Total Maximum Daily Load for Pearly Lake, Rindge, NH

August, 2014

Originally prepared by AECOM (171 Daniel Webster Hwy, Suite 11, Belmont, NH 03220 July 2009 Document Number: 09090-107-21) with revisions made by NH Department of Environmental Services in August 2014.
Total Maximum Daily Load for Pearly Lake, Rindge, NH

Originally prepared by AECOM (171 Daniel Webster Hwy, Suite 11, Belmont, NH 03220 July 2009 Document Number: 09090-107-21) with revisions made by NH Department of Environmental Services in August 2014.
Contents

Executive Summary ... 1

1.0 Introduction .. 1-1

2.0 Description of Water Body, Standards and Target ... 2-1
 2.1 Waterbody and Watershed Characteristics .. 2-1
 2.2 Designated Uses ... 2-3
 2.3 Applicable Water Quality Standards ... 2-4
 2.4 Anti-degradation Policy .. 2-5
 2.5 Priority Ranking and Pollutant of Concern .. 2-5
 2.6 Numeric Water Quality Target ... 2-5

3.0 ENSR-LRM Model of Current Conditions ... 3-1
 3.1 Hydrologic Inputs and Water Loading ... 3-3
 1. Two thirds of the average annual flow from the Franklin Pierce University wastewater treatment plant
 (i.e., groundwater discharge via Rapid Infiltration Basins) comes from water sources outside of the
 watershed, therefore this was added as an additional flow input in the water budget. This value is
 based on the average of the average annual WWTP flows for the years 2009 to 2013 presented in
 Appendix C, Table C-8. ... 3-3
 3.2 Nutrient Inputs .. 3-4
 3.3 Phosphorus Loading Assessment Summary ... 3-8
 3.4 Phosphorus Loading Assessment Limitations .. 3-8
 3.5 Lake Response to Current Phosphorus Loads .. 3-9

4.0 Total Maximum Daily Load ... 4-1
 4.1 Maximum Annual Load .. 4-1
 4.2 Maximum Daily Load ... 4-1
 4.3 Future Development .. 4-1
 4.4 Critical Conditions .. 4-2
 4.5 Seasonal Variation .. 4-2
 4.6 Reduction Needed ... 4-2
 4.7 TMDL Development Summary .. 4-3

5.0 TMDL Allocation ... 5-1
 5.1 Wasteload Allocations (WLAs) and Load Allocations (LAs) .. 5-1
 5.2 Margin of Safety (MOS) .. 5-1
6.0 Evaluation of Alternative Loading Scenarios

6.1 Natural Environmental Background Phosphorus Loading

6.2 Septic System Load Removal

6.3 Internal Load Removal

6.4 Reduction of Watershed Loads to Meet In-lake Target of 14 µg/L

6.5 Modeling Assumptions and Uncertainty

7.0 Implementation Plan

8.0 Monitoring Plan

9.0 Reasonable Assurances

10.0 Public Participation

11.0 References

Appendix A: Methodology for Determining Target Criteria

Appendix B: ENSR-LRM Methodology Documentation

Appendix C: Land Use Categories, Export Coefficients and Additional Calculations
List of Figures

Figure 2-1. Pearly Lake Location and Bathymetry ... 2-2
Figure 3-1. Pearly Lake Watershed Land Use .. 3-2
Figure 10-1. Public Notice ... 10-2

List of Tables

Table 2-1 Characteristics of Pearly Lake, Rindge, NH .. 2-1
Table 2-2 Lake Summer Water Quality Summary Table 2009-2013 ... 2-3
Table 2-3 Designated Uses for New Hampshire Surface Waters ... 2-4
Table 3-1 Pearly Lake Water Budget ... 3-3
Table 3-2 Pearly Lake Subwatersheds ... 3-5
Table 3-3 Pearly Lake Current Phosphorus Loading Summary .. 3-8
Table 3-4 Predicted In-lake Total Phosphorus Concentration using Empirical Models 3-10
Table 3-5 Predicted In-lake Chlorophyll a and Secchi Disk Transparency Predictions based on an Annual Average In-lake Phosphorus Concentration of 26 µg/L ... 3-11
Table 4-1 Pearly Lake Total Phosphorus Load at Target Criteria of 14 µg/L based on Predevelopment Scenario .. 4-3
Table 6-1 Comparison of Phosphorus Loading Scenarios for Pearly Lake 6-2
Table 6-2. Lake Water Quality Response to Different Loading Scenarios for Pearly Lake 6-3
Table 7-1. Best Management Practices Selection Matrix .. 7-5
Executive Summary

A Total Maximum Daily Load (TMDL) analysis was conducted for Pearly Lake, New Hampshire. Pearly Lake is on the 2012 Section 303(d) List of impaired waters for impairment of the Primary Contact Recreation use due to chlorophyll a (chl a) and cyanobacteria hepatotoxic microsystins (cyanobacteria). It is also listed for impairment of the aquatic life use due to low dissolved oxygen (DO), chl a and total phosphorus (TP). This effort included the construction of a nutrient budget and setting a target value for phosphorus such that algal growth and bloom formation would meet applicable water quality standards and thresholds. Reducing phosphorus concentrations and associated algal growth should also improve the dissolved oxygen conditions in the deep areas of the lake. Existing TP loads were then reduced and allocated among the various sources of TP until the target TP concentration and load was achieved.

Modeling was conducted to predict in-lake TP concentration, as well as chl a concentrations, algal bloom frequency and secchi disk transparency. Existing sources of TP were assumed to be from atmospheric deposition, internal loading, septic systems (within 125 feet of the lake), waterfowl, residual loading from a former surface water discharge from the Franklin Pierce University (FPU) wastewater treatment plant, and watershed loads. The in-lake target TP concentration was set at 14 ug/L, which is the predicted TP concentration associated with the model run simulating natural conditions (i.e., no human influence). The corresponding loading for the target scenario is approximately 132 kg/yr. The analysis suggests that the current TP load to Pearly Lake will need to be reduced by approximately 44% (105 kg/yr) overall in order to meet the target. A scenario showing potential load reductions for achieving this overall target is provided although it is recognized that other combinations of source load reductions are possible.

Successful implementation of this TMDL will not be based on meeting the in-lake target TP concentration of 14 ug/l or the reduction target of 44% (105 kg/yr). Rather, compliance will be based on continued lake monitoring and assessment of monitoring results using the methods described for assessing water quality standards attainment in the most recent version of the Consolidated Assessment Listing Methodology (CALM) for the response variables (DO, cyanobacteria, and chl a), with the exception that the mean and peak chl a thresholds will be 5 and 17 ug/L respectively.

General guidance for implementation, monitoring and for obtaining Clean Water Act (Section 319) funding for nonpoint source control is also provided. Monitoring is recommended as a first step to confirm some of the assumptions used to calibrate the model. To track progress towards the load reduction goal, it is recommended that estimates of TP reductions associated with each load reduction activity be quantified. After significant load reductions have been implemented, monitoring should be conducted to determine if compliance has been achieved or if additional reductions are necessary. This is especially important when the estimated TP load reductions associated with implemented activities approach the load reduction goal since it’s possible that, due to the model uncertainties, compliance will be achieved before the TP load reduction goal is met. The process of implementing load reduction activities and monitoring in a step-wise fashion is called phased implementation and is the recommended approach for implementing this TMDL.
1.0 Introduction

The Federal Clean Water Act (CWA) provides regulations for the protection of streams, lakes, and estuaries within the United States. Section 303(d) of the CWA requires individual states to identify waters not meeting current state water quality standards due to pollutant discharges and to determine Total Maximum Daily Loads (TMDLs) for these waters. A TMDL sets the maximum amount of a pollutant that a waterbody can receive and still support designated uses. A large number of New Hampshire lakes are on the 303(d) list due to impairment of designated uses by total phosphorus (TP), chlorophyll a (chl a), cyanobacteria hepatotoxic microcystin (cyanobacteria) blooms, or dissolved oxygen (DO) depletion (NHDES 2012). Pearly Lake was originally included on the 2006 and 2008 303(d) lists for impairment of the aquatic life and primary contact recreation uses due to low DO and chl a respectively. In 2010, cyanobacteria was added as a cause of impairment for the primary contact recreation use and in 2012, total phosphorus was added as a cause of impairment for the aquatic life use. High levels of chl a and cyanobacteria blooms are indicative of nutrient enrichment. Low DO is also likely related to nutrient enrichment and associated algal production. Phosphorus is the primary limiting nutrient in northern temperate lakes, hence eutrophication due to phosphorus enrichment is the likely cause of high chl a and/or low DO. Nitrogen can also play a role in determining the type of algae present and the degree of eutrophication of a waterbody. However, phosphorus is typically more important and more easily controlled than nitrogen. A TMDL for total phosphorus (TP) as a surrogate for chl a and DO has been prepared for Pearly Lake and the results are presented in this report.

