PUBLIC STAKEHOLDER WORKSHOP TO INFORM EPA'S UPCOMING IRIS TOXICOLOGICAL REVIEW OF INORGANIC ARSENIC

SESSION 4:
ROUNDTABLE DISCUSSION ON PLANNING AND SCOPING

Tuesday, January 8 &
Wednesday, January 9
RTP, North Carolina

HOSTED BY EPA’S NATIONAL CENTER FOR ENVIRONMENTAL ASSESSMENT
Identifying Client Needs: Draft planning and scoping summary discussion

What are client needs for the Toxicological Review of iAs?
• Discuss key themes from the workshop to be considered during the development of the draft Toxicological Review of iAs.

Key Themes from Sessions I-3 of the iAs Public Stakeholder Workshop

Reeder Sams
U.S. EPA / ORD / NCEA
Research Triangle Park, NC

Disclaimer: the views expressed in this presentation are those of the speaker and do not necessarily represent the views or policies of the U.S. EPA.
Key Themes from Introduction

- Partnership and outreach
- Engagement of stakeholders, including at-risk populations
- Consideration of at-risk populations in scope

Key Themes – Session 1
Applying Systematic Review

- Process that is transparent and reproducible
- Iterative process with combination of search strategies
- Relevancy - use previous iAs work to guide, engage stakeholders grappling with iAs issues
- Set up key questions – e.g., focus on low-dose effects?
- Consider bias - e.g., negative data bias
- Feasibility (time and resources)
Key Themes – Session 2

Hazard ID

- Susceptibility factors – in utero, smoking/carcinogens, diet, genetic variation, metabolism
- Effects low-level exposure is major question and challenge for epi studies
- Aggregate exposure; concern over misclassification of exposure

Key Themes – Session 2

MOA

- Consider a MOA analysis as an organizing principle
- Lack of speciation data at target tissues
- Key biological processes/chemical stressors that influence MOAs
- Multiple MOAs and multiple targets – dose plays important role in MOA
- Aggregate exposure; concern over misclassification of exposure
- Complex metabolism
Key Themes – Session 3

Relevant Factors for D-R

- Arsenic speciation and importance of chemical nomenclature
- Aggregate exposure (e.g., diet, contamination) vs. “sole source” exposure
- Exposure in U.S. population
- Uncertainty in the exposure – life stage, dose
- Misclassification of exposure in studies
- Biomarkers of exposure (proteomics, epigenetics, transcriptomics) – utility for D-R?
- Bioavailability/bioaccumulation

Key Themes – Session 3

Approaches to D-R

- Multi-tumor modeling – feasible in time-frame?
- PBPK – challenge of animal-human extrapolations, metabolism, and polymorphisms
- Factors impacting D-R: MOA/TK, iAs speciation, exposure estimation, susceptible populations (e.g. age, ethnicity)
- Treat iAs speciation as a mixture for D-R?
- Uncertainty – probability distribution/sensitivity analyses, MOA organization
Key Themes – Session 3
Extrapolation Approaches to D-R

➢ Need extrapolations to U.S. population, high dose to low dose, and interspecies/in vitro extrapolations – consider value added
➢ Human PBPK model – simplify exposure to “total load” of iAs?
➢ Low dose extrapolation is to a lower response level; a dose-response characterization approach
Key Themes From Sessions 1-3

Mike Waalkes

• Early life as a critical period of susceptibility to inorganic arsenic
 – Remarkable concordance between human and rodent data in terms of carcinogenesis
 • Sensitivity and sites
 • Cannot be ignored
 – Basis not known
 – Other diseases need further exploration
Key Themes From Sessions 1-3

• The role of biomethylation in inorganic arsenic
 – Susceptibility factor
• Poor tissue and target site dosimetry for inorganic arsenic in humans
 – We do not know what gets where with regards to target cells
 • Or what is generated where
 • Urinary metabolites poor substitute
What are client needs for the Toxicological Review of iAs?

