dx.doi.org/10.1186/1476-069X-9-36
- <u>Amaral, AFS; Porta, M; Silverman, DT; Milne, RL; Kogevinas, M; Rothman, N; Cantor, KP; Jackson, BP;</u> <u>Pumarega, JA; López, T; Carrato, A; Guarner, L; Real, FX; Malats, N.</u> (2012). Pancreatic cancer risk and levels of trace elements. Gut 61: 1583-1588. <u>http://dx.doi.org/10.1136/gutinl-2011-301086</u>
- <u>Ankley, GT; Bennett, RS; Erickson, RJ; Hoff, DJ; Hornung, MW; Johnson, RD; Mount, DR; Nichols, JW;</u>
 <u>Russom, CL; Schmieder, PK; Serrrano, JA; Tietge, JE; Villeneuve, DL.</u> (2010). Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment [Review]. Environ Toxicol Chem 29: 730-741. <u>http://dx.doi.org/10.1002/etc.34</u>
- Antonio Garcia, MT; Herrera Dueñas, A; Pineda Pampliega, J. (2013). Hematological effects of arsenic in rats after subchronical exposure during pregnancy and lactation: The protective role of antioxidants. Exp Toxicol Pathol 65: 609-614. <u>http://dx.doi.org/10.1016/j.etp.2012.06.004</u>
- <u>Applebaum, KM; Karagas, MR; Hunter, DJ; Catalano, PJ; Byler, SH; Morris, S; Nelson, HH.</u> (2007).
 Polymorphisms in nucleotide excision repair genes, arsenic exposure, and non-melanoma skin cancer in New Hampshire. Environ Health Perspect 115: 1231-1236. <u>http://dx.doi.org/10.1289/ehp.10096</u>
- <u>Argos, M; Kalra, T; Pierce, BL; Chen, Y; Parvez, F; Islam, T; Ahmed, A; Hasan, R; Hasan, K; Sarwar, G; Levy, D; Slavkovich, V; Graziano, JH; Rathouz, PJ; Ahsan, H.</u> (2011). A prospective study of arsenic exposure from drinking water and incidence of skin lesions in Bangladesh. Am J Epidemiol 174: 185-194. http://dx.doi.org/10.1093/aje/kwr062
- <u>Argos, M; Kalra, T; Rathouz, PJ; Chen, Y; Pierce, B; Parvez, F; Islam, T; Ahmed, A; Rakibuz-Zaman, M;</u> <u>Hasan, R; Sarwar, G; Slavkovich, V; van Geen, A; Graziano, J; Ahsan, H.</u> (2010). Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. Lancet 376: 252-258. <u>http://dx.doi.org/10.1016/S0140-6736(10)60481-3</u>
- <u>Argos, M; Parvez, F; Chen, Y; Hussain, AZ; Momotaj, H; Howe, GR; Graziano, JH; Ahsan, H.</u> (2007). Socioeconomic status and risk for arsenic-related skin lesions in Bangladesh. Am J Public Health 97: 825-831. <u>http://dx.doi.org/10.2105/AJPH.2005.078816</u>
- <u>Arita, A; Costa, M.</u> (2009). Epigenetics in metal carcinogenesis: Nickel, arsenic, chromium and cadmium [Review]. Metallomics 1: 222-228. <u>http://dx.doi.org/10.1039/B903049b</u>
- <u>Arita, A; Shamy, MY; Chervona, Y; Clancy, HA; Sun, H; Hall, MN; Qu, Q; Gamble, MV; Costa, M.</u> (2012). The effect of exposure to carcinogenic metals on histone tail modifications and gene expression in human subjects [Review]. J Trace Elem Med Biol 26: 174-178. <u>http://dx.doi.org/10.1016/j.jtemb.2012.03.012</u>
- <u>Arkusz, J; Stańczyk, M; Lewińiska, D; Stepnik, M.</u> (2005). Modulation of murine peritoneal macrophage function by chronic exposure to arsenate in drinking water. Immunopharmacol Immunotoxicol 27: 315-330. <u>http://dx.doi.org/10.I08I/IPH-200067947</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 201411-2Draft: Do Not Cite or Quote

- <u>Arnold, LL; Eldan, M; Nyska, A; van Gemert, M; Cohen, SM.</u> (2006). Dimethylarsinic acid: Results of chronic toxicity/oncogenicity studies in F344 rats and in B6C3F1 mice. Toxicology 223: 82-100. <u>http://dx.doi.org/10.1016/j.tox.2006.03.013</u>
- <u>Arnold, LL; Suzuki, S; Yokohira, M; Kakiuchi-Kiyota, S; Pennington, KL; Cohen, SM.</u> (2013). Time Course of Urothelial Changes in Rats and Mice Orally Administered Arsenite. Toxicol Pathol. http://dx.doi.org/10.1177/0192623313489778
- <u>Arteel, GE; Guo, L; Schlierf, T; Beier, JI; Kaiser, JP; Chen, TS; Liu, M; Conklin, DJ; Miller, HL; von Montfort, C; States, JC.</u> (2008). Subhepatotoxic exposure to arsenic enhances lipopolysaccharide-induced liver injury in mice. Toxicol Appl Pharmacol 226: 128-139. <u>http://dx.doi.org/10.1016/j.taap.2007.08.020</u>
- ATSDR (Agency for Toxic Substances and Disease Registry). (2007). Toxicological Profile for Arsenic (Update, 2007). (NTIS/03060214_a). Atlanta, Georgia. <u>http://www.atsdr.cdc.gov/toxprofiles/tp2.pdf</u>
- Axelson, O; Dahlgren, E; Jansson, CD; Rehnlund, SO. (1978). Arsenic exposure and mortality: a case-referent study from a Swedish copper smelter. Occup Environ Med 35: 8-15.
- Baastrup, R; Sørensen, M; Balstrøm, T; Frederiksen, K; Larsen, CL; Tjønneland, A; Overvad, K; Raaschou-<u>Nielsen, O.</u> (2008). Arsenic in drinking-water and risk for cancer in Denmark. Environ Health Perspect 116: 231-237. <u>http://dx.doi.org/10.1289/ehp.10623</u>
- Bailey, KA; Wallace, K; Smeester, L; Thai, SF; Wolf, DC; Edwards, SW; Fry, RC. (2012). Transcriptional modulation of the ERK1/2 MAPK and NF-KB pathways in human urothelial cells after trivalent arsenical exposure: implications for urinary bladder cancer. J Can Res Updates 1: 57-68. <u>http://dx.doi.org/10.6000/1929-2279.2012.01.01.10</u>
- Bailey, KA; Wu, MC; Ward, WO; Smeester, L; Rager, JE; García-Vargas, G; Del Razo, LM; Drobná, Z; Stýblo, M; Fry, RC. (2013). Arsenic and the epigenome: interindividual differences in arsenic metabolism related to distinct patterns of DNA methylation. J Biochem Mol Toxicol 27: 106-115. <u>http://dx.doi.org/10.1002/jbt.21462</u>
- Banerjee, N; Banerjee, S; Sen, R; Bandyopadhyay, A; Sarma, N; Majumder, P; Das, JK; Chatterjee, M; Kabir, SN; Giri, AK. (2009). Chronic arsenic exposure impairs macrophage functions in the exposed individuals. J Clin Immunol 29: 582-594. <u>http://dx.doi.org/10.1007/s10875-009-9304-x</u>
- Banerjee, N; Nandy, S; Kearns, JK; Bandyopadhyay, AK; Das, JK; Majumder, P; Basu, S; Banerjee, S; Sau, TJ; States, JC; Giri, AK. (2011). Polymorphisms in the TNF-α and IL10-gene promoters and risk of arsenic-induced skin lesions and other non-dermatological health effects. Toxicol Sci 121: 132-139. http://dx.doi.org/10.1093/toxsci/kfr046
- Banerjee, N; Paul, S; Sau, TJ; Das, JK; Bandyopadhyay, A; Banerjee, S; Giri, AK. (2013). Epigenetic Modifications of DAPK and p16 Genes Contribute to Arsenic-Induced Skin Lesions and Non-Dermatological Health Effects. Toxicol Sci 135: 300-308. http://dx.doi.org/10.1093/toxsci/kft163
- Barati, AH; Maleki, A; Alasvand, M. (2010). Multi-trace elements level in drinking water and the prevalence of multi-chronic arsenical poisoning in residents in the west area of Iran. Sci Total Environ 408: 1523-1529. http://dx.doi.org/10.1016/j.scitotenv.2009.12.035
- Bardullas, U; Limon-Pacheco, JH; Giordano, M; Carrizales, L; Mendoza-Trejo, MS; Rodriguez, VM. (2009). Chronic low-level arsenic exposure causes gender-specific alterations in locomotor activity, dopaminergic systems, and thioredoxin expression in mice. Toxicol Appl Pharmacol 239: 169-177. http://dx.doi.org/10.1016/j.taap.2008.12.004
- Barr, FD; Krohmer, LJ; Hamilton, JW; Sheldon, LA. (2009). Disruption of histone modification and CARM1 recruitment by arsenic represses transcription at glucocorticoid receptor-regulated promoters. PLoS ONE 4: e6766. <u>http://dx.doi.org/10.1371/journal.pone.0006766</u>

- Bashir, S; Sharma, Y; Irshad, M; Nag, TC; Tiwari, M; Kabra, M; Dogra, TD. (2006). Arsenic induced apoptosis in rat liver following repeated 60 days exposure. Toxicology 217: 63-70. http://dx.doi.org/10.1016/j.tox.2005.08.023
- Bates, MN; Rey, OA; Biggs, ML; Hopenhayn, C; Moore, LE; Kalman, D; Steinmaus, C; Smith, AH. (2004). Case-control study of bladder cancer and exposure to arsenic in Argentina. Am J Epidemiol 159: 381-389. http://dx.doi.org/10.1093/aje/kwh054
- Bates, MN; Smith, AH; Cantor, KP. (1995). Case-control study of bladder cancer and arsenic in drinking water. Am J Epidemiol 141: 523-530.
- Beane Freeman, LE; Dennis, LK; Lynch, CF; Thorne, PS; Just, CL. (2004). Toenail arsenic content and cutaneous melanoma in Iowa. Am J Epidemiol 160: 679-687. <u>http://dx.doi.org/10.1093/aje/kwh267</u>
- Begum, M; Horowitz, J; Hossain, MI. (2012). Low-dose risk assessment for arsenic: a meta-analysis approach. http://dx.doi.org/10.1177/1010539512466568
- Benbrahim-Tallaa, L; Waterland, RA; Styblo, M; Achanzar, WE; Webber, MM; Waalkes, MP. (2005). Molecular events associated with arsenic-induced malignant transformation of human prostatic epithelial cells: Aberrant genomic DNA methylation and K-ras oncogene activation. Toxicol Appl Pharmacol 206: 288-298. <u>http://dx.doi.org/10.1016/j.taap.2004.11.017</u>
- Bencko, V; Rames, J; Fabiánová, E; Pesek, J; Jakubis, M. (2009). Ecological and human health risk aspects of burning arsenic-rich coal. Environ Geochem Health 31 Suppl 1: 239-243. <u>http://dx.doi.org/10.1007/s10653-008-9224-3</u>
- Besuschio, SC; Desanzo, ACP; Croci, M. (1980). Epidemiological associations between arsenic and cancer in Argentina. Biol Trace Elem Res 2: 41-55. <u>http://dx.doi.org/10.1007/BF02789034</u>
- Bhattacharjee, P; Das, N; Chatterjee, D; Banerjee, A; Das, JK; Basu, S; Banerjee, S; Majumder, P; Goswami, P; Giri, AK. (2013). Association of NALP2 polymorphism with arsenic induced skin lesions and other health effects. Mutat Res Genet Toxicol Environ Mutagen 755: 1-5. http://dx.doi.org/10.1016/j.mrgentox.2013.04.010
- <u>Bhowmick, S; Halder, D; Kundu, AK; Saha, D; Iglesias, M; Nriagu, J; Guha Mazumder, DN; Roman-Ross, G;</u>
 <u>Chatterjee, D.</u> (2013). Is saliva a potential biomarker of arsenic exposure? A case-control study in West Bengal, India. Environ Sci Technol 47: 3326-3332. <u>http://dx.doi.org/10.1021/es303756s</u>
- <u>Binet, F; Girard, D.</u> (2008). Novel human neutrophil agonistic properties of arsenic trioxide: involvement of p38 mitogen-activated protein kinase and/or c-jun NH2-terminal MAPK but not extracellular signal-regulated kinases-1/2. J Leukoc Biol 84: 1613-1622. <u>http://dx.doi.org/10.1189/jlb.0708421</u>
- <u>Bishayi, B; Sengupta, M.</u> (2003). Intracellular survival of Staphylococcus aureus due to alteration of cellular activity in arsenic and lead intoxicated mature Swiss albino mice. Toxicology 184: 31-39. http://dx.doi.org/10.1016/s0300-483x(02)00549-8
- Biswas, BK; Dhar, RK; Samanta, G; Mandal, BK; Chakraborti, D; Faruk, I; Islam, KS; Chowdhury, MM; Islam, <u>A; Roy, S.</u> (1998). Detailed study report of Samta, one of the arsenic-affected villages of Jessore District, Bangladesh. Curr Sci 74: 134-145.
- Biswas, R; Ghosh, P; Banerjee, N; Das, JK; Sau, T; Banerjee, A; Roy, S; Ganguly, S; Chatterjee, M; Mukherjee, <u>A; Giri, AK.</u> (2008). Analysis of T-cell proliferation and cytokine secretion in the individuals exposed to arsenic. Hum Exp Toxicol 27: 381-386. <u>http://dx.doi.org/10.1177/0960327108094607</u>
- Blair, PC; Thompson, MB; Bechtold, M; Wilson, RE; Moorman, MP; Fowler, BA. (1990a). Evidence for oxidative damage to red blood cells in mice induced by arsine gas. Toxicology 63: 25-34. <u>http://dx.doi.org/10.1016/0300-483x(90)90065-0</u>

- Blair, PC; Thompson, MB; Morrissey, RE; Moorman, MP; Sloane, RA; Fowler, BA. (1990b). Comparative toxicity of arsine gas in B6C3F1 mice, Fischer 344 rats, and Syrian golden hamsters: System organ studies and comparison of clinical indices of exposure. Toxicol Sci 14: 776-787. http://dx.doi.org/10.1093/toxsci/14.4.776
- Blakley, BR; Sisodia, CS; Mukkur, TK. (1980). The effect of methylmercury, tetraethyl lead, and sodium arsenite on the humoral immune response in mice. Toxicol Appl Pharmacol 52: 245-254. http://dx.doi.org/10.1016/0041-008X(80)90111-8
- Blom, S; Lagerkvist, B; Linderholm, H. (1985). Arsenic exposure to smelter workers: Clinical and neurophysiological studies. Scand J Work Environ Health 11: 265-269. <u>http://dx.doi.org/10.5271/sjweh.2227</u>
- Bodwell, JE; Gosse, JA; Nomikos, AP; Hamilton, JW. (2006). Arsenic disruption of steroid receptor gene activation: Complex dose-response effects are shared by several steroid receptors. Chem Res Toxicol 19: 1619-1629. <u>http://dx.doi.org/10.1021/tx060122q</u>
- Bodwell, JE; Kingsley, LA; Hamilton, JW. (2004). Arsenic at very low concentrations alters glucocorticoid receptor (GR)-mediated gene activation but not GR-mediated gene repression: Complex dose-response effects are closely correlated with levels of activated GR and require a functional GR DNA binding domain. Chem Res Toxicol 17: 1064-1076. http://dx.doi.org/10.1021/tx0499113
- Boffetta, P; Fontana, L; Stewart, P; Zaridze, D; Szeszenia-Dabrowska, N; Janout, V; Bencko, V; Foretova, L;
 Jinga, V; Matveev, V; Kollarova, H; Ferro, G; Chow, WH; Rothman, N; van Bemmel, D; Karami, S;
 Brennan, P; Moore, LE. (2011). Occupational exposure to arsenic, cadmium, chromium, lead and nickel, and renal cell carcinoma: a case-control study from Central and Eastern Europe. Occup Environ Med 68: 723-728. http://dx.doi.org/10.1136/oem.2010.056341
- Borgono, JM; Vicent, P; Venturino, H; Infante, A. (1977). Arsenic in the drinking water of the city of Antofagasta: epidemiological and clinical study before and after the installation of a treatment plant. Environ Health Perspect 19: 103-105.
- Bosnjak, Z; Cavar, S; Klapec, T; Milic, M; Klapec-Basar, M; Toman, M. (2008). Selected markers of cardiovascular disease in a population exposed to arsenic from drinking water. Environ Toxicol Pharmacol 26: 181-186. <u>http://dx.doi.org/10.1016/j.etap.2008.03.005</u>
- Bourdonnay, E: Morzadec, C: Fardel, O: Vernhet, L. (2009). Redox-sensitive regulation of gene expression in human primary macrophages exposed to inorganic arsenic. J Cell Biochem 107: 537-547. http://dx.doi.org/10.1002/jcb.22155
- Bredfeldt, TG; Jagadish, B; Eblin, KE; Mash, EA; Gandolfi, AJ. (2006). Monomethylarsonous acid induces transformation of human bladder cells. Toxicol Appl Pharmacol 216: 69-79. http://dx.doi.org/10.1016/j.taap.2006.04.011
- Breton, CV; Houseman, EA; Kile, ML; Quamruzzaman, Q; Rahman, M; Mahiuddin, G; Christiani, DC. (2006). Gender-specific protective effect of hemoglobin on arsenic-induced skin lesions. Cancer Epidemiol Biomarkers Prev 15: 902-907. <u>http://dx.doi.org/10.1158/1055-9965.EPI-05-0859</u>
- Brown, KG; Boyle, KE; Chen, CW; Gibb, HJ. (1989). A dose-response analysis of skin cancer from inorganic arsenic in drinking water. Risk Anal 9: 519-528. http://dx.doi.org/10.1111/j.1539-6924.1989.tb01263.x
- Brown, KG; Chen, CJ. (1995). Significance of exposure assessment to analysis of cancer risk from inorganic arsenic in drinking water in Taiwan. Risk Anal 15: 475-484.
- Buchet, JP; Lison, D. (1998). Mortality by cancer in groups of the Belgian population with a moderately increased intake of arsenic. Int Arch Occup Environ Health 71: 125-130. http://dx.doi.org/10.1007/s004200050259

Bulbulyan, MA; Jourenkova, NJ; Boffetta, P; Astashevsky, SV; Mukeria, AF; Zaridze, DG. (1996). Mortality in a cohort of Russian fertilizer workers. Scand J Work Environ Health 22: 27-33.

- Bunderson, M; Brooks, DM; Walker, DL; Rosenfeld, ME; Coffin, JD; Beall, HD. (2004). Arsenic exposure exacerbates atherosclerotic plaque formation and increases nitrotyrosine and leukotriene biosynthesis. Toxicol Appl Pharmacol 201: 32-39. http://dx.doi.org/10.1016/j.taap.2004.04.008
- Burchiel, SW; Mitchell, LA; Lauer, FT; Sun, X; Mcdonald, JD; Hudson, LG; Liu, KJ. (2009). Immunotoxicity and biodistribution analysis of arsenic trioxide in C57Bl/6 mice following a 2-week inhalation exposure. Toxicol Appl Pharmacol 241: 253-259. http://dx.doi.org/10.1016/j.taap.2009.09.019
- Burgess, JL; Kurzius-Spencer, M; O'Rourke, MK; Littau, SR; Roberge, J; Meza-Montenegro, MM; Gutiérrez-Millán, LE; Harris, RB. (2013). Environmental arsenic exposure and serum matrix metalloproteinase-9. J Expo Sci Environ Epidemiol 23: 163-169. <u>http://dx.doi.org/10.1038/jes.2012.107</u>
- Cabrera, HN; Gomez, ML. (2003). Skin cancer induced by arsenic in the water. J Cutan Med Surg 7: 106-111. http://dx.doi.org/10.1007/s10227-002-0139-9
- Calderon, J; Navarro, ME; Jimenez-Capdeville, ME; Santos-Diaz, MA; Golden, A; Rodriguez-Leyva, I; Borja-Aburto, V; Diaz-Barriga, F. (2001). Exposure to arsenic and lead and neuropsychological development in Mexican children. Environ Res 85: 69-76. <u>http://dx.doi.org/10.1006/enrs.2000.4106</u>
- Cao, Y; Yu, SL; Wang, Y; Guo, GY; Ding, Q; An, RH. (2011). MicroRNA-dependent regulation of PTEN after arsenic trioxide treatment in bladder cancer cell line T24. Tumor Biology 32: 179-188. http://dx.doi.org/10.1007/s13277-010-0111-z
- Casale, T; Rosati, MV; Ciarrocca, M; Samperi, I; Andreozzi, G; Schifano, MP; Capozzella, A; Pimpinella, B; <u>Tomei, G; Caciari, T; Tomei, F.</u> (2013). Assessment of liver function in two groups of outdoor workers exposed to arsenic. Int Arch Occup Environ Health. <u>http://dx.doi.org/10.1007/s00420-013-0914-5</u>
- Cebrián, ME; Albores, A; Aguilar, M; Blakely, E. (1983). Chronic arsenic poisoning in the north of Mexico. Hum Exp Toxicol 2: 121-133. <u>http://dx.doi.org/10.1177/096032718300200110</u>
- <u>Chai, CY; Huang, YC; Hung, WC; Kang, WY; Chen, WT.</u> (2007). Arsenic salts induced autophagic cell death and hypermethylation of DAPK promoter in SV-40 immortalized human uroepithelial cells. Toxicol Lett 173: 48-56. <u>http://dx.doi.org/10.1016/j.toxlet.2007.06.006</u>
- <u>Chakraborti, D; Mukherjee, SC; Pati, S; Sengupta, MK; Rahman, MM; Chowdhury, UK; Lodh, D; Chanda, CR;</u> <u>Chakraborti, AK; Basu, GK.</u> (2003). Arsenic groundwater contamination in Middle Ganga Plain, Bihar, India: a future danger? Environ Health Perspect 111: 1194-1201. <u>http://dx.doi.org/10.1289/ehp.5966</u>
- <u>Chakraborti, D; Rahman, MM; Das, B; Nayak, B; Pal, A; Sengupta, MK; Hossain, M, dA; Ahamed, S, ad; Sahu, M; Saha, KC; Mukherjee, SC; Pati, S; Dutta, RN; Quamruzzaman, Q. (2013a). Groundwater arsenic contamination in Ganga-Meghna-Brahmaputra plain, its health effects and an approach for mitigation. Environmental Earth Sciences 70: 1993-2008. <u>http://dx.doi.org/10.1007/s12665-013-2699-y</u></u>
- <u>Chakraborti, D; Rahman, MM; Murrill, M; Das, R; Siddayya; Patil, SG; Sarkar, A; Dadapeer, HJ; Yendigeri, S;</u> <u>Ahmed, R; Das, KK.</u> (2013b). Environmental arsenic contamination and its health effects in a historic gold mining area of the Mangalur greenstone belt of Northeastern Karnataka, India. J Hazard Mater 262: 10481055. <u>http://dx.doi.org/10.1016/j.jhazmat.2012.10.002</u>
- <u>Chanda, S; Dasgupta, UB; GuhaMazumder, D; Gupta, M; Chaudhuri, U; Lahiri, S; Das, S; Ghosh, N; Chatterjee,</u> <u>D.</u> (2006). DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicol Sci 89: 431-437. <u>http://dx.doi.org/10.1093/toxsci/kfj030</u>
- Chang, CC; Ho, SC; Tsai, SS; Yang, CY. (2004). Ischemic heart disease mortality reduction in an arseniasisendemic area in southwestern Taiwan after a switch in the tap-water supply system. J Toxicol Environ Health A 67: 1353-1361. <u>http://dx.doi.org/10.1080/15287390490471451</u>
- Chang, TC; Hong, MC; Chen, CJ. (1991). Higher prevalence of goiter in endemic area of blackfoot disease in Taiwan. J Formos Med Assoc 90: 941-946.

These draft development materials are for review purposes only and do not constitute Agency policy.April 201411-6Draft: Do Not Cite or Quote

- Chatterjee, A: Chatterji, U. (2010). Arsenic abrogates the estrogen-signaling pathway in the rat uterus. Reprod Biol Endocrinol 8: 80. <u>http://dx.doi.org/10.1186/1477-7827-8-80</u>
- <u>Chattopadhyay, BP; Mukherjee, AK; Gangopadhyay, PK; Alam, J; Roychowdhury, A.</u> (2010). Respiratory effect related to exposure of different concentrations of arsenic in drinking water in West Bengal, India. J Environ Sci Eng 52: 147-154.
- <u>Chattopadhyay, S; Bhaumik, S; Nag Chaudhury, A; Das Gupta, S.</u> (2002). Arsenic induced changes in growth development and apoptosis in neonatal and adult brain cells in vivo and in tissue culture. Toxicol Lett 128: 73-84. <u>http://dx.doi.org/10.1016/s0378-4274(01)00535-5</u>
- <u>Chattopadhyay, S; Ghosh, S; Chaki, S; Debnath, J; Ghosh, D.</u> (1999). Effect of sodium arsenite on plasma levels of gonadotrophins and ovarian steroidogenesis in mature albino rats: duration-dependent response. J Toxicol Sci 24: 425-431.
- Chaudhuri, AN; Basu, S; Chattopadhyay, S; Das Gupta, S. (1999). Effect of high arsenic content in drinking water on rat brain. Indian J Biochem Biophys 36: 51-54.
- <u>Chen, CJ; Chen, CW; Wu, MM; Kuo, TL.</u> (1992). Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br J Cancer 66: 888-892. <u>http://dx.doi.org/10.1038/bjc.1992.380</u>
- Chen, CJ; Chiou, HY; Chiang, MH; Lin, LJ; Tai, TY. (1996). Dose-response relationship between ischemic heart disease mortality and long-term arsenic exposure. Arterioscler Thromb Vasc Biol 16: 504-510.
- Chen, CJ; Chuang, YC; Lin, TM; Wu, HY. (1985). Malignant neoplasms among residents of a blackfoot diseaseendemic area in Taiwan: High-arsenic artesian well water and cancers. Cancer Res 45: 5895-5899.
- Chen, CJ; Chuang, YC; You, SL; Lin, TM; Wu, HY. (1986). A retrospective study on malignant neoplasms of bladder, lung and liver in blackfoot disease endemic area in Taiwan. Br J Cancer 53: 399-405. http://dx.doi.org/10.1038/bjc.1986.65
- Chen, CJ; Hsueh, YM; Lai, MS; Shyu, MP; Chen, SY; Wu, MM; Kuo, TL; Tai, TY. (1995). Increased prevalence of hypertension and long-term arsenic exposure. Hypertension 25: 53-60.
- Chen, CJ; Wang, CJ. (1990). Ecological correlation between arsenic level in well water and age-adjusted mortality from malignant neoplasms. Cancer Res 50: 5470-5474.
- Chen, CJ; Wu, MM; Lee, SS; Wang, JD; Cheng, SH; Wu, HY. (1988). Atherogenicity and carcinogenicity of high-arsenic artesian well water. Multiple risk factors and related malignant neoplasms of blackfoot disease. Arterioscler Thromb Vasc Biol 8: 452-460.
- <u>Chen, CL; Chiou, HY; Hsu, LI; Hsueh, YM; Wu, MM; Chen, CJ.</u> (2010a). Ingested arsenic, characteristics of well water consumption and risk of different histological types of lung cancer in northeastern Taiwan. Environ Res 110: 455-462. <u>http://dx.doi.org/10.1016/j.envres.2009.08.010</u>
- Chen, CL; Chiou, HY; Hsu, LI; Hsueh, YM; Wu, MM; Wang, YH; Chen, CJ. (2010b). Arsenic in drinking water and risk of urinary tract cancer: A follow-up study from northeastern Taiwan. Cancer Epidemiol Biomarkers Prev 19: 101-110. <u>http://dx.doi.org/10.1158/1055-9965.EPI-09-0333</u>
- Chen, CL; Hsu, LI; Chiou, HY; Hsueh, YM; Chen, SY; Wu, MM; Chen, CJ; Group, BDS. (2004a). Ingested arsenic, cigarette smoking, and lung cancer risk: A follow-up study in arseniasis-endemic areas in Taiwan. JAMA 292: 2984-2990. http://dx.doi.org/10.1001/jama.292.24.2984

<u>Chen, H; Li, S; Liu, J; Diwan, BA; Barrett, JC; Waalkes, MP.</u> (2004b). Chronic inorganic arsenic exposure induces hepatic global and individual gene hypomethylation: Implications for arsenic hepatocarcinogenesis. Carcinogenesis 25: 1779-1786. <u>http://dx.doi.org/10.1093/carcin/bgh161</u>

<u>Chen, H; Liu, J; Zhao, CQ; Diwan, BA; Merrick, BA; Waalkes, MP.</u> (2001). Association of c-myc overexpression and hyperproliferation with arsenite-induced malignant transformation. Toxicol Appl Pharmacol 175: 260-268. <u>http://dx.doi.org/10.1006/taap.2001.9253</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 201411-7Draft: Do Not Cite or Quote