The TMDL will be expressed as:

\[\text{TMDL} = \text{Waste Load Allocation (WLA)} + \text{Load Allocation (LA)} + \text{Margin of Safety (MOS)} \]

The WLA includes the load from permitted discharges, the LA includes non-point sources and the MOS ensures that the TMDL will support designated uses given uncertainties in the analysis and variability in water quality data.

Determining the maximum daily nutrient load that a lake can assimilate without exceeding water quality standards is challenging and complex. First, many lakes receive a high proportion of their nutrient loading from non-point sources, which are highly variable and difficult to quantify. Secondly, lakes demonstrate nutrient loading on a seasonal scale, not a daily basis. Loading during the winter months may have little effect on summer algal densities. Finally, variability in loading may be very high in response to weather patterns, and the forms in which nutrients enter lakes may cause increased variability in response. Therefore, it is usually considered most appropriate to quantify a lake TMDL as an annual load and evaluate the results of that annual load on mid-summer conditions that are most critical to supporting recreational uses. Accordingly, the nutrient loading capacity of lakes is typically determined through water quality modeling, which is usually expressed on an annual basis. Thus, while a single value may be chosen as the TMDL for each nutrient, it represents a range of loads with a probability distribution for associated water quality problems (such as algal blooms). Uncertainty is likely to be very high, and the resulting TMDL should be viewed as a nutrient-loading goal that helps set the direction and magnitude of management, not as a rigid standard that must be achieved to protect against eutrophication. While daily expression of the TMDL is provided in this report, the annual mean load should be given primacy when developing and evaluating the effectiveness of nutrient loading reduction strategies.

The purpose of the Pearly Lake TMDL is to establish a TP loading target that is expected to achieve state water quality criteria and thresholds for DO, chl a and cyanobacteria. Water quality that meets these objectives is, a priori, expected to protect designated uses. This TMDL analysis was prepared according to the United States Environmental Protection Agency’s (US EPA) protocol for developing nutrient TMDLs (US EPA1999). The main objectives of this TMDL report include the following:

- Describe water body, standards and numeric target value;
- Describe potential sources and estimate the existing TP loading to the lake;
• Estimate the loading capacity;
• Allocate the load among sources;
• Provide alternate allocation scenarios;
• Suggest elements to be included in an implementation plan;
• Suggest elements to be included in a monitoring plan;
• Provide reasonable assurances that the plans will be acted upon; and
• Describe public participation in the TMDL process.

This TMDL for TP will identify the causes of impairment and the pollutant sources and is expected to fulfill the first of the nine requirements for a watershed management plan required to qualify a project for Section 319 restoration funding (see Section 7.0).
2.0 Description of Water Body, Standards and Target

2.1 Waterbody and Watershed Characteristics

Pearly Lake (also known as Pearly Pond) is located in Rindge, New Hampshire within the Connecticut River Basin (Figure 2-1). The lake includes two assessment units; NHLAK802020103-08 which includes the main body of the lake and NHLAK802020103-08-02 which represents the Pearly Lake Beach. The 78-hectare (ha) lake (191 acres) has a maximum depth of 4.6 meters (m) (15 ft) and a mean depth of 1.7 m (5.6 ft). The lake volume is approximately 1.3 million cubic meters (m^3) with a flushing rate of approximately five times per year. The watershed area is 861 ha (2128 acres) and is entirely within the Town of Rindge. The Town of Rindge has 6,014 residents (2010 Census). Pearly Lake has a warm water fishery with brown bullhead (*Ictalurus nebulosus*), yellow perch (*Perca flavescens*), blue gill (*Lepomis macrochirus*), largemouth bass (*Micropterus salmoides*), chain pickerel (*Esox niger*), golden shiner (*Notemigonus crysoleucas*) and white sucker (*Catostomus commersonii*) identified during fisheries surveys (NH Fish and Game 2007, NHDES 2008c). New Hampshire Natural Heritage Bureau lists the banded sunfish (*Enneacanthus obesus*) as an endangered species in Pearly Lake (NHDES 2008c). The non-native aquatic plant species, variable milfoil (*Myriophyllum heterophyllum*), was first identified in 1975 and continues to invade the lake. Select characteristics of Pearly Lake and its watershed are presented in Table 2-1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment Unit Identification</td>
<td>NHLAK802020103-08 (main lake) and NHLAK802020103-08-02 (Beach)</td>
</tr>
<tr>
<td>Lake Area (ha, acres)</td>
<td>77.5 ha, 191.5 acres</td>
</tr>
<tr>
<td>Lake Volume (m^3)</td>
<td>1,295,381</td>
</tr>
<tr>
<td>Watershed Area (ha, acres)</td>
<td>861.2 ha, 2128.1 acres</td>
</tr>
<tr>
<td>Watershed/Lake Area</td>
<td>11.1</td>
</tr>
<tr>
<td>Mean Depth (m, ft)</td>
<td>1.7m, 5.6ft</td>
</tr>
<tr>
<td>Max Depth (m, ft)</td>
<td>4.6m, 15ft</td>
</tr>
<tr>
<td>Flushing Rate (yr$^{-1}$)</td>
<td>4.7</td>
</tr>
<tr>
<td>Upper Layer TP (μg/L mean, range)*</td>
<td>25, 13-52</td>
</tr>
<tr>
<td>Lower Layer TP (μg/L mean)*</td>
<td>72, 20-207</td>
</tr>
<tr>
<td>Epilimnion TN: TP Ratio*</td>
<td>21</td>
</tr>
<tr>
<td>Hypolimnetic Anoxia</td>
<td>Yes/Weakly Stratified</td>
</tr>
</tbody>
</table>

Primary Contact Recreation: Chlorophyll a (5-M), Cyanobacteria hepatoxic microcystins (5-M); Aquatic Life: Dissolved Oxygen (5-M), Chlorophyll-a (5-M), Total Phosphorus (5-M)

Source: 2012 NH 303(d) List of Threatened or Impaired Waters that Require a TMDL (NHDES, 2012). Category '5' = TMDL Required, Category 'M' = Marginal Impairment, and Category 'P' = Priority Impairment. Impairments shown are for assessment unit NHLAK802020103-08 (the main portion of the lake). Pearly Lake Beach (NHLAK802020103-08-02) is only listed as impaired for Primary Contact Recreation due to Cyanobacteria hepatoxic microcystins (5-M).
Figure 2-1. Pearly Lake Location and Bathymetry.

Notes:
1) Aerial photo base map from 2003 National Agricultural Imagery Program (NAIP) Digital Orthophoto, obtained from NHGRANIT.
2) Bathymetric data obtained from the NHDES in 2007.
The New Hampshire Department of Environmental Services (NHDES) conducted water quality monitoring of Pearly Lake in the summers of 1977, 1990, and 2004 for Lake Trophic Studies (NHDES 1990). The Volunteer Lake Assessment Program (VLAP) began in 1992 and continues to the present day (NHDES 2006b). NHDES also conducted a study of the Mountain Road subwatershed in 1995 (Connor and Moses, 1995). The mean, median and range of selected water quality parameters from each sampling location 2009-2013 are summarized in Table 2-2. The hypolimnion has low DO concentrations (< 1 mg/L) at depths below 3-4 m during the summer. Secchi disk transparencies (SDT) are also low, ranging from 1.0 to 2.8 m with a mean of 1.6 m. Summer chl \(a \) concentrations ranged from 4 to 28 \(\mu g/L \). TP concentrations in the epilimnion range from 13 to 52 \(\mu g/L \) with a mean of 25 \(\mu g/L \). Hypolimnetic TP concentrations range from 20 to 207 \(\mu g/L \) with a mean of 72 \(\mu g/L \).