• Recommendations for revisions to the planning and scoping summary to adequately address stakeholder input.
MODE OF ACTION

- Metabolism and kinetics
- Genotoxicity vs. non-genotoxicity
- Cellular responses
- Critical review of the literature
- Cancer and non-cancer

CLASSIC PATHWAY FOR ARSENIC METABOLISM

Putative Pathway for Arsenic Metabolism

THIOLATED ARSENICALS

TOXICITY OF ARSENIC METABOLITES IN UROTHELIUM IN VITRO, EXPRESSED AS LC₅₀ VALUES (µM)

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>As³⁺</th>
<th>As⁵⁺</th>
<th>MMA³⁺</th>
<th>MMA⁵⁺</th>
<th>DMA³⁺</th>
<th>DMA⁵⁺</th>
<th>TMAO</th>
<th>DMMTA⁵⁺*</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYP3 (Rat)</td>
<td>0.75</td>
<td>3.4</td>
<td>0.42</td>
<td>3000</td>
<td>0.38</td>
<td>600</td>
<td>1600</td>
<td>1.3</td>
</tr>
<tr>
<td>III (Human)</td>
<td>8.3</td>
<td>34.6</td>
<td>0.9</td>
<td>2700</td>
<td>1.0</td>
<td>230</td>
<td>14000</td>
<td>1.4</td>
</tr>
</tbody>
</table>

* DMMTA⁵⁺ - Dimethyl monothiol arsenic acid
RECENT DEVELOPMENTS IN RESEARCH OF ARSENIC METABOLISM

- **AsIII methyl transferase (As3Mt):**
 - Glutathione in reaction mixture has little effect on methylation
 - Strongly favors classical pathway (Does not support Hayakama’s proposed pathway)
 - DMA is poor substrate for human enzyme
 - Explains lack of TMAO formation in humans

- **Thiol analogs:**
 - Formed primarily by a chemical reaction of oxyarsenicals with H₂S
 - Primarily from GI bacteria, but also in tissues
 - Rapidly transported into cells and rapidly converted chemically to trivalent oxyarsenicals
 - Explains their high cytotoxicity compared to pentavalent oxyarsenical analogs

INTRAMITOCHONDRIAL GRANULES IN MOUSE UROTHELIUM
INTRACYTOPLASMIC GRANULES IN UROTHELIAL CELLS OF PML PATIENTS TREATED WITH As$_2$O$_3$

MODE OF ACTION OF DMAV

Sustained

Regenerative Proliferation

Hyperplasia

Urothelial Toxicity

DMAm Metabolite

EPA (Dellarco)
UROTHELIAL CYTOTOXICITY AND PROLIFERATION INDUCED BY DMAV IN RATS

GENE EXPRESSION IN DIFFERENT HUMAN CELL TYPES INDUCED BY ARSENICALS

<table>
<thead>
<tr>
<th>HBECs (bronchial)</th>
<th>HEK001 (skin)</th>
<th>1T1 (bladder)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell death & survival</td>
<td>Cell death & survival</td>
<td>Cell death & survival</td>
</tr>
<tr>
<td>Cell growth & proliferation</td>
<td>Cell growth & proliferation</td>
<td>Cell growth & proliferation</td>
</tr>
<tr>
<td>Cell-cell signaling</td>
<td>Cell-cell signaling</td>
<td>Cell-cell signaling</td>
</tr>
<tr>
<td>Cell movement</td>
<td>Cell movement</td>
<td>Cell movement</td>
</tr>
<tr>
<td>Cell development</td>
<td>DNA replication & repairs</td>
<td>DNA replication & repairs</td>
</tr>
<tr>
<td>Small molecule bioschemistry</td>
<td>Cell cycle</td>
<td>Cell cycle</td>
</tr>
<tr>
<td></td>
<td>Cell assembly & organization</td>
<td>Cell assembly & organization</td>
</tr>
<tr>
<td></td>
<td>Lipid metabolism</td>
<td>Lipid metabolism</td>
</tr>
</tbody>
</table>
RELEVANCE TO HUMANS

Clinical Manifestations and Arsenic Methylation After a Rare Subacute Arsenic Poisoning Accident