- <u>Chen, JW; Chen, HY; Li, WF; Liou, SH; Chen, CJ; Wu, JH; Wang, SL.</u> (2011a). The association between total urinary arsenic concentration and renal dysfunction in a community-based population from central Taiwan. Chemosphere 84: 17-24. <u>http://dx.doi.org/10.1016/j.chemosphere.2011.02.091</u>
- <u>Chen, JW; Wang, SL; Wang, YH; Sun, CW; Huang, YL; Chen, CJ; Li, WF.</u> (2012a). Arsenic methylation, GSTO1 polymorphisms, and metabolic syndrome in an arseniasis endemic area of southwestern Taiwan. Chemosphere 88: 432-438. <u>http://dx.doi.org/10.1016/j.chemosphere.2012.02.059</u>
- Chen, SC: Chen, CC; Kuo, CY; Huang, CH; Lin, CH; Lu, ZY; Chen, YY; Lee, HS; Wong, RH. (2012b). Elevated risk of hypertension induced by arsenic exposure in Taiwanese rural residents: Possible effects of manganese superoxide dismutase (MnSOD) and 8-oxoguanine DNA glycosylase (OGG1) genes. Arch Toxicol 86: 869-878. http://dx.doi.org/10.1007/s00204-011-0797-8
- <u>Chen, WT; Hung, WC; Kang, WY; Huang, YC; Chai, CY.</u> (2007a). Urothelial carcinomas arising in arseniccontaminated areas are associated with hypermethylation of the gene promoter of the death-associated protein kinase. Histopathology 51: 785-792. <u>http://dx.doi.org/10.1111/j.1365-2559.2007.02871.x</u>
- <u>Chen, Y; Ahsan, H; Slavkovich, V; Peltier, GL; Gluskin, RT; Parvez, F; Liu, X; Graziano, JH.</u> (2010c). No association between arsenic exposure from drinking water and diabetes mellitus: a cross-sectional study in Bangladesh. Environ Health Perspect 118: 1299-1305. <u>http://dx.doi.org/10.1289/ehp.0901559</u>
- Chen, Y; Factor-Litvak, P; Howe, GR; Graziano, JH; Brandt-Rauf, P; Parvez, F; van Geen, A; Ahsan, H. (2007b). Arsenic exposure from drinking water, dietary intakes of B vitamins and folate, and risk of high blood pressure in Bangladesh: A population-based, cross-sectional study. Am J Epidemiol 165: 541-552. http://dx.doi.org/10.1093/aje/kwk037
- <u>Chen, Y; Graziano, JH; Parvez, F; Hussain, I; Momotaj, H; van Geen, A; Howe, GR; Ahsan, H.</u> (2006a).
 Modification of risk of arsenic-induced skin lesions by sunlight exposure, smoking, and occupational exposures in Bangladesh. Epidemiology 17: 459-467. <u>http://dx.doi.org/10.1097/01.ede.0000220554.50837.7f</u>
- <u>Chen, Y; Graziano, JH; Parvez, F; Liu, M; Slavkovich, V; Kalra, T; Argos, M; Islam, T; Ahmed, A; Rakibuz-Zaman, M; Hasan, R; Sarwar, G; Levy, D; van Geen, A; Ahsan, H. (2011b). Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study. B M J (Online) 342: d2431. <u>http://dx.doi.org/10.1136/bmj.d2431</u></u>
- <u>Chen, Y; Hakim, ME; Parvez, F; Islam, T; Rahman, AM; Ahsan, H.</u> (2006b). Arsenic exposure from drinkingwater and carotid artery intima-medial thickness in healthy young adults in Bangladesh. J Health Popul Nutr 24: 253-257.
- Chen, Y; Hall, M; Graziano, JH; Slavkovich, V; van Geen, A; Parvez, F; Ahsan, H. (2007c). A prospective study of blood selenium levels and the risk of arsenic-related premalignant skin lesions. Cancer Epidemiol Biomarkers Prev 16: 207-213. http://dx.doi.org/10.1158/1055-9965.EPI-06-0581
- <u>Chen, Y; Parvez, F; Liu, M; Pesola, GR; Gamble, MV; Slavkovich, V; Islam, T; Ahmed, A; Hasan, R; Graziano, JH; Ahsan, H.</u> (2011c). Association between arsenic exposure from drinking water and proteinuria: results from the Health Effects of Arsenic Longitudinal Study. Int J Epidemiol. <u>http://dx.doi.org/10.1093/ije/dyr022</u>
- <u>Chen, Y; Wu, F; Graziano, JH; Parvez, F; Liu, M; Paul, RR; Shaheen, I; Sarwar, G; Ahmed, A; Islam, T;</u> <u>Slavkovich, V; Rundek, T; Demmer, RT; Desvarieux, M; Ahsan, H.</u> (2013a). Arsenic exposure from drinking water, arsenic methylation capacity, and carotid intima-media thickness in Bangladesh. Am J Epidemiol 178: 372-381. <u>http://dx.doi.org/10.1093/aje/kwt001</u>
- <u>Chen, Y; Wu, F; Liu, M; Parvez, F; Slavkovich, V; Eunus, M; Ahmed, A; Segers, S; Argos, M; Islam, T;</u> <u>Rakibuz-Zaman, M; Hasan, R; Sarwar, G; Levy, D; Graziano, J; Ahsan, H.</u> (2013b). A Prospective Study of Arsenic Exposure, Arsenic Methylation Capacity, and Risk of Cardiovascular Disease in Bangladesh. Environ Health Perspect. <u>http://dx.doi.org/10.1289/ehp.1205797</u>

- <u>Chen, Y; Wu, F; Parvez, F; Ahmed, A; Eunus, M; McClintock, TR; Patwary, TI; Islam, T; Ghosal, AK; Islam, S;</u> <u>Hasan, R; Levy, D; Sarwar, G; Slavkovich, V; van Geen, A; Graziano, JH; Ahsan, H.</u> (2013c). Arsenic exposure from drinking water and QT-interval prolongation: results from the health effects of arsenic longitudinal study. Environ Health Perspect 121: 427-432. <u>http://dx.doi.org/10.1289/ehp.1205197</u>
- Chen, YC; Guo, YL; Su, HJ; Hsueh, YM; Smith, TJ; Ryan, LM; Lee, MS; Chao, SC; Lee, JY; Christiani, DC. (2003a). Arsenic methylation and skin cancer risk in southwestern Taiwan. J Occup Environ Med 45: 241-248. http://dx.doi.org/10.1097/01.jom.0000058336.05741.e8

Chen, YC; Su, HJ; Guo, YL; Hsueh, YM; Smith, TJ; Ryan, LM; Lee, MS; Christiani, DC. (2003b). Arsenic methylation and bladder cancer risk in Taiwan. Cancer Causes Control 14: 303-310. http://dx.doi.org/10.1023/A:1023905900171

- <u>Cheng, TJ; Ke, DS; Guo, HR.</u> (2010). The association between arsenic exposure from drinking water and cerebrovascular disease mortality in Taiwan. Water Res 44: 5770-5776. <u>http://dx.doi.org/10.1016/j.watres.2010.05.040</u>
- <u>Cherry, N; Shaik, K; Mcdonald, C; Chowdhury, Z.</u> (2010). Manganese, arsenic, and infant mortality in Bangladesh: an ecological analysis. Arch Environ Occup Health 65: 148-153. http://dx.doi.org/10.1080/19338240903390362
- <u>Cherry, N; Shaikh, K; Mcdonald, C; Chowdhury, Z.</u> (2008). Stillbirth in rural Bangladesh: arsenic exposure and other etiological factors: a report from Gonoshasthaya Kendra. Bull World Health Organ 86: 172-177. <u>http://dx.doi.org/10.2471/blt.07.043083</u>
- <u>Chervona, Y; Hall, MN; Arita, A; Wu, F; Sun, H; Tseng, HC; Ali, E; Uddin, MN; Liu, X; Zoroddu, MA;</u> <u>Gamble, MV; Costa, M.</u> (2012). Associations between arsenic exposure and global posttranslational histone modifications among adults in Bangladesh. Cancer Epidemiol Biomarkers Prev 21: 2252-2260. <u>http://dx.doi.org/10.1158/1055-9965.EPI-12-0833</u>
- Chiou, HY; Chiou, ST; Hsu, YH; Chou, YL; Tseng, CH; Wei, ML; Chen, CJ. (2001a). Incidence of transitional cell carcinoma and arsenic in drinking water: A follow-up study of 8,102 residents in an arseniasis-endemic area in northeastern Taiwan. Am J Epidemiol 153: 411-418. <u>http://dx.doi.org/10.1093/aje/153.5.411</u>
- <u>Chiou, HY; Hsueh, YM; Liaw, KF; Horng, SF; Chiang, MH; Pu, YS; Lin, JS; Huang, CH; Chen, CJ.</u> (1995). Incidence of internal cancers and ingested inorganic arsenic: A seven-year follow-up study in Taiwan. Cancer Res 55: 1296-1300.
- <u>Chiou, HY; Huang, WI; Su, CL; Chang, SF; Hsu, YH; Chen, CJ.</u> (1997). Dose-response relationship between prevalence of cerebrovascular disease and ingested inorganic arsenic. Stroke 28: 1717-1723. <u>http://dx.doi.org/10.1161/01.STR.28.9.1717</u>
- <u>Chiou, HY; Wang, IH; Hsueh, YM; Chiou, ST; Chou, YL; Teh, HW; Chen, CJ.</u> (2001b). Arsenic exposure, null genotypes of glutathione S-transferase M1, T1 and P1 and risk of carotid atherosclerosis among residents in the Lanyang Basin of Taiwan. In WR Chappell; CO Abernathy; RL Calderon (Eds.), Arsenic exposure and health effects IV (pp. 207-219). Amsterdam, The Netherlands: Elsevier Science.
- <u>Chiou, JM; Wang, SL; Chen, CJ; Deng, CR; Lin, W; Tai, TY.</u> (2005). Arsenic ingestion and increased microvascular disease risk: Observations from the south-western arseniasis-endemic area in Taiwan. Int J Epidemiol 34: 936-943. <u>http://dx.doi.org/10.1093/ije/dyi108</u>
- Chiu, HF; Chang, CC; Tsai, SS; Yang, CY. (2006). Does arsenic exposure increase the risk for diabetes mellitus? J Occup Environ Med 48: 63-67. <u>http://dx.doi.org/10.1097/01.jom.0000184854.75053.03</u>
- Chiu, HF; Ho, SC; Yang, CY. (2004). Lung cancer mortality reduction after installation of tap-water supply system in an arseniasis-endemic area in Southwestern Taiwan. Lung Cancer 46: 265-270. http://dx.doi.org/10.1016/j.lungcan.2004.05.012

- Chiu, HF; Lin, MC; Yang, CY. (2007). Primary intracerebral hemorrhage mortality reduction after installation of a tap-water supply system in an arseniasis-endemic area in southwestern Taiwan. J Toxicol Environ Health A 70: 539-546. <u>http://dx.doi.org/10.1080/15287390600870940</u>
- <u>Chiu, HF; Yang, CY.</u> (2005). Decreasing trend in renal disease mortality after cessation from arsenic exposure in a previous arseniasis-endemic area in southwestern Taiwan. J Toxicol Environ Health A 68: 319-327. http://dx.doi.org/10.180/15287390590900804
- Cho, Y; Ahn, KH; Back, MJ; Choi, JM; Ji, JE; Won, JH; Fu, Z; Jang, JM; Kim, DK. (2012). Age-related effects of sodium arsenite on splenocyte proliferation and Th1/Th2 cytokine production. Arch Pharm Res 35: 375-382. http://dx.doi.org/10.1007/s12272-012-0219-3
- <u>Choprapawon, C; Porapakkham, Y.</u> (2001). Occurrence of cancer in arsenic contaminated area, Ronpibool District, Nakorn Srithmmarat Province, Thailand. In WR Chappell; CO Abernathy; RL Calderon (Eds.), Arsenic exposure and health effects IV (pp. 201-206). New York, NY: Elsevier Science.
- <u>Chow, SKY; Chan, JYW; Fung, KP.</u> (2004). Suppression of cell proliferation and regulation of estrogen receptor alpha signaling pathway by arsenic trioxide on human breast cancer MCF-7 cells. J Endocrinol 182: 325-337. http://dx.doi.org/10.1677/joe.0.1820325
- Chu, F; Ren, X; Chasse, A; Hickman, T; Zhang, L; Yuh, J; Smith, MT; Burlingame, AL. (2011). Quantitative mass spectrometry reveals the epigenome as a target of arsenic. Chem Biol Interact 192: 113-117. http://dx.doi.org/10.1016/j.cbi.2010.11.003
- Chu, HA; Crawford-Brown, DJ. (2006). Inorganic arsenic in drinking water and bladder cancer: A meta-analysis for dose-response assessment. Int J Environ Res Public Health 3: 316-322.
- Chung, CJ; Huang, CY; Pu, YS; Shiue, HS; Su, CT; Hsueh, YM. (2013). The effect of cigarette smoke and arsenic exposure on urothelial carcinoma risk is modified by glutathione S-transferase M1 gene null genotype. Toxicol Appl Pharmacol 266: 254-259. http://dx.doi.org/10.1016/j.taap.2012.11.005
- Chung, CJ; Huang, YL; Huang, YK; Wu, MM; Chen, SY; Hsueh, YM; Chen, CJ. (2012). Urinary arsenic profiles and the risks of cancer mortality: A population-based 20-year follow-up study in arseniasis-endemic areas in Taiwan. Environ Res 122: 25-30. http://dx.doi.org/10.1016/j.envres.2012.11.007
- Chung, CJ; Pu, YS; Chen, YT; Su, CT; Wu, CC; Shiue, HS; Huang, CY; Hsueh, YM. (2011). Protective effects of plasma alpha-tocopherols on the risk of inorganic arsenic-related urothelial carcinoma. Sci Total Environ 409: 1039-1045. <u>http://dx.doi.org/10.1016/j.scitotenv.2010.11.037</u>
- Ciarrocca, M; Tomei, F; Caciari, T; Cetica, C; Andrè, JC; Fiaschetti, M; Schifano, MP; Scala, B; Scimitto, L; <u>Tomei, G; Sancini, A.</u> (2012). Exposure to arsenic in urban and rural areas and effects on thyroid hormones. Inhal Toxicol 24: 589-598. <u>http://dx.doi.org/10.3109/08958378.2012.703251</u>
- <u>Clewell, H; Efremenko, A; Black, M; Thomas, R; Wilga, P; Arnold, L; Gentry, PR; Yager, J.</u> (2011). Arsenic induced gene expression changes in primary human uroepithelial cells. Toxicol Lett 205: S43-S43. <u>http://dx.doi.org/10.1016/j.toxlet.2011.05.170</u>
- Cohen, SM. (2002). Comparative pathology of proliferative lesions of the urinary bladder. Toxicol Pathol 30: 663-671. <u>http://dx.doi.org/10.1080/01926230290166751</u>
- Cohen, SM; Arnold, LL; Beck, BD; Lewis, AS; Eldan, M. (2013). Evaluation of the carcinogenicity of inorganic arsenic [Review]. Crit Rev Toxicol 43: 711-752. <u>http://dx.doi.org/10.3109/10408444.2013.827152</u>
- Colomina, MT; Albina, ML; Domingo, JL; Corbella, J. (1997). Influence of maternal stress on the effects of prenatal exposure to methylmercury and arsenic on postnatal development and behavior in mice: A preliminary evaluation. Physiol Behav 61: 455-459. http://dx.doi.org/10.1016/S0031-9384(96)00462-3
- Conde, P; Acosta-Saavedra, LC; Goytia-Acevedo, RC; Calderon-Aranda, ES. (2007). Sodium arsenite-induced inhibition of cell proliferation is related to inhibition of IL-2 mRNA expression in mouse activated T cells. Arch Toxicol 81: 251-259. http://dx.doi.org/10.1007/s00204-006-0152-7

These draft development materials are for review purposes only and do not constitute Agency policy.April 201411-10Draft: Do Not Cite or Quote

- <u>Coppin, JF; Qu, W; Waalkes, MP.</u> (2008). Interplay between cellular methyl metabolism and adaptive efflux during oncogenic transformation from chronic arsenic exposure in human cells. J Biol Chem 283: 19342-19350. <u>http://dx.doi.org/10.1074/jbc.M802942200</u>
- <u>Cordova, E; Valenzuela, O; Sánchez-Peña, L; Escamilla-Guerrero, G; Hernández-Zavala, A; Orozco, L; Razo, LD.</u> (2013). Nuclear factor erythroid 2-related factor gene variants and susceptibility of arsenic-related skin lesions. Hum Exp Toxicol. <u>http://dx.doi.org/10.1177/0960327113506234</u>
- Coronado-González, JA; Del Razo, LM; García-Vargas, G; Sanmiguel-Salazar, F; Escobedo-De la Peña, J. (2007). Inorganic arsenic exposure and type 2 diabetes mellitus in Mexico. Environ Res 104: 383-389. http://dx.doi.org/10.1016/j.envres.2007.03.004
- Cronican, AA; Fitz, NF; Carter, A; Saleem, M; Shiva, S; Barchowsky, A; Koldamova, R; Schug, J; Lefterov, I. (2013). Genome-Wide Alteration of Histone H3K9 Acetylation Pattern in Mouse Offspring Prenatally Exposed to Arsenic. PLoS ONE 8: e53478. <u>http://dx.doi.org/10.1371/journal.pone.0053478</u>
- Cui, X; Wakai, T; Shirai, Y; Hatakeyama, K; Hirano, S. (2006a). Chronic oral exposure to inorganic arsenate interferes with methylation status of p16INK4a and RASSF1A and induces lung cancer in A/J mice. Toxicol Sci 91: 372-381. <u>http://dx.doi.org/10.1093/toxsci/kfj159</u>
- Cui, X; Wakai, T; Shirai, Y; Yokoyama, N; Hatakeyama, K; Hirano, S. (2006b). Arsenic trioxide inhibits DNA methyltransferase and restores methylation-silenced genes in human liver cancer cells. Hum Pathol 37: 298-311. <u>http://dx.doi.org/10.1016/j.humpath.2005.10.013</u>
- Cuzick, J; Sasieni, P; Evans, S. (1992). Ingested arsenic, keratoses, and bladder cancer. Am J Epidemiol 136: 417-421.
- <u>D'Errico, A; Pasian, S; Baratti, A; Zanelli, R; Alfonzo, S; Gilardi, L; Beatrice, F; Bena, A; Costa, G.</u> (2009). A case-control study on occupational risk factors for sino-nasal cancer. Occup Environ Med 66: 448-455. <u>http://dx.doi.org/10.1136/oem.2008.041277</u>
- Das, N; Paul, S; Chatterjee, D; Banerjee, N; Majumder, NS; Sarma, N; Sau, TJ; Basu, S; Banerjee, S; Majumder, P; Bandyopadhyay, AK; States, JC; Giri, AK. (2012a). Arsenic exposure through drinking water increases the risk of liver and cardiovascular diseases in the population of West Bengal, India. BMC Public Health 12: 639. http://dx.doi.org/10.1186/1471-2458-12-639
- Das, S; Pan, D; Bera, AK; Rana, T; Bhattacharya, D; Bandyapadyay, S; De, S; Sreevatsava, V; Bhattacharya, S;
 Das, SK; Bandyopadhayay, S. (2011). Sodium arsenite mediated immuno-disruption through alteration of transcription profile of cytokines in chicken splenocytes under in vitro system. Mol Biol Rep 38: 171-176. http://dx.doi.org/10.1007/s11033-010-0091-5
- Das, TK; Mani, V; Kaur, H; Kewalramani, N; De, S; Hossain, A; Banerjee, D; Datta, BK. (2012b). Effect of vitamin E supplementation on arsenic induced oxidative stress in goats. Bull Environ Contam Toxicol 89: 61-66. <u>http://dx.doi.org/10.1007/s00128-012-0620-0</u>
- Dastgiri, S; Mosaferi, M; Fizi, MA; Olfati, N; Zolali, S; Pouladi, N; Azarfam, P. (2010). Arsenic exposure, dermatological lesions, hypertension, and chromosomal abnormalities among people in a rural community of northwest Iran. J Health Popul Nutr 28: 14-22.
- Datta, DV; Mitra, SK; Chhuttani, PN; Chakravarti, RN. (1979). Chronic oral arsenic intoxication as a possible aetiological factor in idiopathic portal hypertension (non-cirrhotic portal fibrosis) in India. Gut 20: 378-384.
- Dauphiné, DC; Ferreccio, C; Guntur, S; Yuan, Y; Hammond, SK; Balmes, J; Smith, AH; Steinmaus, C. (2011). Lung function in adults following in utero and childhood exposure to arsenic in drinking water: preliminary findings. Int Arch Occup Environ Health. <u>http://dx.doi.org/10.1007/s00420-010-0591-6</u>
- Dauphiné, DC; Smith, AH; Yuan, Y; Balmes, JR; Bates, MN; Steinmaus, C. (2013). Case-control study of arsenic in drinking water and lung cancer in California and Nevada. Int J Environ Res Public Health 10: 3310-3324. <u>http://dx.doi.org/10.3390/ijerph10083310</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 201411-11Draft: Do Not Cite or Quote

- Davey, JC; Bodwell, JE; Gosse, JA; Hamilton, JW. (2007). Arsenic as an endocrine disruptor: Effects of arsenic on estrogen receptor-mediated gene expression in vivo and in cell culture. Toxicol Sci 98: 75-86. <u>http://dx.doi.org/10.1093/toxsci/kfm013</u>
- Davey, JC; Nomikos, AP; Wungjiranirun, M; Sherman, JR; Ingram, L; Batki, C; Lariviere, JP; Hamilton, JW. (2008). Arsenic as an endocrine disruptor: arsenic disrupts retinoic acid receptor-and thyroid hormone receptor-mediated gene regulation and thyroid hormone-mediated amphibian tail metamorphosis. Environ Health Perspect 116: 165-172. <u>http://dx.doi.org/10.1289/ehp.10131</u>
- <u>Dávila-Esqueda, ME; Jiménez-Capdeville, ME; Delgado, JM; De la Cruz, E; Aradillas-García, C; Jiménez-Suárez, V; Escobedo, RF; Llerenas, JR.</u> (2012). Effects of arsenic exposure during the pre- and postnatal development on the puberty of female offspring. Exp Toxicol Pathol. <u>http://dx.doi.org/10.1016/j.etp.2010.06.001</u>
- Dávila-Esqueda, ME; Morales, JM; Jiménez-Capdeville, ME; De la Cruz, E; Falcón-Escobedo, R; Chi-Ahumada, E; Martin-Pérez, S. (2011). Low-level subchronic arsenic exposure from prenatal developmental stages to adult life results in an impaired glucose homeostasis. Exp Clin Endocrinol Diabetes 119: 613-617. http://dx.doi.org/10.1055/s-0031-1287782
- De, BK; Majumdar, D; Sen, S; Guru, S; Kundu, S. (2004). Pulmonary involvement in chronic arsenic poisoning from drinking contaminated ground-water. J Assoc Physicians India 52: 395-400.
- <u>de la Fuente, H; Portales-Perez, D; Baranda, L; Diaz-Barriga, F; Saavedra-Alanis, V; Layseca, E; Gonzalez-Amaro, R.</u> (2002). Effect of arsenic, cadmium and lead on the induction of apoptosis of normal human mononuclear cells. Clin Exp Immunol 129: 69-77. <u>http://dx.doi.org/10.1046/j.1365-2249.2002.01885.x</u>
- De Vizcaya-Ruiz, A; Barbier, O; Ruiz-Ramos, R; Cebrian, ME. (2009). Biomarkers of oxidative stress and damage in human populations exposed to arsenic [Review]. Mutat Res Genet Toxicol Environ Mutagen 674: 85-92. <u>http://dx.doi.org/10.1016/j.mrgentox.2008.09.020</u>
- Del Razo, LM; García-Vargas, GG; Valenzuela, OL; Castellanos, EH; Sánchez-Peña, LC; Currier, JM; Drobná, Z; Loomis, D; Stýblo, M. (2011). Exposure to arsenic in drinking water is associated with increased prevalence of diabetes: a cross-sectional study in the Zimapán and Lagunera regions in Mexico. Environ Health 10: 73. <u>http://dx.doi.org/10.1186/1476-069X-10-73</u>
- Del Razo, LM; García-Vargas, GG; Vargas, H; Albores, A; Gonsebatt, ME; Montero, R; Ostrosky-Wegman, P; Kelsh, M; Cebrián, ME. (1997). Altered profile of urinary arsenic metabolites in adults with chronic arsenicism. A pilot study. Arch Toxicol 71: 211-217.
- Dhar, RK; Biswas, BK; Samanta, G; Mandal, BK; Chakraborti, D; Roy, S; Jafar, A; Islam, A; Ara, G; Kabir, S; Khan, AW; Ahmed, SA; Hadi, SA. (1997). Groundwater arsenic calamity in Bangladesh. Curr Sci 73: 48-59.
- Dong, J; Su, SY. (2009). The association between arsenic and children's intelligence: a meta-analysis. Biol Trace Elem Res 129: 88-93. <u>http://dx.doi.org/10.1007/s12011-008-8298-1</u>
- Drobná, Z; Del Razo, LM; García-Vargas, GG; Sánchez-Peña, LC; Barrera-Hernández, A; Stýblo, M; Loomis, D. (2013). Environmental exposure to arsenic, AS3MT polymorphism and prevalence of diabetes in Mexico. J Expo Sci Environ Epidemiol 23: 151-155. <u>http://dx.doi.org/10.1038/jes.2012.103</u>
- Drobna, Z; Jaspers, I; Thomas, DJ; Styblo, M. (2003). Differential activation of AP-1 in human bladder epithelial cells by inorganic and methylated arsenicals. FASEB J 17: 67-69. <u>http://dx.doi.org/10.1096/fj.02-0287fje</u>
- Dwivedi, N; Flora, SJ. (2011). Concomitant exposure to arsenic and organophosphates on tissue oxidative stress in rats. Food Chem Toxicol 49: 1152-1159. <u>http://dx.doi.org/10.1016/j.fct.2011.02.007</u>
- Eblin, KE; Bowen, ME; Cromey, DW; Bredfeldt, TG; Mash, EA; Lau, SS; Gandolfi, AJ. (2006). Arsenite and monomethylarsonous acid generate oxidative stress response in human bladder cell culture. Toxicol Appl Pharmacol 217: 7-14. <u>http://dx.doi.org/10.1016/j.taap.2006.07.004</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 201411-12Draft: Do Not Cite or Quote

- Eblin, KE; Hau, AM; Jensen, TJ; Futscher, BW; Gandolfi, AJ. (2008). The role of reactive oxygen species in arsenite and monomethylarsonous acid-induced signal transduction in human bladder cells: Acute studies. Toxicology 250: 47-54. http://dx.doi.org/10.1016/j.tox.2008.05.018
- Engel, RR; Smith, AH. (1994). Arsenic in drinking water and mortality from vascular disease: an ecologic analysis in 30 counties in the United States. Arch Environ Health 49: 418-427. http://dx.doi.org/10.1080/00039896.1994.9954996
- Engström, KS; Hossain, MB; Lauss, M; Ahmed, S; Raqib, R; Vahter, M; Broberg, K. (2013). Efficient arsenic metabolism--the AS3MT haplotype is associated with DNA methylation and expression of multiple genes around AS3MT. PLoS ONE 8: e53732. http://dx.doi.org/10.1371/journal.pone.0053732
- Enterline, PE; Day, R; Marsh, GM. (1995). Cancers related to exposure to arsenic at a copper smelter. Occup Environ Med 52: 28-32.
- Enterline, PE; Marsh, GM. (1982). Cancer among workers exposed to arsenic and other substances in a copper smelter. Am J Epidemiol 116: 895-911.
- Enterline, PE; Marsh, GM; Esmen, NA; Henderson, VL; Callahan, CM; Paik, M. (1987). Some effects of cigarette smoking, arsenic, and SO2 on mortality among US copper smelter workers. J Occup Med 29: 831-838.
- Eom, SY; Lee, YC; Yim, DH; Lee, CH; Kim, YD; Choi, BS; Park, CH; Yu, SD; Kim, DS; Park, JD; Kim, H. (2011). Effects of low-level arsenic exposure on urinary N-acetyl-β-D-glucosaminidase activity. Hum Exp Toxicol 30: 1885-1891. <u>http://dx.doi.org/10.1177/0960327111402239</u>
- Ettinger, AS; Zota, AR; Cj Amarasiriwardena, CJ; Hopkins, MR; Schwartz, J; Hu, H; Wright, RO. (2009). Maternal arsenic exposure and impaired glucose tolerance during pregnancy. Environ Health Perspect 117: 1059-1064. <u>http://dx.doi.org/10.1289/ehp0800533</u>
- Farzan, SF; Korrick, S; Li, Z; Enelow, R; Gandolfi, AJ; Madan, J; Nadeau, K; Karagas, MR. (2013). In utero arsenic exposure and infant infection in a United States cohort: A prospective study. Environ Res 126: 24-30. http://dx.doi.org/10.1016/j.envres.2013.05.001
- Fatmi, Z; Abbasi, IN; Ahmed, M; Kazi, A; Kayama, F. (2013). Burden of skin lesions of arsenicosis at higher exposure through groundwater of taluka Gambat district Khairpur, Pakistan: a cross-sectional survey. Environ Geochem Health 35: 341-346. <u>http://dx.doi.org/10.1007/s10653-012-9498-3</u>
- Fatmi, Z; Azam, I; Ahmed, F; Kazi, A; Gill, AB; Kadir, MM; Ahmed, M; Ara, N; Janjua, NZ; Mitigation, CGA. (2009). Health burden of skin lesions at low arsenic exposure through groundwater in Pakistan. Is river the source? Environ Res 109: 575-581. <u>http://dx.doi.org/10.1016/j.envres.2009.04.002</u>
- <u>Feki-Tounsi, M; Olmedo, P; Gil, F; Khlifi, R; Mhiri, MN; Rebai, A; Hamza-Chaffai, A.</u> (2013). Low-level arsenic exposure is associated with bladder cancer risk and cigarette smoking: a case-control study among men in Tunisia. Environ Sci Pollut Res Int. <u>http://dx.doi.org/10.1007/s11356-012-1335-9</u>
- Feldman, RG; Niles, CA; Kelly-Hayes, M; Sax, DS; Dixon, WJ; Thompson, DJ; Landau, E. (1979). Peripheral neuropathy in arsenic smelter workers. Neurology 29: 939-944. <u>http://dx.doi.org/10.1212/WNL.29.7.939</u>
- Feng, H; Gao, Y; Zhao, L; Wei, Y; Li, Y; Wei, W; Wu, Y; Sun, D. (2013). Biomarkers of renal toxicity caused by exposure to arsenic in drinking water. Environ Toxicol Pharmacol 35: 495-501. http://dx.doi.org/10.1016/j.etap.2013.02.010
- Fernández, MI; López, JF; Vivaldi, B; Coz, F. (2012). Long-term impact of arsenic in drinking water on bladder cancer health care and mortality rates 20 years after end of exposure. J Urol 187: 856-861. <u>http://dx.doi.org/10.1016/j.juro.2011.10.157</u>
- Ferreccio, C; González, C; Milosavjlevic, V; Marshall, G; Sancha, AM; Smith, AH. (2000). Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology 11: 673-679. http://dx.doi.org/10.1097/00001648-200011000-00010

