SARS-CoV-2 wastewater monitoring: Environmental surveillance to assess community-level incidences of COVID-19

Maitreyi Nagarkar, Nichole Brinkman, Scott Keely, Emily Wheaton, Chloe Hart, and Jay Garland

US Environmental Protection Agency
Office of Research and Development

The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. Any mention of trade names or commercial products does not constitute EPA endorsement or recommendation for use.
Research Team and Partners

EPA/ORD
Nichole Brinkman
Emily Wheaton
Chloe Hart
Scott Keely
Michael Jahne
Alison Franklin
Eunice Varughese
Jay Garland
Brian Morris
Dave Feldhake
Ana Braam
Barry Wiechman
Jacob Botkins

Utilities
Metropolitan Sewer District of Greater Cincinnati
Bruce Smith
City of Dayton
Chris Clark, Walter Schroder
City of Marion
Steve Morris
City of Portsmouth
Tommy Stewart
Montgomery County
Jim Davis
City of Hamilton
Mark Smith
City of Springfield
Jeff Yinger

Hamilton County Public Health Department
Chris Griffith

Ohio Water Resources Center
Zuzana Bohrerova

Ohio Department of Health
Rebecca Fugitt

Ohio EPA
Brian Hall
Tiffani Kavalec

University Labs
Ohio State University
University of Toledo
Kent State University
University of Akron
SARS-CoV-2 in Sewage

• Virus is shed in feces by individuals with symptomatic and asymptomatic infection – but not all shed

• Variable SARS-CoV-2 load in feces: 10^3-10^7 RNA copies/gram\(^1\)

• Approximately 75-80% US is served by municipal sewage systems\(^2\)

• Low risk of wastewater as vehicle for transmission
 • Limited reports of infectious virus in feces\(^5,6\); none from sewage
 • No additional risk to wastewater workers\(^7\)

Sample Processing and Analysis

24-hr composite sample, 225 ml

PBS OC43

Centrifuge 3000 x g, 15 min

Membrane filtration, 0.45µm

Ultrafiltration, 30 kDa MWCO

0.2 ml “Direct” sample

Pellet

Filter

UF Retentate
Sample Processing and Analysis

24-hr composite sample, 225 ml

Centrifuge 3000 x g, 15 min

Membrane filtration, 0.45µm

Ultrafiltration, 30 kDa MWCO

PBS
OC43

0.2 ml “Direct” sample

Pellet

Filtrate

UF Retentate

Nucleic Acid Extraction (RNeasy Power Water Kit)

RT-ddPCR: SARS-CoV-2 (N1, N2), OC43, PMMoV, Inhibition control; ddPCR: crAssphage

Turnaround time = 3 days
Questions

• Where is virus found in the sample? (Which fractions is it associated with?)

• What are the limits of detection for our samples and methods?

• What is our recovery efficiency? (What is the best way to assess this?)

• What is the effect of extended sample storage time?

• What is the effect of freezing the sample?
Where is virus found within the sample?

- 90% of measurable virus is found in the pellet and filter fractions.
What is the limit of detection?

• LOD is based on:
 • Volume of sample processed
 • Concentration factor
 • Volume of processed sample that is analyzed in PCR
 • Analytical sensitivity of instrument (i.e. minimum detectable concentration)

• Theoretical LOD represents ideal conditions; practical limits likely higher due to losses during processing

Mean, 95% CI

655 mol/L
What is our recovery efficiency?

We can understand this by measuring concentrations before and after processing of...

- **Endogenous virus** –
 - crAssphage: 84%
 - PMMoV (Pepper Mild Mottle Virus): 27%

- **Spiked virus** –
 - OC43 (Human Beta-Coronavirus): 6%

- Minimal PCR inhibition (<20%)
What is the effect of sample storage time?

- 24-hour composite shipped overnight, held at 4°C for up to 4 days
- No significant difference in SARS-CoV-2 RNA up to 4 days
What is the effect of freezing the sample?

- Up to five-fold reduction when samples were frozen at -70°C and then thawed for processing.
Ohio Wastewater Monitoring Network

- Currently 46 sites, more will be added
- Sample weekly, but increasing to biweekly
- ORD-Cincinnati = 10 sites
How will the data be used?

- Increased messaging to public on best practices to reduce transmission
- Mobilize additional individual testing
- Alert health care providers
- Closely monitor and evaluate data
- Provide recommendations to local leaders to take direct actions
Temporal trends in different sewersheds
Temporal trends in different sewersheds

<table>
<thead>
<tr>
<th>Sewer Creek</th>
<th>% Industrial</th>
<th>% Combined</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mill Creek (118 MGD)</td>
<td>5.0</td>
<td>40</td>
<td>0.5:1</td>
</tr>
<tr>
<td>Little Miami (37 MGD)</td>
<td>4.2</td>
<td>30</td>
<td>0.4:1</td>
</tr>
<tr>
<td>Muddy Creek (14 MGD)</td>
<td><0.05</td>
<td>30</td>
<td>0.5:1</td>
</tr>
<tr>
<td>Taylor Creek (3 MGD)</td>
<td>0</td>
<td>0</td>
<td>1.8:1</td>
</tr>
</tbody>
</table>

Mill Creek = pool of 488,000 people
Relating wastewater data to new cases

Hamilton County individual test data

Mill Creek wastewater data (serves ~80% of Hamilton County)

• Working with county to obtain sewershed-scale individual test data
Sewersheds and sub-sewersheds

- Lick Run as a possible “sentinel site” – more vulnerable population
- Working with county to obtain higher-resolution case data
Summary

• We have a low level of detection, but it coincides with observed increases of new cases

• We are using this data to develop models that account for factors influencing virus detection
 • Dilution of wastewater, Instrument limitations, Processing losses

• We will continue to measure SARS-CoV-2 in wastewater at specified sites and expand the Ohio network, focusing on trends or significant changes in the number of viral RNA detected

• This data will inform public health applications through the Ohio Monitoring Network
Thank you!