

EPA IRIS Bimonthly Public Science Meeting PCBs: Effects Other Than Cancer

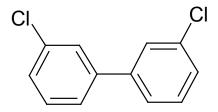
Peter S. Thorne, MS, PhD

June 17-18, 2015 Arlington, VA

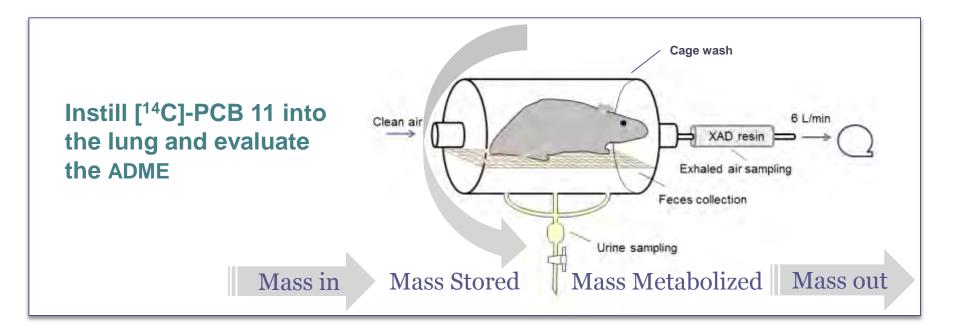
Professor and Head,

Department of Occupational and Environmental Health

Director, Environmental Health Sciences Research Center

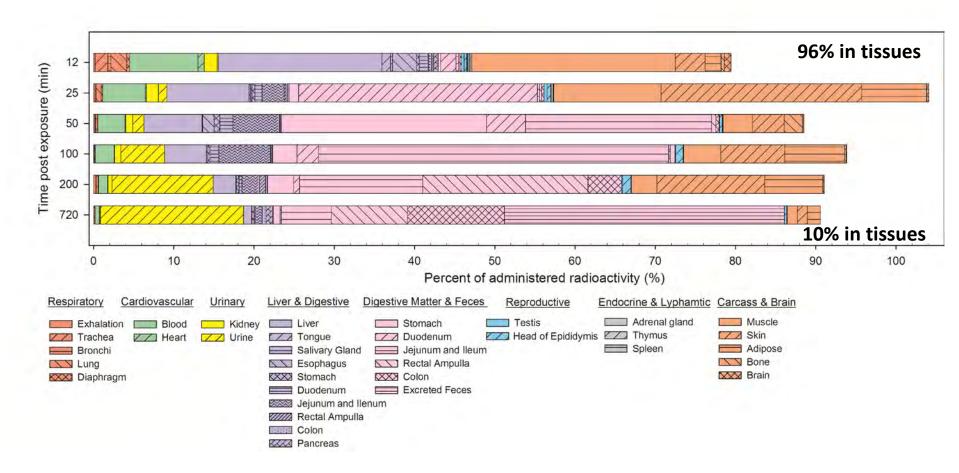


Science Topic 4

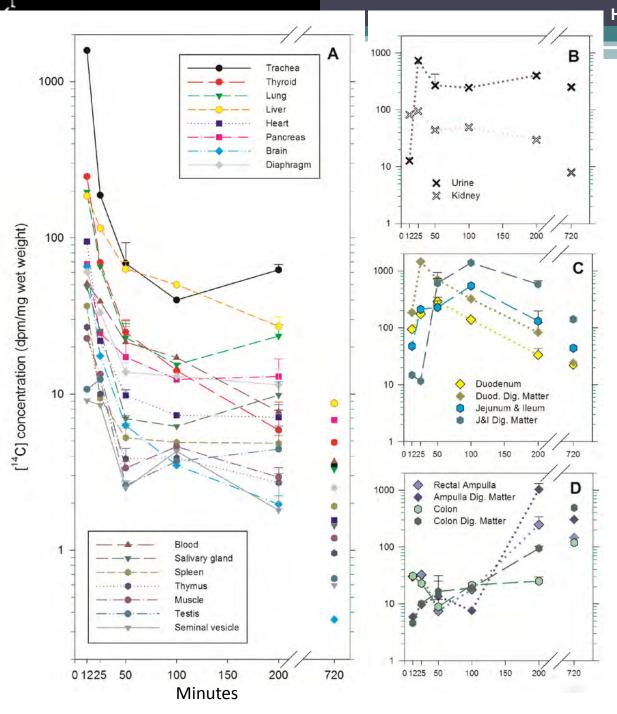

Suitability of Available Toxicokinetic Models for Reliable Route-to-Route, Interspecies, and/or Intraspecies Extrapolation

Science Topic 4:

3,3'-Dichlorobiphenyl



- Even though we find PCB 11 in the indoor air of every home and school, virtually nothing is known about its fate and toxicity
- Objective: To determine the fate of PCB 11 in rats