- Ferreccio, C; González Psych, C; Milosavjlevic Stat, V; Marshall Gredis, G; Sancha, AM. (1998). Lung cancer and arsenic exposure in drinking water: a case-control study in northern Chile. Cad Saude Publica 14 Suppl 3: 193-198.
- Ferreccio, C; Smith, AH; Durán, V; Barlaro, T; Benítez, H; Valdés, R; Aguirre, JJ; Moore, LE; Acevedo, J; Vásquez, MI; Pérez, L; Yuan, Y; Liaw, J; Cantor, KP; Steinmaus, C. (2013a). Case-control study of arsenic in drinking water and kidney cancer in uniquely exposed Northern Chile. Am J Epidemiol 178: 813-818. http://dx.doi.org/10.1093/aje/kwt059
- Ferreccio, C; Yuan, Y; Calle, J; Benítez, H; Parra, RL; Acevedo, J; Smith, AH; Liaw, J; Steinmaus, C. (2013b). Arsenic, tobacco smoke, and occupation: associations of multiple agents with lung and bladder cancer. Epidemiology 24: 898-905. <u>http://dx.doi.org/10.1097/EDE.0b013e31829e3e03</u>
- Ferreira, M; Matos, RC; Oliveira, H; Nunes, B; Pereira, MD. (2012). Impairment of mice spermatogenesis by sodium arsenite. Hum Exp Toxicol 31: 290-302. <u>http://dx.doi.org/10.1177/0960327111405862</u>
- Ferzand, R; Gadahi, JA; Saleha, S; Ali, Q. (2008). Histological and haematological disturbance caused by arsenic toxicity in mice model. Pak J Biol Sci 11: 1405-1413.
- Fischer, JM; Robbins, SB; Al-Zoughool, M; Kannamkumarath, SS; Stringer, SL; Larson, JS; Caruso, JA; <u>Talaska, G; Stambrook, PJ; Stringer, JR.</u> (2005). Co-mutagenic activity of arsenic and benzo[a]pyrene in mouse skin. Mutat Res Genet Toxicol Environ Mutagen 588: 35-46. <u>http://dx.doi.org/10.1016/j.mrgentox.2005.09.003</u>
- Flora, SJ. (2011). Arsenic-induced oxidative stress and its reversibility [Review]. Free Radic Biol Med 51: 257-281. http://dx.doi.org/10.1016/j.freeradbiomed.2011.04.008
- Flora, SJ; Mittal, M; Pachauri, V; Dwivedi, N. (2012). A possible mechanism for combined arsenic and fluoride induced cellular and DNA damage in mice. Metallomics 4: 78-90. <u>http://dx.doi.org/10.1039/c1mt00118c</u>
- Fouad, AA; Al-Mulhim, AS; Jresat, I. (2012). Telmisartan treatment attenuates arsenic-induced hepatotoxicity in mice. Toxicology 300: 149-157. <u>http://dx.doi.org/10.1016/j.tox.2012.06.015</u>
- Fu, HY; Shen, JZ. (2005). [Hypermethylation of CpG island of p16 gene and arsenic trioxide induced p16 gene demethylation in multiple myeloma]. Chinese Journal of Internal Medicine 44: 411-414.
- Fu, J; Woods, CG; Yehuda-Shnaidman, E; Zhang, Q; Wong, V; Collins, S; Sun, G; Andersen, ME; Pi, J. (2010). Low-level arsenic impairs glucose-stimulated insulin secretion in pancreatic beta cells: involvement of cellular adaptive response to oxidative stress. Environ Health Perspect 118: 864-870. <u>http://dx.doi.org/10.1289/ehp.0901608</u>
- Fujino, Y; Guo, X; Liu, J; You, L; Miyatake, M; Yoshimura, T; 1, JIMAPJSG. (2004). Mental health burden amongst inhabitants of an arsenic-affected area in Inner Mongolia, China. Soc Sci Med 59: 1969-1973. <u>http://dx.doi.org/10.1016/j.socscimed.2004.02.031</u>
- <u>Galicia, G; Leyva, R; Tenorio, EP; Ostrosky-Wegman, P; Saavedra, R.</u> (2003). Sodium arsenite retards proliferation of PHA-activated T cells by delaying the production and secretion of IL-2. Int Immunopharmacol 3: 671-682. <u>http://dx.doi.org/10.1016/S1567-5769(03)00049-3</u>
- Gandhi, DN; Panchal, GM; Patel, KG. (2012). Developmental and neurobehavioural toxicity study of arsenic on rats following gestational exposure. Indian J Exp Biol 50: 147-155.
- <u>García-Chávez, E; Segura, B; Merchant, H; Jiménez, I; Del Razo, LM.</u> (2007). Functional and morphological effects of repeated sodium arsenite exposure on rat peripheral sensory nerves. J Neurol Sci 258: 104-110. <u>http://dx.doi.org/10.1016/j.jns.2007.03.007</u>
- García-Esquinas, E; Pollan, M; Umans, JG; Francesconi, KA; Goessler, W; Guallar, E; Howard, B; Farley, J; Best, LG; Navas-Acien, A. (2013). Arsenic exposure and cancer mortality in a US-based prospective cohort: the strong heart study. Cancer Epidemiol Biomarkers Prev 22: 1944-1953. <u>http://dx.doi.org/10.1158/1055-9965.EPI-13-0234-T</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 201411-14Draft: Do Not Cite or Quote

- García-Vargas, GG; Del Razo, LM; Cebrián, ME; Albores, A; Ostrosky-Wegman, P; Montero, R; Gonsebatt, ME; Lim, CK; De Matteis, F. (1994). Altered urinary porphyrin excretion in a human population chronically exposed to arsenic in Mexico. Hum Exp Toxicol 13: 839-847.
- <u>Gardner, RM; Kippler, M; Tofail, F; Bottai, M; Hamadani, J; Grandér, M; Nermell, B; Palm, B; Rasmussen, KM; Vahter, M.</u> (2013). Environmental exposure to metals and children's growth to age 5 years: a prospective cohort study. Am J Epidemiol 177: 1356-1367. <u>http://dx.doi.org/10.1093/aje/kws437</u>
- Garland, M; Morris, JS; Colditz, GA; Stampfer, MJ; Spate, VL; Baskett, CK; Rosner, B; Speizer, FE; Willett, <u>WC; Hunter, DJ.</u> (1996). Toenail trace element levels and breast cancer: a prospective study. Am J Epidemiol 144: 653-660.
- <u>Gelmann, ER; Gurzau, E; Gurzau, A; Goessler, W; Kunrath, J; Yeckel, CW; Mccarty, KM.</u> (2013). A pilot study: The importance of inter-individual differences in inorganic arsenic metabolism for birth weight outcome. Environ Toxicol Pharmacol 36: 1266-1275. <u>http://dx.doi.org/10.1016/j.etap.2013.10.006</u>
- <u>Gentry, PR: Covington, TR; Mann, S; Shipp, AM; Yager, JW; HJ, CI.</u> (2004). Physiologically based pharmacokinetic modeling of arsenic in the mouse. J Toxicol Environ Health A 67: 43-71. http://dx.doi.org/10.1080/15287390490253660
- <u>Gentry, PR; Mcdonald, TB; Sullivan, DE; Shipp, AM; Yager, JW; Clewell HJ, I.</u> (2010). Analysis of genomic dose-response information on arsenic to inform key events in a mode of action for carcinogenicity [Review]. Environ Mol Mutagen 51: 1-14. <u>http://dx.doi.org/10.1002/em.20505</u>
- <u>Germolec, DR; Spalding, J; Yu, HS; Chen, GS; Simeonova, PP; Humble, MC; Bruccoleri, A; Boorman, GA;</u> <u>Foley, JF; Yoshida, T; Luster, MI.</u> (1998). Arsenic enhancement of skin neoplasia by chronic stimulation of growth factors. Am J Pathol 153: 1775-1785. <u>http://dx.doi.org/10.1016/S0002-9440(10)65692-1</u>
- Gerr, F; Letz, R; Ryan, PB; Green, RC. (2000). Neurological effects of environmental exposure to arsenic in dust and soil among humans. Neurotoxicology 21: 475-487.
- <u>Ghatak, S; Biswas, A; Dhali, GK; Chowdhury, A; Boyer, JL; Santra, A.</u> (2011). Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice. Toxicol Appl Pharmacol 251: 59-69. <u>http://dx.doi.org/10.1016/j.taap.2010.11.016</u>
- <u>Ghosh, A.</u> (2013). Evaluation of chronic arsenic poisoning due to consumption of contaminated ground water in West Bengal, India. IJPM 4: 976-979.
- <u>Ghosh, D; Bhattacharya, S; Mazumder, S.</u> (2006). Perturbations in the catfish immune responses by arsenic: Organ and cell specific effects. Comp Biochem Physiol C Toxicol Pharmacol 143: 455-463. <u>http://dx.doi.org/10.1016/j.cbpc.2006.04.010</u>
- <u>Ghosh, D; Datta, S; Bhattacharya, S; Mazumder, S.</u> (2007a). Long-term exposure to arsenic affects head kidney and impairs humoral immune responses of Clarias batrachus. Aquat Toxicol 81: 79-89. http://dx.doi.org/10.1016/j.aquatox.2006.11.004</u>
- <u>Ghosh, P; Banerjee, M; De Chaudhuri, S; Chowdhury, R; Das, JK; Mukherjee, A; Sarkar, AK; Mondal, L;</u> <u>Baidya, K; Sau, TJ; Banerjee, A; Basu, A; Chaudhuri, K; Ray, K; Giri, AK.</u> (2007b). Comparison of health effects between individuals with and without skin lesions in the population exposed to arsenic through drinking water in West Bengal, India. J Expo Sci Environ Epidemiol 17: 215-223. http://dx.doi.org/10.1038/sj.jes.7500510
- <u>Gibb, H; Haver, C; Gaylor, D; Ramasamy, S; Lee, JS; Lobdell, D; Wade, T; Chen, C; White, P; Sams, R.</u> (2011). Utility of recent studies to assess the National Research Council 2001 estimates of cancer risk from ingested arsenic [Review]. Environ Health Perspect 119: 284-290. <u>http://dx.doi.org/10.1289/Ehp.1002427</u>
- <u>Gilbert-Diamond, D; Li, Z; Perry, AE; Spencer, SK; Gandolfi, AJ; Karagas, MR.</u> (2013). A population-based case-control study of urinary arsenic species and squamous cell carcinoma in New Hampshire, USA. Environ Health Perspect 121: 11541160. <u>http://dx.doi.org/10.1289/ehp.1206178</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 201411-15Draft: Do Not Cite or Quote

- <u>Goggin, SL; Labrecque, MT; Allan, AM.</u> (2012). Perinatal exposure to 50 ppb sodium arsenate induces hypothalamic-pituitary-adrenal axis dysregulation in male C57BL/6 mice. Neurotoxicology 33: 1338-1345. <u>http://dx.doi.org/10.1016/j.neuro.2012.08.010</u>
- Gong, G; Hargrave, KA; Hobson, V; Spallholz, J; Boylan, M; Lefforge, D; O'Bryant, SE. (2011). Low-level groundwater arsenic exposure impacts cognition: a project FRONTIER study. J Environ Health 74: 16-22.
- Gong, G; O'Bryant, SE. (2012). Low-level arsenic exposure, AS3MT gene polymorphism and cardiovascular diseases in rural Texas counties. Environ Res 113: 52-57. <u>http://dx.doi.org/10.1016/j.envres.2012.01.003</u>
- <u>Gonsebatt, ME; Vega, L; Montero, R; Garcia-Vargas, G; Del Razo, LM; Albores, A; Cebrian, ME; Ostrosky-Wegman, P.</u> (1994). Lymphocyte replicating ability in individuals exposed to arsenic via drinking water. Mutat Res 313: 293-299. <u>http://dx.doi.org/10.1016/0165-1161(94)90059-0</u>
- Graham, JH; Mazzanti, GR; Helwig, EB. (1961). Chemistry of Bowen's disease: Relationship to arsenic. J Invest Dermatol 37: 317-332. <u>http://dx.doi.org/10.1038/jid.1961.127</u>
- <u>Gribble, MO; Howard, BV; Umans, JG; Shara, NM; Francesconi, KA; Goessler, W; Crainiceanu, CM;</u> <u>Silbergeld, EK; Guallar, E; Navas-Acien, A.</u> (2012). Arsenic exposure, diabetes prevalence, and diabetes control in the strong heart study. Am J Epidemiol 176: 865-874. <u>http://dx.doi.org/10.1093/aje/kws153</u>
- <u>Grimsrud, TK; Berge, SR; Haldorsen, T; Andersen, A.</u> (2005). Can lung cancer risk among nickel refinery workers be explained by occupational exposures other than nickel? Epidemiology 16: 146-154. <u>http://dx.doi.org/10.1097/01.ede.0000152902.48916.d7</u>
- <u>Guan, H; Piao, F; Zhang, X; Li, X; Li, Q; Xu, L; Kitamura, F; Yokoyama, K.</u> (2012). Prenatal Exposure to Arsenic and Its Effects on Fetal Development in the General Population of Dalian. Biol Trace Elem Res. <u>http://dx.doi.org/10.1007/s12011-012-9396-7</u>
- <u>Guha Mazumder, D; Purkayastha, I; Ghose, A; Mistry, G; Saha, C; Nandy, AK; Das, A; Majumdar, KK.</u> (2012). Hypertension in chronic arsenic exposure: A case control study in West Bengal. J Environ Sci Health A Tox Hazard Subst Environ Eng 47: 1514-1520. <u>http://dx.doi.org/10.1080/10934529.2012.680329</u>
- <u>Guo, HR.</u> (2003). The lack of a specific association between arsenic in drinking water and hepatocellular carcinoma. J Hepatol 39: 383-388. <u>http://dx.doi.org/10.1016/S0168-8278(03)00297-6</u>
- <u>Guo, HR.</u> (2004). Arsenic level in drinking water and mortality of lung cancer (Taiwan). Cancer Causes Control 15: 171-177. <u>http://dx.doi.org/10.1023/B:CACO.0000019503.02851.b0</u>
- <u>Guo, HR.</u> (2011). Age adjustment in ecological studies: using a study on arsenic ingestion and bladder cancer as an example. BMC Public Health 11: 820. <u>http://dx.doi.org/10.1186/1471-2458-11-820</u>
- Guo, HR; Chiang, HS; Hu, H; Lipsitz, SR; Monson, RR. (1997). Arsenic in drinking water and incidence of urinary cancers. Epidemiology 8: 545-550. http://dx.doi.org/10.1097/00001648-199709000-00012
- <u>Guo, HR; Lipsitz, SR; Hu, H; Monson, RR.</u> (1998). Using ecological data to estimate a regression model for individual data: the association between arsenic in drinking water and incidence of skin cancer. Environ Res 79: 82-93. <u>http://dx.doi.org/10.1006/enrs.1998.3863</u>
- Guo, HR; Wang, NS; Hu, H; Monson, RR. (2004). Cell type specificity of lung cancer associated with arsenic ingestion. Cancer Epidemiol Biomarkers Prev 13: 638-643.
- Guo, HR; Yu, HS; Hu, H; Monson, RR. (2001). Arsenic in drinking water and skin cancers: Cell-type specificity (Taiwan, ROC). Cancer Causes Control 12: 909-916. <u>http://dx.doi.org/10.1023/A:1013712203455</u>

Guo, JX; Hu, L; Yand, PZ; Tanabe, K; Miyatalre, M; Chen, Y. (2007). Chronic arsenic poisoning in drinking water in Inner Mongolia and its associated health effects. J Environ Sci Health A Tox Hazard Subst Environ Eng 42: 1853-1858. <u>http://dx.doi.org/10.1080/10934520701566918</u>

- <u>Guo, X; Fujino, Y; Ye, X; Liu, J; Yoshimura, T; Group, JIMAPS.</u> (2006a). Association between multi-level inorganic arsenic exposure from drinking water and skin lesions in China. Int J Environ Res Public Health 3: 262-267.
- Guo, X; Liu, Z; Huang, C; You, L. (2006b). Levels of arsenic in drinking-water and cutaneous lesions in Inner Mongolia. J Health Popul Nutr 24: 214-220.
- <u>Gupta, S; Yel, L; Kim, D; Kim, C; Chiplunkar, S; Gollapudi, S.</u> (2003). Arsenic trioxide induces apoptosis in peripheral blood T lymphocyte subsets by inducing oxidative stress: a role of Bcl-2. Mol Cancer Ther 2: 711-719.
- <u>Hafeman, DM; Ahsan, H; Louis, ED; Siddique, AB; Slavkovich, V; Cheng, Z; van Geen, A; Graziano, JH.</u>
 (2005). Association between arsenic exposure and a measure of subclinical sensory neuropathy in
 Bangladesh. J Occup Environ Med 47: 778-784. <u>http://dx.doi.org/10.1097/01.jom.0000169089.54549.db</u>
- Halatek, T; Sinczuk-Walczak, H; Rabieh, S; Wasowicz, W. (2009). Association between occupational exposure to arsenic and neurological, respiratory and renal effects. Toxicol Appl Pharmacol 239: 193-199. http://dx.doi.org/10.1016/j.taap.2009.04.022
- Hall, M; Chen, Y; Ahsan, H; Slavkovich, V; van Geen, A; Parvez, F; Graziano, J. (2006). Blood arsenic as a biomarker of arsenic exposure: Results from a prospective study. Toxicology 225: 225-233. http://dx.doi.org/10.1016/j.tox.2006.06.010
- <u>Hamadani, JD; Grantham-Mcgregor, SM; Tofail, F; Nermell, B; Fängström, B; Huda, SN; Yesmin, S; Rahman, M; Vera-Hernández, M; Arifeen, SE; Vahter, M.</u> (2010). Pre- and postnatal arsenic exposure and child development at 18 months of age: a cohort study in rural Bangladesh. Int J Epidemiol 39: 1206-1216. http://dx.doi.org/10.1093/ije/dyp369
- <u>Hamadani, JD; Tofail, F; Nermell, B; Gardner, R; Shiraji, S; Bottai, M; Arifeen, SE; Huda, SN; Vahter, M.</u> (2011). Critical windows of exposure for arsenic-associated impairment of cognitive function in pre-school girls and boys: a population-based cohort study. Int J Epidemiol 40: 1593-1604. <u>http://dx.doi.org/10.1093/ije/dyr176</u>
- Han, YY; Weissfeld, JL; Davis, DL; Talbott, EO. (2009). Arsenic levels in ground water and cancer incidence in Idaho: An ecologic study. Int Arch Occup Environ Health 82: 843-849. <u>http://dx.doi.org/10.1007/s00420-008-0362-9</u>
- <u>Haque, R; Mazumder, DNG; Samanta, S; Ghosh, N; Kalman, D; Smith, MM; Mitra, S; Santra, A; Lahiri, S; Das, S; De, BK; Smith, AH.</u> (2003). Arsenic in drinking water and skin lesions: Dose-response data from West Bengal, India. Epidemiology 14: 174-182. <u>http://dx.doi.org/10.1097/01.EDE.0000040361.55051.54</u>
- <u>Harrison, MT; McCoy, KL.</u> (2001). Immunosuppression by arsenic: A comparison of cathepsin L inhibition and apoptosis. Int Immunopharmacol 1: 647-656. <u>http://dx.doi.org/10.1016/S1567-5769(00)00048-5</u>
- <u>Hashim, JH; Radzi, RS; Aljunid, SM; Nur, AM; Ismail, A; Baguma, D; Sthiannopkao, S; Phan, K; Wong, MH;</u>
 <u>Sao, V; Yasin, MS.</u> (2013). Hair arsenic levels and prevalence of arsenicosis in three Cambodian provinces. Sci Total Environ 463-464: 1210-1216. <u>http://dx.doi.org/10.1016/j.scitotenv.2013.04.084</u>
- <u>Hawkesworth, S; Wagatsuma, Y; Kippler, M; Fulford, AJ; Arifeen, SE; Persson, LA; Moore, SE; Vahter, M.</u> (2013). Early exposure to toxic metals has a limited effect on blood pressure or kidney function in later childhood, rural Bangladesh. Int J Epidemiol 42: 176-185. <u>http://dx.doi.org/10.1093/ije/dys215</u>
- <u>He, W; Greenwell, RJ; Brooks, DM; Calderón-Garcidueñas, L; Beall, HD; Coffin, JD.</u> (2007). Arsenic exposure in pregnant mice disrupts placental vasculogenesis and causes spontaneous abortion. Toxicol Sci 99: 244-253. <u>http://dx.doi.org/10.1093/toxsci/kfm162</u>
- <u>Health Canada.</u> (2006). Guidelines for Canadian drinking water quality: Guideline technical document Arsenic. Ottawa, Ontario: Water Quality and Health Bureau, Healthy Environments and Consumer Safety Branch, Health Canada. <u>http://www.hc-sc.gc.ca/ewh-semt/alt_formats/hecs-sesc/pdf/pubs/water-eau/arsenic/arseniceng.pdf</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 201411-17Draft: Do Not Cite or Quote

- <u>Heck, JE; Andrew, AS; Onega, T; Rigas, JR; Jackson, BP; Karagas, MR; Duell, EJ.</u> (2009). Lung cancer in a U.S. population with low to moderate arsenic exposure. Environ Health Perspect 117: 1718-1723. <u>http://dx.doi.org/10.1289/ehp.0900566</u>
- Heck, JE; Chen, Y; Grann, VR; Slavkovich, V; Parvez, F; Ahsan, H. (2008). Arsenic exposure and anemia in Bangladesh: A population-based study. J Occup Environ Med 50: 80-87. http://dx.doi.org/10.1097/JOM.0b013e31815ae9d4
- <u>Hernández-Zavala, A; Del Razo, LM; García-Vargas, GG; Aguilar, C; Borja, VH; Albores, A; Cebrián, ME.</u> (1999). Altered activity of heme biosynthesis pathway enzymes in individuals chronically exposed to arsenic in Mexico. Arch Toxicol 73: 90-95.
- <u>Herrera, A; Pineda, J; Antonio, MT.</u> (2013). Toxic effects of perinatal arsenic exposure on the brain of developing rats and the beneficial role of natural antioxidants. Environ Toxicol Pharmacol 36: 73-79. <u>http://dx.doi.org/10.1016/j.etap.2013.03.018</u>
- Hertz-Picciotto, I; Arrighi, HM; Hu, SW. (2000). Does arsenic exposure increase the risk for circulatory disease? Am J Epidemiol 151: 174-181.
- <u>HHS</u> (U.S. Department of Health and Human Services). (2004). The health consequences of smoking: A report of the Surgeon General. Washington, DC. <u>http://www.cdc.gov/tobacco/data_statistics/sgr/2004/complete_report/index.htm</u>
- Higgins, JPT; Green, S; Collaboration, TC. (2008). Cochrane handbook for systematic reviews of interventions version 5.0. 2: The Cochrane Collaboration.
- Hill, AB. (1965). The environment and disease: Association or causation? Proc R Soc Med 58: 295-300.
- <u>Hinwood, AL; Jolley, DJ; Sim, MR.</u> (1999). Cancer incidence and high environmental arsenic concentrations in rural populations: Results of an ecological study. Int J Environ Health Res 9: 131-141. <u>http://dx.doi.org/10.1080/09603129973272</u>
- <u>Hon, KL; Lui, H; Wang, SS; Lam, HS; Leung, TF.</u> (2012). Fish consumption, fish atopy and related heavy metals in childhood eczema. Iran J Allergy Asthma Immunol 11: 230-235. <u>http://dx.doi.org/011.03/ijaai.230235</u>
- Hong, HL; Fowler, BA; Boorman, GA. (1989). Hematopoietic effects in mice exposed to arsine gas. Toxicol Appl Pharmacol 97: 173-182. http://dx.doi.org/10.1016/0041-008x(89)90066-5
- Hopenhayn-Rich, C; Biggs, ML; Fuchs, A; Bergoglio, R; Tello, EE; Nicolli, H; Smith, AH. (1996). Bladder cancer mortality associated with arsenic in drinking water in Argentina. Epidemiology 7: 117-124. http://dx.doi.org/10.1097/00001648-199603000-00003
- Hopenhayn-Rich, C; Biggs, ML; Smith, AH. (1998). Lung and kidney cancer mortality associated with arsenic in drinking water in Córdoba, Argentina. Int J Epidemiol 27: 561-569. <u>http://dx.doi.org/10.1093/ije/27.4.561</u>
- <u>Hopenhayn-Rich, C; Browning, SR; Hertz-Picciotto, I; Ferreccio, C; Peralta, C; Gibb, H.</u> (2000). Chronic arsenic exposure and risk of infant mortality in two areas of Chile. Environ Health Perspect 108: 667-673. <u>http://dx.doi.org/10.2307/3434889</u>
- <u>Hopenhayn-Rich, C; Hertz-Picciotto, I; Browning, S; Ferreccio, C; Peralta, C.</u> (1999). Reproductive and developmental effects associated with chronic arsenic exposure. 3: 151-164. <u>http://dx.doi.org/10.1016/b978-008043648-7/50019-4</u>
- Hopenhayn, C; Bush, HM; Bingcang, A; Hertz-Picciotto, I. (2006). Association between arsenic exposure from drinking water and anemia during pregnancy. J Occup Environ Med 48: 635-643. <u>http://dx.doi.org/10.1097/01.jom.0000205457.44750.9f</u>
- Hopenhayn, C; Ferreccio, C; Browning, SR; Huang, B; Peralta, C; Gibb, H; Hertz-Picciotto, I. (2003). Arsenic exposure from drinking water and birth weight. Epidemiology 14: 593-602. <u>http://dx.doi.org/10.1097/01.ede.0000072104.65240.69</u>

- <u>Hsieh, FI; Hwang, TS; Hsieh, YC; Lo, HC; Su, CT; Hsu, HS; Chiou, HY; Chen, CJ.</u> (2008a). Risk of erectile dysfunction induced by arsenic exposure through well water consumption in Taiwan. Environ Health Perspect 116: 532-536. <u>http://dx.doi.org/10.1289/ehp.10930</u>
- Hsieh, YC; Hsieh, FI; Lien, LM; Chou, YL; Chiou, HY; Chen, CJ. (2008b). Risk of carotid atherosclerosis associated with genetic polymorphisms of apolipoprotein E and inflammatory genes among arsenic exposed residents in Taiwan. Toxicol Appl Pharmacol 227: 1-7. <u>http://dx.doi.org/10.1016/j.taap.2007.10.013</u>
- Hsu, L; Chiu, A; Huan, S; Chen, C; Wang, Y; Hsieh, F; Chou, W; Wang, L; Chen, C. (2008). SNPs of GSTM1, T1, P1, epoxide hydrolase and DNA repair enzyme XRCC1 and risk of urinary transitional cell carcinoma in southwestern Taiwan. Toxicol Appl Pharmacol 228: 144-155. <u>http://dx.doi.org/10.1016/j.taap.2007.12.003</u>
- Hsu, LI; Chen, GS; Lee, CH; Yang, TY; Chen, YH; Wang, YH; Hsueh, YM; Chiou, HY; Wu, MM; Chen, CJ. (2013a). Use of arsenic-induced palmoplantar hyperkeratosis and skin cancers to predict risk of subsequent internal malignancy. Am J Epidemiol 177: 202-212. <u>http://dx.doi.org/10.1093/aje/kws369</u>
- Hsu, LI; Wang, YH; Chiou, HY; Wu, MM; Yang, TY; Chen, YH; Tseng, CH; Chen, CJ. (2013b). The association of diabetes mellitus with subsequent internal cancers in the arsenic-exposed area of Taiwan. J Asian Earth Sci 73: 452-459. <u>http://dx.doi.org/10.1016/j.jseaes.2013.04.048</u>
- Hsueh, YM; Cheng, GS; Wu, MM; Yu, HS; Kuo, TL; Chen, CJ. (1995). Multiple risk factors associated with arsenic-induced skin cancer: effects of chronic liver disease and malnutritional status. Br J Cancer 71: 109-114. http://dx.doi.org/10.1038/bjc.1995.22
- <u>Hsueh, YM; Chiou, HY; Huang, YL; Wu, WL; Huang, CC; Yang, MH; Lue, LC; Chen, GS; Chen, CJ.</u> (1997). Serum beta-carotene level, arsenic methylation capability, and incidence of skin cancer. Cancer Epidemiol Biomarkers Prev 6: 589-596.
- Hsueh, YM; Lin, P; Chen, HW; Shiue, HS; Chung, CJ; Tsai, CT; Huang, YK; Chiou, HY; Chen, CJ. (2005). Genetic polymorphisms of oxidative and antioxidant enzymes and arsenic-related hypertension. J Toxicol Environ Health A 68: 1471-1484. <u>http://dx.doi.org/10.1080/15287390590967414</u>
- Hsueh, YM; Wu, WL; Huang, YL; Chiou, HY; Tseng, CH; Chen, CJ. (1998). Low serum carotene level and increased risk of ischemic heart disease related to long-term arsenic exposure. Atherosclerosis 141: 249-257. http://dx.doi.org/10.1016/S0021-9150(98)00178-6
- Hu, SW; Hertz-Picciotto, I; Siemiatycki, J. (1999). When to be skeptical of negative studies: pitfalls in evaluating occupational risks using population-based case-control studies. Can J Public Health 90: 138-142.
- <u>Huang, CY; Chu, JS; Pu, YS; Yang, HY; Wu, CC; Chung, CJ; Hsueh, YM.</u> (2011). Effect of urinary total arsenic level and estimated glomerular filtration rate on the risk of renal cell carcinoma in a low arsenic exposure area. J Urol 185: 2040-2044. <u>http://dx.doi.org/10.1016/j.juro.2011.01.079</u>
- <u>Huang, CY; Su, CT; Chung, CJ; Pu, YS; Chu, JS; Yang, HY; Wu, CC; Hsueh, YM.</u> (2012). Urinary total arsenic and 8-hydroxydeoxyguanosine are associated with renal cell carcinoma in an area without obvious arsenic exposure. Toxicol Appl Pharmacol 262: 349-354. <u>http://dx.doi.org/10.1016/j.taap.2012.05.013</u>
- Huang, M; Choi, SJ; Kim, DW; Kim, NY; Park, CH; Yu, SD; Kim, DS; Park, KS; Song, JS; Kim, H; Choi, BS; Yu, IJ; Park, JD. (2009a). Risk assessment of low-level cadmium and arsenic on the kidney. J Toxicol Environ Health A 72: 1493-1498. <u>http://dx.doi.org/10.1080/15287390903213095</u>
- Huang, YK; Huang, YL; Hsueh, YM; Yang, MH; Wu, MM; Chen, SY; Hsu, LI; Chen, CJ. (2008a). Arsenic exposure, urinary arsenic speciation, and the incidence of urothelial carcinoma: a twelve-year follow-up study. Cancer Causes Control 19: 829-839. <u>http://dx.doi.org/10.1007/s10552-008-9146-5</u>

Huang, YK; Pu, YS; Chung, CJ; Shiue, HS; Yang, MH; Chen, CJ; Hsueh, YM. (2008b). Plasma folate level, urinary arsenic methylation profiles, and urothelial carcinoma susceptibility. Food Chem Toxicol 46: 929-938. http://dx.doi.org/10.1016/j.fct.2007.10.017