Table 2-2 Lake Summer Water Quality Summary Table 2009-2013

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Bower Inlet TP ((\mu g/L))</th>
<th>Epi TP ((\mu g/L))</th>
<th>Meta TP* ((\mu g/L))</th>
<th>Hypo TP ((\mu g/L))</th>
<th>College Road TP ((\mu g/L))</th>
<th>Mountain Road TP ((\mu g/L))</th>
<th>Outlet TP ((\mu g/L))</th>
<th>SDT (m)</th>
<th>Chl a** ((\mu g/L))</th>
<th>DO *** (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>31</td>
<td>0</td>
<td>22</td>
<td>13</td>
<td>2</td>
<td>12</td>
<td>15</td>
<td>7</td>
<td>18</td>
<td>93</td>
</tr>
<tr>
<td>Min</td>
<td>13</td>
<td>0</td>
<td>20</td>
<td>11</td>
<td>70</td>
<td>14</td>
<td>1.0</td>
<td>6</td>
<td>4</td>
<td>0.08</td>
</tr>
<tr>
<td>Mean</td>
<td>25</td>
<td>0</td>
<td>72</td>
<td>24</td>
<td>77</td>
<td>56</td>
<td>24</td>
<td>1.6</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Max</td>
<td>52</td>
<td>0</td>
<td>207</td>
<td>38</td>
<td>83</td>
<td>120</td>
<td>33</td>
<td>2.8</td>
<td>28</td>
<td>9</td>
</tr>
<tr>
<td>Median</td>
<td>23</td>
<td>0</td>
<td>56</td>
<td>24</td>
<td>77</td>
<td>54</td>
<td>24</td>
<td>1.5</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

*No metalimnion data available for the 2009-2013 period.
**Uncorrected for pheophytin. This excludes the October 2013 data to allow for comparison of summer index period.
***DO values are from each discrete observation in the data set regardless of depth.

2.2 Designated Uses

Pearly Lake is assigned a surface water classification of B by the State of New Hampshire. Surface water classifications establish designated uses for a waterbody. Designated uses are desirable uses that must be protected, but are not specifically associated with quantifiable water quality standards. According to RSA 485-A:8, Class B waters “…shall be of the second highest quality.” These waters are considered acceptable for fishing, swimming and other recreational purposes and may be used as water supplies after adequate treatment.

As indicated above, State statute (RSA 485-A:8) is somewhat general with regards to designated uses for New Hampshire surface waters. Upon further review and interpretation of the regulations (Env-Wq 1700), the general uses can be expanded and refined to include the seven specific designated uses shown in Table 2-3 (NHDES 2008a).
Table 2-3 Designated Uses for New Hampshire Surface Waters

<table>
<thead>
<tr>
<th>Designated Use</th>
<th>NH DES Definition</th>
<th>Applicable Surface Waters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquatic Life</td>
<td>Waters that provide suitable chemical and physical conditions for supporting a balanced, integrated and adaptive community of aquatic organisms.</td>
<td>All surface waters</td>
</tr>
<tr>
<td>Fish Consumption</td>
<td>Waters that support fish free from contamination at levels that pose a human health risk to consumers.</td>
<td>All surface waters</td>
</tr>
<tr>
<td>Shellfish Consumption</td>
<td>Waters that support a population of shellfish free from toxicants and pathogens that could pose a human health risk to consumers</td>
<td>All tidal surface waters</td>
</tr>
<tr>
<td>Drinking Water Supply After Adequate Treatment</td>
<td>Waters that with adequate treatment will be suitable for human intake and meet state/federal drinking water regulations.</td>
<td>All surface waters</td>
</tr>
<tr>
<td>Primary Contact Recreation (i.e. swimming)</td>
<td>Waters suitable for recreational uses that require or are likely to result in full body contact and/or incidental ingestion of water</td>
<td>All surface waters</td>
</tr>
<tr>
<td>Secondary Contact Recreation</td>
<td>Waters that support recreational uses that involve minor contact with the water.</td>
<td>All surface waters</td>
</tr>
<tr>
<td>Wildlife</td>
<td>Waters that provide suitable physical and chemical conditions in the water and the riparian corridor to support wildlife as well as aquatic life.</td>
<td>All surface waters</td>
</tr>
</tbody>
</table>

2.3 Applicable Water Quality Standards

The New Hampshire State Water Quality Standards for nutrients in Class B waters (Env-Wq 1703.14) are:

1. Class B waters shall contain no phosphorus in such concentrations that would impair any existing or designated uses, unless naturally occurring.
2. Existing discharges containing either phosphorus or nitrogen that encourage cultural eutrophication shall be treated to remove phosphorus or nitrogen to ensure attainment and maintenance of water quality standards.
3. There shall be no new or increased discharge of phosphorus into lakes or ponds.
4. There shall be no new or increased discharge(s) containing phosphorus or nitrogen to tributaries of lakes or ponds that would contribute to cultural eutrophication or growth of weeds or algae in such lakes and ponds.

Applicable water quality standards for DO include the following:

Env-Wq 1703.07 (b): Except as naturally occurs, or in waters identified in RSA 485-A:8, III, or subject to (c) below, Class B waters shall have a DO content of at least 75% of saturation, based on a daily mean, and an instantaneous minimum DO concentration of at least 5 mg/L.
Env-Wq 1703.07 (d): Unless naturally occurring or subject to (a) above, surface waters within the top 25 percent of depth of thermally unstratified lakes, ponds, impoundments and reservoirs or within the epilimnion shall contain a DO content of at least 75 percent saturation, based on a daily mean and an instantaneous minimum DO content of at least 5 mg/L. Unless naturally occurring, the DO content below those depths shall be consistent with that necessary to maintain and protect existing and designated uses.

The NH DES policy for interim nutrient threshold for primary contact recreation (i.e. swimming) in NH lakes is 15 µg/L chl a (NH DES 2008a). Lakes were also listed as impaired for swimming if surface blooms (or “scums”) of cyanobacteria were present. A lake was listed even if scums were present only along a downwind shore.

2.4 Anti-degradation Policy

Anti-degradation provisions are designed to preserve and protect the existing beneficial uses of New Hampshire’s surface waters and to limit the degradation allowed in receiving waters. Anti-degradation regulations are included in Part Env-Wq 1708 of the New Hampshire Surface Water Quality Regulations. According to Env-Wq 1708.02, anti-degradation applies to the following:

- All new or increased activity including point and nonpoint source discharges of pollutants that would lower water quality or affect the existing or designated uses;
- A proposed increase in loading to a waterbody when the proposal is associated with existing activities;
- An increase in flow alteration over an existing alteration; and
- All hydrologic modifications, such as dam construction and water withdrawals.

2.5 Priority Ranking and Pollutant of Concern

Pearly Lake (NHLAK802020103-08) is listed on the 2012 303(d) list as having an aquatic life use impairment due to excessive total phosphorus (TP) and chl a and low DO concentrations, and for primary contact recreation use impairment due to chl a and cyanobacteria (NHDES 2012). Pearly Lake Beach (NHLAK802020103-08-02) is listed as impaired for primary contact recreation due to cyanobacteria (NHDES, 2012). All of the above impairments are listed as marginally impaired (category 5-M). Pearly Lake is listed by the NHDES as a high priority for TMDL development. It is likely that the impairments observed in Pearly Lake are attributable to nutrient enrichment, specifically TP. Control of TP sources to Pearly Lake should therefore improve conditions related to chl a, cyanobacteria and DO such that designated uses are supported.

