

HARVARD T.H. CHAN SCHOOL OF PUBLIC HEALTH

Center for Health and the Global Environment

Adverse Outcome Pathway as an Integrating Framework for Systematic Review

This research is funded by U.S. EPA - Science To Achieve Results (STAR) Program Grant # R835795

ADVERSE OUTCOME PATHWAY AS AN INTEGRATING FRAMEWORK FOR SYSTEMATIC REVIEW

Katherine von Stackelberg, ScD Center for Health and the Global Environment Harvard Center for Risk Analysis NEK Associates LTD

Biogeochemistry of Global Contaminants

Harvard School of Engineering and Applied Sciences

kvon@hsph.harvard.edu 1.617.998.1037

Synthesizing Evidence from Exposure to Health Outcome

Adverse Outcome Pathway

Case Studies as Examples

Hindawi Publishing Corporation Journal of Toxicology Volume 2012, Article ID 371610, 53 pages doi:10.1155/2012/371610

Review Article

A Systematic Review of Carcinogenic Outcomes and Potential Mechanisms from Exposure to 2,4-D and MCPA in the Environment

Katherine von Stackelberg^{1, 2}

¹ E Risk Sciences, LLP, 12 Holton Street, Allston, MA 02134, USA ² Harvard Center for Risk Analysis, 401 Park Drive, Landmark 404J, Boston, MA 02215, USA

Correspondence should be addressed to Katherine von Stackelberg, kvon@erisksciences.com

Received 1 February 2012; Revised 18 May 2012; Accepted 11 July 2012

Academic Editor: Arleen Rifkind

Copyright © 2012 Katherine von Stackelberg. This is an open access article distributed unde License, which permits unrestricted use, distribution, and reproduction in any medium, pr cited.

Chlorophenoxy compounds, particularly 2,4-dichlorophenoxyacetic acid (2,4-D) and 4--(MCPA), are amongst the most widely used herbicides in the United States for both agric Epidemiologic studies suggest that exposure to 2,4-D and MCPA may be associated with incr (NHL), Hodgkin's disease (HD), leukemia, and soft-tissue sarcoma (STS). Toxicological stu carcinogenicity, and regulatory agencies worldwide consider chlorophenoxies as not likely to 1 carcinogenicity. This systematic review assembles the available data to evaluate epidemiold exposure, and biomonitoring studies with respect to key cellular events noted in diseas hypothesized modes of action for these constituents to determine the plausibility of a environmentally relevant concentrations of 2,4-D and MCPA and lymphohematopoietic canc support a genotoxic mode of action. Although plausible hypotheses for other carcinogenic m biomonitoring data to oral equivalent doses calculated from bioassay data shows that environ support a causal relationship. Genetic polymorphisms exist that are known to increase the ri interaction between these polymorphisms and exposures to chlorophenoxy compounds, pa largely unknown.

Perspective

Exposure to Mixtures of Metals and Neurodevelopmental Outcomes: A Multidisciplinary Review Using an Adverse Outcome Pathway Framework

Katherine von Stackelberg,12,4 Elizabeth Guzy,2 Tian Chu,2 and Birgit Claus Henn2,3

Current risk assessment guidance calls for an individual chemical-by-chemical approach that fails to capture potential interactive effects of exposure to environmental mixtures and genetic variability. We conducted a review of the literature on relationships between prenatal and early life exposure to mixtures of lead (Pb), arsenic (As), cadmium (Cd), and manganese (Mn) with neurodevelopmental outcomes. We then used an adverse outcome pathway (AOP) framework to integrate lines of evidence from multiple disciplines based on evolving guidance developed by the Organization for Economic Cooperation and Development (OECD). Toxicological evidence suggests a greater than additive effect of combined exposures to As-Pb-Cd and to Mn with any other metal, and several epidemiologic studies also suggest synergistic effects from binary combinations of Pb-As, Pb-Cd, and Pb-Mn. The exposure levels reported in these epidemiologic studies largely fall at the highend (e.g., 95th percentile) of biomonitoring data from the National Health and Nutrition Examination Survey (NHANES), suggesting a small but significant potential for high-end exposures. This review integrates multiple data sources using an AOP framework and provides an initial application of the OECD guidance in the context of potential neurodevelopmental toxicity of several metals, recognizing the evolving nature of regulatory interpretation and acceptance.