- <u>Huang, YK; Tseng, CH; Huang, YL; Yang, MH; Chen, CJ; Hsueh, YM.</u> (2007). Arsenic methylation capability and hypertension risk in subjects living in arseniasis-hyperendemic areas in southwestern Taiwan. Toxicol Appl Pharmacol 218: 135-142. <u>http://dx.doi.org/10.1016/j.taap.2006.10.022</u>
- <u>Huang, YL; Hsueh, YM; Huang, YK; Yip, PK; Yang, MH; Chen, CJ.</u> (2009b). Urinary arsenic methylation capability and carotid atherosclerosis risk in subjects living in arsenicosis-hyperendemic areas in southwestern Taiwan. Sci Total Environ 407: 2608-2614. <u>http://dx.doi.org/10.1016/j.scitotenv.2008.12.061</u>
- Huyck, KL; Kile, ML; Mahiuddin, G; Quamruzzaman, Q; Rahman, M; Breton, CV; Dobson, CB; Frelich, J;
 <u>Hoffman, E; Yousuf, J; Afroz, S; Islam, S; Christiani, DC.</u> (2007). Maternal arsenic exposure associated with low birth weight in Bangladesh. J Occup Environ Med 49: 1097-1104. http://dx.doi.org/10.1097/JOM.0b013e3181566ba0
- <u>IARC</u> (International Agency for Research on Cancer). (2006). Preamble to the IARC monographs. Lyon, France. <u>http://monographs.iarc.fr/ENG/Preamble/</u>
- <u>IARC</u> (International Agency for Research on Cancer). (2009). A review of human carcinogens. Part C: Arsenic, metals, fibres, and dusts. In IARC Monographs on the Evaluation of Carcinogenic Risk to Humans. Lyon, France: World Health Organization; International Agency for Research on Cancer. <u>http://monographs.iarc.fr/ENG/Monographs/vol100C/mono100C-1.pdf</u>
- <u>Ihrig, MM; Shalat, SL; Baynes, C.</u> (1998). A hospital-based case-control study of stillbirths and environmental exposure to arsenic using an atmospheric dispersion model linked to a geographical information system. Epidemiology 9: 290-294. <u>http://dx.doi.org/10.1097/00001648-199805000-00013</u>
- Infante-Rivard, C; Olson, E; Jacques, L; Ayotte, P. (2001). Drinking water contaminants and childhood leukemia. Epidemiology 12: 13-19. <u>http://dx.doi.org/10.1097/00001648-200101000-00004</u>
- <u>IOM</u> (Institute of Medicine). (2008). Improving the presumptive disability decision-making process for veterans. In JM Samet; CC Bodurow (Eds.). Washington, DC: National Academies Press. <u>http://www.nap.edu/openbook.php?record_id=11908</u>
- Islam, K; Haque, A; Karim, R; Fajol, A; Hossain, E; Salam, KA; Ali, N; Saud, ZA; Rahman, M; Rahman, M; Karim, R; Sultana, P; Hossain, M; Akhand, AA; Mandal, A; Miyataka, H; Himeno, S; Hossain, K. (2011). Dose-response relationship between arsenic exposure and the serum enzymes for liver function tests in the individuals exposed to arsenic: a cross sectional study in Bangladesh. Environ Health 10: 64. http://dx.doi.org/10.1186/1476-069X-10-64
- Islam, LN; Nabi, AHM, N; Rahman, MM; Zahid, MSH. (2007). Association of respiratory complications and elevated serum immunoglobulins with drinking water arsenic toxicity in human. J Environ Sci Health A Tox Hazard Subst Environ Eng 42: 1807-1814. <u>http://dx.doi.org/10.1080/10934520701566777</u>
- Islam, MR; Khan, I; Attia, J; Hassan, SMN; McEvoy, M; D'Este, C; Azim, S; Akhter, A; Akter, S; Shahidullah, SM; Milton, AH. (2012a). Association between hypertension and chronic arsenic exposure in drinking water: a cross-sectional study in Bangladesh. Int J Environ Res Public Health 9: 4522-4536. http://dx.doi.org/10.3390/ijerph9124522
- Islam, R; Khan, I; Hassan, SN; McEvoy, M; D'Este, C; Attia, J; Peel, R; Sultana, M; Akter, S; Milton, AH. (2012b). Association between type 2 diabetes and chronic arsenic exposure in drinking water: a cross sectional study in Bangladesh. Environ Health 11: 38. <u>http://dx.doi.org/10.1186/1476-069X-11-38</u>
- Izquierdo-Vega, JA; Soto, CA; Sanchez-Pena, LC; De Vizcaya-Ruiz, A; Del Razo, LM. (2006). Diabetogenic effects and pancreatic oxidative damage in rats subchronically exposed to arsenite. Toxicol Lett 160: 135-142. <u>http://dx.doi.org/10.1016/j.toxlet.2005.06.018</u>
- James, KA; Marshall, JA; Hokanson, JE; Meliker, JR; Zerbe, GO; Byers, TE. (2013). A case-cohort study examining lifetime exposure to inorganic arsenic in drinking water and diabetes mellitus. Environ Res. http://dx.doi.org/10.1016/j.envres.2013.02.005

- Jana, K; Jana, S; Samanta, PK. (2006). Effects of chronic exposure to sodium arsenite on hypothalamo-pituitarytesticular activities in adult rats: possible an estrogenic mode of action. Reprod Biol Endocrinol 4: 1-13. http://dx.doi.org/10.1186/1477-7827-4-9
- Jarup, L; Pershagen, G; Wall, S. (1989). Cumulative arsenic exposure and lung cancer in smelter workers: a dose-response study. Am J Ind Med 15: 31-41. <u>http://dx.doi.org/10.1002/ajim.4700150105</u>
- Jayatilake, N; Mendis, S; Maheepala, P; Mehta, FR; Team, aobotCNRP. (2013). Chronic kidney disease of uncertain aetiology: Prevalence and causative factors in a developing country. BMC Nephrol 14: 180. http://dx.doi.org/10.1186/1471-2369-14-180
- Jensen, GE; Hansen, ML. (1998). Occupational arsenic exposure and glycosylated haemoglobin. Analyst 123: 77-80. <u>http://dx.doi.org/10.1039/a705699k</u>
- Jensen, TJ; Novak, P; Eblin, KE; Gandolfi, AJ; Futscher, BW. (2008). Epigenetic remodeling during arsenicalinduced malignant transformation. Carcinogenesis 29: 1500-1508. <u>http://dx.doi.org/10.1093/carcin/bgn102</u>
- Jensen, TJ; Novak, P; Wnek, SM; Gandolfi, AJ; Futscher, BW. (2009a). Arsenicals produce stable progressive changes in DNA methylation patterns that are linked to malignant transformation of immortalized urothelial cells. Toxicol Appl Pharmacol 241: 221-229. http://dx.doi.org/10.1016/j.taap.2009.08.019
- Jensen, TJ; Wozniak, RJ; Eblin, KE; Wnek, SM; Gandolfi, AJ; Futscher, BW. (2009b). Epigenetic mediated transcriptional activation of WNT5A participates in arsenical-associated malignant transformation. Toxicol Appl Pharmacol 235: 39-46. <u>http://dx.doi.org/10.1016/j.taap.2008.10.013</u>
- Jin, L; Zhang, L; Li, Z; Liu, JM; Ye, R; Ren, A. (2013). Placental concentrations of mercury, lead, cadmium, and arsenic and the risk of neural tube defects in a Chinese population. Reprod Toxicol 35: 25-31. http://dx.doi.org/10.1016/j.reprotox.2012.10.015
- Jing, J; Zheng, G; Liu, M; Shen, X; Zhao, F; Wang, J; Zhang, J; Huang, G; Dai, P; Chen, Y; Chen, J; Luo, W. (2012). Changes in the synaptic structure of hippocampal neurons and impairment of spatial memory in a rat model caused by chronic arsenite exposure. Neurotoxicology. <u>http://dx.doi.org/10.1016/j.neuro.2012.07.003</u>
- Jo, WJ; Loguinov, A; Wintz, H; Chang, M; Smith, AH; Kalman, D; Zhang, L; Smith, MT; Vulpe, CD. (2009). Comparative functional genomic analysis identifies distinct and overlapping sets of genes required for resistance to monomethylarsonous acid (MMAIII) and arsenite (As(III)) in yeast. Toxicol Sci 111: 424-436. http://dx.doi.org/10.1093/toxsci/kfp162
- Jomova, K; Jenisova, Z; Feszterova, M; Baros, S; Liska, J; Hudecova, D; Rhodes, CJ; Valko, M. (2011). Arsenic: Toxicity, oxidative stress and human disease [Review]. J Appl Toxicol 31: 95-107. http://dx.doi.org/10.1002/jat.1649
- Jomova, K; Valko, M. (2011). Advances in metal-induced oxidative stress and human disease [Review]. Toxicology 283: 65-87. <u>http://dx.doi.org/10.1016/j.tox.2011.03.001</u>
- Jones, MR; Tellez-Plaza, M; Sharrett, AR; Guallar, E; Navas-Acien, A. (2011). Urine arsenic and hypertension in US adults: The 2003-2008 National Health and Nutrition Examination Survey. Epidemiology 22: 153-161. http://dx.doi.org/10.1097/EDE.0b013e318207fdf2
- Josyula, AB; Poplin, GS; Kurzius-Spencer, M; McClellen, HE; Kopplin, MJ; Sturup, S; Lantz, RC; Burgess, JL. (2006). Environmental arsenic exposure and sputum metalloproteinase concentrations. Environ Res 102: 283-290. http://dx.doi.org/10.1016/j.envres.2006.01.003
- Jovanovic, D; Rasic-Milutinovic, Z; Paunovic, K; Jakovljevic, B; Plavsic, S; Milosevic, J. (2013). Low levels of arsenic in drinking water and type 2 diabetes in Middle Banat region, Serbia. Int J Hyg Environ Health 216: 50-55. <u>http://dx.doi.org/10.1016/j.ijheh.2012.01.001</u>
- Jovanović, DD; Paunović, K; Manojlović, DD; Jakovljević, B; Rasic-Milutinović, Z; Dojcinović, BP. (2012). Arsenic in drinking water and acute coronary syndrome in Zrenjanin municipality, Serbia. Environ Res. http://dx.doi.org/10.1016/j.envres.2012.04.016

These draft development materials are for review purposes only and do not constitute Agency policy.April 201411-21Draft: Do Not Cite or Quote

- Karagas, MR; Stukel, TA; Morris, JS; Tosteson, TD; Weiss, JE; Spencer, SK; Greenberg, ER. (2001). Skin cancer risk in relation to toenail arsenic concentrations in a US population-based case-control study. Am J Epidemiol 153: 559-565. <u>http://dx.doi.org/10.1093/aje/153.6.559</u>
- Karagas, MR; Stukel, TA; Tosteson, TD. (2002). Assessment of cancer risk and environmental levels of arsenic in New Hampshire. Int J Hyg Environ Health 205: 85-94. <u>http://dx.doi.org/10.1078/1438-4639-00133</u>
- <u>Karagas, MR; Tosteson, TD; Morris, JS; Demidenko, E; Mott, LA; Heaney, J; Schned, A.</u> (2004). Incidence of transitional cell carcinoma of the bladder and arsenic exposure in New Hampshire. Cancer Causes Control 15: 465-472. <u>http://dx.doi.org/10.1023/B:CACO.0000036452.55199.a3</u>
- Karim, MR; Rahman, M; Islam, K; Mamun, AA; Hossain, S; Hossain, E; Aziz, A; Yeasmin, F; Agarwal, S;
 Hossain, MI; Saud, ZA; Nikkon, F; Hossain, M; Mandal, A; Jenkins, RO; Haris, PI; Miyataka, H; Himeno,
 <u>S; Hossain, K.</u> (2013). Increases in oxidized low density lipoprotein and other inflammatory and adhesion molecules with a concomitant decrease in high density lipoprotein in the individuals exposed to arsenic in Bangladesh. Toxicol Sci. http://dx.doi.org/10.1093/toxsci/kft130
- Kaul, D; Sharma, S; Sharma, M; Arora, M; Arora, M. (2014). Arsenic programmes cellular genomic-immunity through miR-2909 RNomics. Gene 536: 326-331. <u>http://dx.doi.org/10.1016/j.gene.2013.12.004</u>
- Kerr, AT. (1875). Chronic Poisoning by Arsenic. Br Med J 2: 610.
- Khan, K; Wasserman, GA; Liu, X; Ahmed, E; Parvez, F; Slavkovich, V; Levy, D; Mey, J; van Geen, A; Graziano, JH; Factor-Litvak, P. (2012). Manganese exposure from drinking water and children's academic achievement. Neurotoxicology 33: 91-97. <u>http://dx.doi.org/10.1016/j.neuro.2011.12.002</u>
- <u>Kharroubi, W; Dhibi, M; Haouas, Z; Chreif, I; Neffati, F; Hammami, M; Sakly, R.</u> (2014). Effects of sodium arsenate exposure on liver fatty acid profiles and oxidative stress in rats. Environ Sci Pollut Res Int. <u>http://dx.doi.org/10.1007/s11356-013-2057-3</u>
- Khlifi, R; Olmedo, P; Gil, F; Feki-Tounsi, M; Hammami, B; Rebai, A; Hamza-Chaffai, A. (2014). Risk of laryngeal and nasopharyngeal cancer associated with arsenic and cadmium in the Tunisian population. Environ Sci Pollut Res Int 21: 2032-2042. <u>http://dx.doi.org/10.1007/s11356-013-2105-z</u>
- Kim, NH; Mason, CC; Nelson, RG; Afton, SE; Essader, AS; Medlin, JE; Levine, KE; Hoppin, JA; Lin, C; Knowler, WC; Sandler, DP. (2013). Arsenic Exposure and Incidence of Type 2 Diabetes in Southwestern American Indians. Am J Epidemiol. <u>http://dx.doi.org/10.1093/aje/kws329</u>
- <u>Kim, Y; Lee, BK.</u> (2011). Association between urinary arsenic and diabetes mellitus in the Korean general population according to KNHANES 2008. Sci Total Environ 409: 4054-4062. <u>http://dx.doi.org/10.1016/j.scitotenv.2011.06.003</u>
- Kim, YR; Oh, JE; Kim, MS; Kang, MR; Park, SW; Han, JY; Eom, HS; Yoo, NJ; Lee, SH. (2010). Oncogenic NRF2 mutations in squamous cell carcinomas of oesophagus and skin. J Pathol 220: 446-451. <u>http://dx.doi.org/10.1002/path.2653</u>
- <u>Kippler, M; Wagatsuma, Y; Rahman, A; Nermell, B; Persson, LÅ; Raqib, R; Vahter, M.</u> (2012). Environmental exposure to arsenic and cadmium during pregnancy and fetal size: A longitudinal study in rural Bangladesh. Reprod Toxicol 34: 504-511. <u>http://dx.doi.org/10.1016/j.reprotox.2012.08.002</u>
- <u>Kitchin, KT; Conolly, R.</u> (2010). Arsenic-induced carcinogenesis--oxidative stress as a possible mode of action and future research needs for more biologically based risk assessment [Review]. Chem Res Toxicol 23: 327-335. <u>http://dx.doi.org/10.1021/tx900343d</u>
- Kitchin, KT; Wallace, K. (2005). Arsenite binding to synthetic peptides based on the Zn finger region and the estrogen binding region of the human estrogen receptor-[alpha]. Toxicol Appl Pharmacol 206: 66-72. http://dx.doi.org/10.1016/j.taap.2004.12.010
- <u>Kitchin, KT; Wallace, K.</u> (2008). The role of protein binding of trivalent arsenicals in arsenic carcinogenesis and toxicity [Review]. J Inorg Biochem 102: 532-539. <u>http://dx.doi.org/10.1016/j.jinorgbio.2007.10.021</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 201411-22Draft: Do Not Cite or Quote

- <u>Klei, LR: Barchowsky, A.</u> (2008). Positive signaling interactions between arsenic and ethanol for angiogenic gene induction in human microvascular endothelial cells. Toxicol Sci 102: 319-327. <u>http://dx.doi.org/10.1093/toxsci/kfn003</u>
- Knobeloch, LM; Zierold, KM; Anderson, HA. (2006). Association of arsenic-contaminated drinking-water with prevalence of skin cancer in Wisconsin's Fox River Valley. J Health Popul Nutr 24: 206-213.
- Kozul-Horvath, CD; Zandbergen, F; Jackson, BP; Enelow, RI; Hamilton, JW. (2012). Effects of low-dose drinking water arsenic on mouse fetal and postnatal growth and development. PLoS ONE 7: e38249. http://dx.doi.org/10.1371/journal.pone.0038249
- Kozul, CD; Ely, KH; Enelow, RI; Hamilton, JW. (2009). Low dose arsenic compromises the immune response to influenza A infection in vivo. Environ Health Perspect 117: 1441-1447. http://dx.doi.org/10.1289/ehp.0900911
- Kreiss, K; Zack, MM; Feldman, RG; Niles, CA; Chirico-Post, J; Sax, DS; Landrigan, PJ; Boyd, MH; Cox, DH. (1983). Neurologic evaluation of a population exposed to arsenic in Alaskan well water. Arch Environ Health 38: 116-121.
- Kreuzer, M; Straif, K; Marsh, JW; Dufey, F; Grosche, B; Nosske, D; Sogl, M. (2012). Occupational dust and radiation exposure and mortality from stomach cancer among German uranium miners, 1946-2003. Occup Environ Med 69: 217-223. <u>http://dx.doi.org/10.1136/oemed-2011-100051</u>
- Kunrath, J; Gurzau, E; Gurzau, A; Goessler, W; Gelmann, ER; Thach, TT; Mccarty, KM; Yeckel, CW. (2013). Blood pressure hyperreactivity: an early cardiovascular risk in normotensive men exposed to low-tomoderate inorganic arsenic in drinking water. J Hypertens 31: 361-369. http://dx.doi.org/10.1097/HJH.0b013e32835c175f
- Kurttio, P; Komulainen, H; Hakala, E; Kahelin, H; Pekkanen, J. (1998). Urinary excretion of arsenic species after exposure to arsenic present in drinking water. Arch Environ Contam Toxicol 34: 297-305.
- Kurttio, P; Pukkala, E; Kahelin, H; Auvinen, A; Pekkanen, J. (1999). Arsenic concentrations in well water and risk of bladder and kidney cancer in Finland. Environ Health Perspect 107: 705-710. http://dx.doi.org/10.1289/ehp.99107705
- Kwok, RK; Kaufmann, RB; Jakariya, M. (2006). Arsenic in drinking-water and reproductive health outcomes: A study of participants in the Bangladesh integrated nutrition programme. J Health Popul Nutr 24: 190-205.
- Kwok, RK; Mendola, P; Liu, ZY; Savitz, DA; Heiss, G; Ling, HL; Xia, Y; Lobdell, D; Zeng, D; Thorp, JM, Jr; Creason, JP; Mumford, JL. (2007). Drinking water arsenic exposure and blood pressure in healthy women of reproductive age in Inner Mongolia, China. Toxicol Appl Pharmacol 222: 337-343. http://dx.doi.org/10.1016/j.taap.2007.04.003
- Lagerkvist, B; Linderholm, H; Nordberg, GF. (1986). Vasospastic tendency and Raynaud's phenomenon in smelter workers exposed to arsenic. Environ Res 39: 465-474. <u>http://dx.doi.org/10.1016/S0013-9351(86)80070-6</u>
- Lagerkvist, BEA; Linderholm, H; Nordberg, GF. (1988). Arsenic and Raynaud's phenomenon: Vasospastic tendency and excretion of arsenic in smelter workers before and after the summer vacation. Int Arch Occup Environ Health 60: 361-364. <u>http://dx.doi.org/10.1007/BF00405671</u>
- Lagerkvist, BJ; Zetterlund, B. (1994). Assessment of exposure to arsenic among smelter workers: A five-year follow-up. Am J Ind Med 25: 477-488. <u>http://dx.doi.org/10.1002/ajim.4700250403</u>
- Lai, MS; Hsueh, YM; Chen, CJ; Shyu, MP; Chen, SY; Kuo, TL; Wu, MM; Tai, TY. (1994). Ingested inorganic arsenic and prevalence of diabetes mellitus. Am J Epidemiol 139: 484-492.
- Lambrou, A; Baccarelli, A; Wright, RO; Weisskopf, M; Bollati, V; Amarasiriwardena, C; Vokonas, P; Schwartz, J. (2012). Arsenic exposure and DNA methylation among elderly men. Epidemiology 23: 668-676. http://dx.doi.org/10.1097/EDE.0b013e31825afb0b

- Lamm, SH; Byrd, DM; Kruse, MB; Feinleib, M; Lai, SH. (2003). Bladder cancer and arsenic exposure: Differences in the two populations enrolled in a study in southwest Taiwan. Biomed Environ Sci 16: 355-368.
- Lamm, SH; Engel, A; Kruse, MB; Feinleib, M; Byrd, DM; Lai, S; Wilson, R. (2004). Arsenic in drinking water and bladder cancer mortality in the United States: An analysis based on 133 U.S. counties and 30 years of observation. J Occup Environ Med 46: 298-306. http://dx.doi.org/10.1097/01.jom.0000116801.67556.8f
- Lamm, SH; Luo, ZD; Bo, FB; Zhang, GY; Zhang, YM; Wilson, R; Byrd, DM; Lai, S; Li, FX; Polkanov, M; <u>Tong, Y; Loo, L; Tucker, SB;</u> (IMCAP), atIMCAP. (2007). An epidemiologic study of arsenic-related skin disorders and skin cancer and the consumption of arsenic-contaminated well Waters in Huhhot, Inner Mongolia, China. Hum Ecol Risk Assess 13: 713-746. <u>http://dx.doi.org/10.1080/10807030701456528</u>
- Lantz, RC; Chau, B; Sarihan, P; Witten, ML; Pivniouk, VI; Chen, GJ. (2009). In utero and postnatal exposure to arsenic alters pulmonary structure and function. Toxicol Appl Pharmacol 235: 105-113. http://dx.doi.org/10.1016/j.taap.2008.11.012
- Lau, A; Whitman, SA; Jaramillo, MC; Zhang, DD. (2013). Arsenic-mediated activation of the Nrf2-Keap1 antioxidant pathway [Review]. J Biochem Mol Toxicol 27: 99-105. <u>http://dx.doi.org/10.1002/jbt.21463</u>
- Lee-Feldstein, A. (1989). A comparison of several measures of exposure to arsenic: matched case-control study of copper smelter employees. Am J Epidemiol 129: 112-124.
- Lemaire, M; Lemarié, CA; Molina, MF; Schiffrin, EL; Lehoux, S; Mann, KK. (2011). Exposure to moderate arsenic concentrations increases atherosclerosis in ApoE-/- mouse model. Toxicol Sci 122: 211-221. http://dx.doi.org/10.1093/toxsci/kfr097
- Lemarie, A; Morzadec, C; Merino, D; Micheau, O; Fardel, O; Vernhet, L. (2006). Arsenic trioxide induces apoptosis of human monocytes during macrophagic differentiation through nuclear factor-κB-related survival pathway down-regulation. J Pharmacol Exp Ther 316: 304-314. <u>http://dx.doi.org/10.1124/jpet.105.092874</u>.
- Leonardi, G; Vahter, M; Clemens, F; Goessler, W; Gurzau, E; Hemminki, K; Hough, R; Koppova, K; Kumar, R; <u>Rudnai, P; Surdu, S; Fletcher, T.</u> (2012). Inorganic arsenic and Basal cell carcinoma in areas of Hungary, Romania, and Slovakia: A case-control study. Environ Health Perspect 120: 721-726. <u>http://dx.doi.org/10.1289/ehp.1103534</u>
- Lewis, DR; Southwick, JW; Ouellet-Hellstrom, R; Rench, J; Calderon, RL. (1999). Drinking water arsenic in Utah: A cohort mortality study. Environ Health Perspect 107: 359-365. http://dx.doi.org/10.1289/ehp.99107359
- Li, G; Lee, LS; Li, M; Tsao, SW; Chiu, JF. (2011). Molecular changes during arsenic-induced cell transformation. J Cell Physiol 226: 3225-3232. <u>http://dx.doi.org/10.1002/jcp.22683</u>
- Li, J; Gorospe, M; Barnes, J; Liu, Y. (2003). Tumor promoter arsenite stimulates histone H3 phosphoacetylation of proto-oncogenes c-fos and c-jun chromatin in human diploid fibroblasts. J Biol Chem 278: 13183-13191. http://dx.doi.org/10.1074/jbc.M300269200
- Li, WF; Sun, CW; Cheng, TJ; Chang, KH; Chen, CJ; Wang, SL. (2009). Risk of carotid atherosclerosis is associated with low serum paraoxonase (PON1) activity among arsenic exposed residents in Southwestern Taiwan. Toxicol Appl Pharmacol 236: 246-253. <u>http://dx.doi.org/10.1016/j.taap.2009.01.019</u>
- Li, X; Li, B; Xi, S; Zheng, Q; Lv, X; Sun, G. (2013a). Prolonged environmental exposure of arsenic through drinking water on the risk of hypertension and type 2 diabetes. Environ Sci Pollut Res Int 20: 8151-8161. http://dx.doi.org/10.1007/s11356-013-1768-9
- Li, X; Li, B; Xi, S; Zheng, Q; Wang, D; Sun, G. (2013b). Association of urinary monomethylated arsenic concentration and risk of hypertension: a cross-sectional study from arsenic contaminated areas in northwestern China. Environ Health 12: 37. http://dx.doi.org/10.1186/1476-069X-12-37

- Li, X; Shi, Y; Wei, Y; Ma, X; Li, Y; Li, R. (2012). Altered expression profiles of microRNAs upon arsenic exposure of human umbilical vein endothelial cells. Environ Toxicol Pharmacol 34: 381-387. http://dx.doi.org/10.1016/j.etap.2012.05.003
- Li, Y; Xia, Y; He, L; Ning, Z; Wu, K; Zhao, B; Le, XC; Kwok, R; Schmitt, M; Wade, T; Mumford, J; Otto, D. (2006). Neurosensory effects of chronic exposure to arsenic via drinking water in Inner Mongolia: I. signs, symptoms and pinprick testing. J Water Health 4: 29-37. <u>http://dx.doi.org/10.2166/wh.2005.022</u>
- Li, YN; Xi, MM; Guo, Y; Hai, CX; Yang, WL; Qin, XJ. (2014). NADPH oxidase-mitochondria axis-derived ROS mediate arsenite-induced HIF-1α stabilization by inhibiting prolyl hydroxylases activity. Toxicol Lett 224: 165-174. <u>http://dx.doi.org/10.1016/j.toxlet.2013.10.029</u>
- Liao, YT; Chen, CJ; Li, WF; Hsu, LY; Tsai, LY; Huang, YL; Sun, CW; Chen, WJ; Wang, SL. (2012). Elevated lactate dehydrogenase activity and increased cardiovascular mortality in the arsenic-endemic areas of southwestern Taiwan. Toxicol Appl Pharmacol. <u>http://dx.doi.org/10.1016/j.taap.2012.04.028</u>
- Liao, YT; Li, WF; Chen, CJ; Prineas, RJ; Chen, WJ; Zhang, ZM; Sun, CW; Wang, SL. (2009). Synergistic effect of polymorphisms of paraoxonase gene cluster and arsenic exposure on electrocardiogram abnormality. Toxicol Appl Pharmacol 239: 178-183. <u>http://dx.doi.org/10.1016/j.taap.2008.12.017</u>
- Liaw, J; Marshall, G; Yuan, Y; Ferreccio, C; Steinmaus, C; Smith, AH. (2008). Increased childhood liver cancer mortality and arsenic in drinking water in northern Chile. Cancer Epidemiol Biomarkers Prev 17: 1982-1987. http://dx.doi.org/10.1158/1055-9965.EPI-07-2816
- Lilis, R: Valciukas, JA; Malkin, J; Weber, JP. (1985). Effects of low-level lead and arsenic exposure on copper smelter workers. Arch Environ Health 40: 38-47. http://dx.doi.org/10.1080/00039896.1985.10545887
- Lin, HJ; Sung, TI; Chen, CY; Guo, HR. (2013). Arsenic levels in drinking water and mortality of liver cancer in Taiwan. J Hazard Mater. <u>http://dx.doi.org/10.1016/j.jhazmat.2012.12.049</u>
- Lin, W; Wang, SL; Wu, HJ; Chang, KH; Yeh, P; Chen, CJ; Guo, HR. (2008). Associations between arsenic in drinking water and pterygium in southwestern Taiwan. Environ Health Perspect 116: 952-955. http://dx.doi.org/10.1289/ehp.11111
- Lindberg, AL; Rahman, M; Persson, LA; Vahter, M. (2008). The risk of arsenic induced skin lesions in Bangladeshi men and women is affected by arsenic metabolism and the age at first exposure. Toxicol Appl Pharmacol 230: 9-16. <u>http://dx.doi.org/10.1016/j.taap.2008.02.001</u>
- Lindberg, AL; Sohel, N; Rahman, M; Persson, LA; Vahter, M. (2010). Impact of smoking and chewing tobacco on arsenic-induced skin lesions. Environ Health Perspect 118: 533-538. <u>http://dx.doi.org/10.1289/ehp.0900728</u>
- Ling, M; Li, Y; Xu, Y; Pang, Y; Shen, L; Jiang, R; Zhao, Y; Yang, X; Zhang, J; Zhou, J; Wang, X; Liu, Q. (2012). Regulation of miRNA-21 by reactive oxygen species-activated ERK/NF-κB in arsenite-induced cell transformation. Free Radic Biol Med 52: 1508-1518. <u>http://dx.doi.org/10.1016/j.freeradbiomed.2012.02.020</u>
- Lisabeth, LD; Ahn, HJ; Chen, JJ; Sealy-Jefferson, S; Burke, JF; Meliker, JR. (2010). Arsenic in drinking water and stroke hospitalizations in Michigan. Stroke 41: 2499-2504. http://dx.doi.org/10.1161/STROKEAHA.110.585281
- Liu-Mares, W; Mackinnon, JA; Sherman, R; Fleming, LE; Rocha-Lima, C; Hu, JJ; Lee, DJ. (2013). Pancreatic cancer clusters and arsenic-contaminated drinking water wells in Florida. BMC Cancer 13: 111. http://dx.doi.org/10.1186/1471-2407-13-111
- Liu, FF; Wang, JP; Zheng, YJ; Ng, JC. (2013). Biomarkers for the evaluation of population health status 16 years after the intervention of arsenic-contaminated groundwater in Xinjiang, China. J Hazard Mater 262: 1159-1166. <u>http://dx.doi.org/10.1016/j.jhazmat.2013.03.058</u>