2.6 Numeric Water Quality Target

To develop a TMDL for this waterbody, it is necessary to derive a numeric TP target value (e.g., in-lake concentration) for determining acceptable nutrient loads. The suggested TP value is described in the following paragraphs. The derivation of this target and discussion of alternative approaches in setting targets are presented in Appendix A. It is notable that all three approaches presented result in very similar target concentrations.

At present, numeric criteria for TP do not exist in New Hampshire’s state water quality regulations. Accordingly, best professional judgment of AECOM, NHDES, and US EPA Region 1 was employed to select a quantitative target in-lake TP concentration that will attain the narrative water quality standard.

As explained in Appendix A, a target of 12 µg/L is typically used for most lakes unless the predicted concentration under natural (pre-development) conditions is greater. In such cases, the natural TP concentration is used as the target. This is consistent with Env-Wq 1703.14 which states that Class B waters shall contain no phosphorus in such concentrations that would impair any existing or designated uses, unless naturally occurring. The value of 12 µg/L is derived from an analysis of the observed TP concentrations from a set of impaired and unimpaired lakes in New Hampshire and is further supported by evaluation of the Trophic
State Indices (TSI) developed by Carlson (1977) and a probabilistic assessment of the likelihood of blooms (Walker 1984, 2000). The “weight of evidence” suggests that 12 µg/L will support recreational and aquatic life designated uses as reflected in suitable (designated use support) measures of both SDT and chl a. In the case of Pearly Lake, modeling of natural (pre-development) conditions (see section 6.1), indicated that the natural level of TP in Pearly Lake is 14 ug/L which slightly exceeds the typical target of 12 ug/L. Because it is impractical to reduce loading beyond the natural background level, the natural background scenario is used as a basis for establishing the target (refer to section 1.4 of Appendix A). Therefore, a target TP concentration of 14 ug/L, based on natural (pre-development) conditions, was used for Pearly Lake.
3.0 ENSR-LRM Model of Current Conditions

Current TP loading was assessed using the ENSR-LRM methodology, which is a land use export coefficient model developed by AECOM for use in New England and modified for New Hampshire lakes by incorporating New Hampshire land use TP export coefficients when available and adding septic system loading into the model (CT DEP and ENSR 2004). Documentation for ENSR-LRM is provided in Appendix B.

The major direct and indirect nonpoint sources of TP to Pearly Lake include:

- Atmospheric deposition (direct precipitation to the lake),
- Surface water base flow (dry weather tributary flows, including any groundwater seepage into streams from groundwater),
- Stormwater runoff (runoff draining to tributaries or directly to the lake),
- Internal recycling (release from sediment by chemical interaction),
- Waterfowl (direct input from resident and migrating birds),
- Direct groundwater seepage including septic system inputs from shorefront residences, and
- Residual effects of a wastewater treatment plant (WWTP) surface water discharge that was eliminated in 2009 (see section 3.2).

Construction activities in the watershed that disturb greater than one acre of land and convey stormwater through pipes, ditches, swales, roads or channels to surface water require a federal General Permit for Stormwater Discharge from Construction Activities. However, construction discharges are not incorporated in the model due to their variability and short-term impacts.

The watershed of Pearly Lake was divided into four subwatersheds based on tributary inputs and topography (Figure 3-1). These basins include the Bower Inlet, Mountain Road Inlet, College Road Inlet and the Pearly Lake Direct Drainage. TP loads were estimated for each subwatershed based on runoff and groundwater land use export coefficients. The TP loads were then attenuated as necessary to match tributary monitoring data, if available. If no current tributary data were available, then the attenuation factor was based on the slope, soils, and wetland attenuation. Loads from the watershed as well as direct sources were then used to predict in-lake concentrations of TP, chl a, Secchi Disk Transparency (SDT), and algal bloom probability. The estimated load and in-lake predictions were then compared against measured in-lake concentrations. The attenuation factors for each subwatershed were used as calibration tools to achieve a close agreement between predicted in-lake TP and observed mean/median TP. However, perfect agreement between modeled concentrations and monitoring data were not expected as monitoring data are limited for some locations and are biased towards summer conditions when TP concentrations are expected to be lower than the annual mean predicted by the loading model.
Figure 3-1. Pearly Lake Watershed Land Use.

Notes:
1) Aerial photo base map from 2003 National Agricultural Imagery Program (NAIP); obtained from NHGRANIT.
2) Land use polygons were compiled by ENSR from Land Cover raster data and National Wetlands Inventory (NWI) data obtained from NHGRANIT, and from windshield survey information.
3.1 Hydrologic Inputs and Water Loading

Calculating TP loads to Pearly Lake requires estimation of the sources of water to the lake. The three primary sources of water are: 1) atmospheric direct precipitation; 2) runoff, which includes all overland flow to the tributaries and direct drainage to the lake; and 3) baseflow, which includes all precipitation that infiltrates and is then subsequently released to surface water in the tributaries or directly to the lake (i.e., groundwater). Baseflow is roughly analogous to dry weather flows in streams and direct groundwater discharge to the lake. The water budget is broken down into its components in Table 3-1.

- **Precipitation** - Mean annual precipitation was assumed to be representative of a typical hydrologic period for the watershed. The annual precipitation value was derived from the USGS publication: Open File Report 96-395, “Mean Annual Precipitation and Evaporation - Plate 2”, 1996 and confirmed with precipitation data from weather stations in Epping, Durham, and Concord. For the Pearly Lake watershed, 1.07 m of annual precipitation was used.

- **Runoff** - For each land use category, annual runoff was calculated by multiplying mean annual precipitation by basin area and a land use specific runoff fraction. The runoff fraction represents the portion of rainfall converted to overland flow.

- **Baseflow** - The baseflow calculation was calculated in a manner similar to runoff. However, a baseflow fraction was used in place of a runoff fraction for each land use. The baseflow fraction represents the portion of rainfall converted to baseflow.

Runoff and baseflow fractions from Dunn and Leopold (1978) were assumed to be representative for NH land uses and are listed in Tables C-1 and C-2 in Appendix C. The hydrologic budget was calibrated to a representative standard water yield for New England (Sopper and Lull, 1970; Higgins and Colonell 1971, verified by assessment of yield from various New England USGS flow gauging stations). The water load was attenuated (reduced) 15% in the Mountain Road Inlet and 20% in the College Road Inlet, Bower Inlet, and Direct Drainage in order to account for the presence of wetland complexes in these subwatersheds and achieve better agreement with the standard water yield for New England. The attenuation was also verified based on best professional judgment and guidance from the Center for Watershed Protection (2000). More detail on the methodology for hydrologic budget estimation and calibration is presented in Appendix B.

Table 3-1 Pearly Lake Water Budget

<table>
<thead>
<tr>
<th>WATER BUDGET</th>
<th>M3/YR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric</td>
<td>829,425</td>
</tr>
<tr>
<td>Wastewater Treatment Plant1</td>
<td>40,031</td>
</tr>
<tr>
<td>Watershed Runoff</td>
<td>2,059,920</td>
</tr>
<tr>
<td>Watershed Baseflow</td>
<td>2,878,405</td>
</tr>
<tr>
<td>Total</td>
<td>5,807,781</td>
</tr>
</tbody>
</table>

1. Two thirds of the average annual flow from the Franklin Pierce University wastewater treatment plant (i.e., groundwater discharge via Rapid Infiltration Basins) comes from water sources outside of the watershed, therefore this was added as an additional flow input in the water budget. This value is based on the average of the average annual WWTP flows for the years 2009 to 2013 presented in Appendix C, Table C-8.
3.2 Nutrient Inputs

Land Use Export

The Pearly Lake watershed and subwatershed boundaries were delineated using NHDES delineations and corrected with USGS topographic maps when necessary (NHDES 2007). Land uses within the watershed were determined using several sources of information including: (1) Geographic Information System (GIS) data, (2) analysis of aerial photographs and (3) ground-truthing (when appropriate).

