Hazard Identification for the IRIS Toxicological Review of Inorganic Arsenic

Janice S. Lee, PhD
Assessment manager
U.S. EPA

United States Environmental Protection Agency

Office of Research and Development
National Center for Environmental Assessment, IRIS

December 2, 2015
Outline for Today’s Presentations

• Introduction
• Systematic Review
• Hazard Identification
• Adverse Outcome Pathways
• Toxicokinetics
• Dose-Response Methods
Hazard Identification in the Inorganic Arsenic Toxicological Review

• **Objective:** Characterize potential causal relationship between exposure to arsenic and health effects

 – Hazard identification *informs* dose response assessment
Steps in Development of Hazard Identification

• Employ systematic approach to **identify evidence** and **evaluate evidence**
 – Ensures consistency and breadth
 – Approach described in previous presentation

• Expert judgment critical to **integrate evidence** and **assess causality**
 – No formula to reach appropriate conclusions
 – Goal is to answer the question:

 Is arsenic exposure, measured before the development of [adverse health effect], associated with development of that adverse health effect?
Data Supporting Hazard Identification

- Toxicology Study Data
- Mechanistic Information
- Epidemiology Study Data
- Susceptibility Information

Evidence Integration

Causality Determination for Hazard Identification
Integrate Evidence from Epidemiologic Studies

• Development of hazard identification sections relies on:
 – **ROB results** to identify potential strengths and weaknesses of individual studies
 – **Evidence tables** which summarize data from individual studies
 – **Full-text publications** to provide study details not captured in evidence tables
 – **Expert judgment** to integrate all findings and draw appropriate conclusions

Above apply also to toxicology studies.
Integrate Evidence from Animal Toxicology Studies

- Abundance of epidemiology data means less reliance on data from animal toxicology studies
 - Also, some shortcomings of toxicological data for arsenic
- Data from toxicology studies useful to
 - Provide supporting evidence for biological plausibility
 - Inform key questions remaining after review of epidemiologic data
Integrate Evidence from Mechanistic Studies

- Develop qualitative summary to inform causal determination
- Mechanistic data can inform biologic plausibility
- For health effects determined to be “causal” and “likely causal,” comprehensive AOP analyses planned
Integrate Evidence from Susceptibility Data

• Review references to categorize by health effect and response modifying factors

• Consideration of susceptible life stages and populations
 – Examine susceptible groups of the population
 – Evaluate whether early life exposure may affect risk of arsenic-related effects in adults
 – Essential to evaluate potential adverse effects on fetal and postnatal exposure to inorganic arsenic

• Evaluate response modifying factors using strength of evidence framework from EPA Integrated Science Assessments (ISA)
Potential Response Modifying Factors

Types of Biological Variability
- Heredity (genetic & epigenetic)
- Gender, Lifestage
- Existing health conditions
- Co-exposures
- Food/Nutrition
- Psychosocial stressors

Source-to-Outcome Continuum
- Source/media concentrations
 - Exposure
 - External doses
 - Toxicokinetics
 - Internal concentrations
 - Toxicodynamics
 - Biological response measurements
 - Systems dynamics
 - Physiological/health status

Modifying source-to-outcome parameters

Modifying baseline conditions

Adapted from Zeise et al., 2013
Strength of Evidence Framework for Susceptibility

<table>
<thead>
<tr>
<th>Classification</th>
<th>Weight of Evidence for Health Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequate Evidence</td>
<td>Consistency within discipline</td>
</tr>
<tr>
<td></td>
<td>Coherence across disciplines</td>
</tr>
<tr>
<td>Suggestive Evidence</td>
<td>Limited evidence</td>
</tr>
<tr>
<td></td>
<td>Inconsistency within discipline</td>
</tr>
<tr>
<td></td>
<td>Lack of coherence across disciplines</td>
</tr>
<tr>
<td>Inadequate Evidence</td>
<td>Insufficient quantity, quality, consistency, statistical power</td>
</tr>
<tr>
<td>Evidence of No Effect</td>
<td>Consistency within discipline</td>
</tr>
<tr>
<td></td>
<td>Coherence across disciplines for No Effect</td>
</tr>
</tbody>
</table>

Adapted from EPA’s Integrated Science Assessments
Approach for Assessing Causality

- Evaluate potential causal relationship between inorganic arsenic exposure and health effect including evidence of:
 - Consistency
 - Strength of association
 - Biologic plausibility
 - Temporality
 - Biologic gradient

- Evidence integration narrative:
 - presents the conclusions from each line of evidence (i.e., human, animal, and mechanistic)
 - explains the reasoning that led to these conclusions
 - cites the studies that were pivotal to these conclusions
 - identifies the key issues and how they were resolved
 - integrates all lines of evidence to characterize the agent’s association with each health outcome

- Evidence integration and assessment of causality require expert judgment
Weight of Evidence for Causal Determination

| Causal relationship | Rule out chance, confounding, and other biases
<table>
<thead>
<tr>
<th></th>
<th>Consistency, coherence, biological plausibility, high-quality studies</th>
</tr>
</thead>
</table>
| Likely to be a causal relationship | Multiple, high-quality studies show effects
| | Some uncertainty remains overall |
| Suggestive but not sufficient to infer a causal relationship | Cannot rule out chance, confounding, other biases
| | - Evidence is limited but supporting |
| | - Evidence is not entirely consistent |
| Inadequate to infer a causal relationship | Evidence is of insufficient quantity, quality, consistency |
| Not likely to be a causal relationship | Multiple studies consistently show no effect |