- Liu, J; Liu, Y; Habeebu, SM; Waalkes, MP; Klaassen, CD. (2000). Chronic combined exposure to cadmium and arsenic exacerbates nephrotoxicity, particularly in metallothionein-I/II null mice. Toxicology 147: 157-166. http://dx.doi.org/10.1016/s0300-483x(00)00194-3
- Liu, S; Piao, F; Sun, X; Bai, L; Peng, Y; Zhong, Y; Ma, N; Sun, W. (2012). Arsenic-induced inhibition of hippocampal neurogenesis and its reversibility. Neurotoxicology 33: 1033-1039. http://dx.doi.org/10.1016/j.neuro.2012.04.020
- Lu, JN: Chen, CJ. (1991). Prevalence of hepatitis B surface antigen carrier status among residents in the endemic area of chronic arsenicism in Taiwan. Anticancer Res 11: 229-233.
- Lubin, JH; Moore, LE; Fraumeni, JF; Cantor, KP. (2008). Respiratory cancer and inhaled inorganic arsenic in copper smelters workers: A linear relationship with cumulative exposure that increases with concentration. Environ Health Perspect 116: 1661-1665. <u>http://dx.doi.org/10.1289/ehp.11515</u>
- Lubin, JH; Pottern, LM; Blot, WJ; Tokudome, S; Stone, BJ; Fraumeni, JF, Jr. (1981). Respiratory cancer among copper smelter workers: Recent mortality statistics. J Occup Med 23: 779-784. http://dx.doi.org/10.1097/00043764-198111000-00014
- Lubin, JH; Pottern, LM; Stone, BJ; Fraumeni, JF. (2000). Respiratory cancer in a cohort of copper smelter workers: Results from more than 50 years of follow-up. Am J Epidemiol 151: 554-565.
- Luo, J; Qiu, Z; Chen, J; Zhang, L; Liu, W; Tan, Y; Shu, W. (2013). Maternal and early life arsenite exposure impairs neurodevelopment and increases the expression of PSA-NCAM in hippocampus of rat offspring. Toxicology 311: 99-106. <u>http://dx.doi.org/10.1016/j.tox.2013.06.007</u>
- Luo, JH; Qiu, ZQ; Shu, WQ; Zhang, YY; Zhang, L; Chen, JA. (2009). Effects of arsenic exposure from drinking water on spatial memory, ultra-structures and NMDAR gene expression of hippocampus in rats. Toxicol Lett 184: 121-125. <u>http://dx.doi.org/10.1016/j.toxlet.2008.10.029</u>
- Luster, MI; Portier, C; Pait, DG; White, KL, Jr; Gennings, C; Munson, AE; Rosenthal, GJ. (1992). Risk assessment in immunotoxicology: I: Sensitivity and predictability of immune tests. Fundam Appl Toxicol 18: 200-210. <u>http://dx.doi.org/10.1016/0272-0590(92)90047-L</u>
- Mackenzie, CJ; Kyle, JH. (1984). Two examples of environmental problems occurring in remote sparsely populated areas. Ann Acad Med Singapore 13: 237-246.
- Maden, N; Singh, A; Smith, LS; Maharjan, M; Shrestha, S. (2011). Factors associated with arsenicosis and arsenic exposure status in Nepal: Implications from community based study. J Community Health 36: 76-82. http://dx.doi.org/10.1007/s10900-010-9282-1
- Maharjan, M; Shrestha, RR; Ahmad, SA; Watanabe, C; Ohtsuka, R. (2006). Prevalence of arsenicosis in terai, Nepal. J Health Popul Nutr 24: 246-252.
- Maharjan, M; Watanabe, C; Ahmad, SA; Ohtsuka, R. (2005). Arsenic contamination in drinking water and skin manifestations in lowland Nepal: The first community-based survey. Am J Trop Med Hyg 73: 477-479.
- Maharjan, M; Watanabe, C; Ahmad, SA; Umezaki, M; Ohtsuka, R. (2007). Mutual interaction between nutritional status and chronic arsenic toxicity due to groundwater contamination in an area of Terai, lowland Nepal. J Epidemiol Community Health 61: 389-394. <u>http://dx.doi.org/10.1136/jech.2005.045062</u>
- Maier, A; Schumann, BL; Chang, X; Talaska, G; Puga, A. (2002). Arsenic co-exposure potentiates benzo[a]pyrene genotoxicity. Mutat Res Genet Toxicol Environ Mutagen 517: 101-111. http://dx.doi.org/10.1016/S1383-5718(02)00057-8
- Maiti, S; Chattopadhyay, S; Deb, B; Samanta, T; Maji, G; Pan, B; Ghosh, A; Ghosh, D. (2012). Antioxidant and metabolic impairment result in DNA damage in arsenic-exposed individuals with severe dermatological manifestations in Eastern India. Environ Toxicol 27. <u>http://dx.doi.org/10.1002/tox.20647</u>

- Majhi, CR; Khan, S; Leo, MD; Manimaran, A; Sankar, P; Sarkar, SN. (2011). Effects of acetaminophen on reactive oxygen species and nitric oxide redox signaling in kidney of arsenic-exposed rats. Food Chem Toxicol 49: 974-982. http://dx.doi.org/10.1016/j.fct.2011.01.003
- Majumdar, KK; Guha Mazumder, DN; Ghose, N; Ghose, A; Lahiri, S. (2009). Systemic manifestations in chronic arsenic toxicity in absence of skin lesions in West Bengal. Indian J Med Res 129: 75-82.
- Majumdar, S; Chanda, S; Ganguli, B; Mazumder, DNG; Lahiri, S; Dasgupta, UB. (2010). Arsenic exposure induces genomic hypermethylation. Environ Toxicol 25: 315-318. <u>http://dx.doi.org/10.1002/tox.20497</u>
- Makris, KC; Christophi, CA; Paisi, M; Ettinger, AS. (2012). A preliminary assessment of low level arsenic exposure and diabetes mellitus in Cyprus. BMC Public Health. <u>http://dx.doi.org/10.1186/1471-2458-12-334</u>
- Mao, G; Guo, X; Kang, R; Ren, C; Yang, Z; Sun, Y; Zhang, C; Zhang, X; Zhang, H; Yang, W. (2010). Prevalence of disability in an arsenic exposure area in Inner Mongolia, China. Chemosphere 80: 978-981. http://dx.doi.org/10.1016/j.chemosphere.2010.05.040
- Markowski, VP; Reeve, EA; Onos, K; Assadollahzadeh, M; McKay, N. (2012). Effects of prenatal exposure to sodium arsenite on motor and food-motivated behaviors from birth to adulthood in C57BL6/J mice. Neurotoxicol Teratol 34: 221-231. http://dx.doi.org/10.1016/j.ntt.2012.01.001
- Marsh, GM; Esmen, NA; Buchanich, JM; Youk, AO. (2009). Mortality patterns among workers exposed to arsenic, cadmium, and other substances in a copper smelter. Am J Ind Med 52: 633-644. http://dx.doi.org/10.1002/ajim.20714
- Marshall, G; Ferreccio, C; Yuan, Y; Bates, MN; Steinmaus, C; Selvin, S; Liaw, J; Smith, AH. (2007). Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. J Natl Cancer Inst 99: 920-928. <u>http://dx.doi.org/10.1093/jnci/djm004</u>
- Marsit, CJ; Eddy, K; Kelsey, KT. (2006a). MicroRNA responses to cellular stress. Cancer Res 66: 10843-10848. http://dx.doi.org/10.1158/0008-5472.CAN-06-1894
- Marsit, CJ; Karagas, MR; Danaee, H; Liu, M; Andrew, A; Schned, A; Nelson, HH; Kelsey, KT. (2006b). Carcinogen exposure and gene promoter hypermethylation in bladder cancer. Carcinogenesis 27: 112-116. http://dx.doi.org/10.1093/carcin/bgi172
- Marsit, CJ; Karagas, MR; Schned, A; Kelsey, KT. (2006c). Carcinogen exposure and epigenetic silencing in bladder cancer. Ann N Y Acad Sci 1076: 810-821. <u>http://dx.doi.org/10.1196/annals.1371.031</u>
- Martinez-Finley, EJ; Ali, AMS; Allan, AM. (2009). Learning deficits in C57BL/6J mice following perinatal arsenic exposure: Consequence of lower corticosterone receptor levels. Pharmacol Biochem Behav 94: 271-277. http://dx.doi.org/10.1016/j.pbb.2009.09.006
- <u>Martinez-Finley, EJ; Goggin, SL; Labrecque, MT; Allan, AM.</u> (2011). Reduced expression of MAPK/ERK genes in perinatal arsenic-exposed offspring induced by glucocorticoid receptor deficits. Neurotoxicol Teratol 33: 530-537. <u>http://dx.doi.org/10.1016/j.ntt.2011.07.003</u>
- Martinez, EJ; Kolb, BL; Bell, A; Savage, DD; Allan, AM. (2008). Moderate perinatal arsenic exposure alters neuroendocrine markers associated with depression and increases depressive-like behaviors in adult mouse offspring. Neurotoxicology 29: 647-655. <u>http://dx.doi.org/10.1016/j.neuro.2008.05.004</u>
- Martínez, L; Jiménez, V; García-Sepúlveda, C; Ceballos, F; Delgado, JM; Niño-Moreno, P; Doniz, L; Saavedra-Alanís, V; Castillo, CG; Santoyo, ME; González-Amaro, R; Jiménez-Capdeville, ME. (2011). Impact of early developmental arsenic exposure on promotor CpG-island methylation of genes involved in neuronal plasticity. Neurochem Int 58: 574-581. <u>http://dx.doi.org/10.1016/j.neuint.2011.01.020</u>
- Mass, MJ; Wang, L. (1997). Arsenic alters cytosine methylation patterns of the promoter of the tumor suppressor gene p53 in human lung cells: a model for a mechanism of carcinogenesis. Mutat Res Rev Mutat Res 386: 263-277. http://dx.doi.org/10.1016/S1383-5742(97)00008-2

- Maull, EA; Ahsan, H; Edwards, J; Longnecker, MP; Navas-Acien, A; Pi, J; Silbergeld, EK; Styblo, M; Tseng, <u>CH; Thayer, KA; Loomis, D.</u> (2012). Evaluation of the association between arsenic and diabetes: A National Toxicology Program workshop review. Environ Health Perspect 120: 1658-1670. <u>http://dx.doi.org/10.1289/ehp.1104579</u>
- Mazumdar, S; Redmond, CK; Enterline, PE; Marsh, GM; Costantino, JP; Zhou, SY; Patwardhan, RN. (1989). Multistage modeling of lung cancer mortality among arsenic-exposed copper-smelter workers. Risk Anal 9: 551-563.
- Mazumder, DN; Majumdar, KK; Santra, SC; Kol, H; Vicheth, C. (2009). Occurrence of arsenicosis in a rural village of Cambodia. J Environ Sci Health A Tox Hazard Subst Environ Eng 44: 480-487. http://dx.doi.org/10.1080/10934520902719886
- Mazumder, DN; Steinmaus, C; Bhattacharya, P; von Ehrenstein, OS; Ghosh, N; Gotway, M; Sil, A; Balmes, JR; Haque, R; Hira-Smith, MM; Smith, AH. (2005). Bronchiectasis in persons with skin lesions resulting from arsenic in drinking water. Epidemiology 16: 760-765. <u>http://dx.doi.org/10.1097/01.ede.0000181637.10978.e6</u>
- Mazumder, DNG. (2003). Chronic arsenic toxicity: Clinical features, epidemiology, and treatment: Experience in West Bengal. J Environ Sci Health A Tox Hazard Subst Environ Eng 38: 141-163. <u>http://dx.doi.org/10.1081/ESE-120016886</u>
- Mazumder, DNG; Deb, D; Biswas, A; Saha, C; Nandy, A; Ganguly, B; Ghose, A; Bhattacharya, K; Majumdar, KK. (2013). Evaluation of dietary arsenic exposure and its biomarkers: A case study of West Bengal, India. J Environ Sci Health A Tox Hazard Subst Environ Eng 48: 896-904. http://dx.doi.org/10.1080/10934529.2013.761495
- Mazumder, DNG; Ghosh, A; Majumdar, KK; Ghosh, N; Saha, C; Mazumder, RNG. (2010). Arsenic contamination of ground water and its health impact on population of district of Nadia, West Bengal, India. Indian J Community Med 35: 331-338. <u>http://dx.doi.org/10.4103/0970-0218.66897</u>
- <u>Mazumder, DNG; Haque, R; Ghosh, N; De, BK; Santra, A; Chakraborti, D; Smith, AH.</u> (2000). Arsenic in drinking water and the prevalence of respiratory effects in West Bengal, India. Int J Epidemiol 29: 1047-1052. <u>http://dx.doi.org/10.1093/ije/29.6.1047</u>
- Mazumder, DNG; Haque, R; Ghosh, N; De, BK; Santra, A; Chakraborty, D; Smith, AH. (1998). Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal, India. Int J Epidemiol 27: 871-877. http://dx.doi.org/10.1093/ije/27.5.871
- McCarty, KM; Houseman, EA; Quamruzzaman, Q; Rahman, M; Mahiuddin, G; Smith, T; Ryan, L; Christiani, DC. (2006). The impact of diet and betel nut use on skin lesions associated with drinking-water arsenic in Pabna, Bangladesh. Environ Health Perspect 114: 334-340. <u>http://dx.doi.org/10.1289/ehp.7916</u>
- Mcconnell, ER. (2013) Systematic omics analysis review tool to support risk assessment. (Duke University, Durham, NC. Retrieved from http://dukespace.lib.duke.edu/dspace/handle/10161/6699
- Mcdonald, C; Hoque, R; Huda, N; Cherry, N. (2006). Prevalence of arsenic-related skin lesions in 53 widelyscattered villages of Bangladesh: an ecological survey. J Health Popul Nutr 24: 228-235.
- McDonald, C; Hoque, R; Huda, N; Cherry, N. (2007). Risk of arsenic-related skin lesions in Bangladeshi villages at relatively low exposure: A report from Gonoshasthaya Kendra. Bull World Health Organ 85: 668-673. http://dx.doi.org/10.1590/S0042-96862007000900011
- <u>Medeiros, M; Zheng, X; Novak, P; Wnek, SM; Chyan, V; Escudero-Lourdes, C; Gandolfi, AJ.</u> (2012). Global gene expression changes in human urothelial cells exposed to low-level monomethylarsonous acid. Toxicology 291: 102-112. <u>http://dx.doi.org/10.1016/j.tox.2011.11.002</u>
- Medrano, MA; Boix, R; Pastor-Barriuso, R; Palau, M; Damián, J; Ramis, R; Del Barrio, JL; Navas-Acien, A. (2010). Arsenic in public water supplies and cardiovascular mortality in Spain. Environ Res 110: 448-454. http://dx.doi.org/10.1016/j.envres.2009.10.002

These draft development materials are for review purposes only and do not constitute Agency policy.April 201411-28Draft: Do Not Cite or Quote

- Meeker, JD; Rossano, MG; Protas, B; Diamond, MP; Puscheck, E; Daly, D; Paneth, N; Wirth, JJ. (2009). Multiple metals predict prolactin and thyrotropin (TSH) levels in men. Environ Res 109: 869-873. http://dx.doi.org/10.1016/j.envres.2009.06.004
- <u>Mehranjani, MS; Taefi, R.</u> (2012). The protective role of vitamin E on the testicular tissue in rats exposed to sodium arsenite during the prenatal stage till sex maturity: A stereological analysis. Iranian Journal of Reproductive Medicine 10: 571-580.
- Meliker, JR; Slotnick, MJ; Avruskin, GA; Schottenfeld, D; Jacquez, GM; Wilson, ML; Goovaerts, P; Franzblau, A; Nriagu, JO. (2010). Lifetime exposure to arsenic in drinking water and bladder cancer: a population-based case-control study in Michigan, USA. Cancer Causes Control 21: 745-757. <u>http://dx.doi.org/10.1007/s10552-010-9503-z</u>
- Meliker, JR; Wahl, RL; Cameron, LL; Nriagu, JO. (2007). Arsenic in drinking water and cerebrovascular disease, diabetes mellitus, and kidney disease in Michigan: A standardized mortality ratio analysis. Environ Health 6: 4-15. <u>http://dx.doi.org/10.1186/1476-069X-6-4</u>
- Melkonian, S; Argos, M; Pierce, BL; Chen, Y; Islam, T; Ahmed, A; Syed, EH; Parvez, F; Graziano, J; Rathouz,
 PJ; Ahsan, H. (2011). A prospective study of the synergistic effects of arsenic exposure and smoking, sun exposure, fertilizer use, and pesticide use on risk of premalignant skin lesions in Bangladeshi men. Am J Epidemiol 173: 183-191. http://dx.doi.org/10.1093/aje/kwq357
- Michaud, DS; Wright, ME; Cantor, KP; Taylor, PR; Virtamo, J; Albanes, D. (2004). Arsenic concentrations in prediagnostic toenails and the risk of bladder cancer in a cohort study of male smokers. Am J Epidemiol 160: 853-859. <u>http://dx.doi.org/10.1093/aje/kwh295</u>
- Milton, AH; Hasan, Z; Rahman, A; Rahman, M. (2001). Chronic arsenic poisoning and respiratory effects in Bangladesh. J Occup Health 43: 136-140. <u>http://dx.doi.org/10.1539/joh.43.136</u>
- Milton, AH; Hasan, Z; Shahidullah, SM; Sharmin, S; Jakariya, MD; Rahman, M; Dear, K; Smith, W. (2004). Association between nutritional status and arsenicosis due to chronic arsenic exposure in Bangladesh. International Journal of Environmental Research 14: 99-108. <u>http://dx.doi.org/10.1080/0960312042000209516</u>
- Milton, AH; Rahman, M. (2002). Respiratory effects and arsenic contaminated well water in Bangladesh. Int J Environ Health Res 12: 175-179. <u>http://dx.doi.org/10.1080/09603120220129346</u>
- Milton, AH; Smith, W; Rahman, B; Hasan, Z; Kulsum, U; Dear, K; Rakibuddin, M; Ali, A. (2005). Chronic arsenic exposure and adverse pregnancy outcomes in Bangladesh. Epidemiology 16: 82-86. http://dx.doi.org/10.1097/01.ede.0000147105.94041.e6
- Mitra, AK; Bose, BK; Kabir, H; Das, BK; Hussain, M. (2002). Arsenic-related health problems among hospital patients in southern Bangladesh. J Health Popul Nutr 20: 198-204.
- Mitra, SR; Mazumder, DN; Basu, A; Block, G; Haque, R; Samanta, S; Ghosh, N; Smith, MM; von Ehrenstein, OS; Smith, AH. (2004). Nutritional factors and susceptibility to arsenic-caused skin lesions in West Bengal, India. Environ Health Perspect 112: 1104-1109. <u>http://dx.doi.org/10.1289/ehp.6841</u>
- Miyazaki, K: Watanabe, C; Mori, K; Yoshida, K; Ohtsuka, R. (2005). The effects of gestational arsenic exposure and dietary selenium deficiency on selenium and selenoenzymes in maternal and fetal tissues in mice. Toxicology 208: 357-365. <u>http://dx.doi.org/10.1016/j.tox.2004.11.030</u>
- Momeni, HR; Eskandari, N. (2012). Effect of vitamin E on sperm parameters and DNA integrity in sodium arsenite-treated rats. Iranian Journal of Reproductive Medicine 10: 249-256.
- Momeni, HR; Oryan, S; Eskandari, N. (2012). Effect of vitamin E on sperm number and testis histopathology of sodium arsenite-treated rats. Reprod Biol 12: 171-181. <u>http://dx.doi.org/10.1016/S1642-431X(12)60084-9</u>

- Moon, KA; Guallar, E; Umans, JG; Devereux, RB; Best, LG; Francesconi, KA; Goessler, W; Pollak, J; Silbergeld, EK; Howard, BV; Navas-Acien, A. (2013). Association between exposure to low to moderate arsenic levels and incident cardiovascular disease: A prospective cohort study. Ann Intern Med 159: 649-659. http://dx.doi.org/10.7326/0003-4819-159-10-201311190-00719
- Moore, LE; Lu, M; Smith, AH. (2002). Childhood cancer incidence and arsenic exposure in drinking water in Nevada. Arch Environ Health 57: 201-206. <u>http://dx.doi.org/10.1080/00039890209602937</u>
- Moore, SE; Prentice, AM; Wagatsuma, Y; Fulford, AJC; Collinson, AC; Raqib, R; Vahter, M; Persson, LA; Arifeen, SE. (2009). Early-life nutritional and environmental determinants of thymic size in infants born in rural Bangladesh. Acta Paediatr 98: 1168-1175. <u>http://dx.doi.org/10.1111/j.1651-2227.2009.01292.x</u>
- Morales, KH; Ryan, L; Kuo, TL; Wu, MM; Chen, CJ. (2000). Risk of internal cancers from arsenic in drinking water. Environ Health Perspect 108: 655-661. <u>http://dx.doi.org/10.1289/ehp.00108655</u>
- Mordukhovich, I; Wright, RO; Amarasiriwardena, C; Baja, E; Baccarelli, A; Suh, H; Sparrow, D; Vokonas, P; Schwartz, J. (2009). Association between low-level environmental arsenic exposure and QT interval duration in a general population study. Am J Epidemiol 170: 739-746. <u>http://dx.doi.org/10.1093/aje/kwp191</u>
- Morris, JS; Schmid, M; Newman, S; Scheuer, PJ; Sherlock, S. (1974). Arsenic and noncirrhotic portal hypertension. Gastroenterology 66: 86-94.
- Morton, W; Starr, G; Pohl, D; Stoner, J; Wagner, S; Weswig, P. (1976). Skin cancer and water arsenic in Lane County, Oregon. Cancer 37: 2523-2532. <u>http://dx.doi.org/10.1002/1097-0142(197605)37:5<2523::aid-cncr2820370545>3.0.co;2-b</u>
- Morzadec, C; Bouezzedine, F; Macoch, M; Fardel, O; Vernhet, L. (2012). Inorganic arsenic impairs proliferation and cytokine expression in human primary T lymphocytes. Toxicology 300: 46-56. <u>http://dx.doi.org/10.1016/j.tox.2012.05.025</u>
- Mosaferi, M; Yunesian, M; Dastgiri, S; Mesdaghinia, A; Esmailnasab, N. (2008). Prevalence of skin lesions and exposure to arsenic in drinking water in Iran. Sci Total Environ 390: 69-76. http://dx.doi.org/10.1016/j.scitotenv.2007.09.035
- Mostafa, M; Cherry, N. (2013). Arsenic in drinking water and renal cancers in rural Bangladesh. Occup Environ Med 70: 768-773. <u>http://dx.doi.org/10.1136/oemed-2013-101443</u>
- Mostafa, MG; McDonald, JC; Cherry, NM. (2008). Lung cancer and exposure to arsenic in rural Bangladesh. Occup Environ Med 65: 765-768. <u>http://dx.doi.org/10.1136/oem.2007.037895</u>
- Mouly, D; Jusot, JF; Bérat, B; Goria, S; Stempfelet, M; Beaudeau, P. (2012). [Study of the relation between chronic exposure to natural arsenic in drinking water and some cancers in Auvergne]. E R S 11: 294-297. http://dx.doi.org/10.1684/ers.2012.0548
- Mukherjee, SC; Saha, KC; Pati, S; Dutta, RN; Rahman, MM; Sengupta, MK; Ahamed, S; Lodh, D; Das, B;
 <u>Hossain, MA; Nayak, B; Mukherjee, A; Chakraborti, D; Dulta, SK; Palit, SK; Kaies, I; Barua, AK; Asad, KA.</u> (2005). Murshidabad--one of the nine groundwater arsenic-affected districts of West Bengal, India. Part II: Dermatological, neurological, and obstetric findings. Clin Toxicol 43: 835-848.
 <u>http://dx.doi.org/10.1080/15563650500357495</u>
- Mumford, JL; Wu, K; Xia, Y; Kwok, R; Yang, Z; Foster, J; Sanders, WE. (2007). Chronic arsenic exposure and cardiac repolarization abnormalities with QT interval prolongation in a population-based study. Environ Health Perspect 115: 690-694. <u>http://dx.doi.org/10.1289/ehp.9686</u>
- Myers, SL; Lobdell, DT; Liu, Z; Xia, Y; Ren, H; Li, Y; Kwok, RK; Mumford, JL; Mendola, P. (2010). Maternal drinking water arsenic exposure and perinatal outcomes in inner Mongolia, China. J Epidemiol Community Health 64: 325-329. <u>http://dx.doi.org/10.1136/jech.2008.084392</u>
- Nabi, AH; Rahman, MM; Islam, LN. (2005). Evaluation of biochemical changes in chronic arsenic poisoning among Bangladeshi patients. Int J Environ Res Public Health 2: 385-393.

- <u>Nafees, AA; Kazi, A; Fatmi, Z; Irfan, M; Ali, A; Kayama, F.</u> (2011). Lung function decrement with arsenic exposure to drinking groundwater along River Indus: a comparative cross-sectional study. Environ Geochem Health 33: 203-216. <u>http://dx.doi.org/10.1007/s10653-010-9333-7</u>
- <u>Nagaraja, TN; Desiraju, T.</u> (1993). Regional alterations in the levels of brain biogenic amines, glutamate, GABA, and GAD activity due to chronic consumption of inorganic arsenic in developing and adult rats. Bull Environ Contam Toxicol 50: 100-107. <u>http://dx.doi.org/10.1007/BF00196547</u>
- <u>Nagaraja, TN; Desiraju, T.</u> (1994). Effects on operant learning and brain acetylcholine esterase activity in rats following chronic inorganic arsenic intake. Hum Exp Toxicol 13: 353-356. <u>http://dx.doi.org/10.1177/096032719401300511</u>
- Nagymajtenyi, L; Selypes, A; Berencsi, G. (1985). Chromosomal aberrations and fetotoxic effects of atmospheric arsenic exposure in mice. J Appl Toxicol 5: 61-63. <u>http://dx.doi.org/10.1002/jat.2550050204</u>
- <u>Nahar, MN; Inaoka, T; Fujimura, M; Watanabe, C; Shimizu, H; Tasnim, S; Sultana, N.</u> (2014). Arsenic contamination in groundwater and its effects on adolescent intelligence and social competence in Bangladesh with special reference to daily drinking/cooking water intake. Environ Health Prev Med 19: 151-158. <u>http://dx.doi.org/10.1007/s12199-013-0369-z</u>
- Nain, S; Smits, JE. (2012). Pathological, immunological and biochemical markers of subchronic arsenic toxicity in rats. Environ Toxicol 27: 244-254. <u>http://dx.doi.org/10.1002/tox.20635</u>
- <u>Nakadaira, H; Endoh, K; Katagiri, M; Yamamoto, M.</u> (2002). Elevated mortality from lung cancer associated with arsenic exposure for a limited duration. J Occup Environ Med 44: 291-299. <u>http://dx.doi.org/10.1097/00043764-200203000-00017</u>
- <u>Navas-Acién, A; Pollán, M; Gustavsson, P; Plato, N.</u> (2002). Occupation, exposure to chemicals and risk of gliomas and meningiomas in Sweden. Am J Ind Med 42: 214-227. <u>http://dx.doi.org/10.1002/ajim.10107</u>
- <u>Navas-Acien, A; Silbergeld, EK; Pastor-Barriuso, R; Guallar, E.</u> (2008). Arsenic exposure and prevalence of type 2 diabetes in US adults. JAMA 300: 814-822. <u>http://dx.doi.org/10.1001/jama.300.7.814</u>
- <u>Navas-Acien, A; Silbergeld, EK; Pastor-Barriuso, R; Guallar, E.</u> (2009). Rejoinder: Arsenic exposure and prevalence of type 2 diabetes: updated findings from the National Health Nutrition and Examination Survey, 2003-2006 [Comment]. Epidemiology 20: 816-820. <u>http://dx.doi.org/10.1097/EDE.0b013e3181afef88</u>
- Nayak, AS; Lage, CR; Kim, CH. (2007). Effects of low concentrations of arsenic on the innate immune system of the zebrafish (Danio rerio). Toxicol Sci 98: 118-124. <u>http://dx.doi.org/10.1093/toxsci/kfm072</u>
- Ng, JC; Wang, JP; Zheng, B; Zhai, C; Maddalena, R; Liu, F; Moore, MR. (2005). Urinary porphyrins as biomarkers for arsenic exposure among susceptible populations in Guizhou province, China. Toxicol Appl Pharmacol 206: 176-184. <u>http://dx.doi.org/10.1016/j.taap.2004.09.021</u>
- Nizam, S; Kato, M; Yatsuya, H; Khalequzzaman, M; Ohnuma, S; Naito, H; Nakajima, T. (2013). Differences in urinary arsenic metabolites between diabetic and non-diabetic subjects in Bangladesh. Int J Environ Res Public Health 10: 1006-1019. <u>http://dx.doi.org/10.3390/ijerph10031006</u>
- Nohara, K; Baba, T; Murai, H; Kobayashi, Y; Suzuki, T; Tateishi, Y; Matsumoto, M; Nishimura, N; Sano, T. (2011). Global DNA methylation in the mouse liver is affected by methyl deficiency and arsenic in a sex-dependent manner. Arch Toxicol 85: 653-661. <u>http://dx.doi.org/10.1007/s00204-010-0611-z</u>

Nordberg, GF; Jin, T; Hong, F; Zhang, A; Buchet, JP; Bernard, A. (2005). Biomarkers of cadmium and arsenic interactions. Toxicol Appl Pharmacol 206: 191-197. <u>http://dx.doi.org/10.1016/j.taap.2004.11.028</u>

- <u>NRC</u> (National Research Council). (1999). Arsenic in drinking water. Washington, DC: National Academy Press. <u>http://www.nap.edu/catalog/6444.html</u>
- NRC (National Research Council). (2001). Arsenic in drinking water: 2001 update. Washington, DC: National Academy Press. <u>http://www.nap.edu/openbook.php?record_id=10194&page=R1</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 201411-31Draft: Do Not Cite or Quote

- NRC (National Research Council). (2009). Science and decisions: Advancing risk assessment. Washington, DC: National Academies Press. http://www.nap.edu/catalog/12209.html
- NRC (National Research Council). (2011). Review of the Environmental Protection Agency's draft IRIS assessment of formaldehyde. Washington, DC: National Academies Press. http://www.nap.edu/catalog/13142.html
- NRC (National Research Council). (2013). Critical aspects of EPA's IRIS assessment of inorganic arsenic: Interim report. Washington, D.C: The National Academies Press.
- NTP (National Toxicology Program). (2013). Draft OHAT approach for systematic review and evidence integration for literature-based health assessments February 2013. National Institute of Environmental Health Sciences, National Institutes of Health. http://ntp.niehs.nih.gov/ntp/ohat/evaluationprocess/draftohatapproach_february2013.pdf
- O'Bryant, SE; Edwards, M; Menon, CV; Gong, G; Barber, R. (2011). Long-term low-level arsenic exposure is associated with poorer neuropsychological functioning: a Project FRONTIER study. Int J Environ Res Public Health 8: 861-874. http://dx.doi.org/10.3390/ijerph8030861
- Odstrcil, ACA; Carino, SN; Ricci, JCD; Mandalunis, PM. (2010). Effect of arsenic in endochondral ossification of experimental animals. Exp Toxicol Pathol 62: 243-249. http://dx.doi.org/10.1016/j.etp.2009.04.001
- OECD (Organisation for Economic Co-operation and Development). (2013). Guidance document on developing and assessing adverse outcome pathways. (ENV/JM/MONO(2013)6). Paris, FR: Organisation for Economic Co-operations and Development. http://search.oecd.org/officialdocuments/displaydocumentpdf/?cote=env/jm/mono(2013)6&doclanguage=en

