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Purpose and Scope

➢ National Research Council (NRC) has recommended the application of meta-
analytical approaches, including Bayesian approaches, to well-studied health 
outcomes for the development of point estimates of risk and confidence intervals 
(NRC, 2013; NRC, 2014).

➢ NRC specifically recommended that EPA conduct dose-response meta-analysis for 
arsenic-related diseases in the IRIS assessment of inorganic arsenic (NRC, 2013).

➢ This poster is the second of two (see also Poster 6) that describe a case study 
highlighting an application of Bayesian hierarchical dose-response meta-regression 
to the analysis of arsenic exposure and  human bladder cancer.

Case Study: Inorganic Arsenic (iAs) & Bladder Cancer

The dose-response and target population prediction steps described here employ 
methods to: 

➢ Apply a flexible logistic model to cohort and case-control epidemiological studies of 
inorganic arsenic (iAs) in a hierarchical Bayesian framework to estimate study-
specific and pooled slopes

➢ Extrapolate predictions of risk to a target population of interest using lifetable 
methods

➢ This method explicitly uses as inputs the results of the pre-analysis steps described 
in Poster 6.

Dose-Response Modeling and Lifetable Analysis

➢ The purpose the dose-response analysis described herein is to perform a meta-
regression to combine multiple studies for two kinds of epidemiological studies: 
case-control and cohort studies

➢ We assume that the prospective likelihood is given by a logistic equation applied to a 

vector of p explanatory variables 𝑋 = 𝑋1, … , 𝑋𝑝 :

𝑙𝑜𝑔𝑖𝑡 Pr(𝐷 = 1|𝑋) = 𝛼∗ + 𝛽𝑇𝑠(𝑋)

➢ Due to the differing designs of case-control and cohort studies, methods were 
developed for each study type independently in order to predict the prospective 
likelihood of each study

➢ For the Bayesian implementation of the meta-regression: 

➢ All analyses were conducted in the Stan programming language

➢ Defined necessary parameters for modeling and set priors:

➢ Case-control studies: β (slope parameter) and λ (true proportion of doses in a 
dose-interval)

➢ Cohort studies: μ(δ) (expected number of cases in the referent group)

➢ Calculated the parameter α or α* 

➢ Defined the log-likelihood contribution for each dose group

➢ Typical lifetable analysis methods, including consideration of background exposure 
to iAs, were used to estimate extra risk of disease in the target population:

➢ Background rates of disease assumed to represent zero extra risk from iAs

➢ A mean background iAs dose of 0.071 µg/kg-day was assumed (0.05 µg/kg-day 
from dietary sources, 0.021 µg/kg-day from drinking water, and 0 µg/kg-day 
from inhalation) (Xue et al., 2010; Mendez et al., 2017).

Dose-Response Modeling and Lifetable Analysis cont.

➢ Table 1 summarizes the data used in the case study of iAs and bladder cancer, 
including the estimated intake values and effective counts calculated as described in 
the Poster 6 

➢ For the purpose of dose-response 
modeling, the α* parameter was 
assumed to be independent for 
each dataset

➢ Methods also assume study-
specific β values that are 
normally distributed around a 
mean = β_mean, with standard 
deviation = β_sigma.  Both 
β_mean and β_sigma were 
assigned priors and updated 
(Table 2)

➢ The gamma distribution for β_mean reflects determination that iAs is causally 
associated with the development of bladder cancer

➢ prior judgement that exposure to 1 µg/kg-day iAs (~14-fold average background 
exposure) is highly likely to result in 1.0001 < OR < 20.

➢ 1st and 99th percentiles of gamma distribution (𝑓(𝑥) = 𝛼𝑒−𝛼𝑥(𝛼𝑥)𝑏−1 / 𝛤(𝑏)) 
set equal to ln(1.0001) and ln(20), results in parameters listed in Table 2

➢ Important to note that gamma distribution gives greatest weight to values of x 
closest to zero (hence, prior assumption is weaker association with iAs unless 
data are sufficient to override prior)

➢ Estimates of pooled and study-specific β values derived from the hierarchical model 
and estimated lifetime extra risks in the target population are summarized in Tables 
3 and 4 and Figures 1-3.

Dose-Response Modeling and Lifetable Analysis cont.

➢ The sensitivity of the hierarchical model and its outputs were examined regarding 
four sources of uncertainty:

➢ Characterization of exposure levels used in the modeling: this was addressed 
using the “high” and “low” dose estimates discussed in Poster 6; using different 
estimates of dose did not result in pooled β_mean that differed greatly (0.19, 0.20, 
or 0.21)

➢ Choice of datasets: a leave-one-out analysis was performed which showed that no 
one study had a disproportionately large influence on the final pooled β_mean 
value (Table 5)

➢ Zero background inhalation 
assumption: assuming background 
inhalation exposures of 0.2 to 0.6 
µg/day decreased mean extra risk 
estimates from 4.88×10-4  µg/kg-
day (Table 5, no data set excluded) 
to 4.68 or 4.51 × 10-4 µg/kg-day

➢ The consideration of alternative gamma prior distributions for β_mean: 
alternative distributions that considered different 1st or 99th percentile values did 
not overly influence final risk estimates (Table 6)

Conclusions

➢ These Bayesian meta-regression methods (Posters 6 and 7) allow for inclusion of 
more studies than other meta-regression methods by  reconciling different study 
designs and exposure metrics, and could potentially be applied to any endpoint for 
which multiple studies and incidence/mortality/morbidity lifetables are available

➢ The logistic dose-response model used could be extended to consider fractional-

polynomial forms of the logistic model, 𝑙𝑜𝑔𝑖𝑡 𝑝 𝑥 = 𝑎∗ + 𝛽_1 𝑥𝑝1 + 𝛽_2 𝑥𝑝2 ,

to allow more flexibility in fitting datasets for the investigation of whether the data 
suggest a J-shaped dose-response (e.g., negative slopes in the low dose region)
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