The TP load for each subwatershed was calculated using export coefficients for each land use type. The subwatershed loads were adjusted based upon proximity to the lake, soil type, presence of wetlands, and attenuation provided by Best Management Practices (BMPs) for water or nutrient export mitigation. The watershed load (baseflow and runoff) was combined with direct loads (atmospheric, internal load, septic system, and waterfowl) to calculate TP loading. The generated load to the lake was then input into a series of empirical models that provided predictions of in-lake TP concentrations, chl a concentrations, algal bloom frequency and water clarity. Details on model input parameters and major assumptions used to estimate the baseline loading (i.e., existing conditions) for Pearly Lake are described below.

- Areal land use estimates were generated from land use and land cover GIS data layers from NH GRANIT. For Pearly Lake, data sources are: Land cover data created by GRANIT using Lansat 5 and 7 imagery and other available raster and vector data; the 2001 NH Land Cover Assessment layer © Complex Systems Research Center, University of New Hampshire, and National Wetland Inventory (1971-1992). Land use categories were matched with the ENSR-LRM land use categories and their respective TP export coefficients. Table C-3 in Appendix C lists ENSR-LRM land use categories in which the GRANIT categories were matched. Land cover data and aerial photographs were used to determine certain land use classifications, such as agriculture and forest types. Selected land uses were confirmed on the ground during a watershed survey. Watershed land use is presented spatially in Figure 3-1 and summarized in Table 3-2.

- TP export coefficient ranges were derived from values summarized by Reckhow et al. (1980), Dudley et al. (1997) as cited in ME DEP (2003) and Schloss and Connor (2000). Table C-4 in Appendix C provides ranges for export coefficients, the runoff and baseflow export coefficient for each land use category in Pearly Lake and the sources for each export coefficient. The Urban 2 and Urban 5 TP runoff export coefficients were increased above the median export coefficient because the land within these categories was located on the Franklin Pierce College campus. These areas are likely more intensely managed and warrant a higher TP runoff export coefficient. Increasing the TP runoff coefficient for the Urban 2 and Urban 5 categories also resulted in a closer match to tributary data from the Mountain Road Inlet subwatershed and the College Road Inlet subwatershed.

- Annual areal loading of TP from the watershed (four subwatersheds) is estimated to be 140.9 kg/yr, which represents 59% of the total load to the lake.
Table 3-2. Land Use Categories by Pearly Lake Subwatersheds.

<table>
<thead>
<tr>
<th>Area (Hectares)</th>
<th>College Rd Subwatershed</th>
<th>Mountain Rd Subwatershed</th>
<th>Bower Subwatershed</th>
<th>Direct Drainage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban 1 (Residential)</td>
<td>0.0</td>
<td>0.8</td>
<td>1.1</td>
<td>10.4</td>
</tr>
<tr>
<td>Urban 2 (Mixed Urban/Commercial)</td>
<td>2.9</td>
<td>10.3</td>
<td>0.0</td>
<td>6.6</td>
</tr>
<tr>
<td>Urban 3 (Roads)</td>
<td>3.3</td>
<td>3.6</td>
<td>2.6</td>
<td>7.3</td>
</tr>
<tr>
<td>Urban 4 (Industrial)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Urban 5 (Parks, Recreation Fields, Institutional)</td>
<td>5.8</td>
<td>0.6</td>
<td>0.0</td>
<td>5.9</td>
</tr>
<tr>
<td>Agric 1 (Cover Crop)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Agric 2 (Row Crop)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Agric 3 (Grazing)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Agric 4 (Hayland-Non Manure)</td>
<td>0.0</td>
<td>11.1</td>
<td>0.0</td>
<td>2.8</td>
</tr>
<tr>
<td>Forest 1 (Deciduous)</td>
<td>16.2</td>
<td>88.8</td>
<td>61.7</td>
<td>36.2</td>
</tr>
<tr>
<td>Forest 2 (Non-Deciduous)</td>
<td>8.6</td>
<td>36.6</td>
<td>65.5</td>
<td>30.4</td>
</tr>
<tr>
<td>Forest 3 (Mixed Forest)</td>
<td>22.1</td>
<td>83.5</td>
<td>122.8</td>
<td>70.2</td>
</tr>
<tr>
<td>Forest 4 (Wetland)</td>
<td>5.4</td>
<td>41.1</td>
<td>18.4</td>
<td>5.7</td>
</tr>
<tr>
<td>Open 1 (Wetland / Pond)</td>
<td>1.2</td>
<td>28.2</td>
<td>21.4</td>
<td>9.8</td>
</tr>
<tr>
<td>Open 2 (Meadow)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Open 3 (Bare/Open)</td>
<td>0.0</td>
<td>4.4</td>
<td>7.2</td>
<td>0.6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>65.6</td>
<td>309.1</td>
<td>300.7</td>
<td>185.8</td>
</tr>
</tbody>
</table>

Atmospheric Deposition

Nutrient inputs from atmospheric deposition were estimated based on a TP coefficient for direct precipitation. The atmospheric load of 0.25 kg/ha/yr includes both the mass of TP in rainfall and the mass in dryfall (Wetzel, 2001). The sum of these masses is carried by rainfall. As a result, the concentration calculated for use in the loading estimate (23 µg/L) is comparable to the mean concentration (25 µg/L) observed in rainfall in Concord, NH (NHDES 2008 Unpublished Data). The coefficient was then multiplied by the lake area (ha) in order to obtain an annual atmospheric deposition TP load. The contribution of atmospheric deposition to the annual TP load to Pearly Lake was estimated to be 19.4 kg/yr or approximately 8% of the total load.

Internal Loading

Internal loading of TP to Pearly Lake was estimated using lake volume-weighted mass differences between late summer hypolimnetic and epilimnetic TP concentrations and DO data. DO profiles during late summer were chosen to determine the depth of the anoxic zone. The area of the lake with potential anoxic zones was determined using GIS analysis of bathymetric maps (Figure 2-1). Internal TP loading was estimated as the difference between the hypolimnetic and epilimnetic TP concentrations in August for the most recent (2009-2013), multiplied by the volume of the hypolimnion (Table C-5 in Appendix C). Internal loading of TP to Pearly Lake was estimated to be 0.2 kg/yr (less than 1% of the TP load to the lake). Data from September would have been preferable to calculate the internal load but these data were not available. The internal loading estimate may be slightly underestimated as a result.
Septic Systems

A detailed septic survey and groundwater monitoring was conducted in 2013 and yielded more precise estimates of septic loading. TP export loading from residential septic systems was estimated for septic systems within the 125 ft shoreline zone. The 125 ft zone is the minimum distance from lakes that new septic systems are allowed in New Hampshire with rapid groundwater movement through gravel soils. A shoreline survey using GIS ortho-photographs determined the number of residencies within the 125 ft zone. It was assumed that if the dwelling was within the 125 ft zone that the septic system was also within the 125 ft zone. Loading from the relatively large septic system serving the Lakeview apartment buildings on College Road, which house about 214 students during the school year and an average of approximately 20 people over the summer months, was not included because the leach field for this septic system is over 500 feet from the lake. The TP load was calculated by multiplying a TP export coefficient (based on literature values for wastewater TP concentrations and expected water use), the number of dwellings, the mean number of people per dwelling, the number of days occupied per year, and an attenuation coefficient (Table C6). In Pearly Lake, the TP loading from shoreline septic systems was estimated to be 6.1 kg/yr, which is approximately 3% of the TP load to Pearly Lake.

The following assumptions were used in estimating the TP load from septic systems.

- Seventeen residences were estimated to be seasonal and twenty-nine residences were estimated to be year round (CEI, septic survey 20143).
- Two and a half people were estimated to reside in each dwelling. It was estimated that each resident uses 65 gallons per day for 365 days per year for year round residents and 90 days for seasonal residents.
- The TP coefficients were calculated based on mean TP concentration in domestic wastewater of 8 mg/L and mean household water uses (Metcalf & Eddy, 1991).
- All septic loads to Pearly Lake were attenuated 90% (Dudley and Stephenson, 1973; Brown and Associates, 1980) to account for TP uptake in the soil between the septic systems and the lake. There is no evidence in available watershed reports or evidence from site visits that the majority of the soils underlying the developed area immediately adjacent to Pearly Lake has severe limitations for septic systems or has poor filtration characteristics.