The majority of dose is excreted in hours

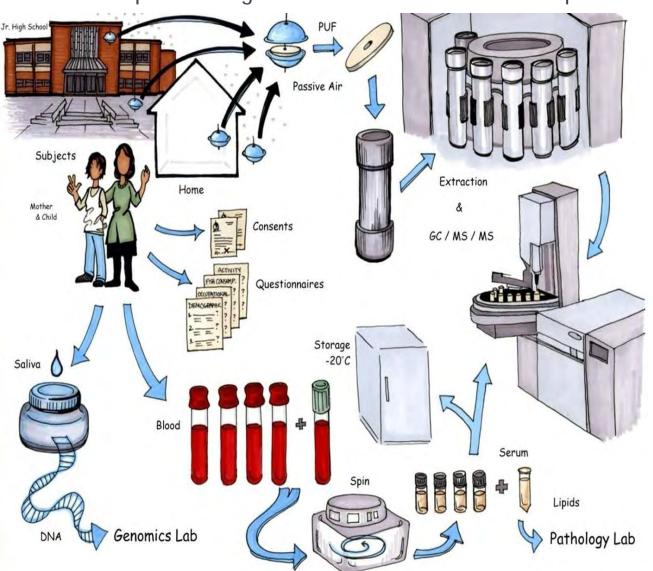
- Fecal elimination is the major pathway of excretion.
- Exhaled PCB 11 accounts for <0.2% of administered dose.
- Absorption of PCB in lung is complete.

Rapid elimination from most tissues

Phase	t ½-1	t _½ -2	
Trachea	9 min	2.6 hr	
Thyroid	14 min	5.3 hr	
Lung	13 min	3.7 hr	
Liver	24 min	3.7 hr	
Heart	12 min	3.9 hr	
Pancreas	21 min	7.7 hr	
Brain	12 min	2.7 hr	
Diaphragm	18 min	3.9 hr	
Blood	33 min	4.1 hr	
Salivary gland	14min 4.3 hr		
Spleen	15 min 6.3 hr		
Thymus	14 min	4.7 hr	
Muscle	14 min	6.4 hr	
Testis	17 min	3.9 hr	
Seminal vesicles	19 min	4.1 hr	

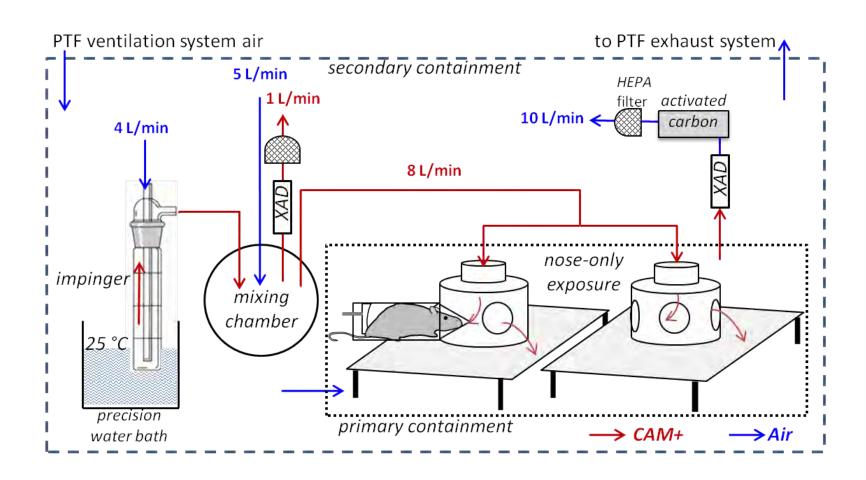
PCB11 and ¹⁴C-PCB11 animal studies

- Complete and fast uptake of inhaled PCB
 - PCB11 is 99.8% absorbed after lung exposure.
- Rapid distribution of PCB11
 - High tissue concentration of PCB11 at 12 min after exposure
 - Delayed uptake in adipose tissue and other fatty tissues (skin, epididymis)
- Extremely fast elimination of PCB11 and metabolites
 - 50% of dose excreted by 12 h
 - 37% of dose in intestinal digestive matter that was about to be excreted
 - The initial elimination phase is very short ($t_{1/2}$ = 10-30 min)
 - Biomarkers may demonstrate same-day exposures
- Phase II metabolites dominate in systemic circulation
 - PCB11 and OH-PCB11s decay most rapidly to minimal levels within 25 min
 - Phase II metabolites serve as better biomarkers of PCB11 exposure



The University of Iowa

The END


Science Topic 2:

Evaluation of Epidemiological Studies for PCB Dose-Response Assessment

AESOP Study Design

Generation and Exposure System for CAM+ mixture

Toxicity Assessment – AOP Biomarkers

Disrupted Enzymes

CYP1A1, 1A2, 1B1, 2A1, 2B1, 3A1 UGT1A1, GST1A1, SULT1A1, SULT2A1, SULT1E1 (liver and lungs)

Oxidative Stress & Inflammation

Lipid peroxidation and Glutathione (liver, lung, blood) Oxidative stress responsive genes (liver) Inflammatory cytokines/chemokines (serum) Hematology parameters

Neurotoxicity

Thyroid hormones: T3, T4, TSH (serum) Gross neurotoxicity (prenatal study)

