Persistent Epigenetic Effects of Dietary Imbalance

Rob Waterland, PhD
Acknowledgements

Waterland Lab
Eleonora Laritsky, MS
Maria Baker, PhD
Jesse Eclarinal
Caroline Zhu
Noah Kessler
Tim Van Baak

Collaborators
Lanlan Shen, MD, PhD
Yongtao (Grant) Guan, PhD
Cristian Coarfa, PhD
Rui Chen, PhD
Andrew Prentice, PhD
Matt Silver, PhD
Branwen Hennig, PhD
Sophie Moore, PhD
YongSun Lee, PhD

Funding
USDA, NIH-NIDDK, UK MRC
Sources of Interindividual Epigenetic Variation

Genetic & Epigenetic Inheritance

Developmental Stochasticity

Environmental Influences

Age
Methyl Supplementation Changes Coat Color by Increasing A^{vy} Methylation

Wolff et al 1998 *FASEB J*
Waterland & Jirtle 2003 *Mol Cell Biol*
Significance of A^{vy} Study

• Demonstrated causal pathway:
 maternal nutrition – epigenetic change – phenotypic change

• Highlighted the potential involvement of metastable epialleles
Metastable Epiallele (ME)

“An allele at which the epigenetic state can switch and establishment is a probabilistic event. Once established, the state is mitotically inherited.”

Rakyan et al *Trends in Genetics* 2002

Agouti viable yellow
Axin fused
At MEs, Maternal Environment Affects Establishment of Epigenotype

• Maternal methyl supplementation increases DNA methylation
 - At A^{vy} (Waterland and Jirtle 2003 Mol Cell Biol)
 - At $Axin^{Fu}$ (Waterland et al 2006 Genesis)

• Maternal bisphenol A exposure decreases DNA methylation at $Cabp^{IAP}$
 - Dolinoy et al. 2007 PNAS
Does epigenetic variation at MEs contribute to human phenotypic variation?
Characteristics of Murine Metastable Epialleles

- Interindivudal variation in DNA methylation that is
 - Systemic (not tissue-specific)
 - Stochastic (not due to genetic variation)

- Establishment of DNA methylation affected by maternal nutrition before/during pregnancy
Seasonal Variation in Rural Gambia
Seasonal Variation in Rural Gambia
Seasonal Variation in Rural Gambia

Rainy Season - Hungry

Dry Season - Harvest
Season of Conception in Rural Gambia Affects DNA Methylation at Putative Human Metastable Epialleles

Robert A. Waterland¹,², Richard Kellermayer¹, Eleonora Laritsky¹, Pura Rayco-Solon³, R. Alan Harris², Michael Travisano⁴, Wenjuan Zhang¹, Maria S. Torskaya¹, Jiexin Zhang⁵, Lanlan Shen¹, Mark J. Manary¹, Andrew M. Prentice³

Maternal nutrition at conception modulates DNA methylation of human metastable epialleles

Paula Dominguez-Salas¹, Sophie E. Moore¹, Maria S. Baker², Andrew W. Bergen³, Sharon E. Cox¹, Roger A. Dyer⁴, Anthony J. Fulford¹, Yongtao Guan²,⁵, Eleonora Laritsky², Matt J. Silver¹, Gary E. Swan⁶, Steven H. Zeisel⁷, Sheila M. Innis⁴, Robert A. Waterland²,⁵, Andrew M. Prentice¹ & Branwen J. Hennig¹
Genome-Wide Screen for Human MEs

- Studied peripheral blood lymphocytes (PBL) and hair follicle (HF) from each of two Caucasian males

- Genome-wide bisulfite sequencing (Bisulfite-seq)
 - 26x average coverage per sample
 - Estimated % methylation in 6.2 million 200bp bins containing at least 2 CpG sites (85% of all CpGs)

Kunde-Ramamoorthy, et al 2014 *Nucleic Acids Res*
109 Top Candidate MEs Show No Evidence of Genetic Variation, and High CpG Density
We looked for genes associated with multiple ME bins. *VTRNA2-1* was a top hit.
What is known about VTRNA2-1? (aka pre-miR-886, aka nc886)

- 102-nucleotide, ubiquitously expressed, cytoplasmic RNA
- Neither a vault RNA nor a canonical pre-microRNA
- Genomically imprinted
- Inhibits cell proliferation by inhibiting phosphorylation of protein-kinase – RNA inducible (PKR)

Lee et al. 2011 RNA
Paliwal et al. 2013 PLoS Genetics
Methylation of *VTRNA2-1* Predicts Survival in Acute Myeloid Leukemia Patients

Treppendahl et al 2012 *Blood*
Validation of VTRNA2-1 Metastable Epiallele

• Systemic interindividual variation confirmed in post-mortem liver, kidney, brain

• No effects of genetic variation on DNA methylation at VTRNA2-1 (Zhang et al 2014 Hum Mol Genet)

• Effects of periconceptional nutrition confirmed in rural Gambians
In an Independent Genome-Scale Screen (450k array) for Differentially Methylated Regions (DMRs) According to Season of Conception, *VTRNA2-1* was THE Top Hit!