Residual WWTP Load

From 1967 to 2008 (41 years), the Franklin Pierce University (FPU) wastewater treatment plant (WWTP) discharged to a wetland in the Mountain Road tributary sub watershed of Pearly Lake. The National Pollutant Discharge Elimination System (NPDES) permit number for this discharge was NH0101044. In 2009, the University eliminated this surface water discharge when it completed construction and began operation of a rapid infiltration basin (RIB) system to treat its wastewater via groundwater infiltration. Although the surface water discharge has been eliminated, there appears to be a residual load still evident in the Mountain Road tributary associated with the historic discharge. It is believed the capacity of the wetland to retain phosphorous was likely used up after over 40 years of receiving treated wastewater and may now be a source of phosphorous to the Mountain Road tributary and Pearly Pond. The significantly high phosphorous concentrations in the Mountain Road tributary compared to the nearly undeveloped Bower tributary support this theory. Both drainage areas are similar in size (300 hectares) with more wetlands and slightly more urbanized area in the Mountain Road watershed, yet data collected from 2009 through 2013 shows the average concentration of phosphorous in the Mountain Road tributary (56 ug/L) is more than twice that of the Bower tributary (24 ug/L). To determine the residual WWTP load, the model was first used to predict the TP concentration in Mountain Road tributary based on current land use using typical TP export coefficients and attenuation factors. The predicted concentration of approximately 30 ug/L was assumed equal to loadings associated with developed and undeveloped land exclusive of any residual WWTP loads. A value of 30 ug/L seemed reasonable compared to 24 ug/L (predicted and observed) in the Bower tributary, which is less
developed. The residual load from the former FPU WWTP discharge was then determined by subtracting the predicted concentration of 30 ug/L from the measured (observed) average concentration of 56 ug/L and multiplying this by the flow in the tributary. Based on this methodology, the residual WWTP load is estimated to be approximately 48 kg/yr. It is anticipated that over time this residual load will diminish. Continued monitoring will provide insight into the pace and extent of this anticipated reduction.

Waterfowl

Total phosphorus load from waterfowl was estimated using a TP export coefficient and an estimate of annual mean waterfowl population study conducted by FPU graduate Student Joshua Grey in 2011. The mean annual waterfowl population was estimated to be 55 Canada geese. The TP export coefficient for Canada geese, 0.001526 kg/bird/day, was multiplied by 275 non-ice days and the number of waterfowl in order to obtain a TP load of 23 kg/yr (Table C-7 in Appendix C). This equates to approximately 10% of the total TP load.
3.3 Phosphorus Loading Assessment Summary

The current TP load to Pearly Lake was estimated to be 237.8 kg/yr from all sources. The TP load for each source is presented in Table 3-3.

Phosphorous loading from the watershed was overwhelmingly the largest source at 140.9 kg/yr (approximately 59% of the TP load). In particular, TP loading from the largest subwatershed (Mountain Road Inlet) was the highest at 53.3 kg/yr (Table 3-3). This does not include the contribution from the residual WWTP load discussed in the previous section. The Bower Inlet was the second highest contributor at 41.5 kg/yr. The smallest subwatershed area is the College Road inlet which contributes approximately 27.1 kg/yr. The Direct Drainage watershed, which is closest to the lake and contains more developed land, contributes an estimated 19 kg/yr.

The next largest TP source other than the watershed loads is the residual/historical WWTP load in the Mountain Road tributary which contributes an estimated 48.1 kg/yr or approximately 20% of the annual load to the lake. Since the installation of the RIBs in 2009 (see the discussion in the previous section) the surface water discharge from the FPU WWTP has been eliminated and it is expected that, over time, this residual load will diminish. Continued monitoring will provide insight into the pace and extent of this anticipated reduction.

The next three largest TP sources after the residual WWTP load are waterfowl, which contributes 23.1 kg/yr (approximately 10%), direct precipitation, which contributes 19.4 kg/yr (approximately 8%) and septic systems which contribute an estimated 6.1 kg/yr (approximately 3%) of the annual TP load.

Table 3-3 Pearly Lake Current Phosphorus Loading Summary

<table>
<thead>
<tr>
<th>TP INPUTS</th>
<th>Modeled Current TP Loading (kg/yr)</th>
<th>% of Total Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric</td>
<td>19.4</td>
<td>8.1%</td>
</tr>
<tr>
<td>Internal</td>
<td>0.2</td>
<td>0.1%</td>
</tr>
<tr>
<td>Waterfowl</td>
<td>23.1</td>
<td>9.7%</td>
</tr>
<tr>
<td>Septic System</td>
<td>6.1</td>
<td>2.6%</td>
</tr>
<tr>
<td>Watershed Load- College Rd Inlet</td>
<td>27.1</td>
<td>11.4%</td>
</tr>
<tr>
<td>Watershed Load- Mountain Road Inlet</td>
<td>53.3</td>
<td>22.4%</td>
</tr>
<tr>
<td>Watershed Load- Bower Inlet</td>
<td>41.5</td>
<td>17.5%</td>
</tr>
<tr>
<td>Watershed Load- Direct Drainage</td>
<td>19.0</td>
<td>8.0%</td>
</tr>
<tr>
<td>Residual from former FPU WWTP Discharge</td>
<td>48.1</td>
<td>20.2%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>237.8</td>
<td>100.0%</td>
</tr>
<tr>
<td>Watershed Total</td>
<td>140.9</td>
<td>59.3%</td>
</tr>
</tbody>
</table>

3.4 Phosphorus Loading Assessment Limitations

While the analysis presented above provides a reasonable accounting of sources of TP loading to Pearly Lake, there are several limitations to the analysis:

- Precipitation varies among years and hence hydrologic loading will vary. This may greatly influence TP loads in any given year, given the importance of runoff to loading.

- Spatial analysis has innate limitations related to the resolution and timeliness of the underlying data. In places, local knowledge was used to ensure the land use distribution in the ENSR-LRM model was reasonably accurate, but data layers were not 100% verified on the ground. In addition, land uses
were aggregated into classes which were then assigned export coefficients; variability in export within classes was not evaluated or expressed.

- TP export coefficients as well as runoff/baseflow exports were representative but also had limitations as they were not calculated for the study water body, but rather are regional estimates.

- The TP loading estimate from septic systems was limited by the assumptions associated with this calculation (described in section 3.2 above in the “Septic Systems” subsection) and the assumptions made about the proximity of the systems to the lake and their influence on the total loading.

- In some cases, water quality data for Pearly Lake and its tributaries are limited, restricting calibration of the model (e.g., only two TP samples were available for the College Road Inlet).

- The loading estimate for the waterfowl was limited by the assumptions made in section 3.2.

- The loading estimate for the residual load from former FPU WWTP surface water discharge was limited by the assumptions made in section 3.2.

3.5 Lake Response to Current Phosphorus Loads

TP load outputs from the ENSR-LRM Methodology were used to predict in-lake TP concentrations using five empirical models. The models include: Kirchner-Dillon (1975), Vollenweider (1975), Reckhow (1977), Larsen-Mercier (1976), and Jones-Bachmann (1976). These empirical models estimate TP from system features, such as depth and detention time of the waterbody. The load generated from the export portion of ENSR-LRM was used in these equations to predict in-lake TP. The mean predicted TP concentration from these models was compared to measured (observed) values. Input factors in the export portion of the model, such as export coefficients and attenuation, were adjusted to yield an acceptable agreement between measured and average predicted TP. Because these empirical models account for a degree of TP loss to the lake sediments, the in-lake concentrations predicted by the empirical models are lower than those predicted by a straight mass-balance (41 µg/L) where the mass of TP entering the lake is equal to the mass exiting the lake without any retention. Also, the empirical models are based on relationships derived from many other lakes. As such, they may not apply accurately to any one lake, but provide an approximation of predicted in-lake TP concentrations and a reasonable estimate of the direction and magnitude of change that might be expected if loading is altered.