Immunotoxicity

Cytokines/chemokines (serum), B cell function, CD4+/CD8+ T-cell population (thymus, spleen)

Developmental Toxicity

Implantation rate, litter size, body size, Postnatal survival Thyroid hormones: T3, T4, TSH (serum)

Genotoxicity

DNA strand breaks Chromosome breaks and loss lung, liver, kidney, spleen, thymus, lymph nodes, adrenal glands, and ovaries/testis

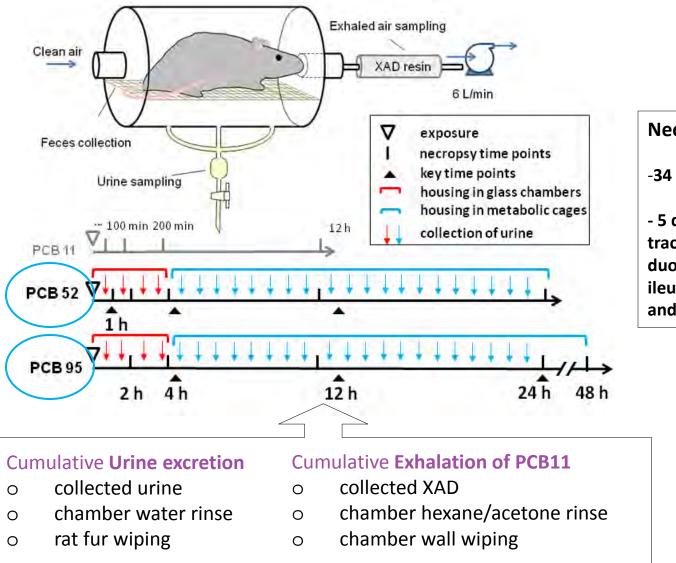
Histopathology – altered tissue

<u>PCB 52 and PCB 95</u> were selected as representative congeners for their predominance in air and their toxicological importance.

Vapor pressures of congeners representing major atmospheric PCB homologues.

PCB homologue	Di	Tri	Tetra	Penta
mass percent of ∑PCBs in Chicago air ^a	21%	29%	15%	20%
median vapor pressure ^b (Pa)	0.1527	0.0392	0.0112	0.0028
representative congener	PCB 11		PCB 52	PCB 95
vapor pressure of RCb (Pa)	0	.0868	0.0161	0.0053

^aValues from sampled Chicago air (Hu et al. 2010)


bValues from equations by Falconer and Bidleman (1993)

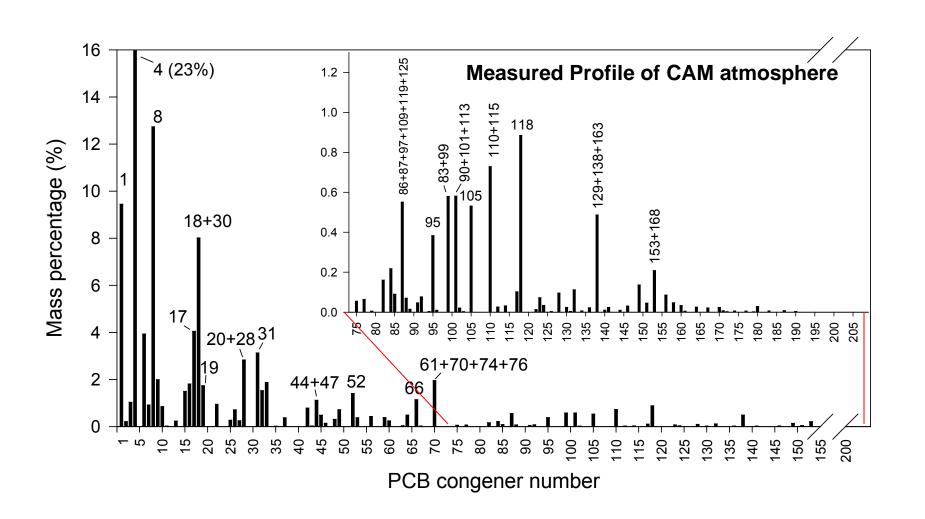
Intratracheal Exposure Anesthesia under isoflurane Syringe with solution -Catheter Trachea

Solution: Radiolabelled [14C]-PCB 52 and 95 emulsified in saline (1% Hexane and 0.1% Tween80)

Schematic of postexposure sampling and design of serial necropsy.

Necropsy:

- -34 organ and tissues
- 5 digestive matter in GI tract (stomach, duodenum, jejunum & ileum, rectal ampulla, and colon)


Modeling Approach

$$Exp_{PCBj} = \sum_{i=1}^{3} T_i * Q * [PCBj] [=] (\mu g \ yr^{-1})$$

Where $\operatorname{Exp}_{\operatorname{PCB}_j}$ is PCB exposure for the jth congener, T_i is the time spent in location i in hours per year; Q is the inhalation rate in m^3 d⁻¹; and $[PCB]_j$ (ng m^{-3}) is the measured airborne concentration of PCBj.

 T_i values have been obtained for three locations (home, schools, and outside) using time-activity questionnaires completed each year.

Generation: 520 µg/m³