Adapted from EPA’s Integrated Science Assessments
Hazard Identification
Synthesis Summaries

• Summaries under development for each health effect

• Proposed section organization
 – Background
 – Database Overview
 – Summary of Evidence
 – Evidence Integration Table
 – Causal Determination

NRC Tier 1: Evidence of causal association
• Bladder cancer
• Lung cancer
• Ischemic heart disease
• Skin lesions
• Skin cancer

NRC Tier 2: Other priority outcomes
• Diabetes
• Immune effects
• Neurodevelopmental toxicity
• Nonmalignant respiratory disease
• Pregnancy outcomes (infant morbidity)
• Prostate cancer
• Renal cancer

NRC Tier 3: Other end points to consider
• Hypertension
• Liver cancer
• Pancreatic cancer
• Pregnancy outcomes (infant mortality)
• Renal disease
• Stroke
Summary: Hazard Identification

• Considers multiple streams of data (epidemiologic, animal toxicology, mechanistic, susceptibility) to answer question

Is arsenic exposure, measured before the development of __[adverse health effect]__, associated with development of that adverse health effect?
Acknowledgments

• Ila Cote, Jeff Gift, Ellen Kirrane, Tom Luben, Samantha Jones, Vince Cogliano, members of NCEA Epidemiology Workgroup, members of NCEA General Toxicology Workgroup, and others at U.S. EPA

• Robyn Blain, Susan Goldhaber, Dave Burch, Pam Ross, Jessica Wignall, Penny Kellar, William Mendez, Audrey Turley, and others at ICF International
Supplemental Information
Strength of Evidence Framework for Susceptibility

<table>
<thead>
<tr>
<th>Descriptor*</th>
<th>Strength of Evidence Considerations*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequate Evidence</td>
<td>There is substantial, consistent evidence within a discipline to conclude that a factor results in a population or life stage being at increased risk of inorganic arsenic-related health effect(s) relative to some reference population or life stage. Where applicable this includes coherence across disciplines. Evidence includes multiple high-quality studies.</td>
</tr>
<tr>
<td>Suggestive Evidence</td>
<td>The collective evidence suggests that a factor results in a population or life stage being at increased risk of an inorganic arsenic-related health effect relative to some reference population or life stage, but the evidence is limited due to some inconsistency within a discipline or, where applicable, a lack of coherence across disciplines.</td>
</tr>
<tr>
<td>Inadequate evidence</td>
<td>The collective evidence is inadequate to determine if a factor results in a population or life stage being at increased risk of an inorganic arsenic-related health effect relative to some reference population or life stage. The available studies are of insufficient quantity, quality, consistency, and/or statistical power to permit a conclusion to be drawn.</td>
</tr>
<tr>
<td>Evidence of no effect</td>
<td>There is substantial, consistent evidence within a discipline to conclude that a factor does not result in a population or life stage being at increased risk of inorganic arsenic-related health effect(s) relative to some reference population or life stage. Where applicable this includes coherence across disciplines. Evidence includes multiple high-quality studies.</td>
</tr>
</tbody>
</table>

Adapted from EPA’s Integrated Science Assessments
Weight of Evidence for Causal Determination

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Causal relationship</td>
<td>Evidence is sufficient to conclude that there is a causal relationship with relevant pollutant exposures. That is, the pollutant has been shown to result in health effects in studies in which chance, confounding, and other biases could be ruled out with reasonable confidence. For example: (1) controlled human exposure studies that demonstrate consistent effects; or (2) observational studies that cannot be explained by plausible alternatives or that are supported by other lines of evidence (e.g., animal studies or mode of action information). Generally, the determination is based on multiple high-quality studies conducted by multiple research groups.</td>
</tr>
<tr>
<td>Likely to be a causal relationship</td>
<td>Evidence is sufficient to conclude that a causal relationship is likely to exist with relevant pollutant exposures. That is, the pollutant has been shown to result in health effects in studies where results are not explained by chance, confounding, and other biases, but uncertainties remain in the evidence overall. For example: (1) observational studies show an association, but copollutant exposures are difficult to address and/or other lines of evidence (controlled human exposure, animal, or mode of action information) are limited or inconsistent; or (2) animal toxicological evidence from multiple studies from different laboratories demonstrate effects, but limited or no human data are available. Generally, the determination is based on multiple high-quality studies.</td>
</tr>
<tr>
<td>Suggestive but not sufficient to infer a causal relationship</td>
<td>Evidence is suggestive of a causal relationship with relevant pollutant exposures, but is limited, and chance, confounding, and other biases cannot be ruled out. For example: (1) when the body of evidence is relatively small, at least one high-quality epidemiologic study shows an association with a given health outcome and/or at least one high-quality toxicological study shows effects relevant to humans in animal species; or (2) when the body of evidence is relatively large, evidence from studies of varying quality is generally supportive but not entirely consistent, and there may be coherence across lines of evidence (e.g., animal studies or mode of action information) to support the determination.</td>
</tr>
<tr>
<td>Inadequate to infer a causal relationship</td>
<td>Evidence is inadequate to determine that a causal relationship exists with relevant pollutant exposures. The available studies are of insufficient quantity, quality, consistency, or statistical power to permit a conclusion regarding the presence or absence of an effect.</td>
</tr>
<tr>
<td>Not likely to be a causal relationship</td>
<td>Evidence indicates there is no causal relationship with relevant pollutant exposures. Several adequate studies, covering the full range of levels of exposure that human beings are known to encounter and considering at-risk populations and lifestages, are mutually consistent in not showing an effect at any level of exposure.</td>
</tr>
</tbody>
</table>