Modeling results are presented in Table 3-4. The TP load estimated using ENSR-LRM methodology translates to predicted mean in-lake concentrations ranging from 15 to 36 µg/L. The mean in-lake TP concentration of the five empirical models was 26 µg/L. The mean epilimnetic TP concentration from observed in-lake data from 2009 to 2013 was 23 µg/L. The slight disagreement between the model results and the in-lake data may be attributable to the time of year of sampling. Nearly all of the monitoring data are from the summer, a time when epilimnetic concentrations are typically lower than mean annual concentrations. The empirical models all predict mean annual TP concentrations assuming fully mixed conditions. Nurnberg (1996) shows summer epilimnetic concentrations as 14% lower than annual concentrations using a dataset of 82 dimictic lakes while Nurnberg (1998) shows a difference of 40% using a dataset of 127 stratified lakes. The mean observed summer concentration in Pearly Lake (23 µg/L) is 9% lower than the predicted annual average concentration (26 µg/L), a somewhat smaller difference than observed in the Nurnberg studies.

Once TP estimates were derived, annual mean chl a and SDT can be predicted based on another set of empirical equations: Carlson (1977), Dillon and Rigler (1974), Jones and Bachman (1976), Oglesby and Schaffner (1978), Vollenweider (1982), and Jones, Rast and Lee (1979). Bloom frequency was also calculated based on equations developed by Walker (1984, 2000) using a natural log mean chl a standard deviation of 0.5. These predictions are presented in Table 3-5.
Table 3-4 Predicted In-lake Total Phosphorus Concentration using Empirical Models

<table>
<thead>
<tr>
<th>Empirical Equation</th>
<th>Equation</th>
<th>Predicted TP (ug/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Balance</td>
<td>TP=L/(Z(F))*1000</td>
<td>41</td>
</tr>
<tr>
<td>Kirchner-Dillon 1975</td>
<td>TP=L(1-Rp)/(Z(F))*1000</td>
<td>21</td>
</tr>
<tr>
<td>Vollenweider 1975</td>
<td>TP=L/(Z(S+F))*1000</td>
<td>36</td>
</tr>
<tr>
<td>Larsen-Mercier 1976</td>
<td>TP=L(1-Rlm)/(Z(F))*1000</td>
<td>28</td>
</tr>
<tr>
<td>Jones-Bachmann 1976</td>
<td>TP=0.84(L)/(Z(0.65+F))*1000</td>
<td>30</td>
</tr>
<tr>
<td>Reckhow General 1977</td>
<td>TP=L/(11.6+1.2(Z(F)))*1000</td>
<td>15</td>
</tr>
<tr>
<td>Average of Above 5 Model Values</td>
<td>TP=L/(Z(F))</td>
<td>26</td>
</tr>
</tbody>
</table>

Observed Summer Epilimnion
Mean
25

Observed Summer Epilimnion Median
23

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Units</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Phosphorus Load to Lake</td>
<td>g P/m²/yr</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>Mean Depth</td>
<td>m</td>
<td>Volume/area</td>
</tr>
<tr>
<td>F</td>
<td>Flushing Rate</td>
<td>flushings/yr</td>
<td>Inflow/volume</td>
</tr>
<tr>
<td>S</td>
<td>Suspended Fraction</td>
<td>no units</td>
<td>Effluent TP/Influent TP</td>
</tr>
<tr>
<td>Qs</td>
<td>Areal Water Load</td>
<td>m/yr</td>
<td>Z(F)</td>
</tr>
<tr>
<td>Vs</td>
<td>Settling Velocity</td>
<td>m</td>
<td>Z(F)</td>
</tr>
<tr>
<td>Rp</td>
<td>Retention Coefficient (settling rate)</td>
<td>no units</td>
<td>(((Vs+13.2)/2)/((Vs+13.2)/2)+Qs)</td>
</tr>
<tr>
<td>Rlm</td>
<td>Retention Coefficient (flushing rate)</td>
<td>no units</td>
<td>1/(1+F^0.5)</td>
</tr>
</tbody>
</table>
Table 3-5 Predicted In-lake Chlorophyll \(a \) and Secchi Disk Transparency Predictions based on an Annual Average In-lake Phosphorus Concentration of 26 \(\mu g/L \)

<table>
<thead>
<tr>
<th>Empirical Equation</th>
<th>Equation</th>
<th>Predicted Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Chlorophyll</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carlson 1977</td>
<td>Chl=0.087(^{(Pred\ TP)^{1.45}})</td>
<td>9.8</td>
</tr>
<tr>
<td>Dillon and Rigler 1974</td>
<td>Chl=10(^{(1.449*LOG(Pred\ TP)-1.136)})</td>
<td>8.2</td>
</tr>
<tr>
<td>Jones and Bachmann 1976</td>
<td>Chl=10(^{(1.46*LOG(Pred\ TP)-1.09)})</td>
<td>9.4</td>
</tr>
<tr>
<td>Oglesby and Schaffner 1978</td>
<td>Chl=0.574(^{(Pred\ TP)-2.9})</td>
<td>12.0</td>
</tr>
<tr>
<td>Modified Vollenweider 1982</td>
<td>Chl=2*0.28(^{(Pred\ TP)^{0.96}})</td>
<td>12.8</td>
</tr>
<tr>
<td>Average of Model Values</td>
<td></td>
<td>10.4</td>
</tr>
<tr>
<td>Observed Summer Mean</td>
<td></td>
<td>8.9</td>
</tr>
<tr>
<td>Peak Chlorophyll</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modified Vollenweider (TP) 1982</td>
<td>Chl=2*0.64(^{(Pred\ TP)^{1.05}})</td>
<td>39.1</td>
</tr>
<tr>
<td>Vollenweider (CHL) 1982</td>
<td>Chl=2.6*(AVERAGE(Pred Chl))(^{1.06})</td>
<td>31.2</td>
</tr>
<tr>
<td>Modified Jones, Rast and Lee 1979</td>
<td>Chl=21.7(AVERAGE(Pred Chl))+0.2</td>
<td>35.7</td>
</tr>
<tr>
<td>Average of Model Values</td>
<td></td>
<td>35.3</td>
</tr>
<tr>
<td>Observed Summer Maximum</td>
<td></td>
<td>28.1</td>
</tr>
<tr>
<td>Bloom Probability</td>
<td></td>
<td>% of Summer</td>
</tr>
<tr>
<td>Secchi Transparency</td>
<td></td>
<td>m</td>
</tr>
<tr>
<td>Mean: Oglesby and Schaffner 1978</td>
<td>Chl=10(^{(1.36-0.764*LOG(Pred\ TP))})</td>
<td>1.9</td>
</tr>
<tr>
<td>Max: Modified Vollenweider 1982</td>
<td>Chl=9.77*Pred\ TP^-0.28</td>
<td>3.9</td>
</tr>
<tr>
<td>Observed Summer Mean</td>
<td></td>
<td>1.61</td>
</tr>
<tr>
<td>Observed Summer Maximum</td>
<td></td>
<td>2.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Pred TP"</td>
<td>The average TP calculated from the 5 predictive equation models in Table 3-4</td>
<td>(\mu g/L)</td>
</tr>
<tr>
<td>"Pred Chl"</td>
<td>The average of the 3 predictive equations calculating mean chlorophyll</td>
<td>(\mu g/L)</td>
</tr>
</tbody>
</table>

The observed summer maximum is based on n=18 and is not necessarily the peak chlorophyll
4.0 Total Maximum Daily Load

4.1 Maximum Annual Load
The annual load capacity is defined by the US EPA in 40 C.F.R. § 130.2(f) as, “The greatest amount of loading that a water can receive without violating water quality standards.” The loading capacity is to be protective even during critical conditions, such as summertime conditions for TP loading to nutrient enriched lakes. The ENSR-LRM loading and lake response model was used to calculate the target annual TP load in (kg TP/yr) from the 14 µg/L target in-lake TP concentration discussed in Section 2.6. The TP loads that could practically be reduced were decreased until the target TP in-lake concentration was achieved. Further documentation of the ENSR-LRM model can be found in Appendix B.