Observations
High exposure
DMAV & TMAO in urine
Hematuria in 1/3 of exposed group

HUMAN CHRONIC BRONCHITIS
SKIN: ACTINIC KERATOSIS

IN VIVO CYTOTOXICITY OF INORGANIC ARSENIC

- Threshold is 1 ppm elemental
- Rats and mice
 - Males and females
 - Arsenite and arsenate
- Detection method:
 - Histopathology
 - Labeling index
 - Scanning electron microscopy
 - Genomics
IN VITRO CYTOTOXICITY OF INORGANIC ARSENIC

- Threshold approximately 0.2 µM
 - Urothelial cells (rats and humans)
 - Bronchial epithelial cells (humans)
 - Keratinocytes (humans and mice)
- Less than 0.2 µM – Adaptive
- 0.2-1.0 µM – Cytotoxicity
- Greater than 10 µM – Lethal

ARSENIC RESEARCH LITERATURE PRECAUTIONS (1/2)

- Analytical methods
- Arsenic form:
 - As³⁺ vs. As⁵⁺
 - Inorganic vs. methylated vs. other organics
- Concentrations (in vitro) and doses (in vivo):
 - Environmental drinking water concentration of 10 µg/L (0.2 µM) is not systemic or tissue concentration
 - Many claim in vitro studies with “environmentally relevant concentrations of 10 µg/L”
 - Concentrations of trivalents >10 µM in vitro are meaningless; lethal dose
ARSENIC RESEARCH LITERATURE PRECAUTIONS (2/2)

- Cell types:
 - Must use epithelial cells
 - Lung fibroblasts do not represent cell of origin for lung cancer
 - Malignant cell lines (e.g., osteosarcoma) have limited value without corroboration

- Primary cell vs. established cell lines:
 - Established cell lines have multiple differences compared to normal, especially p53

- In vitro vs. in vivo:
 - Trivalent arsenicals bound to rat hemoglobin
 - Oxidative stress in vitro (Gentry et al., 2010)
 - No oxidative stress in vivo (Clewell et al., 2011) (Suzuki et al., submitted)

INTERACTION OF ARSENICALS WITH RAT HEMOGLOBIN

<table>
<thead>
<tr>
<th>In Vitro</th>
<th>In Vivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{As}^{\text{III}} + \text{Hb} \rightarrow \text{As}^{\text{III}}-\text{Hb})</td>
<td>(\text{As}^{\text{V}} + \text{Hb} \rightarrow \text{DMA}^{\text{III}}-\text{Hb})</td>
</tr>
<tr>
<td>(\text{MMA}^{\text{III}} + \text{Hb} \rightarrow \text{MMA}^{\text{III}}-\text{Hb})</td>
<td>(\text{MMA}^{\text{V}} + \text{Hb} \rightarrow \text{DMA}^{\text{III}}-\text{Hb})</td>
</tr>
<tr>
<td>(\text{DMA}^{\text{III}} + \text{Hb} \rightarrow \text{DMA}^{\text{III}}-\text{Hb})</td>
<td>(\text{DMA}^{\text{V}} + \text{Hb} \rightarrow \text{DMA}^{\text{III}}-\text{Hb})</td>
</tr>
</tbody>
</table>

Feeding \(\text{As}^{\text{V}}, \text{MMA}^{\text{V}} \) or \(\text{DMA}^{\text{V}} \) to rats produces \(\text{DMA}^{\text{III}}-\text{Hb} \)
BIOLOGICAL EFFECTS OF ARSENIC

Thioarsenicals

Pentavalent arsenicals

Trivalent arsenicals

Thioarsenicals

Biological effects

Mode of Action for Inorganic Arsenic: Working Hypothesis

Cancer

Ingestion of Arsenic

Conversion to Trivalent Arsenicals (iAs³, MMA³, DMA³)

Interaction with Critical Cellular Sulphydryl Groups

Threshold

Cytotoxicity

Cell death

Regenerative Proliferation

Carcinoma

Non-Cancer

Ingestion of Arsenic

Conversion to Trivalent Arsenicals (iAs³, MMA³, DMA³)