KEY WORDS: Adverse outcome pathway; arsenic; cadmium; developmental; lead; manganese; metal mixtures; systematic review

DOI: 10.1111/risa.12425

Regulatory Reviews for 2,4-D and Cancer

TABLE 1: Summary of Reviews of 2,4-D and/or MCPA.

Reference	Evaluation	Conclusions	
	Regulatory reviews or reviews	in support of regulatory activities	
US EPA, SAB [27]	Science Advisory Board consultation on carcinogenicity of 2,4-D"Data are not sufficient to conclude that there is a cau relationship between exposure to 2,4-D and non-Hoc lymphoma"		
US EPA [28]	4th carcinogenicity of 2,4-D peer review	Not classifiable as to carcinogenicity	
WHO/IARC [29]	Evaluations of carcinogenic risk	Inadequate and/or limited for 2,4-D specifically and chlorophenoxy compounds generally	
US EPA [5]	Health Effects Division Carcinogenicity Peer Review Committee (2,4-D)	"Evidence is inadequate and cannot be interpreted as showing either the presence or absence of a carcinogenic effect."	
European Commission [30]	Review report for 2,4-D	Proposed uses have no harmful effects on animal or human health; no evidence of carcinogenicity	
US EPA [3, 4]	Risk assessments and reregistration decision for MCPA	Limited evidence for carcinogenicity	
US EPA [8]	Risk assessments and reregistration decision for 2,4-D	Group D, not classifiable as to carcinogenicity	
Health Canada PMRA [31]	Reregistration decision for 2,4-D	No evidence of carcinogenicity	
Health Canada PMRA [32]	Reregistration decision for MCPA	No evidence of carcinogenicity	
Health Canada [9]	MCPA in drinking water	Not considered a carcinogen	
77FR23135 [33]	Response to NRDC petition to revoke 2,4-D registration	No new evidence that would suggest registration should be revoked	

- 95% UCL

Estimate

Putative AOP – Generalized Schematic of NHL

FIGURE 5: Schematic of general pathways leading to increased risk of developing lymphoma.

Genetic Abnormalities in NHL

	B cells	Somatic mutations	Corresponding lymphoma	Genetic abnormalities	Percent of cases	
Foreign antigen independent	Stem cell	None				Bone marrow
-	Pro B cell	None				
	Pre B cell	None	B-cell lymphoblastic lymphoma (B-LBL)			
↓	Immature B cell	None				↓
Foreign antigen dependent	Mature naïve B cell	None	Mantle cell lymphoma	t(11; 14)(q13; q32)	>95%	Peripheral lymphoid tissue
			Chronic lymphocytic leukemia			
				t(8; 14)(q24; q32)	80%	
			Burkitt lymphoma (BL)	t(8; 22)(q24; q11)	5%	
				t(2; 8)(p11; q24)	15% 90% 5% 5%	
				t(14; 18)(q32; q21)		
			Follicular lymphoma (FL)	t(2; 18)(p11; q21)		
		I	I and a set of the set of the delta	t(18; 22)(q21; q11)	5%	
	Germinal center		Lymphocyte-predominant Hodgkin lymphoma			
	Germinal center	mutations	Iympnoma	der(3)(q27)	35%	
		mutations	D'07 1 H D H 1	t(14; 18)(q32; q21)	30%	
			Diffuse large cell B-cell lymphoma	t(3; 14)(p14.1; q32)		
			(B-LBL)	t(3; 14)(p14.1; q32) t(3; 14)(q27; q32)	35%	
			(D-EDE)	t(8; 14)(q24; q32)	10%	
				t(8; 22)(q24; q32)	5%	
			Hodgkins disease	(0,22)(421,411)	576	
	Memory B cell	Somatic mutations	Marginal zone B-cell lymphoma; chronic lymphocytic leukemia	t(9; 14)(p13; q32)	50%	
\downarrow	Plasma cell	Somatic mutations	Plasmacytoma/myeloma			\downarrow
Terminal differentiation			Anaplastic large T-cell lymphoma	t(2; 5)(p23; q35)	60% adults; 85% children	