- Ojajarvi, IA; Partanen, TJ; Ahlbom, A; Boffetta, P; Hakulinen, T; Jourenkova, N; Kauppinen, TP; Kogevinas, M; Porta, M; Vainio, HU; Weiderpass, E; Wesseling, CH. (2000). Occupational exposures and pancreatic cancer: a meta-analysis. Occup Environ Med 57: 316-324. http://dx.doi.org/10.1136/oem.57.5.316
- Okoji, RS; Yu, RC; Maronpot, RR; Froines, JR. (2002). Sodium arsenite administration via drinking water increases genome-wide and Ha-ras DNA hypomethylation in methyl-deficient C57BL/6J mice. Carcinogenesis 23: 777-785. http://dx.doi.org/10.1093/carcin/23.5.777
- Omura, M; Tanaka, A; Hirata, M; Zhao, M; Makita, Y; Inoue, N; Gotoh, K; Ishinishi, N. (1996). Testicular toxicity of gallium arsenide, indium arsenide, and arsenic oxide in rats by repetitive intratracheal instillation. Fundam Appl Toxicol 32: 72-78. http://dx.doi.org/10.1006/faat.1996.0108
- Osorio-Yáñez, C; Ayllon-Vergara, JC; Aguilar-Madrid, G; Arreola-Mendoza, L; Hernández-Castellanos, E; Barrera-Hernández, A; De Vizcaya-Ruiz, A; Del Razo, LM. (2013). Carotid intima-media thickness and plasma asymmetric dimethylarginine in Mexican children exposed to inorganic arsenic. Environ Health Perspect 121: 1090-1096. http://dx.doi.org/10.1289/ehp.1205994
- Otto, D; He, L; Xia, Y; Li, Y; Wu, K; Ning, Z; Zhao, B; Hudnell, HK; Kwok, R; Mumford, J; Geller, A; Wade, T. (2006). Neurosensory effects of chronic exposure to arsenic via drinking water in Inner Mongolia: II. Vibrotactile and visual function. J Water Health 4: 39-48.
- Otto, D; Xia, Y; Li, Y; Wu, K; He, L; Telech, J; Hundell, H; Prah, J; Mumford, J; Wade, T. (2007). Neurosensory effects of chronic human exposure to arsenic associated with body burden and environmental measures. Hum Exp Toxicol 26: 169-177. http://dx.doi.org/10.1177/0960327107070561
- Owumi, SE; Odunola, OA; Gbadegesin, MA; Nulah, KL. (2013). Protective effect of Juglans nigra on sodium arsenite-induced toxicity in rats. Pharmacognosy Res 5: 183-188. http://dx.doi.org/10.4103/0974-8490.112425
- Palaneeswari, MS; Rajan, PMAS; Silambanan, S; Jothimalar, S. (2013). Blood arsenic and cadmium concentrations in end-stage renal disease patients who were on maintenance haemodialysis. Journal of Clinical and Diagnostic Research 7: 809-813. http://dx.doi.org/10.7860/JCDR/2013/5351.2945

- Pan, WC; Seow, WJ; Kile, ML; Hoffman, EB; Quamruzzaman, Q; Rahman, M; Mahiuddin, G; Mostofa, G; Lu, Q; Christiani, DC. (2013). Association of low to moderate levels of arsenic exposure with risk of type 2 diabetes in Bangladesh. Am J Epidemiol 178: 1563-1570. <u>http://dx.doi.org/10.1093/aje/kwt195</u>
- Pant, N; Kumar, R; Murthy, RC; Srivastava, SP. (2001). Male reproductive effect of arsenic in mice. Biometals 14: 113-117. http://dx.doi.org/10.1023/A:1016686113763
- Pant, N; Murthy, RC; Srivastava, SP. (2004). Male reproductive toxicity of sodium arsenite in mice. Hum Exp Toxicol 23: 399-403. <u>http://dx.doi.org/10.1191/0960327104ht4670a</u>
- Park, IC; Park, MJ; Woo, SH; Lee, HC; An, S; Gwak, HS; Lee, SH; Hong, SI; Bae, IJ; Seo, KM; Rhee, CH. (2003). Tetraarsenic oxide induces apoptosis in U937 leukemic cells through a reactive oxygen species-dependent pathway. Int J Oncol 23: 943-948.
- Park, JH; Lee, DW; Park, KS; Joung, H. (2014). Serum trace metal levels in Alzheimer's disease and normal control groups. Am J Alzheimers Dis Other Demen 29: 76-83. <u>http://dx.doi.org/10.1177/1533317513506778</u>
- Parvez, F; Chen, Y; Brandt-Rauf, PW; Bernard, A; Dumont, X; Slavkovich, V; Argos, M; D'Armiento, J; Foronjy, R; Hasan, MR; Eunus, HE; Graziano, JH; Ahsan, H. (2008). Nonmalignant respiratory effects of chronic arsenic exposure from drinking water among never-smokers in Bangladesh. Environ Health Perspect 116: 190-195. <u>http://dx.doi.org/10.1289/ehp.9507</u>
- Parvez, F; Chen, Y; Brandt-Rauf, PW; Slavkovich, V; Islam, T; Ahmed, A; Argos, M; Hassan, R; Yunus, M; Haque, SE; Balac, O; Graziano, JH; Ahsan, H. (2010). A prospective study of respiratory symptoms associated with chronic arsenic exposure in Bangladesh: findings from the Health Effects of Arsenic Longitudinal Study (HEALS). Thorax 65: 528-533. <u>http://dx.doi.org/10.1136/thx.2009.119347</u>
- Parvez, F; Chen, Y; Yunus, M; Olopade, C; Segers, S; Slavkovich, V; Argos, M; Hasan, R; Ahmed, A; Islam, T; Akter, MM; Graziano, JH; Ahsan, H. (2013). Arsenic exposure and impaired lung function. Findings from a large population-based prospective cohort study. Am J Respir Crit Care Med 188: 813-819. http://dx.doi.org/10.1164/rccm.201212-2282OC
- Parvez, F; Wasserman, GA; Factor-Litvak, P; Liu, X; Slavkovich, V; Siddique, AB; Sultana, R; Sultana, R; Islam, T; Levy, D; Mey, JL; van Geen, A; Khan, K; Kline, J; Ahsan, H; Graziano, JH. (2011). Arsenic exposure and motor function among children in Bangladesh. Environ Health Perspect 119: 1665-1670. <u>http://dx.doi.org/10.1289/ehp.1103548</u>
- Patra, PH; Bandyopadhyay, S; Kumar, R; Datta, BK; Maji, C; Biswas, S; Dash, JR; Sar, TK; Sarkar, S; Manna, SK; Chakraborty, AK; Mandal, TK. (2012). Quantitative imaging of arsenic and its species in goat following long term oral exposure. Food Chem Toxicol. <u>http://dx.doi.org/10.1016/j.fct.2012.03.072</u>
- Patterson, R; Vega, L; Trouba, K; Bortner, C; Germolec, D. (2004). Arsenic-induced alterations in the contact hypersensitivity response in Balb/c mice. Toxicol Appl Pharmacol 198: 434-443. http://dx.doi.org/10.1016/j.taap.2003.10.012
- Paul, DS; Hernandez-Zavala, A; Walton, FS; Adair, BM; Dedina, J; Matousek, T; Styblo, M. (2007). Examination of the effects of arsenic on glucose homeostasis in cell culture and animal studies: Development of a mouse model for arsenic-induced diabetes. Toxicol Appl Pharmacol 222: 305-314. <u>http://dx.doi.org/10.1016/j.taap.2007.01.010</u>
- Paul, S; Das, N; Bhattacharjee, P; Banerjee, M; Das, JK; Sarma, N; Sarkar, A; Bandyopadhyay, AK; Sau, TJ; Basu, S; Banerjee, S; Majumder, P; Giri, AK. (2013). Arsenic-induced toxicity and carcinogenicity: a twowave cross-sectional study in arsenicosis individuals in West Bengal, India. J Expo Sci Environ Epidemiol 23: 156-162. <u>http://dx.doi.org/10.1038/jes.2012.91</u>
- Pavittranon, S; Sripaoraya, K; Ramchuen, S; Kachamatch, S; Puttaprug, W; Pamornpusirikul, N; Thaicharuen, S; <u>Rujiwanitchkul, S; Walueng, W.</u> (2003). Laboratory case identification of arsenic in Ronpibul village, Thailand (2000-2002). J Environ Sci Health A Tox Hazard Subst Environ Eng 38: 213-221. <u>http://dx.doi.org/10.1081/ESE-120016890</u>

- Pei, Q; Ma, N; Zhang, J; Xu, W; Li, Y; Ma, Z; Li, Y; Tian, F; Zhang, W; Mu, J; Li, Y; Wang, D; Liu, H; Yang, M; Ma, C; Yun, F. (2013). Oxidative DNA damage of peripheral blood polymorphonuclear leukocytes, selectively induced by chronic arsenic exposure, is associated with extent of arsenic-related skin lesions. Toxicol Appl Pharmacol 266: 143-149. <u>http://dx.doi.org/10.1016/j.taap.2012.10.031</u>
- <u>Perry, K; Bowler, RG; Buckell, HM; Druett, HA; Schilling, RSF.</u> (1948). Studies in the incidence of cancer in a factory handling inorganic compounds of arsenic: II. Clinical and environmental investigations. Br J Ind Med 5: 6-15.
- Pesch, B; Ranft, U; Jakubis, P; Nieuwenhuijsen, MJ; Hergemöller, A; Unfried, K; Jakubis, M; Miskovic, P; Keegan, T; Group, atES. (2002). Environmental arsenic exposure from a coal-burning power plant as a potential risk factor for nonmelanoma skin carcinoma: results from a case-control study in the district of Prievidza, Slovakia. Am J Epidemiol 155: 798-809. <u>http://dx.doi.org/10.1093/aje/155.9.798</u>
- <u>Pesola, GR; Parvez, F; Chen, Y; Ahmed, A; Hasan, R; Ahsan, H.</u> (2012). Arsenic exposure from drinking water and dyspnoea risk in Araihazar, Bangladesh: a population-based study. Eur Respir J. <u>http://dx.doi.org/10.1183/09031936.00042611</u>
- Philipp, R; Hughes, AO; Robertson, MC; Mitchell, TF. (1983). Malignant melanoma incidence and association with arsenic. Bristol Med Chir J 98: 165-169.
- <u>Pi, J; Yamauchi, H; Kumagai, Y; Sun, G; Yoshida, T; Aikawa, H; Hopenhayn-Rich, C; Shimojo, N.</u> (2002). Evidence for induction of oxidative stress caused by chronic exposure of Chinese residents to arsenic contained in drinking water. Environ Health Perspect 110: 331-336.
- Pi, J; Yamauchi, H; Sun, G; Yoshida, T; Aikawa, H; Fujimoto, W; Iso, H; Cui, R; Waalkes, MP; Kumagai, Y. (2005). Vascular dysfunction in patients with chronic arsenosis can be reversed by reduction of arsenic exposure. Environ Health Perspect 113: 339-341. <u>http://dx.doi.org/10.1289/ehp.7471</u>
- Pierce, BL; Argos, M; Chen, Y; Melkonian, S; Parvez, F; Islam, T; Ahmed, A; Hasan, R; Rathouz, PJ; Ahsan, H. (2011). Arsenic exposure, dietary patterns, and skin lesion risk in Bangladesh: A prospective study. Am J Epidemiol 173: 345-354. <u>http://dx.doi.org/10.1093/aje/kwq366</u>
- Pilsner, JR; Hall, MN; Liu, X; Ilievski, V; Slavkovich, V; Levy, D; Factor-Litvak, P; Yunus, M; Rahman, M; Graziano, JH; Gamble, MV. (2012). Influence of prenatal arsenic exposure and newborn sex on global methylation of cord blood DNA. PLoS ONE 7: e37147. <u>http://dx.doi.org/10.1371/journal.pone.0037147</u>
- <u>Pilsner, JR; Liu, X; Ahsan, H; Ilievski, V; Slavkovich, V; Levy, D; Factor-Litvak, P; Graziano, JH; Gamble,</u> <u>MV.</u> (2007). Genomic methylation of peripheral blood leukocyte DNA: influences of arsenic and folate in Bangladeshi adults. Am J Clin Nutr 86: 1179-1186.
- <u>Pilsner, JR; Liu, X; Ahsan, H; Ilievski, V; Slavkovich, V; Levy, D; Factor-Litvak, P; Graziano, JH; Gamble, MV.</u> (2009). Folate deficiency, hyperhomocysteinemia, low urinary creatinine, and hypomethylation of leukocyte DNA are risk factors for arsenic-induced skin lesions. Environ Health Perspect 117: 254-260. <u>http://dx.doi.org/10.1289/ehp.11872</u>
- <u>Pineda, J; Herrera, A; Antonio, MT.</u> (2013). Comparison between hepatic and renal effects in rats treated with arsenic and/or antioxidants during gestation and lactation. J Trace Elem Med Biol 27: 236-241. <u>http://dx.doi.org/10.1016/j.jtemb.2012.12.006</u>
- Pinto, SS; Enterline, PE; Henderson, V; Varner, MO. (1977). Mortality experience in relation to a measured arsenic trioxide exposure. Environ Health Perspect 19: 127-130. <u>http://dx.doi.org/10.2307/3428462</u>
- Pinto, SS; Henderson, V; Enterline, PE. (1978). Mortality experience of arsenic-exposed workers. Arch Environ Health 33: 325-331.
- <u>Pinyayev, TS; Kohan, MJ; Herbin-Davis, K; Creed, JT; Thomas, DJ.</u> (2011). Preabsorptive metabolism of sodium arsenate by anaerobic microbiota of mouse cecum forms a variety of methylated and thiolated arsenicals. Chem Res Toxicol 24: 475-477. <u>http://dx.doi.org/10.1021/tx200040w</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 201411-34Draft: Do Not Cite or Quote

- Pollack, AZ; Louis, GM; Chen, Z; Peterson, CM; Sundaram, R; Croughan, MS; Sun, L; Hediger, ML; Stanford, JB; Varner, MW; Palmer, CD; Steuerwald, AJ; Parsons, PJ. (2013). Trace elements and endometriosis: The ENDO study. Reprod Toxicol 42: 41-48. <u>http://dx.doi.org/10.1016/j.reprotox.2013.05.009</u>
- Pou, SA; Osella, AR; Diaz, M, dP. (2011). Bladder cancer mortality trends and patterns in Córdoba, Argentina (19862006). Cancer Causes Control 22: 407-415. <u>http://dx.doi.org/10.1007/s10552-010-9711-6</u>
- Prins, GS. (2008). Endocrine disruptors and prostate cancer risk [Review]. Endocr Relat Cancer 15: 649-656. http://dx.doi.org/10.1677/ERC-08-0043
- Pu, YS; Yang, SM; Huang, YK; Chung, CJ; Huang, SK; Chiu, AW; Yang, MH; Chen, CJ; Hsueh, YM. (2007). Urinary arsenic profile affects the risk of urothelial carcinoma even at low arsenic exposure. Toxicol Appl Pharmacol 218: 99-106. <u>http://dx.doi.org/10.1016/j.taap.2006.09.021</u>

<u>Qin, XJ; Hudson, LG; Liu, W; Timmins, GS; Liu, KJ.</u> (2008). Low concentration of arsenite exacerbates UVRinduced DNA strand breaks by inhibiting PARP-1 activity. Toxicol Appl Pharmacol 232: 41-50. <u>http://dx.doi.org/10.1016/j.taap.2008.05.019</u>

- <u>Rager, JE; Bailey, KA; Smeester, L; Miller, SK; Parker, JS; Laine, JE; Drobná, Z; Currier, J; Douillet, C;</u> <u>Olshan, AF; Rubio-Andrade, M; Stýblo, M; García-Vargas, G; Fry, RC.</u> (2014). Prenatal arsenic exposure and the epigenome: Altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood. Environ Mol Mutagen 55: 196-208. <u>http://dx.doi.org/10.1002/em.21842</u>
- Rahman, A; Persson, LÅ; Nermell, B; El Arifeen, S; Ekström, EC; Smith, AH; Vahter, M. (2010). Arsenic exposure and risk of spontaneous abortion, stillbirth, and infant mortality. Epidemiology 21: 797-804. http://dx.doi.org/10.1097/EDE.0b013e3181f56a0d

<u>Rahman, A; Vahter, M; Ekström, EC; Persson, LA.</u> (2011). Arsenic exposure in pregnancy increases the risk of lower respiratory tract infection and diarrhea during infancy in Bangladesh. Environ Health Perspect 119: 719-724. <u>http://dx.doi.org/10.1289/ehp.1002265</u>

- Rahman, A; Vahter, M; Ekström, EC; Rahman, M; Golam Mustafa, AH; Wahed, MA; Yunus, M; Persson, LA. (2007). Association of arsenic exposure during pregnancy with fetal loss and infant death: A cohort study in Bangladesh. Am J Epidemiol 165: 1389-1396. <u>http://dx.doi.org/10.1093/aje/kwm025</u>
- Rahman, A; Vahter, M; Smith, AH; Nermell, B; Yunus, M; El Arifeen, S; Persson, LA; Ekström, EC. (2009). Arsenic exposure during pregnancy and size at birth: a prospective cohort study in Bangladesh. Am J Epidemiol 169: 304-312. <u>http://dx.doi.org/10.1093/aje/kwn332</u>
- Rahman, M; Axelson, A. (2001). Arsenic ingestion and health effects in Bangladesh: Epidemiological observations. In WR Chappell; CO Abernathy; RL Calderon (Eds.), Arsenic exposure and health effects IV (pp. 193-199). Amsterdam, The Netherlands: Elsevier Science.
- Rahman, M; Axelson, O. (1995). Diabetes mellitus and arsenic exposure: A second look at case-control data from a Swedish copper smelter. Occup Environ Med 52: 773-774. <u>http://dx.doi.org/10.1136/oem.52.11.773</u>
- Rahman, M; Sohel, N; Yunus, M; Chowdhury, ME; Hore, SK; Zaman, K; Bhuiya, A; Streatfield, PK. (2013). Increased childhood mortality and arsenic in drinking water in Matlab, Bangladesh: a population-based cohort study. PLoS ONE 8: e55014. <u>http://dx.doi.org/10.1371/journal.pone.0055014</u>
- Rahman, M; Tondel, M; Ahmad, SA; Axelson, O. (1998). Diabetes mellitus associated with arsenic exposure in Bangladesh. Am J Epidemiol 148: 198-203.
- Rahman, M; Tondel, M; Ahmad, SA; Chowdhury, IA; Faruquee, MH; Axelson, O. (1999a). Hypertension and arsenic exposure in Bangladesh. Hypertension 33: 74-78. <u>http://dx.doi.org/10.1161/01.HYP.33.1.74</u>

Rahman, M; Tondel, M; Chowdhury, IA; Axelson, O. (1999b). Relations between exposure to arsenic, skin lesions, and glucosuria. Occup Environ Med 56: 277-281. <u>http://dx.doi.org/10.1136/oem.56.4.277</u>

- Rahman, M; Vahter, M; Sohel, N; Yunus, M; Wahed, MA; Streatfield, PK; Ekström, EC; Persson, LA. (2006a). Arsenic exposure and age and sex-specific risk for skin lesions: A population-based case-referent study in Bangladesh. Environ Health Perspect 114: 1847-1852. <u>http://dx.doi.org/10.1289/ehp.9207</u>
- Rahman, M; Vahter, M; Wahed, MA; Sohel, N; Yunus, M; Streatfield, PK; El Arifeen, S; Bhuiya, A; Zaman, K; <u>Chowdhury, AM; Ekström, EC; Persson, LA.</u> (2006b). Prevalence of arsenic exposure and skin lesions. A population based survey in Matlab, Bangladesh. J Epidemiol Community Health 60: 242-248. <u>http://dx.doi.org/10.1136/jech.2005.040212</u>
- Rahman, M; Wingren, G; Axelson, O. (1996). Diabetes mellitus among Swedish art glass workers -- an effect of arsenic exposure? Scand J Work Environ Health 22: 146-149. <u>http://dx.doi.org/10.5271/sjweh.123</u>
- <u>Rahman, MM; Mandal, BK; Chowdhury, TR; Sengupta, MK; Chowdhury, UK; Lodh, D; Chanda, CR; Basu, GK; Mukherjee, SC; Saha, KC; Chakraborti, D.</u> (2003). Arsenic groundwater contamination and sufferings of people in North 24-Parganas, one of the nine arsenic affected districts of West Bengal, India. J Environ Sci Health A Tox Hazard Subst Environ Eng 38: 25-59. <u>http://dx.doi.org/10.1081/ESE-120016658</u>
- <u>Rahman, MM; Sengupta, MK; Ahamed, S; Chowdhury, UK; Hossain, MA; Das, B; Lodh, D; Saha, KC; Pati, S;</u>
 <u>Kaies, I; Barua, AK; Chakraborti, D.</u> (2005a). The magnitude of arsenic contamination in groundwater and its health effects to the inhabitants of the Jalangi--one of the 85 arsenic affected blocks in West Bengal, India. Sci Total Environ 338: 189-200. <u>http://dx.doi.org/10.1016/j.scitotenv.2004.06.022</u>
- <u>Rahman, MM; Sengupta, MK; Ahamed, S; Chowdhury, UK; Lodh, D; Hossain, A; Das, B; Roy, N; Saha, KC;</u> <u>Palit, SK; Chakraborti, D.</u> (2005b). Arsenic contamination of groundwater and its health impact on residents in a village in West Bengal, India. Bull World Health Organ 83: 49-57. <u>http://dx.doi.org//S0042-96862005000100014</u>
- <u>Rahman, MM; Sengupta, MK; Ahamed, S; Chowdhury, UK; Lodh, D; Hossain, MA; Das, B; Saha, KC; Kaies, I; Barua, AK; Chakraborti, D.</u> (2005c). Status of groundwater arsenic contamination and human suffering in a Gram Panchayet (cluster of villages) in Murshidabad, one of the nine arsenic affected districts in West Bengal, India. J Water Health 3: 283-296.
- <u>Ramanathan, K; Shila, S; Kumaran, S; Panneerselvam, C.</u> (2003). Protective role of ascorbic acid and alphatocopherol on arsenic-induced microsomal dysfunctions. Hum Exp Toxicol 22: 129-136. <u>http://dx.doi.org/10.1191/0960327103ht329oa</u>
- Ramirez, T; Brocher, J; Stopper, H; Hock, R. (2008). Sodium arsenite modulates histone acetylation, histone deacetylase activity and HMGN protein dynamics in human cells. Chromosoma 117: 147-157. http://dx.doi.org/10.1007/s00412-007-0133-5
- <u>Ramsey, KA; Bosco, A; Mckenna, KL; Carter, KW; Elliot, JG; Berry, LJ; Sly, PD; Larcombe, AN; Zosky, GR.</u> (2013a). In Utero Exposure to Arsenic Alters Lung Development and Genes Related to Immune and Mucociliary Function in Mice. Environ Health Perspect 121: 244-250. <u>http://dx.doi.org/10.1289/ehp.1205590</u>
- Ramsey, KA; Foong, RE; Sly, PD; Larcombe, AN; Zosky, GR. (2013b). Early life arsenic exposure and acute and long-term responses to influenza a infection in mice. Environ Health Perspect 121: 1187-1193. http://dx.doi.org/10.1289/ehp.1306748
- Ramsey, KA; Larcombe, AN; Sly, PD; Zosky, GR. (2013c). In utero exposure to low dose arsenic via drinking water impairs early life lung mechanics in mice. Pharmacol Toxicol 14: 13. <u>http://dx.doi.org/10.1186/2050-6511-14-13</u>
- <u>Ranft, U; Miskovic, P; Pesch, B; Jakubis, P; Fabianova, E; Keegan, T; Hergemöller, A; Jakubis, M;</u> <u>Nieuwenhuijsen, MJ; Group, ES.</u> (2003). Association between arsenic exposure from a coal-burning power plant and urinary arsenic concentrations in Prievidza District, Slovakia. Environ Health Perspect 111: 889-894. <u>http://dx.doi.org/10.1289/ehp.5838</u>
- Rao, MV; Avani, G. (2004). Arsenic induced free radical toxicity in brain of mice. Indian J Exp Biol 42: 495-498.

- <u>Raqib, R; Ahmed, S; Sultana, R; Wagatsuma, Y; Mondal, D; Hoque, AM; Nermell, B; Yunus, M; Roy, S;</u> <u>Persson, LA; Arifeen, SE; Moore, S; Vahter, M.</u> (2009). Effects of in utero arsenic exposure on child immunity and morbidity in rural Bangladesh. Toxicol Lett 185: 197-202. <u>http://dx.doi.org/10.1016/j.toxlet.2009.01.001</u>
- Reichard, JF; Puga, A. (2010). Effects of arsenic exposure on DNA methylation and epigenetic gene regulation [Review]. Epigenomics 2: 87-104. <u>http://dx.doi.org/10.2217/Epi.09.45</u>
- Reichard, JF; Schnekenburger, M; Puga, A. (2007). Long term low-dose arsenic exposure induces loss of DNA methylation. Biochem Biophys Res Commun 352: 188-192. <u>http://dx.doi.org/10.1016/j.bbrc.2006.11.001</u>
- Reilly, MP; Saca, JC; Hamilton, A; Solano, RF; Rivera, JR; Whitehouse-Innis, W; Parsons, JG; Dearth, RK. (2013). Prepubertal exposure to arsenic(III) suppresses circulating insulin-like growth factor-1 (IGF-1) delaying sexual maturation in female rats. Reprod Toxicol. <u>http://dx.doi.org/10.1016/j.reprotox.2013.09.005</u>
- Ren, X; McHale, CM; Skibola, CF; Smith, AH; Smith, MT; Zhang, L. (2011). An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis [Review]. Environ Health Perspect 119: 11-19. http://dx.doi.org/10.1289/ehp.1002114
- <u>Rhee, SY; Hwang, YC; Woo, JT; Chin, SO; Chon, S; Kim, YS.</u> (2013). Arsenic exposure and prevalence of diabetes mellitus in Korean adults. J Korean Med Sci 28: 861-868. <u>http://dx.doi.org/10.3346/jkms.2013.28.6.861</u>
- <u>Ríos, R; Santoyo, ME; Cruz, D; Delgado, JM; Zarazúa, S; Jiménez-Capdeville, ME.</u> (2012). Methyl group balance in brain and liver: Role of choline on increased S-adenosyl methionine (SAM) demand by chronic arsenic exposure. Toxicol Lett 215: 110-118. <u>http://dx.doi.org/10.1016/j.toxlet.2012.10.005</u>
- <u>Ríos, R; Zarazúa, S; Santoyo, ME; Sepúlveda-Saavedra, J; Romero-Díaz, V; Jiménez, V; Pérez-Severiano, F;</u> <u>Vidal-Cantú, G; Delgado, JM; Jiménez-Capdeville, ME.</u> (2009). Decreased nitric oxide markers and morphological changes in the brain of arsenic-exposed rats. Toxicology 261: 68-75. <u>http://dx.doi.org/10.1016/j.tox.2009.04.055</u>
- Rivara, MI; Cebrián, M; Corey, G; Hernández, M; Romieu, I. (1997). Cancer risk in an arsenic-contaminated area of Chile. Toxicol Ind Health 13: 321-338.
- Rocha-Amador, D; Navarro, ME; Carrizales, L; Morales, R; Calderon, J. (2007). Disminución de la inteligencia en niños y exposición al fl úor y arsénico en el agua potable. Cad Saude Publica 23: S579-587. http://dx.doi.org/10.1590/S0102-311X2007001600018
- Rodríguez, VM; Carrizales, L; Mendoza, MS; Fajardo, OR; Giordano, M. (2002). Effects of sodium arsenite exposure on development and behavior in the rat. Neurotoxicol Teratol 24: 743-750. http://dx.doi.org/10.1016/S0892-0362(02)00313-6
- Rogers, JM; Ellis-Hutchings, RG; Grey, BE; Zucker, RM; Norwood, J, Jr; Grace, CE; Gordon, CJ; Lau, C. (2014). Elevated blood pressure in offspring of rats exposed to diverse chemicals during pregnancy. Toxicol Sci 137: 436-446. <u>http://dx.doi.org/10.1093/toxsci/kft248</u>
- <u>Rosado, JL; Ronquillo, D; Kordas, K; Rojas, O; Alatorre, J; Lopez, P; Garcia-Vargas, G; Caamano, MDC;</u>
 <u>Cebrian, ME; Stoltzfus, RJ.</u> (2007). Arsenic exposure and cognitive performance in Mexican schoolchildren. Environ Health Perspect 115: 1371-1375. <u>http://dx.doi.org/10.1289/ehp.9961</u>
- Rosales-Castillo, JA; Acosta-Saavedra, LC; Torres, R; Ochoa-Fierro, J; Borja-Aburto, VH; Lopez-Carrillo, L; Garcia-Vargas, GG; Gurrola, GB; Cebrian, ME; Calderón-Aranda, ES. (2004). Arsenic exposure and human papillomavirus response in non-melanoma skin cancer Mexican patients: a pilot study. Int Arch Occup Environ Health 77: 418-423. http://dx.doi.org/10.1007/s00420-004-0527-0
- Rosenblatt, AE; Burnstein, KL. (2009). Inhibition of androgen receptor transcriptional activity as a novel mechanism of action of arsenic. Mol Endocrinol 23: 412-421. <u>http://dx.doi.org/10.1210/me.2008-0235</u>

- Rothman, KJ; Greenland, S. (1998). Modern epidemiology (2nd ed.). Philadelphia, PA: Lippincott, Williams, & Wilkins.
- <u>Roy, A; Kordas, K; Lopez, P; Rosado, JL; Cebrian, ME; Vargas, GG; Ronquillo, D; Stoltzfus, RJ.</u> (2011). Association between arsenic exposure and behavior among first-graders from Torreón, Mexico. Environ Res 111: 670-676. <u>http://dx.doi.org/10.1016/j.envres.2011.03.003</u>
- <u>SAB</u> (Science Advisory Board). (2007). Advisory on EPAs assessments of carcinogenic effects of organic and inorganic arsenic: A report of the US EPA Science Advisory Board. (EPA-SAB-07-008). Washington, D.C.: U.S. Environmental Protection Agency. <u>http://cfpub.epa.gov/ncea/iris_drafts/recordisplay.cfm?deid=219111</u>
- <u>SAB</u> (Science Advisory Board). (2011). Review Comments on EPAs Responsiveness to SAB 2007 Recommendations for the Revision of Cancer Assessment of Inorganic arsenic. (EPA-SAB-11-003). Washington, D.C.: U.S. Environmental Protection Agency. <u>http://yosemite.epa.gov/sab/sabproduct.nsf/9FCEE4E20ABD6EB48525784600791AC2/\$File/EPA-SAB-11-003-unsigned.pdf</u>
- <u>Saha, A; Chowdhury, MI; Nazim, M; Alam, MM; Ahmed, T; Hossain, MB; Hore, SK; Sultana, GN;</u>
 <u>Svennerholm, AM; Qadri, F.</u> (2013). Vaccine specific immune response to an inactivated oral cholera vaccine and EPI vaccines in a high and low arsenic area in Bangladeshi children. Vaccine 31: 647-652. http://dx.doi.org/10.1016/j.vaccine.2012.11.049

Saha, KC; Poddar, D. (1986). Further studies on chronic arsenical dermatosis. Indian J Dermatol 31: 29-33.