Interaction with Critical Cellular Sulphydryl Groups

Threshold

Cytotoxicity

Non-cancer effects
PUBLIC STAKEHOLDER WORKSHOP TO INFORM EPA’s UPCOMING IRIS TOXICOLOGICAL REVIEW OF INORGANIC ARSENIC

Michele Roberts
Environmental Justice Health Alliance
January 9, 2013

Environmental Justice
Why other sources matter in toxicological assessments

Studies show the need to protect the Bell Curve

- RECENTLY published in Environmental Health Perspectives, “Beyond Uncertainty Factors: Protecting the Bell Curve

- “some individuals have predisposing risk factors that make them uniquely sensitive to the effects of these environmental stressors.” (Schmidt, 2012 at: http://ehp.niehs.nih.gov/2013/01/121-a26/)
Health professionals call for broad reform

- Dr. David Bellinger, Harvard Medical School Professor stated: “The assessment of effect modifiers should drive the study design. As it stands now, analysis of potential modifiers is usually something tacked on at the end of the main study…”
- Dr. Bellinger concludes that toxicological reviews need to identify the most susceptible people and quantify their added risk in order to make appropriate management decisions.

Social Stressors

- Poverty
 - access to nutritional food
 - access to health care and prenatal care
 - housing conditions

- Racism
Arsenic and Cardiovascular Disease

• 2012 systemic review on arsenic exposure and hypertension found an increasing trend in the odds of hypertension with increasing arsenic exposure. (Abhyankar et. al, 2012)

• Abhyankar found that “low” arsenic exposure imposed a more than 50% increase in the risk of hypertension.

• Another study, Zhang et. al (2012) found substantially elevated risk with low exposure to arsenic.
Scientific Studies call for Reform

- Study by researchers of the University of North Carolina, (Mo et al, 2011) findings suggest the need for an integrative mode of action in humans, with many results supporting numerous other studies that have found chronic arsenic exposure can cause cancer, cardiovascular disease and diabetes.

- Arsenic associated with diabetes mellitus, cerebrovascular disease and other potentially fatal diseases that are more prevalent in African Americans (Meliker et al, 2007).

Conclusion and next steps

- Arsenic exposure can exacerbate cardiovascular disease as evidenced by a large body of science and standard medical tests.

- African Americans are at elevated risks of preliminary and advanced stages of cardiovascular disease and have higher mortality rates from heart disease across the age span, with young and middle aged having more disproportionate elevations in death rates.
Conclusion and next steps

• Evidence of arsenic’s cardiovascular toxicity and elevated risk among African Americans is substantial persuasive, and sufficient to rely on in risk assessments of arsenic.
• EPA’s evaluation of arsenic must take under consideration and explicitly address the disproportionate health burden exposure imposes on African Americans.
• The elevated risks must be incorporated in quantitative evaluations of noncancer toxicity and be addressed in public policy.

Thank you!
Recommendations

Mike Waalkes

• In general, humans appear more sensitive than rodents to inorganic arsenic
 – Clear with cancer
 • Other diseases (?)
 – Should be considered in review
Recommendations

• Since inorganic arsenic is associated with multiple, diverse diseases
 – Review should keep an open mind to the possibility of multiple modes of action

Recommendations

• There is a good evidence that inorganic arsenic as well as various metabolites are toxicologically active
 – Review should keep an open mind to the possibility of multiple species being active
Methods for Identifying, Evaluating, and Synthesizing Literature

Public Comments

Fig. 3. White male bladder cancer lifetime mortality rate by mean arsenic concentration (U.S. counties with median arsenic levels of ≥3 µg/L in drinking water).
SMRs for Bladder and Lung Cancers for Low and High Arsenic Villages by Mean Village Well Water Arsenic Level (µg/L)

- Low Arsenic
- High Arsenic
- Linear (Low Arsenic)

Equation:

For High Arsenic:

\[y = 0.71x + 254.5 \]
\[R^2 = 0.14 \]

For Low Arsenic:

\[y = 5.86x + 916.3 \]
\[R^2 = 0.16 \]