Bayesian Hierarchical Meta-Regression of Epidemiologic Studies: Dose and Response Pre-Analysis (Poster 6)

Bruce Allen1, Jeff Gift2, Kan Shao3, Kevin Hobbie4, William Mendez Jr.1, Janice S. Lee1, Ila Coté5, Ingrid Druwe5, J. Allen Davis5

1 Independent Consultant, 2 EPA, Office of Research and Development, National Center for Environmental Assessment – Research Triangles Park, 3 Indiana University, 4 ICF International, 5 EPA, Office of Research and Development, National Center for Environmental Assessment – Cincinnati

Purpose and Scope
- National Research Council (NRC) has recommended the application of meta-analytical approaches, including Bayesian approaches, to well-studied health outcomes for the development of point estimates of risk and confidence intervals (NRC, 2013; NRC, 2014).
- NRC specifically recommended that EPA conduct dose-response meta-analysis for arsenic-related diseases in the IRIS assessment of inorganic arsenic (NRC, 2013).
- This poster is the first of two (see also Poster 7) that describe a case study highlighting an application of Bayesian hierarchical dose-response meta-regression to the analysis of arsenic exposure and human bladder cancer.

Case Study: Inorganic Arsenic (iAs) & Bladder Cancer

The pre-analysis steps described here employ methods to:
- Address how doses are commonly reported in epidemiological studies
- Calculate a common dose metric across all epidemiological studies
- Calculate "effective counts" from reported effect measures in human studies to facilitate sensitivity analysis of dose that exist across studies

Aim: To determine the degree of correspondence among susceptibility studies conducted in epidemiological studies in the context of dose-response analyses, including:
- Reporting of interval-censored exposure distribution
- Use of divergent measures of dose
- Sensitivity analysis

Methods
The methods described herein were used to account for commonly encountered limitations in epidemiologic studies in the context of dose-response analyses, including:
- Reporting of interval-censored exposure distribution
- Use of divergent measures of dose

Results
- After averaging over all individuals within a dose-group, a Monte Carlo simulation was run with 1,000 iterations to derive a distribution of group-specific dose values.
- The median, 2.5%, and 97.5% percentiles from this distribution were used to characterize the "best", "low-end", and "high-end" estimates of dose (Table 3).

Conclusions
- The methods described herein were used to account for commonly encountered limitations in epidemiologic studies in the context of dose-response analyses, including:
 - Reporting of interval-censored exposure distribution
 - Use of divergent measures of dose

References
- Greenland, S., Longnecker, P. Meta-analysis of epidemiologic studies in the context of dose-response analyses, including:
 - Reporting of interval-censored exposure distribution
 - Use of divergent measures of dose

U.S. Environmental Protection Agency
Office of Research and Development

The views expressed in this poster are those of the author(s) and do not necessarily reflect the views or the policies of the U.S. Environmental Protection Agency.