- Saha, KK; Engström, A; Hamadani, JD; Tofail, F; Rasmussen, KM; Vahter, M. (2012). Pre- and Postnatal Arsenic Exposure and Body Size to Two Years of Age: a Cohort Study in Rural Bangladesh. Environ Health Perspect. <u>http://dx.doi.org/10.1289/ehp.1003378</u>
- Sams, R; Wolf, DC; Ramasamy, S; Ohanian, E; Chen, J; Lowit, A. (2007). Workshop overview: Arsenic research and risk assessment. Toxicol Appl Pharmacol 222: 245-251. <u>http://dx.doi.org/10.1016/j.taap.2007.01.007</u>
- Sanchez-Soria, P; Broka, D; Monks, SL; Camenisch, TD. (2012). Chronic low-level arsenite exposure through drinking water increases blood pressure and promotes concentric left ventricular hypertrophy in female mice. Toxicol Pathol 40: 504-512. <u>http://dx.doi.org/10.1177/0192623311432297</u>
- Sankar, P; Telang, AG; Suresh, S; Kesavan, M; Kannan, K; Kalaivanan, R; Sarkar, SN. (2013). Immunomodulatory effects of nanocurcumin in arsenic-exposed rats. Int Immunopharmacol 17: 6570. http://dx.doi.org/10.1016/j.intimp.2013.05.019
- Santra, A; Das Gupta, J; De, BK; Roy, B; Guha Mazumder, DN. (1999). Hepatic manifestations in chronic arsenic toxicity. Indian J Gastroenterol 18: 152-155.
- Santra, A; Maiti, A; Das, S; Lahiri, S; Charkaborty, SK; Mazumder, DNG. (2000). Hepatic damage caused by chronic arsenic toxicity in experimental animals. J Toxicol Clin Toxicol 38: 395-405. http://dx.doi.org/10.1081/CLT-100100949
- Sarkar, M; Chaudhuri, GR; Chattopadhyay, A; Biswas, NM. (2003). Effect of sodium arsenite on spermatogenesis, plasma gonadotrophins and testosterone in rats. Asian J Androl 5: 27-31.
- Savabieasfahani, M; Lochmiller, RL; Rafferty, DP; Sinclair, JA. (1998). Sensitivity of wild cotton rats (Sigmodon hispidus) to the immunotoxic effects of low-level arsenic exposure. Arch Environ Contam Toxicol 34: 289-296.
- Sawada, N; Iwasaki, M; Inoue, M; Takachi, R; Sasazuki, S; Yamaji, T; Shimazu, T; Tsugane, S. (2013). Dietary arsenic intake and subsequent risk of cancer: The Japan Public Health Center-based (JPHC) prospective study. Cancer Causes Control 24: 1403-1415. <u>http://dx.doi.org/10.1007/s10552-013-0220-2</u>

- Schäfer, T; Heinrich, J; Wjst, M; Krause, C; Adam, H; Ring, J; Wichmann, HE. (1999). Indoor risk factors for atopic eczema in school children from East Germany. Environ Res 81: 151-158. http://dx.doi.org/10.1006/enrs.1999.3964
- Schoen, A; Beck, B; Sharma, R; Dube, E. (2004). Arsenic toxicity at low doses: epidemiological and mode of action considerations [Review]. Toxicol Appl Pharmacol 198: 253-267. http://dx.doi.org/10.1016/j.taap.2003.10.011
- Schulze, PC; Yoshioka, J; Takahashi, T; He, Z; King, GL; Lee, RT. (2004). Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. J Biol Chem 279: 30369-30374. http://dx.doi.org/10.1074/jbc.M400549200
- <u>Sciandrello, G; Caradonna, F; Mauro, M; Barbata, G.</u> (2004). Arsenic-induced DNA hypomethylation affects chromosomal instability in mammalian cells. Carcinogenesis 25: 413-417. <u>http://dx.doi.org/10.1093/carcin/bgh029</u>
- See, LC; Chiou, HY; Lee, JS; Hsueh, YM; Lin, SM; Tu, MC; Yang, ML; Chen, CJ. (2007). Dose-response relationship between ingested arsenic and cataracts among residents in Southwestern Taiwan. J Environ Sci Health A Tox Hazard Subst Environ Eng 42: 1843-1851. <u>http://dx.doi.org/10.1080/10934520701566884</u>
- Sen, J; Chaudhuri, AB. (2007). Effect of arsenic on the onset of menarcheal age. Bull Environ Contam Toxicol 79: 293-296. <u>http://dx.doi.org/10.1007/s00128-007-9206-7</u>
- Sen, J; Chaudhuri, ABD. (2008). Arsenic exposure through drinking water and its effect on pregnancy outcome in Bengali women. Arh Hig Rada Toksikol 59: 271-275. <u>http://dx.doi.org/10.2478/10004-1254-59-2008-1871</u>
- Sengupta, M; Bishayi, B. (2002). Effect of lead and arsenic on murine macrophage response. Drug Chem Toxicol 25: 459-472. <u>http://dx.doi.org/10.1081/DCT-120014796</u>
- Sengupta, M; Deb, I; Sharma, GD; Kar, KK. (2013). Human sperm and other seminal constituents in male infertile patients from arsenic and cadmium rich areas of Southern Assam. Sys Biol Reprod Med 59: 199-209. http://dx.doi.org/10.3109/19396368.2013.783143
- Sens, DA; Park, S; Gurel, V; Sens, MA; Garrett, SH; Somji, S. (2004). Inorganic cadmium- and arsenite-induced malignant transformation of human bladder urothelial cells. Toxicol Sci 79: 56-63. <u>http://dx.doi.org/10.1093/toxsci/kfh086</u>
- Seow, WJ; Pan, WC; Kile, ML; Baccarelli, AA; Quamruzzaman, Q; Rahman, M; Mahiuddin, G; Mostofa, G; Lin, X; Christiani, DC. (2012). Arsenic reduction in drinking water and improvement in skin lesions: a follow-up study in Bangladesh. Environ Health Perspect 120: 1733-1738. http://dx.doi.org/10.1289/ehp.1205381
- <u>Sharma, B; Sharma, PM.</u> (2013). Arsenic toxicity induced endothelial dysfunction and dementia:
 Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors. Toxicol
 Appl Pharmacol 273: 180-188. <u>http://dx.doi.org/10.1016/j.taap.2013.07.017</u>
- Shaw, JH. (1973). Relation of arsenic supplements to dental-caries and periodontal syndrome in experimental rodents. J Dent Res 52: 494-497.
- Shen, H; Xu, W; Zhang, J; Chen, M; Martin, FL; Xia, Y; Liu, L; Dong, S; Zhu, YG. (2013). Urinary metabolic biomarkers link oxidative stress indicators associated with general arsenic exposure to male infertility in a Han Chinese population. Environ Sci Technol 47: 88438851. <u>http://dx.doi.org/10.1021/es402025n</u>
- Sherwood, CL; Lantz, RC; Boitano, S. (2013). Chronic arsenic exposure in nanomolar concentrations compromises wound response and intercellular signaling in airway epithelial cells. Toxicol Sci 132: 222-234. <u>http://dx.doi.org/10.1093/toxsci/kfs331</u>

- Sherwood, CL; Lantz, RC; Burgess, JL; Boitano, S. (2011). Arsenic alters ATP-dependent Ca2+ signaling in human airway epithelial cell wound response. Toxicol Sci 121: 191-206. http://dx.doi.org/10.1093/toxsci/kfr044
- Shiue, I. (2013). Association of urinary arsenic, heavy metal, and phthalate concentrations with food allergy in adults: National Health and Nutrition Examination Survey, 2005-2006 [Letter]. Ann Allergy Asthma Immunol 111: 421-423. http://dx.doi.org/10.1016/j.anai.2013.08.006
- Simeonova, PP; Hulderman, T; Harki, D; Luster, MI. (2003). Arsenic exposure accelerates atherogenesis in apolipoprotein E(-/-) mice. Environ Health Perspect 111: 1744-1748. <u>http://dx.doi.org/10.1289/ehp.6332</u>
- Simeonova, PP; Wang, S; Hulderman, T; Luster, MI. (2002). c-Src-dependent activation of the epidermal growth factor receptor and mitogen-activated protein kinase pathway by arsenic. Role in carcinogenesis. J Biol Chem 277: 2945-2950. <u>http://dx.doi.org/10.1074/jbc.M109136200</u>
- <u>Simeonova, PP; Wang, S; Toriuma, W; Kommineni, V; Matheson, J; Unimye, N; Kayama, F; Harki, D; Ding,</u>
 <u>M; Vallyathan, V; Luster, MI.</u> (2000). Arsenic mediates cell proliferation and gene expression in the bladder epithelium: association with activating protein-1 transactivation. Cancer Res 60: 3445-3453.
- <u>Sińczuk-Walczak, H; Szymczak, M; Hałatek, T.</u> (2010). Effects of occupational exposure to arsenic on the nervous system: clinical and neurophysiological studies. Int J Occup Med Environ Health 23: 347-355. <u>http://dx.doi.org/10.2478/v10001-010-0034-3</u>
- Singh, N; Kumar, D; Lal, K; Raisuddin, S; Sahu, AP. (2010). Adverse health effects due to arsenic exposure: modification by dietary supplementation of jaggery in mice. Toxicol Appl Pharmacol 242: 247-255. http://dx.doi.org/10.1016/j.taap.2009.10.014
- Smeester, L; Rager, JE; Bailey, KA; Guan, X; Smith, N; García-Vargas, G; Del Razo, LM; Drobná, Z; Kelkar, <u>H; Stíyblo, M; Fry, RC.</u> (2011). Epigenetic changes in individuals with arsenicosis. Chem Res Toxicol 24: 165-167. <u>http://dx.doi.org/10.1021/tx1004419</u>
- Smith, AH; Arroyo, AP; Mazumder, DN; Kosnett, MJ; Hernandez, AL; Beeris, M; Smith, MM; Moore, LE. (2000). Arsenic-induced skin lesions among Atacameño people in Northern Chile despite good nutrition and centuries of exposure. Environ Health Perspect 108: 617-620.
- Smith, AH; Goycolea, M; Haque, R; Biggs, ML. (1998). Marked increase in bladder and lung cancer mortality in a region of Northern Chile due to arsenic in drinking water. Am J Epidemiol 147: 660-669.
- Smith, AH; Marshall, G; Liaw, J; Yuan, Y; Ferreccio, C; Steinmaus, C. (2012). Mortality in Young Adults following in Utero and Childhood Exposure to Arsenic in Drinking Water. Environ Health Perspect 120: 1527-1531. <u>http://dx.doi.org/10.1289/ehp.1104867</u>
- <u>Smith, AH; Marshall, G; Yuan, Y; Ferreccio, C; Liaw, J; von Ehrenstein, O; Steinmaus, C; Bates, MN; Selvin,</u>
 <u>S.</u> (2006). Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environ Health Perspect 114: 1293-1296. <u>http://dx.doi.org/10.1289/ehp.8832</u>
- Smith, AH; Marshall, G; Yuan, Y; Liaw, J; Ferreccio, C; Steinmaus, C. (2011). Evidence from Chile that arsenic in drinking water may increase mortality from pulmonary tuberculosis. Am J Epidemiol 173: 414-420. http://dx.doi.org/10.1093/aje/kwq383
- Smith, AH; Yunus, M; Khan, AF; Ercumen, A; Yuan, Y; Smith, MH; Liaw, J; Balmes, J; von Ehrenstein, O; Raqib, R; Kalman, D; Alam, DS; Streatfield, PK; Steinmaus, C. (2013). Chronic respiratory symptoms in children following in utero and early life exposure to arsenic in drinking water in Bangladesh. Int J Epidemiol 42: 1077-1086. <u>http://dx.doi.org/10.1093/ije/dyt120</u>
- Snow, ET; Sykora, P; Durham, TR; Klein, CB. (2005). Arsenic, mode of action at biologically plausible low doses: What are the implications for low dose cancer risk? [Review]. Toxicol Appl Pharmacol 207: S557-S564. <u>http://dx.doi.org/10.1016/j.taap.2005.01.048</u>

- Sobel, W; Bond, GG; Skowronski, BJ; Brownson, PJ; Cook, RR. (1987). A soft tissue sarcoma case control study in a large multi-chemical manufacturing facility. Chemosphere 16: 2095-2099. http://dx.doi.org/10.1016/0045-6535(87)90214-1
- Sohel, N; Persson, LA; Rahman, M; Streatfield, PK; Yunus, M; Ekström, EC; Vahter, M. (2009). Arsenic in drinking water and adult mortality: a population-based cohort study in rural Bangladesh. Epidemiology 20: 824-830. <u>http://dx.doi.org/10.1097/EDE.0b013e3181bb56ec</u>
- Sohel, N; Vahter, M; Ali, M; Rahman, M; Rahman, A; Streatfield, PK; Kanaroglou, PS; Persson, LA. (2010). Spatial patterns of fetal loss and infant death in an arsenic-affected area in Bangladesh. Int J Health Geogr 9: 53. http://dx.doi.org/10.1186/1476-072X-9-53
- Sorahan, T. (2009). Lung cancer mortality in arsenic-exposed workers from a cadmium recovery plant. Occup Med (Lond) 59: 264-266. <u>http://dx.doi.org/10.1093/occmed/kqp046</u>
- Soto-Peña, GA; Luna, AL; Acosta-Saavedra, L; Conde, P; López-Carrillo, L; Cebrián, ME; Bastida, M; Calderón-Aranda, ES; Vega, L. (2006). Assessment of lymphocyte subpopulations and cytokine secretion in children exposed to arsenic. FASEB J 20: 779-781. <u>http://dx.doi.org/10.1096/fj.05-4860fje</u>
- Soto-Peña, GA; Vega, L. (2008). Arsenic interferes with the signaling transduction pathway of T cell receptor activation by increasing basal and induced phosphorylation of Lck and Fyn in spleen cells. Toxicol Appl Pharmacol 230: 216-226. <u>http://dx.doi.org/10.1016/j.taap.2008.02.029</u>
- Soucy, NV; Mayka, D; Klei, LR; Nemec, AA; Bauer, JA; Barchowsky, A. (2005). Neovascularization and angiogenic gene expression following chronic arsenic exposure in mice. Cardiovasc Toxicol 5: 29-41. http://dx.doi.org/10.1385/ct:5:1:029
- <u>Srivastava, S; D'Souza, SE; Sen, U; States, JC.</u> (2007). In utero arsenic exposure induces early onset of atherosclerosis in ApoE-/- mice. Reprod Toxicol 23: 449-456. http://dx.doi.org/10.1016/j.reprotox.2007.01.005
- Srivastava, S; Vladykovskaya, EN; Haberzettl, P; Sithu, SD; D'Souza, SE; States, JC. (2009). Arsenic exacerbates atherosclerotic lesion formation and inflammation in ApoE-/- mice. Toxicol Appl Pharmacol 241: 90-100. <u>http://dx.doi.org/10.1016/j.taap.2009.08.004</u>
- Steinmaus, C; Yuan, Y; Bates, MN; Smith, AH. (2003). Case-control study of bladder cancer and drinking water arsenic in the western United States. Am J Epidemiol 158: 1193-1201. http://dx.doi.org/10.1093/aje/kwg281
- Steinmaus, C; Yuan, Y; Smith, AH. (2009). Low-level population exposure to inorganic arsenic in the United States and diabetes mellitus: a reanalysis. Epidemiology 20: 807-815. <u>http://dx.doi.org/10.1097/EDE.0b013e3181b0fd29</u>
- Steinmaus, CM; Ferreccio, C; Acevedo Romo, J; Yuan, Y; Cortes, S; Marshall, G; Moore, LE; Balmes, J. R.; Liaw, J; Golden, T; Smith, AH. (2013). Drinking water arsenic in northern Chile: high cancer risks 40 years after exposure cessation. Cancer Epidemiol Biomarkers Prev 22: 623-630. <u>http://dx.doi.org/10.1158/1055-9965.EPI-12-1190</u>
- Stępnik, M; Stetkiewicz, J; Krajnow, A; Domeradzka, K; Gradecka-Meesters, D; Arkusz, J; Stańczyk, M; Palus, J; Dziubałtowska, E; Sobala, W; Gromadzinska, J; Wasowicz, W; Rydzynski, K. (2009). Carcinogenic effect of arsenate in C57BL/6J/Han mice and its modulation by different dietary selenium status. Ecotoxicol Environ Saf 72: 2143-2152. <u>http://dx.doi.org/10.1016/j.ecoenv.2009.06.005</u>
- Stocks, P. (1960). On the relations between atmospheric pollution in urban and rural localities and mortality from cancer, bronchitis and pneumonia, with particular reference to 3:4 benzopyrene, beryllium, molybdenum, vanadium and arsenic. Br J Cancer 14: 397-418. <u>http://dx.doi.org/10.1038/bjc.1960.45</u>
- Stoica, A; Pentecost, E; Martin, MB. (2000). Effects of arsenite on estrogen receptor-alpha expression and activity in MCF-7 breast cancer cells. Endocrinology 141: 3595-3602.

- Straub, AC; Clark, KA; Ross, MA; Chandra, AG; Li, S; Gao, X; Pagano, PJ; Stolz, DB; Barchowsky, A. (2008). Arsenic-stimulated liver sinusoidal capillarization in mice requires NADPH oxidase-generated superoxide. J Clin Invest 118: 3980-3989. <u>http://dx.doi.org/10.1172/JCI35092</u>
- <u>Styblo, M; Del Razo, LM; Vega, L; Germolec, DR; LeCluyse, EL; Hamilton, GA; Reed, W; Wang, C; Cullen,</u>
 <u>WR; Thomas, DJ.</u> (2000). Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 74: 289-299. <u>http://dx.doi.org/10.1007/s002040000134</u>
- Su, CC; Lu, JL; Tsai, KY; Lian, I, eB. (2011). Reduction in arsenic intake from water has different impacts on lung cancer and bladder cancer in an arseniasis endemic area in Taiwan. Cancer Causes Control 22: 101-108. http://dx.doi.org/10.1007/s10552-010-9679-2
- Sung, TI: Wang, YJ; Chen, CY; Hung, TL; Guo, HR. (2012). Increased serum level of epidermal growth factor receptor in liver cancer patients and its association with exposure to arsenic. Sci Total Environ 424: 74-78. <u>http://dx.doi.org/10.1016/j.scitotenv.2012.02.079</u>
- Surdu, S; Fitzgerald, EF; Bloom, MS; Boscoe, FP; Carpenter, DO; Haase, RF; Gurzau, E; Rudnai, P; Koppova, K; Févotte, J; Vahter, M; Leonardi, G; Goessler, W; Kumar, R; Fletcher, T. (2013). Occupational exposure to arsenic and risk of non-melanoma skin cancer in a multinational European study. Int J Cancer. <u>http://dx.doi.org/10.1002/ijc.28216</u>
- Suzuki, S; Arnold, LL; Ohnishi, T; Cohen, SM. (2008). Effects of inorganic arsenic on the rat and mouse urinary bladder. Toxicol Sci 106: 350-363. <u>http://dx.doi.org/10.1093/toxsci/kfn184</u>
- Suzuki, S; Arnold, LL; Pennington, KL; Chen, B; Naranmandura, H; Le, XC; Cohen, SM. (2010). Dietary administration of sodium arsenite to rats: relations between dose and urinary concentrations of methylated and thio-metabolites and effects on the rat urinary bladder epithelium. Toxicol Appl Pharmacol 244: 99-105. http://dx.doi.org/10.1016/j.taap.2009.12.026
- Suzuki, S; Arnold, LL; Pennington, KL; Kakiuchi-Kiyota, S; Cohen, SM. (2009). Effects of co-administration of dietary sodium arsenite and an NADPH oxidase inhibitor on the rat bladder epithelium. Toxicology 261: 41-46. <u>http://dx.doi.org/10.1016/j.tox.2009.04.042</u>
- Suzuki, T; Nohara, K. (2013). Long-term arsenic exposure induces histone H3 Lys9 dimethylation without altering DNA methylation in the promoter region of p16(INK4a) and down-regulates its expression in the liver of mice. J Appl Toxicol 33: 951-958. <u>http://dx.doi.org/10.1002/jat.2765</u>
- Syed, EH; Melkonian, S; Poudel, KC; Yasuoka, J; Otsuka, K; Ahmed, A; Islam, T; Parvez, F; Slavkovich, V; Graziano, JH; Ahsan, H; Jimba, M. (2013). Arsenic exposure and oral cavity lesions in Bangladesh. J Occup Environ Med 55: 59-66. <u>http://dx.doi.org/10.1097/JOM.0b013e31826bb686</u>
- Syed, EH; Poudel, KC; Sakisaka, K; Yasuoka, J; Ahsan, H; Jimba, M. (2012). Quality of life and mental health status of arsenic-affected patients in a Bangladeshi population. J Health Popul Nutr 30: 262-269.
- <u>Takahashi, M; Barrett, JC; Tsutsui, T.</u> (2002). Transformation by inorganic arsenic compounds of normal Syrian hamster embryo cells into a neoplastic state in which they become anchorage-independent and cause tumors in newborn hamsters. Int J Cancer 99: 629-634. <u>http://dx.doi.org/10.1002/ijc.10407</u>
- Tao, S; Zheng, Y, i; Lau, A; Jaramillo, MC; Chau, BT; Lantz, RC; Wong, P, akK; Wondrak, GT; Zhang, DD. (2013). Tanshinone I Activates the Nrf2-Dependent Antioxidant Response and Protects Against As(III)-Induced Lung Inflammation In Vitro and In Vivo. Antioxid Redox Signal 19: 1647-1661. <u>http://dx.doi.org/10.1089/ars.2012.5117</u>
- <u>Taylor, PR; Qiao, YL; Schatzkin, A; Yao, SX; Lubin, J; Mao, BL; Rao, JY; McAdams, M; Xuan, XZ; Li, JY.</u> (1989). Relation of arsenic exposure to lung cancer among tin miners in Yunnan Province, China. Br J Ind Med 46: 881-886.

- <u>'T Mannetje, A; Bencko, V; Brennan, P; Zaridze, D; Szeszenia-Dabrowska, N; Rudnai, P; Lissowska, J;</u> <u>Fabiánová, E; Cassidy, A; Mates, D; Foretova, L; Janout, V; Fevotte, J; Fletcher, T; Boffetta, P.</u> (2011). Occupational exposure to metal compounds and lung cancer. Results from a multi-center case-control study in Central/Eastern Europe and UK. Cancer Causes Control 22: 1669-1680. <u>http://dx.doi.org/10.1007/s10552-011-9843-3</u>
- Tofail, F; Vahter, M; Hamadani, JD; Nermell, B; Huda, SN; Yunus, M; Rahman, M; Grantham-McGregor, SM. (2009). Effect of arsenic exposure during pregnancy on infant development at 7 months in rural Matlab, Bangladesh. Environ Health Perspect 117: 288-293. <u>http://dx.doi.org/10.1289/ehp.11670</u>
- Tokar, EJ; Benbrahim-Tallaa, L; Ward, JM; Lunn, R; Sams, RL; Waalkes, MP. (2010a). Cancer in experimental animals exposed to arsenic and arsenic compounds [Review]. Crit Rev Toxicol 40: 912-927. http://dx.doi.org/10.3109/10408444.2010.506641
- <u>Tokar, EJ; Diwan, BA; Waalkes, MP.</u> (2010b). Arsenic exposure in utero and nonepidermal proliferative response in adulthood in Tg.AC mice. Int J Toxicol 29: 291-296. <u>http://dx.doi.org/10.1177/1091581810362804</u>
- Tokar, EJ; Diwan, BA; Waalkes, MP. (2012). Renal, hepatic, pulmonary and adrenal tumors induced by prenatal inorganic arsenic followed by dimethylarsinic acid in adulthood in CD1 mice. Toxicol Lett 209: 179-185. http://dx.doi.org/10.1016/j.toxlet.2011.12.016
- Tokar, EJ; Diwan, BA; Ward, JM; Delker, DA; Waalkes, MP. (2011). Carcinogenic effects of "whole-life" exposure to inorganic arsenic in CD1 mice. Toxicol Sci 119: 73-83. <u>http://dx.doi.org/10.1093/toxsci/kfq315</u>
- Tondel, M; Rahman, M; Magnuson, A; Chowdhury, IA; Faruquee, MH; Ahmad, SA. (1999). The relationship of arsenic levels in drinking water and the prevalence rate of skin lesions in Bangladesh. Environ Health Perspect 107: 727-729. <u>http://dx.doi.org/10.2307/3434658</u>
- <u>Tsai, SM; Wang, TN; Ko, YC.</u> (1998). Cancer mortality trends in a blackfoot disease endemic community of Taiwan following water source replacement. J Toxicol Environ Health A 55: 389-404. <u>http://dx.doi.org/10.1080/009841098158322</u>
- Tsai, SM; Wang, TN; Ko, YC. (1999). Mortality for certain diseases in areas with high levels of arsenic in drinking water. Arch Environ Health 54: 186-193. <u>http://dx.doi.org/10.1080/00039899909602258</u>
- <u>Tsai, SY; Chou, HY; The, HW; Chen, CM; Chen, CJ.</u> (2003). The effects of chronic arsenic exposure from drinking water on the neurobehavioral development in adolescence. Neurotoxicology 24: 747-753. http://dx.doi.org/10.1016/S0161-813X(03)00029-9

<u>Tsang, V; Fry, RC; Niculescu, MD; Rager, JE; Saunders, J; Paul, DS; Zeisel, SH; Waalkes, MP; Stýblo, M;</u> <u>Drobná, Z.</u> (2012). The epigenetic effects of a high prenatal folate intake in male mouse fetuses exposed in utero to arsenic. Toxicol Appl Pharmacol 264: 439-450. <u>http://dx.doi.org/10.1016/j.taap.2012.08.022</u>

- <u>Tseng, CH.</u> (2003). Abnormal current perception thresholds measured by neurometer among residents in blackfoot disease-hyperendemic villages in Taiwan. Toxicol Lett 146: 27-36. <u>http://dx.doi.org/10.1016/j.toxlet.2003.08.007</u>
- <u>Tseng, CH; Chong, CK; Chen, CJ; Tai, TY.</u> (1996). Dose-response relationship between peripheral vascular disease and ingested inorganic arsenic among residents in blackfoot disease endemic villages in Taiwan. Atherosclerosis 120: 125-133. <u>http://dx.doi.org/10.1016/0021-9150(95)05693-9</u>
- Tseng, CH; Chong, CK; Chen, CJ; Tai, TY. (1997). Lipid profile and peripheral vascular disease in arseniasishyperendemic villages in Taiwan. Angiology 48: 321-335. <u>http://dx.doi.org/10.1177/000331979704800405</u>

<u>Tseng, CH; Chong, CK; Tseng, CP; Hsueh, YM; Chiou, HY; Tseng, CC; Chen, CJ.</u> (2003). Long-term arsenic exposure and ischemic heart disease in arseniasis-hyperendemic villages in Taiwan. Toxicol Lett 137: 15-21. http://dx.doi.org/10.1016/S0378-4274(02)00377-6

- <u>Tseng, CH; Huang, YK; Huang, YL; Chung, CJ; Yang, MH; Chen, CJ; Hsueh, YM.</u> (2005). Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan. Toxicol Appl Pharmacol 206: 299-308. <u>http://dx.doi.org/10.1016/j.taap.2004.11.022</u>
- <u>Tseng, CH; Tai, TY; Chong, CK; Tseng, CP; Lai, MS; Lin, BJ; Chiou, HY; Hsueh, YM; Hsu, KH; Chen, CJ.</u> (2000). Long-term arsenic exposure and incidence of non-insulin-dependent diabetes mellitus: a cohort study in arseniasis-hyperendemic villages in Taiwan. Environ Health Perspect 108: 847-851. <u>http://dx.doi.org/10.1289/ehp.00108847</u>
- <u>Tseng, HP; Wang, YH; Wu, MM; The, HW; Chiou, HY; Chen, CJ.</u> (2006). Association between chronic exposure to arsenic and slow nerve conduction velocity among adolescents in Taiwan. J Health Popul Nutr 24: 182-189.
- Tseng, WP. (1977). Effects and dose-response relationships of skin cancer and blackfoot disease with arsenic. Environ Health Perspect 19: 109-119. <u>http://dx.doi.org/10.2307/3428460</u>
- Tseng, WP. (1989). Blackfoot disease in Taiwan: A 30-year follow-up study. Angiology 40: 547-558. http://dx.doi.org/10.1177/000331978904000606
- Tseng, WP; Chu, HM; How, SW; Fong, JM; Lin, CS; Yeh, S. (1968). Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J Natl Cancer Inst 40: 453-463.
- Tsuda, T; Babazono, A; Yamamoto, E; Kurumatani, N; Mino, Y; Ogawa, T; Kishi, Y; Aoyama, H. (1995). Ingested arsenic and internal cancer: A historical cohort study followed for 33 years. Am J Epidemiol 141: 198-209.
- <u>Tsuda, T; Yamamoto, E; Babazono, A; Mino, Y; Kishi, Y; Kurumatani, N; Ogawa, T; Aoyama, H.</u> (1994). Comparisons of survival time estimates for Niigata Prefecture (Japan) residents exposed to ingested arsenic. Applied Organometallic Chemistry 8: 237-244. <u>http://dx.doi.org/10.1002/aoc.590080313</u>
- U.S. Congress. (2011). Consolidated Appropriations Act, 2012. (Pub. L. No. 112-74; 125 STAT. 786). 112th U.S. Congress. <u>http://www.gpo.gov/fdsys/pkg/PLAW-112pub174/pdf/PLAW-112pub174.pdf</u>
- <u>U.S. EPA</u> (U.S. Environmental Protection Agency). (1998). Health effects test guidelines OPPTS 870.7800 immunotoxicity. (EPA 712-C-98-351). Washington, DC: Prevention, Pesticides and Toxic Substances, U.S. Environmental Protection Agency.
 <u>http://www.epa.gov/ocspp/pubs/frs/publications/Test_Guidelines/series870.htm</u>
- U.S. EPA (U.S. Environmental Protection Agency). (2005). Guidelines for carcinogen risk assessment. (EPA/630/P-03/001F). Washington, DC: U.S. Environmental Protection Agency, Risk Assessment Forum. http://www.epa.gov/cancerguidelines/
- U.S. EPA (U.S. Environmental Protection Agency). (2006). Revised re-registration eligibility decision document for MSMA, DSMA, CAMA, and cacodylic acid [EPA Report]. (EPA/738-R-06-021). Washington, DC.
- <u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2010). IRIS Toxicological review of inorganic arsenic (cancer) external review draft. (EPA/635/R-10/001). Washington, DC. <u>http://cfpub.epa.gov/ncea/iris_drafts/recordisplay.cfm?deid=219111</u>
- <u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2012). Benchmark dose technical guidance. (EPA/100/R-12/001). Washington, DC: Risk Assessment Forum. <u>http://www.epa.gov/raf/publications/pdfs/benchmark_dose_guidance.pdf</u>
- <u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2013). Integrated science assessment for lead [EPA Report]. (EPA/600/R-10/075F). Research Triangle Park, NC. http://ofmpub.epa.gov/eims/eimscomm.getfile?p_download_id=514513
- Valentine, JL; Bennett, RG; Borok, ME; Faraji, B. (1991). Environmental arsenic and skin toxicity. In B Molčilović (Ed.), Trace elements in man and animals 7 (pp. 383-384). Zagreb, Yugoslavia: Institute for Medical Research and Occupational Health, University of Zagreb.