- Urinary 2,4-D levels not correlated with chromosome aberration frequency (although significant genomic instability)
- Exposure-related effects observed were reversible and temporary (*Source: Garry et al. EHP 2001*)
- t(14;18)-positive NHL cases have larger relative risks from agricultural exposures than t(14;18)-negative cases, but show no association with 2,4-D or chlorophenoxys (*Source: Chiu and Blair J Agromed 2009; Schroeder et al. Epi 2001; Agopian et al. J Exp Med 2009*)
- Significant evidence of genetic polymorphisms that contribute to NHL risk (*Source: Hill et al. Blood 2006; Kelly et al. Cancer Epidemiol Biomarkers Prev 2010*)
- t(14;18) occurs frequently in general public (Source: Bende et al. Leukemia 2007; Janz et al. Genes Chrom Canc 2003)

- 2,4-D and MCPA are capable of interacting with cellular functions
 - Cell proliferation
 - CD38 MCPA marker in NHL
 - Mitotic arrest
- Show an impact on immunological parameters in humans exposed *in vivo* but effects are transient and reversible
- Less evidence for direct DNA interaction
 - Equivocal results in vivo
 - Some positive *in vitro* but did not come up in ToxCast
- Commercial formulations rather than pure product tend to show positive results
- No evidence for difference in toxicity across salts, acid, ester

Reverse Dosimetry to Obtain Urinary Concentrations Associated with in vivo/in vitro Assays to Compare to Biomonitoring Data

Oral Equivalent Dose =
$$AC_{50} \bullet \frac{1 \text{ mg/kg} - d}{C_{ss}(\mu M)}$$

Source: Wetmore et al. Tox Sci 2011

Predicted concentration in urine at oral equivalent dose in μ g/L:

Source: Aylward et al. Reg Tox Pharm 2008

$$C_{urine} = \frac{OED \bullet BW}{V_{24hr}}$$

Compare to biomonitoring data

Use other reference values from bioassays

Evaluate underlying assays with respect to disease etiology

- 10%CI
- I 90%CI
- Mean

FIGURE 7: Biomonitoring data for 2,4-D in the context of backcalculated urine levels. Reference lines: green = men 575 μ g/L (RfD), men 1170 μ g/L (ToxCast reverse dosimetry). Blue = women 480 μ g/L (RfD), women 960 μ g/L (ToxCast reverse dosimetry). Red = child 630 μ g/L (RfD), child 1250 μ g/L (ToxCast reverse dosimetry) (see for review [26, 124, 154, 201, 214, 215, 218–227]).

Exposure to Mixtures of Metals

Figure 1. Scatterplots and regression lines of 12-month blood lead (BPb) and 18-month MDI among children with 12-month blood manganese (Mn) in quintiles 1–4 (A) and quintile 5 (B).

Figure 2. Scatterplots and regression lines of 12-month blood lead (BPb) on 24-month PDI among children with 12-month blood manganese (Mn) in quintiles 1-4 (A) and quintile 5 (B).

