The Application of Model Averaging Methods to Assess the Suitability of Taiwanese Studies for Predicting U.S. Bladder and Lung Cancer Risk from Inorganic Arsenic (iAs) Intake (Poster 5)

William Mendez Jr., J. Allen Davis, Kan Shao, Janice S. Lee, Ila Cote, Ingrid Druwe, Jeff Gill

United States Environmental Protection Agency
Office of Research and Development
National Center for Environmental Assessment – Cincinnati

Purpose and Scope

➢ National Research Council (NRC) recommended that EPA focus on high-quality epidemiologic studies that assess inorganic arsenic (iAs) exposures commonly experienced in the U.S., where mean background intake is estimated to be 0.071 µg iAs/kg-day (see Posters 6 and 7) and where intake levels above 1 µg iAs/kg-day are extremely rare (NRC, 2013).

➢ An analysis was performed to assess the suitability of two studies of bladder and lung cancer risk in a large Taiwanese population (Chen et al., 2010a,b) that:

 • meet EPA study quality criteria (see Poster 1).

 • form the basis of arsenic risk assessments performed by other international organizations (FDA, 2016; WHO, 2011), and

 • are associated with high iAs exposure levels relative to the U.S. (iAs intake for the reference group of these studies is ~0.9 µg/kg-day, more than 10 x higher than the estimated U.S. background intake level).

Modeling Approach - Overview

A model averaging approach was applied in an attempt to extrapolate lifetime bladder and lung cancer probabilities observed at µg/kg-day intake doses estimated for a large prospective cohort study of residents in northeastern Taiwan (Chen et al., 2010a,b) to relevant U.S. doses. The approach is illustrated in Figure 1 and builds upon dose-response model averaging methods developed by the FDA. It involves:

➢ Estimation of water and dietary intake variability for the Taiwanese population to represent the variability in the input variables to the bootstrap model.

➢ Bootstrap simulation to incorporate uncertainty in the estimation of adjusted outcomes (cases of cancer) and daily arsenic intake dose.

➢ Model Averaging to extrapolate to U.S. relevant doses and assess model dependence.

Estimation of water and dietary intake variability

Multiple data sources and methods were used to derive inputs for the bootstrap estimation of arsenic intake. In summary:

➢ iAs Drinking water intake was estimated by fitting a mixed lognormal distribution to the drinking water concentration data from the Chen et al. cohort. Distributions of drinking water consumption were estimated based on age-specific survey data from the Taiwan Department of Health (TDOH, 2007).

➢ iAs Food intake was estimated using food consumption from Taiwan Department of Health survey data (TDOH, 2007) and iAs concentration distributions (for rice and leafy vegetables) or central tendency estimates (tubers, pulses, meats and fish) estimated from multiple studies of Taiwanese and other Asian countries.

Bootstrap simulation

➢ A "bootstrap" methodology was applied to simulate the variability in arsenic intake and in outcome measures, and their impacts on risk estimates. As shown in Figure 1, the estimated arsenic intake doses from water and diet were summed for each subject in each bootstrap iteration, and average total daily intake doses were estimated across each exposure group. The 1,000 sets of group average arsenic intake doses served as inputs, along with the outcome data sets, to the dose-response estimation.

Results

➢ In the range of the data, the mean absolute risk is approximately 2.5% and 97.5% percentiles are derived from constrained and unconstrained models (Figures 2 & 3; upper plots).

➢ At lower doses, absolute risks derived from the constrained models curve sharply downward compared to those from constrained models (Figures 2 & 3; lower plots).

➢ Differences in extra risk (i.e., the increase in risk relative to estimated "background risk") are more substantial, particularly in the low-dose range (see Figures 4 and 5).

Conclusions

As reflected in Figures 2 through 5, EPA’s model averaging analysis shows substantial model uncertainty in extrapolating from the iAs doses estimated for the Taiwan cohort to the estimated U.S. background iAs dose of 0.071 µg/kg-day. This result, combined with the NRC (2013) recommendation to perform only “modest” (e.g., 1 order of magnitude) extrapolation from the lowest exposure group of a candidate study, suggests that the Chen et al. (2010a,b) studies should not serve as the sole basis for U.S.-specific cancer risk estimates. As a result, EPA has developed a multiple study Bayesian meta-regression approach that has the potential to better inform dose-response and provide more reliable risk estimates at U.S.-relevant arsenic dose levels (see Posters 6 and 7).

References

Office of Research and Development

U.S. Environmental Protection Agency

The views expressed in this poster are those of the author(s) and do not necessarily represent the views or the policies of the U.S. Environmental Protection Agency.