- Valentine, JL; He, SY; Reisbord, LS; Lachenbruch, PA. (1992). Health response by questionnaire in arsenicexposed populations. J Clin Epidemiol 45: 487-494. <u>http://dx.doi.org/10.1016/0895-4356(92)90097-7</u>
- <u>Valenzuela, OL; Borja-Aburto, VH; Garcia-Vargas, GG; Cruz-Gonzalez, MB; Garcia-Montalvo, EA; Calderon-Aranda, ES; Del Razo, LM.</u> (2005). Urinary trivalent methylated arsenic species in a population chronically exposed to inorganic arsenic. Environ Health Perspect 113: 250-254. <u>http://dx.doi.org/10.1289/ehp.7519</u>
- Vall, O; Gómez-Culebras, M; Garcia-Algar, O; Joya, X; Velez, D; Rodríguez-Carrasco, E; Puig, C. (2012). Assessment of prenatal exposure to arsenic in Tenerife Island. PLoS ONE 7: e50463. <u>http://dx.doi.org/10.1371/journal.pone.0050463</u>
- Varsányi, I; Fodré, Z; Bartha, A. (1991). Arsenic in drinking water and mortality in the Southern Great Plain, Hungary. Environ Geochem Health 13: 14-22. <u>http://dx.doi.org/10.1007/BF01783491</u>
- <u>Vega, L; Ostrosky-Wegman, P; Fortoul, TI; Díaz, C; Madrid, V; Saavedra, R.</u> (1999). Sodium arsenite reduces proliferation of human activated T-cells by inhibition of the secretion of interleukin-2. Immunopharmacol Immunotoxicol 21: 203-220. <u>http://dx.doi.org/10.3109/08923979909052758</u>
- Von Ehrenstein, OS; Guha Mazumder, DN; Hira-Smith, M; Ghosh, N; Yuan, Y; Windham, G; Ghosh, A; Haque, R; Lahiri, S; Kalman, D; Das, S; Smith, AH. (2006). Pregnancy outcomes, infant mortality, and arsenic in drinking water in West Bengal, India. Am J Epidemiol 163: 662-669. http://dx.doi.org/10.1093/aje/kwj089
- Von Ehrenstein, OS; Mazumder, DN; Yuan, Y; Samanta, S; Balmes, J; Sil, A; Ghosh, N; Hira-Smith, M; Haque, <u>R; Purushothamam, R; Lahiri, S; Das, S; Smith, AH.</u> (2005). Decrements in lung function related to arsenic in drinking water in West Bengal, India. Am J Epidemiol 162: 533-541. <u>http://dx.doi.org/10.1093/aje/kwi236</u>
- von Ehrenstein, OS; Poddar, S; Yuan, Y; Mazumder, DG; Eskenazi, B; Basu, A; Hira-Smith, M; Ghosh, N; Lahiri, S; Haque, R; Ghosh, A; Kalman, D; Das, S; Smith, AH. (2007). Children's intellectual function in relation to arsenic exposure. Epidemiology 18: 44-51. http://dx.doi.org/10.1097/01.ede.0000248900.65613.a9
- Waalkes, M; Liu, J; Germolec, D; Trempus, C; Cannon, R; Tokar, E; Tennant, R; Ward, J; Diwan, B. (2008). Arsenic exposure in utero exacerbates skin cancer response in adulthood with contemporaneous distortion of tumor stem cell dynamics. Cancer Res 68: 8278-8285. <u>http://dx.doi.org/10.1158/0008-5472.CAN-08-2099</u>
- Waalkes, MP; Liu, J; Chen, H; Xie, Y; Achanzar, WE; Zhou, YS; Cheng, ML; Diwan, BA. (2004a). Estrogen signaling in livers of male mice with hepatocellular carcinoma induced by exposure to arsenic in utero. J Natl Cancer Inst 96: 466-474. <u>http://dx.doi.org/10.1093/jnci/djh070</u>
- Waalkes, MP; Liu, J; Ward, JM; Diwan, BA. (2006a). Enhanced urinary bladder and liver carcinogenesis in male CD1 mice exposed to transplacental inorganic arsenic and postnatal diethylstilbestrol or tamoxifen. Toxicol Appl Pharmacol 215: 295-305. <u>http://dx.doi.org/10.1016/j.taap.2006.03.010</u>
- Waalkes, MP; Liu, J; Ward, JM; Powell, DA; Diwan, BA. (2006b). Urogenital carcinogenesis in female CD1 mice induced by in utero arsenic exposure is exacerbated by postnatal diethylstilbestrol treatment. Cancer Res 66: 1337-1345. <u>http://dx.doi.org/10.1158/0008-5472.CAN-05-3530</u>
- <u>Waalkes, MP; Ward, JM; Diwan, BA.</u> (2004b). Induction of tumors of the liver, lung, ovary and adrenal in adult mice after brief maternal gestational exposure to inorganic arsenic: Promotional effects of postnatal phorbol ester exposure on hepatic and pulmonary, but not dermal cancers. Carcinogenesis 25: 133-141. <u>http://dx.doi.org/10.1093/carcin/bgg181</u>
- <u>Waalkes, MP; Ward, JM; Liu, J; Diwan, BA.</u> (2003). Transplacental carcinogenicity of inorganic arsenic in the drinking water: Induction of hepatic, ovarian, pulmonary, and adrenal tumors in mice. Toxicol Appl Pharmacol 186: 7-17. <u>http://dx.doi.org/10.1016/S0041-008X(02)00022-4</u>
- Wade, TJ; Xia, Y; Wu, K; Li, Y; Ning, Z; Le, XC; Lu, X; Feng, Y; He, X; Mumford, JL. (2009). Increased mortality associated with well-water arsenic exposure in Inner Mongolia, China. Int J Environ Res Public Health 6: 1107-1123. <u>http://dx.doi.org/10.3390/ijerph6031107</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 201411-45Draft: Do Not Cite or Quote

- Wadhwa, SK; Kazi, TG; Chandio, AA; Afridi, HI; Kolachi, NF; Khan, S; Kandhro, GA; Nasreen, S; Shah, AQ; Baig, JA. (2011a). Comparative study of liver cancer patients in arsenic exposed and non-exposed areas of Pakistan. Biol Trace Elem Res 144: 86-96. <u>http://dx.doi.org/10.1007/s12011-011-9036-7</u>
- Wadhwa, SK; Kazi, TG; Kolachi, NF; Afridi, HI; Khan, S; Chandio, AA; Shah, AQ; Kandhro, GA; Nasreen, S. (2011b). Case-control study of male cancer patients exposed to arsenic-contaminated drinking water and tobacco smoke with relation to non-exposed cancer patients. Hum Exp Toxicol 30: 2013-2022. http://dx.doi.org/10.1177/0960327111408154
- Wang, CH; Chen, CL; Hsiao, CK; Chiang, FT; Hsu, LI; Chiou, HY; Hsueh, YM; Wu, MM; Chen, CJ. (2009a). Increased risk of QT prolongation associated with atherosclerotic diseases in arseniasis-endemic area in southwestern coast of Taiwan. Toxicol Appl Pharmacol 239: 320-324. http://dx.doi.org/10.1016/j.taap.2009.06.017
- Wang, CH; Chen, CL; Hsiao, CK; Chiang, FT; Hsu, LI; Chiou, HY; Hsueh, YM; Wu, MM; Chen, CJ. (2010). Arsenic-induced QT dispersion is associated with atherosclerotic diseases and predicts long-term cardiovascular mortality in subjects with previous exposure to arsenic: A 17-Year follow-up study. Cardiovasc Toxicol 10: 17-26. http://dx.doi.org/10.1007/s12012-009-9059-x
- Wang, CH; Jeng, JS; Yip, PK; Chen, CL; Hsu, LI; Hsueh, YM; Chiou, HY; Wu, MM; Chen, CJ. (2002). Biological gradient between long-term arsenic exposure and carotid atherosclerosis. Circulation 105: 1804-1809. <u>http://dx.doi.org/10.1161/01.CIR.0000015862.64816.B2</u>
- Wang, JP; Wang, SL; Lin, Q; Zhang, L; Huang, D; Ng, JC. (2009b). Association of arsenic and kidney dysfunction in people with diabetes and validation of its effects in rats. Environ Int 35: 507-511. http://dx.doi.org/10.1016/j.envint.2008.07.015
- Wang, SL; Chiou, JM; Chen, CJ; Tseng, CH; Chou, WL; Wang, CC; Wu, TN; Chang, LW. (2003). Prevalence of non-insulin-dependent diabetes mellitus and related vascular diseases in southwestern arseniasis-endemic and nonendemic areas in Taiwan. Environ Health Perspect 111: 155-159. <u>http://dx.doi.org/10.1289/ehp.5457</u>
- Wang, SL; Li, WF; Chen, CJ; Huang, YL; Chen, JW; Chang, KH; Tsai, LY; Chou, KM. (2011a). Hypertension incidence after tap-water implementation: a 13-year follow-up study in the arseniasis-endemic area of southwestern Taiwan. Sci Total Environ 409: 4528-4535. http://dx.doi.org/10.1016/j.scitotenv.2011.07.058
- Wang, SX; Wang, ZH; Cheng, XT; Li, J; Sang, ZP; Zhang, XD; Han, LL; Qiao, XY; Wu, ZM; Wang, ZQ.
 (2007a). Arsenic and fluoride exposure in drinking water: Children's IQ and growth in Shanyin county, Shanxi province, China. Environ Health Perspect 115: 643-647. http://dx.doi.org/10.1289/ehp.9270
- Wang, W; Xie, Z; Lin, Y; Zhang, D. (2014). Association of inorganic arsenic exposure with type 2 diabetes mellitus: a meta-analysis. J Epidemiol Community Health. <u>http://dx.doi.org/10.1136/jech-2013-203114</u>
- Wang, XJ; Sun, Z; Chen, W; Eblin, KE; Gandolfi, JA; Zhang, DD. (2007b). Nrf2 protects human bladder urothelial cells from arsenite and monomethylarsonous acid toxicity. Toxicol Appl Pharmacol 225: 206-213. http://dx.doi.org/10.1016/j.taap.2007.07.016
- <u>Wang, Y; Li, S; Piao, F; Hong, Y; Liu, P; Zhao, Y.</u> (2009c). Arsenic down-regulates the expression of Camk4, an important gene related to cerebellar LTD in mice. Neurotoxicol Teratol 31: 318-322. <u>http://dx.doi.org/10.1016/j.ntt.2009.04.064</u>
- Wang, YH; Wu, MM; Hong, CT; Lien, LM; Hsieh, YC; Tseng, HP; Chang, SF; Su, CL; Chiou, HY; Chen, CJ. (2007c). Effects of arsenic exposure and genetic polymorphisms of p53, glutathione S-transferase M1, T1, and P1 on the risk of carotid atherosclerosis in Taiwan. Atherosclerosis 192: 305-312. http://dx.doi.org/10.1016/j.atherosclerosis.2006.07.029
- Wang, YH; Yeh, SD; Shen, KH; Shen, CH; Juang, GD; Hsu, LI; Chiou, HY; Chen, CJ. (2009d). A significantly joint effect between arsenic and occupational exposures and risk genotypes/diplotypes of CYP2E1, GSTO1 and GSTO2 on risk of urothelial carcinoma. Toxicol Appl Pharmacol 241: 111-118. http://dx.doi.org/10.1016/j.taap.2009.08.008

- Wang, Z; Zhao, Y; Smith, E; Goodall, GJ; Drew, PA; Brabletz, T; Yang, C. (2011b). Reversal and prevention of arsenic-induced human bronchial epithelial cell malignant transformation by microRNA-200b. Toxicol Sci 121: 110-122. <u>http://dx.doi.org/10.1093/toxsci/kfr029</u>
- Wasserman, GA; Liu, X; Parvez, F; Ahsan, H; Factor-Litvak, P; van Geen, A; Slavkovich, V; Lolacono, NJ; Cheng, Z; Hussain, I; Momotaj, H; Graziano, JH. (2004). Water arsenic exposure and children's intellectual function in Araihazar, Bangladesh. Environ Health Perspect 112: 1329-1333. http://dx.doi.org/10.1289/ehp.6964
- Wasserman, GA; Liu, X; Parvez, F; Factor-Litvak, P; Ahsan, H; Levy, D; Kline, J; van Geen, A; Mey, J; Slavkovich, V; Siddique, AB; Islam, T; Graziano, JH. (2011). Arsenic and manganese exposure and children's intellectual function. Neurotoxicology 32: 450-457. <u>http://dx.doi.org/10.1016/j.neuro.2011.03.009</u>
- Wasserman, GA; Liu, XH; Parvez, F; Ahsan, H; Factor-Litvak, P; Kline, J; Van Geen, A; Slavkovich, V;
 Lolacono, NJ; Levy, D; Cheng, ZQ; Graziano, JH. (2007). Water arsenic exposure and intellectual function in 6-year-old children in Araihazar, Bangladesh. Environ Health Perspect 115: 285-289. http://dx.doi.org/10.1289/ehp.9501
- Welch, K; Higgins, I; Oh, M; Burchfiel, C. (1982). Arsenic exposure, smoking, and respiratory cancer in copper smelter workers. Arch Environ Occup Health 37: 325-335.
- <u>Wheeler, BW; Kothencz, G; Pollard, AS.</u> (2013). Geography of non-melanoma skin cancer and ecological associations with environmental risk factors in England. Br J Cancer 109: 235-241. <u>http://dx.doi.org/10.1038/bjc.2013.288</u>
- Wheeler, M; Bailer, AJ. (2009). Comparing model averaging with other model selection strategies for benchmark dose estimation. Environ Ecol Stat 16: 37-51. <u>http://dx.doi.org/10.1007/s10651-007-0071-7</u>
- <u>WHO</u> (World Health Organization). (2000). Air quality guidelines for Europe (2nd ed.). Copenhagen, Denmark: World Health Organization, Regional Office for Europe. <u>http://www.euro.who.int/en/what-we-do/health-topics/environmental-health/air-quality/publications/pre2009/air-quality-guidelines-for-europe</u>
- WHO (World Health Organization). (2011). Safety evaluation of certain contaminants in food. (WHO Food Additives Series: 63. FAO JECFA Monographs 8). Geneva, Switzerland: prepared by the Seventy-second meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA. <u>http://whqlibdoc.who.int/publications/2011/9789241660631_eng.pdf</u>
- <u>WHO</u> (World Health Organization). (2012). Guidance for immunotoxicity risk assessment for chemicals. (Harmonization Project Document No. 10). Geneva, Switzerland. <u>http://www.inchem.org/documents/harmproj/harmproj/harmproj10.pdf</u>
- Wnek, SM; Jensen, TJ; Severson, PL; Futscher, BW; Gandolfi, AJ. (2010). Monomethylarsonous acid produces irreversible events resulting in malignant transformation of a human bladder cell line following 12 weeks of low-level exposure. Toxicol Sci 116: 44-57. <u>http://dx.doi.org/10.1093/toxsci/kfq106</u>
- Wnek, SM; Kuhlman, CL; Camarillo, JM; Medeiros, MK; Liu, KJ; Lau, SS; Gandolfi, AJ. (2011). Interdependent genotoxic mechanisms of monomethylarsonous acid: role of ROS-induced DNA damage and poly(ADP-ribose) polymerase-1 inhibition in the malignant transformation of urothelial cells. Toxicol Appl Pharmacol 257: 1-13. http://dx.doi.org/10.1016/j.taap.2011.08.029
- Wnek, SM; Medeiros, MK; Eblin, KE; Gandolfi, AJ. (2009). Persistence of DNA damage following exposure of human bladder cells to chronic monomethylarsonous acid. Toxicol Appl Pharmacol 241: 202-209. http://dx.doi.org/10.1016/j.taap.2009.08.016
- Wright, RO; Amarasiriwardena, C; Woolf, AD; Jim, R; Bellinger, DC. (2006). Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. Neurotoxicology 27: 210-216. http://dx.doi.org/10.1016/j.neuro.2005.10.001

- <u>Wu, CC; Huang, YK; Chung, CJ; Huang, CY; Pu, YS; Shiue, HS; Lai, LA; Lin, YC; Su, CT; Hsueh, YM.</u>
 (2013). Polymorphism of inflammatory genes and arsenic methylation capacity are associated with urothelial carcinoma. Toxicol Appl Pharmacol 272: 30-36. <u>http://dx.doi.org/10.1016/j.taap.2013.05.019</u>
- Wu, CC; Su, CT; Lee, HL; Chung, CJ; Huang, CY; Pu, YS; Lin, P; Hsueh, YM. (2012a). Joint effect of arsenic methylation profile and NNK metabolites on urothelial carcinoma. J Urol 188: 1701-1705. http://dx.doi.org/10.1016/j.juro.2012.07.025
- Wu, F; Jasmine, F; Kibriya, MG; Liu, M; Wójcik, O; Parvez, F; Rahaman, R; Roy, S; Paul-Brutus, R; Segers, S; Slavkovich, V; Islam, T; Levy, D; Mey, JL; van Geen, A; Graziano, JH; Ahsan, H; Chen, Y. (2012b). Association Between Arsenic Exposure From Drinking Water and Plasma Levels of Cardiovascular Markers. Am J Epidemiol. <u>http://dx.doi.org/10.1093/aje/kwr464</u>
- Wu, H; Krishnamohan, M; Lam, PKS; Ng, JC. (2004). Urinary biomarkers for chronic arsenic exposure to C57BL/6J mice [Abstract]. Toxicol Appl Pharmacol 197: 242-243.
- <u>Wu, MM; Chiou, HY; Hsueh, YM; Hong, CT; Su, CL; Chang, SF; Huang, WL; Wang, HT; Wang, YH; Hsieh,</u> <u>YC; Chen, CJ.</u> (2006). Effect of plasma homocysteine level and urinary monomethylarsonic acid on the risk of arsenic-associated carotid atherosclerosis. Toxicol Appl Pharmacol 216: 168-175. <u>http://dx.doi.org/10.1016/j.taap.2006.05.005</u>
- Wu, MM; Chiou, HY; Lee, TC; Chen, CL; Hsu, LI; Wang, YH; Huang, WL; Hsieh, YC; Yang, TY; Lee, CY; Yip, PK; Wang, CH; Hsueh, YM; Chen, CJ. (2010). GT-repeat polymorphism in the heme oxygenase-1 gene promoter and the risk of carotid atherosclerosis related to arsenic exposure. J Biomed Sci 17: 70. http://dx.doi.org/10.1186/1423-0127-17-70
- Wu, MM; Chiou, HY; Wang, TW; Hsueh, YM; Wang, IH; Chen, CJ; Lee, TC. (2001). Association of blood arsenic levels with increased reactive oxidants and decreased antioxidant capacity in a human population of northeastern Taiwan. Environ Health Perspect 109: 1011-1017. <u>http://dx.doi.org/10.2307/3454955</u>
- Wu, MM; Kuo, TL; Hwang, YH; Chen, CJ. (1989). Dose-response relation between arsenic concentration in well water and mortality from cancers and vascular diseases. Am J Epidemiol 130: 1123-1132.
- Wu, W; Graves, LM; Jaspers, I; Devlin, RB; Reed, W; Samet, JM. (1999). Activation of the EGF receptor signaling pathway in human airway epithelial cells exposed to metals. Am J Physiol 277: L924-L931.
- Xi, S; Sun, W; Wang, F; Jin, Y; Sun, G. (2009). Transplacental and early life exposure to inorganic arsenic affected development and behavior in offspring rats. Arch Toxicol 83: 549-556. http://dx.doi.org/10.1007/s00204-009-0403-5
- Xia, Y; Wade, TJ; Wu, K; Li, Y; Ning, Z; Le, XC; He, X; Chen, B; Feng, Y; Mumford, JL. (2009). Well water arsenic exposure, arsenic induced skin-lesions and self-reported morbidity in Inner Mongolia. Int J Environ Res Public Health 6: 1010-1025. <u>http://dx.doi.org/10.3390/ijerph6031010</u>
- Xie, Y; Kondo, M; Koga, H; Miyamoto, H; Chiba, M. (2001). Urinary porphyrins in patients with endemic chronic arsenic poisoning caused by burning coal in China. Environ Health Prev Med 5: 180-185. http://dx.doi.org/10.1007/BF02918296
- Xie, Y; Trouba, KJ; Liu, J; Waalkes, MP; Germolec, DR. (2004). Biokinetics and subchronic toxic effects of oral arsenite, arsenate, monomethylarsonic acid, and dimethylarsinic acid in v-Ha-ras transgenic (Tg.AC) mice. Environ Health Perspect 112: 1255-1263. <u>http://dx.doi.org/10.1289/txg.7152</u>
- Xu, W; Bao, H; Liu, F; Liu, L; Zhu, YG; She, J; Dong, S; Cai, M; Li, L; Li, C; Shen, H. (2012). Environmental exposure to arsenic may reduce human semen quality: associations derived from a Chinese cross-sectional study. Environ Health. <u>http://dx.doi.org/10.1186/1476-069X-11-46</u>
- Yager, JW; Gentry, PR; Thomas, RS; Pluta, L; Efremenko, A; Black, M; Arnold, LL; McKim, JM; Wilga, P; Gill, G; Choe, KY; Clewell, HJ. (2013). Evaluation of gene expression changes in human primary uroepithelial cells following 24-Hr exposures to inorganic arsenic and its methylated metabolites. Environ Mol Mutagen 54: 82-98. <u>http://dx.doi.org/10.1002/em.21749</u>

These draft development materials are for review purposes only and do not constitute Agency policy.April 201411-48Draft: Do Not Cite or Quote

- Yang, CY. (2006). Does arsenic exposure increase the risk of development of peripheral vascular diseases in humans? J Toxicol Environ Health A 69: 1797-1804. <u>http://dx.doi.org/10.1080/15287390600630237</u>
- Yang, CY; Chang, CC; Chiu, HF. (2008a). Does arsenic exposure increase the risk for prostate cancer? J Toxicol Environ Health A 71: 1559-1563. <u>http://dx.doi.org/10.1080/15287390802392065</u>
- Yang, CY; Chang, CC; Ho, SC; Chiu, HF. (2008b). Is colon cancer mortality related to arsenic exposure? J Toxicol Environ Health A 71: 533-538. <u>http://dx.doi.org/10.1080/15287390801907509</u>
- Yang, CY; Chang, CC; Tsai, SS; Chuang, HY; Ho, CK; Wu, TN. (2003). Arsenic in drinking water and adverse pregnancy outcome in an arseniasis-endemic area in northeastern Taiwan. Environ Res 91: 29-34. http://dx.doi.org/10.1016/S0013-9351(02)00015-4
- Yang, CY; Chiu, HF; Chang, CC; Ho, SC; Wu, TN. (2005). Bladder cancer mortality reduction after installation of a tap-water supply system in an arsenious-endemic area in southwestern Taiwan. Environ Res 98: 127-132. <u>http://dx.doi.org/10.1016/j.envres.2004.07.013</u>
- Yang, CY; Chiu, HF; Wu, TN; Chuang, HY; Ho, SC. (2004). Reduction in kidney cancer mortality following installation of a tap water supply system in an arsenic-endemic area of Taiwan. Arch Environ Health 59: 484-488. http://dx.doi.org/10.1080/00039890409603430
- <u>Yeh, S.</u> (1973). Skin cancer in chronic arsenicism. Hum Pathol 4: 469-485. <u>http://dx.doi.org/10.1016/S0046-8177(73)80060-7</u>
- Yeh, S; How, SW; Lin, CS. (1968). Arsenical cancer of skin. Histologic study with special reference to Bowen's disease. Cancer 21: 312-339.
- Yen, CC; Lu, FJ; Huang, CF; Chen, WK; Liu, SH; Lin-Shiau, SY. (2007). The diabetogenic effects of the combination of humic acid and arsenic: In vitro and in vivo studies. Toxicol Lett 172: 91-105. http://dx.doi.org/10.1016/j.toxlet.2007.05.008
- <u>Yildiz, A; Karaca, M; Biceroglu, S; Nalbantcilar, MT; Coskun, U; Arik, F; Aliyev, F; Yiginer, O; Turkoglu, C.</u> (2008). Effect of chronic arsenic exposure from drinking waters on the QT interval and transmural dispersion of repolarization. J Int Med Res 36: 471-478.
- <u>Yokohira, M; Arnold, LL; Pennington, KL; Suzuki, S; Kakiuchi-Kiyota, S; Herbin-Davis, K; Thomas, DJ;</u>
 <u>Cohen, SM.</u> (2010). Severe systemic toxicity and urinary bladder cytotoxicity and regenerative hyperplasia induced by arsenite in arsenic (+3 oxidation state) methyltransferase knockout mice. A preliminary report. Toxicol Appl Pharmacol 246: 1-7. <u>http://dx.doi.org/10.1016/j.taap.2010.04.013</u>
- Yokohira, M; Arnold, LL; Pennington, KL; Suzuki, S; Kakiuchi-Kiyota, S; Herbin-Davis, K; Thomas, DJ; Cohen, SM. (2011). Effect of sodium arsenite dose administered in the drinking water on the urinary bladder epithelium of female arsenic (+3 oxidation state) methyltransferase knockout mice. Toxicol Sci 121: 257-266. http://dx.doi.org/10.1093/toxsci/kfr051
- Yorifuji, T; Tsuda, T; Doi, H; Grandjean, P. (2011). Cancer excess after arsenic exposure from contaminated milk powder. Environ Health Prev Med 16: 164-170. <u>http://dx.doi.org/10.1007/s12199-010-0182-x</u>
- Yu, G; Sun, D; Zheng, Y. (2007). Health effects of exposure to natural arsenic in groundwater and coal in China: An overview of occurrence. Environ Health Perspect 115: 636-642. <u>http://dx.doi.org/10.1289/ehp.9268</u>
- Yu, HS; Liao, WT; Chai, CY. (2006). Arsenic carcinogenesis in the skin [Review]. J Biomed Sci 13: 657-666. http://dx.doi.org/10.1007/s11373-006-9092-8
- Yuan, Y; Marshall, G; Ferreccio, C; Steinmaus, C; Liaw, J; Bates, M; Smith, AH. (2010). Kidney cancer mortality: Fifty-year latency patterns related to arsenic exposure. Epidemiology 21: 103-108. http://dx.doi.org/10.1097/EDE.0b013e3181c21e46

- Yuan, Y; Marshall, G; Ferreccio, C; Steinmaus, C; Selvin, S; Liaw, J; Bates, MN; Smith, AH. (2007). Acute myocardial infarction mortality in comparison with lung and bladder cancer mortality in arsenic-exposed region II of Chile from 1950 to 2000. Am J Epidemiol 166: 1381-1391. http://dx.doi.org/10.1093/aje/kwm238
- Zaldívar, R. (1980). A morbid condition involving cardio-vascular, broncho-pulmonary, digestive and neural lesions in children and young adults after dietary arsenic exposure. Zentralbl Bakteriol B 170: 44-56.
- Zaldívar, R; Prunés, L; Ghai, GL. (1981). Arsenic dose in patients with cutaneous carcinomata and hepatic haemangio-endothelioma after environmental and occupational exposure. Arch Toxicol 47: 145-154. http://dx.doi.org/10.1007/BF00332356
- Zhang, AH; Bin, HH; Pan, XL; Xi, XG. (2007). Analysis of p16 gene mutation, deletion and methylation in patients with arseniasis produced by indoor unventilated-stove coal usage in Guizhou, China. J Toxicol Environ Health A 70: 970-975. <u>http://dx.doi.org/10.1080/15287390701290808</u>
- Zhang, C; Mao, G; He, S; Yang, Z; Yang, W; Zhang, X; Qiu, W; Ta, N; Cao, L; Yang, H; Guo, X. (2013a). Relationship between long-term exposure to low-level arsenic in drinking water and the prevalence of abnormal blood pressure. J Hazard Mater. <u>http://dx.doi.org/10.1016/j.jhazmat.2012.09.045</u>
- Zhang, J; Liu, X; Zhao, L; Hu, S; Li, S; Piao, F. (2013b). Subchronic exposure to arsenic disturbed the biogenic amine neurotransmitter level and the mRNA expression of the synthetase in mice brains. Neuroscience 241: 52-58. <u>http://dx.doi.org/10.1016/j.neuroscience.2013.03.014</u>
- Zhao, CQ; Young, MR; Diwan, BA; Coogan, TP; Waalkes, MP. (1997). Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. PNAS 94: 10907-10912.
- Zhao, R; Hou, Y; Zhang, Q; Woods, CG; Xue, P; Fu, J; Yarborough, K; Guan, D; Andersen, ME; Pi, J. (2012). Cross-regulations among NRFs and KEAP1 and effects of their silencing on arsenic-induced antioxidant response and cytotoxicity in human keratinocytes. Environ Health Perspect 120: 583-589. <u>http://dx.doi.org/10.1289/ehp.1104580</u>
- Zheng, Y; Tao, S; Lian, F; Chau, BT; Chen, J; Sun, G; Fang, D; Lantz, RC; Zhang, DD. (2012). Sulforaphane prevents pulmonary damage in response to inhaled arsenic by activating the Nrf2-defense response. Toxicol Appl Pharmacol 265: 292-299. http://dx.doi.org/10.1016/j.taap.2012.08.028
- Zhong, CX; Mass, MJ. (2001). Both hypomethylation and hypermethylation of DNA associated with arsenite exposure in cultures of human cells identified by methylation-sensitive arbitrarily-primed PCR. Toxicol Lett 122: 223-234. <u>http://dx.doi.org/10.1016/S0378-4274(01)00365-4</u>
- Zhou, X; Li, Q; Arita, A; Sun, H; Costa, M. (2009). Effects of nickel, chromate, and arsenite on histone 3 lysine methylation. Toxicol Appl Pharmacol 236: 78-84. <u>http://dx.doi.org/10.1016/j.taap.2009.01.009</u>
- Zhou, X; Sun, H; Ellen, TP; Chen, H; Costa, M. (2008). Arsenite alters global histone H3 methylation. Carcinogenesis 29: 1831-1836. <u>http://dx.doi.org/10.1093/carcin/bgn063</u>
- Zierler, S; Theodore, M; Cohen, A; Rothman, KJ. (1988). Chemical quality of maternal drinking water and congenital heart disease. Int J Epidemiol 17: 589-594. <u>http://dx.doi.org/10.1093/ije/17.3.589</u>
- Zierold, KM; Knobeloch, L; Anderson, H. (2004). Prevalence of chronic diseases in adults exposed to arseniccontaminated drinking water. Am J Public Health 94: 1936-1937. <u>http://dx.doi.org/10.2105/ajph.94.11.1936</u>
- Zykova, TA; Zhu, F; Lu, C; Higgins, L; Tatsumi, Y; Abe, Y; Bode, AM; Dong, Z. (2006). Lymphokineactivated killer T-cell-originated protein kinase phosphorylation of histone H2AX prevents arsenite-induced apoptosis in RPMI7951 melanoma cells. Clin Cancer Res 12: 6884-6893. <u>http://dx.doi.org/10.1158/1078-0432.CCR-06-0410</u>