- Superfund Research Program at Harvard
- Mexico city cohort n=493
- Previous study showed Ushaped association between Mn and neurodevelopmental outcomes at 12 mos (*Claus-Henn et al. 2010, Epidemiology, 21(4):433-439*)
- Exposure to both Pb and Mn associated with greater cognitive deficits than to either constituent individually (Claus-Henn et al. 2012, EHP, 120(1):126-131)

Prenatal and Perinatal Exposure to Mixtures of Metals and Neurodevelopmental Health Outcomes

- Evidence for less or greater than additive effect
 - Independent or additive
 - Antagonistic
 - Synergistic
- Multiple exposures leading to a common but nonspecific health outcome
 - Reduced performance on a battery of tests including WISC, Bayley's, etc.
- Frame for the AOP is normal neuronal development and opportunities for perturbations
- May be similar or different mechanisms
- AOPwiki and associated OECD guidance

Strawman for Greater than Additive Effects

Biological Plausibility and Essentiality

1. Support for Biological Plausibility	Strong	Moderate
a support of Diological Participating	auoug	Modelate
MIE: Activation of MEK1/2, ERK in astrocytes	As-Cd-Pb: 63	
	As: 121	
	Cd: 122, 123, 124	
	Mn: 125–127 Pb: 128	
	PD: 128	
KE: Increased cellular Ca2+	As-Cd-Pb: 60, 63	
	As: 135, 136, 137	
	Cd: 92, 123, 124, 138	
	Mn: 125	
	Pb: 96, 97	
KE: Reactive organic species and oxidative stress		As-Mn-Pb: 68
in brain tissue		AsCdPb: 63, 64
		Cd-Pb: 42
		As-Pb: 55
		As: 121, 123, 135, 136, 137, 139, 140, 141
		Cd: 92, 122, 134
		Mn: 98, 123, 125, 138, 142
		Pb: 97, 143
KE: Apoptosis of astrocytes or neurons	As-Cd-Pb: 60-63	
	As-Pb: 55	
	As: 121, 139, 137, 141	
	Cd: 92, 139, 138, 124 Mn: 153, 125, 126, 152	
	Pb: 96, 112, 154	
KE2: Disruptions in neurotransmitter release		Cd-Mn-Pb: 33
		Cd-Pb: 38, 40, 47
		As-Pb: 54
		Cd-Mn: 59 Mn-Pb: 50
		As: 157, 135, 142
		Cd: 123, 124
		Mn: 98, 99, 144
		Pb: 96, 97, 112, 143, 154
AO: Learning and cognition disorders		As-Pb: 81, 84 reported qualitative
ress, each mill and each more description		Interaction, 76–79 reported synergistic
		Mn-Pb: 14, 87
		As-Mn: 15
2. Support for Essentiality of KEs	Strong	Moderate
MIE: Activation of MEK1/2, ERK in astrocytes	117, 119–121	Modelate
KE: Increased cellular Ca2+	130, 131, 132, 133, 149	
KE: Reactive organic species and oxidative stress	118, 129, 141	
in brain tissue	117 167 168	
KE: Apoptosis of astrocytes or neurons KE2: Disruptions in neurotransmitter release	113, 152, 158 101, 111, 155, 156, 159	
3. Empirical Support for KERs	Strong	Moderate
Key event relationships	Empirical evidence/data is insufficient to develop	
	regulatory values for synergistic effects of metal	
	mixtures.	

Numbers refer to reference number.

Comparison of Levels from Epi Studies to Biomonitoring Data

► 10th NHANES - 97.5th NHANES ● mean NHANES ◆ Concentration from Epi Study

Moving Towards Quantitative Modeling

Putative AOP for Mercury Based on Human Health

Initial BayesNet – Relative Risk Model

Conclusions

- AOPs provide a context for data from systematic reviews
- Important that the initial literature review-data extraction follows a structured, transparent approach
 - Toxicological
 - Epidemiologic
 - Exposure and biomonitoring
 - Health outcome etiology
- Institute of Environmental Toxicology at Western Washington University
- Puyallup Research and Extension Service at Washington State University