<table>
<thead>
<tr>
<th>chr</th>
<th>SoC-DMR (bp)</th>
<th>start</th>
<th>SoC-DMR (bp)</th>
<th>end</th>
<th>mean coeff</th>
<th>probes in SoC-DMR</th>
<th>probes cluster</th>
<th>p-value</th>
<th>p-value (fwer)</th>
<th>gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>135,415,762</td>
<td>135</td>
<td>135,416,613</td>
<td>0.61</td>
<td>15</td>
<td>15</td>
<td></td>
<td>2.0E-05</td>
<td>0.01</td>
<td>VTRNA2-1</td>
</tr>
<tr>
<td>2</td>
<td>113,992,762</td>
<td>113</td>
<td>113,993,313</td>
<td>0.47</td>
<td>8</td>
<td>8</td>
<td></td>
<td>5.5E-04</td>
<td>0.23</td>
<td>PAX8*</td>
</tr>
<tr>
<td>5</td>
<td>23,507,030</td>
<td>23</td>
<td>23,507,752</td>
<td>0.36</td>
<td>12</td>
<td>13</td>
<td></td>
<td>8.7E-04</td>
<td>0.35</td>
<td>PRDM9</td>
</tr>
<tr>
<td>6</td>
<td>32,729,442</td>
<td>32</td>
<td>32,729,847</td>
<td>0.14</td>
<td>20</td>
<td>36</td>
<td></td>
<td>1.6E-03</td>
<td>0.58</td>
<td>HLA-DQB2</td>
</tr>
<tr>
<td>17</td>
<td>17,109,570</td>
<td>17</td>
<td>17,110,120</td>
<td>0.38</td>
<td>8</td>
<td>11</td>
<td></td>
<td>1.8E-03</td>
<td>0.58</td>
<td>PLD6</td>
</tr>
<tr>
<td>6</td>
<td>29,648,345</td>
<td>29</td>
<td>29,649,024</td>
<td>0.27</td>
<td>14</td>
<td>18</td>
<td></td>
<td>1.8E-03</td>
<td>0.60</td>
<td>ZFP57*</td>
</tr>
<tr>
<td>6</td>
<td>151,646,312</td>
<td>151</td>
<td>151,647,133</td>
<td>0.30</td>
<td>9</td>
<td>9</td>
<td></td>
<td>2.8E-03</td>
<td>0.73</td>
<td>AKAP12</td>
</tr>
<tr>
<td>12</td>
<td>57,040,045</td>
<td>57</td>
<td>57,040,204</td>
<td>0.36</td>
<td>4</td>
<td>9</td>
<td></td>
<td>3.2E-03</td>
<td>0.78</td>
<td>ATP5B*</td>
</tr>
<tr>
<td>5</td>
<td>191,242</td>
<td>192</td>
<td>192,103</td>
<td>0.26</td>
<td>10</td>
<td>11</td>
<td></td>
<td>3.8E-03</td>
<td>0.85</td>
<td>LRRC14B</td>
</tr>
<tr>
<td>13</td>
<td>36,944,640</td>
<td>36</td>
<td>36,944,649</td>
<td>0.36</td>
<td>2</td>
<td>8</td>
<td></td>
<td>4.4E-03</td>
<td>0.86</td>
<td>SPG20</td>
</tr>
</tbody>
</table>

PBL DNA from 120 children studied by Illumina 450k arrays

Silver & Kessler, et al Genome Biol 2015
450k Data – Season of Conception Effect Spans the Entire VTRNA2-1 Imprinted DMR

PBL DNA from 120 children studied by Illumina 450k arrays

Silver & Kessler, et al Genome Biol
Individual Methylation at \(VTRNA2-1 \) is Highly Stable

\[y = 0.91x + 3.6 \]
\[R^2 = 0.83 \]

\(VTRNA2-1 \) methylation in PBL by pyrosequencing; \(n=55 \) Gambian children.
Maternal Periconceptional Nutrition Predicts VTRNA2-1 Hypomethylation in Her Infant

Silver & Kessler, et al Genome Biol 2015
Maternal Periconceptional Nutrition Predicts VTRNA2-1 Hypomethylation in Her Infant

Hypomethylation defined as <40% methylation by pyrosequencing. Complete data on ~120 infants.

Silver & Kessler, et al Genome Biol 2015
Sources of Interindividual Epigenetic Variation

Genetic & Epigenetic Inheritance

Developmental Stochasticity

Environmental Influences

Age