The total maximum annual TP load that is expected to result in an in-lake annual mean TP concentration of 14 µg/L was estimated to be 132.3 kg/yr, which represents an approximate 44% reduction from existing conditions (Table 4-1).

4.2 Maximum Daily Load
Although a daily loading timescale is not meaningful for ecological prediction or long-term watershed management of lakes, this TMDL will present daily pollutant loads of TP in addition to the annual load. US EPA believes that there is some flexibility in how the daily loads may be expressed (US EPA 2006). Several of these options are presented in “Options for Expressing Daily Loads in TMDLs” (US EPA 2007).

The Pearly Lake dataset and associated empirical model necessitates a statistical estimation of a maximum daily load because long periods of continuous simulation data and extensive flow and loading data are not available. US EPA (2007) provides such an approach.

The following expression assumes that loading data are log-normal distributed and is based on a long term mean load calculated by the empirical model and an estimation of the variability in loading.

\[
\text{MDL} = \text{LTA} \times e^{[z \sigma - 0.5 \sigma^2]}
\]

Where:
- MDL = maximum daily limit
- LTA = long-term average
- \(Z\) = z-statistic of the probability of occurrence
- \(\sigma^2 = \ln(CV^2 + 1)\)
- CV = coefficient of variation

For the Pearly Lake TMDL a coefficient of variation (CV) of 1.1 and a 95% probability level of occurrence (\(z = 1.64\)) were used. The CV was calculated as the mean of the CV of loading from 18 subwatersheds draining to Goose Pond and Bow Lake in New Hampshire (Schloss 2008 unpublished data). The long term average (LTA) load of 0.36 kg/day was calculated by dividing the annual load (132.3 kg) by 365 days. The total maximum daily load of TP is 1.05 kg/day, or approximately 2.32 lbs/day.

4.3 Future Development
Since the human population within a watershed may continue to grow and contribute additional TP to the impaired lakes, TMDLs often include an allocation for growth and associated future TP loading. For example, in Maine, target TP loading from anticipated future development is equivalent to a 1.0 µg/L change in in-lake TP concentration (Dennis et al. 1992). However, the NH water quality regulation Env-Wq 1703.3(a) General Water Quality Criteria states “The presence of pollutants in the surface waters shall not justify further introduction of pollutants from point and/or nonpoint sources”. With regard to at least impaired waterbodies, it is the policy of NHDES that the existing loads due to development be held constant, allowing no additional
loading. In order for any future allocation of pollutant load(s) to be granted for an impaired waterbody, the load would need to be reduced elsewhere in the watershed. Given the antidegradation statement above (Section 2.4), this TMDL has been developed assuming no future increase in TP export from these impaired watersheds. However, it should be recognized that the NHDES has no mechanism for regulation/enforcement of TP export from developments of single house lots that do not require a Section 401 Water Quality Certification or fall under the thresholds for alteration of terrain permits (100,000 square feet of disturbance or 50,000 square feet within 250 feet of a lake). Municipalities can, however, regulate such development by revising their land use ordinances/regulations to require no additional loading of TP from new development.

4.4 Critical Conditions

Critical conditions in Pearly Lake typically occur during the summertime, when the potential (both occurrence and frequency) for nuisance algal blooms are greatest. The loading capacity for TP was set to achieve desired water quality standards during this critical time period and also provide adequate protection for designated uses throughout the year. This was accomplished by using a target concentration based on summer epilimnetic data and applying it as mean annual concentration in the predictive models used to establish the mean annual maximum load. Since summer epilimnetic values are typically about 20% less than mean annual concentrations (Nurnberg 1996, 1998), an annual load allocation based on mean annual concentrations will be sufficiently low to protect designated uses impacted by TP in the critical summer period.

4.5 Seasonal Variation

As explained in Section 4.4, the Pearly Lake TMDL takes into account seasonal variations because the target annual load is developed to be protective of the most sensitive (i.e., biologically responsive) time of year (summer), when conditions most favor the growth of algae.

4.6 Reduction Needed

Current TP loading and in-lake concentrations are greater than required to support designated uses. The target TP concentration established in Section 2.6 was set in order to ensure that designated uses were supported. The degree of TP load reduction required to meet designated uses is calculated by subtracting the target load (Section 4.1) from the existing load estimated with ENSR-LRM (Section 3.3). Percent reductions are summarized in Table 4-1. Calculations are detailed in Table C-13 of Appendix C.

Using the estimated annual target load presented in Section 4.1, the TP load needs to be reduced to 132.3 kg/yr or a mean of 0.36 kg/d. Based on the daily analysis requirement discussed in Section 4.2, the maximum daily load should be less than 1.05 kg/d in order to meet the water quality target of 14 µg/L. This would require an overall reduction of approximately 44% in the total load. Since the target is based on the natural background scenario (Table 6-1), the loads must be reduced to predevelopment levels in order to attain the target. As some sources are less controllable than others, the actual reduction to be applied to achieve this goal will vary by source (see Section 5 TMDL Allocation). Alternative loading reduction scenarios are discussed further in Section 6.0 below. As discussed in Section 7.0, compliance with this TMDL will not be based on meeting the TP target concentration or estimated TP load reduction target.
Table 4-1 Pearly Lake Total Phosphorus Load at Target Criteria of 14 µg/L based on Predevelopment Scenario

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Current Load (kg/yr)</th>
<th>Target Load (WLA) to Obtain In-lake Target Concentration (kg/yr)</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric</td>
<td>19.4</td>
<td>19.4</td>
<td>0.0%</td>
</tr>
<tr>
<td>Internal</td>
<td>0.2</td>
<td>0.0</td>
<td>100.0%</td>
</tr>
<tr>
<td>Waterfowl</td>
<td>23.1</td>
<td>10.2</td>
<td>55.9%</td>
</tr>
<tr>
<td>Septic System</td>
<td>6.1</td>
<td>6.1</td>
<td>0.0%</td>
</tr>
<tr>
<td>Watershed Load- College Rd Inlet</td>
<td>27.1</td>
<td>8.5</td>
<td>68.4%</td>
</tr>
<tr>
<td>Watershed Load- Mountain Road Inlet</td>
<td>53.3</td>
<td>33.3</td>
<td>37.5%</td>
</tr>
<tr>
<td>Watershed Load- Bower Inlet</td>
<td>41.5</td>
<td>35.7</td>
<td>14.0%</td>
</tr>
<tr>
<td>Watershed Load- Direct Drainage</td>
<td>19.0</td>
<td>19.0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Residual from former FPU WWTP Discharge</td>
<td>48.1</td>
<td>0.0</td>
<td>100.0%</td>
</tr>
<tr>
<td>Total Load</td>
<td>237.8</td>
<td>132.3</td>
<td>44.4%</td>
</tr>
</tbody>
</table>

4.7 TMDL Development Summary

There is currently no numerical water quality standard for TP in the State of New Hampshire. However, the relationship between TP and algal biomass is well documented in scientific literature. This TMDL was therefore developed for TP and is designed to protect Pearly Lake and its designated uses impacted by excessive chl a and cyanobacteria levels and low dissolved oxygen concentrations.

The natural environmental background scenario presented in section 6.1 suggests that the TP concentration of Pearly Lake without any anthropogenic loading of TP is 14 µg/L. Because it is impractical to reduce loading beyond the natural background level, 14 µg/L is used as a target concentration with respect to this TMDL (refer to section 1.3 of Appendix A). Allowable loads to meet the target were set based on the natural environmental loads associated with each source.

In conclusion, water quality was linked to TP loading by:

- Choosing a preliminary target in-lake TP level, based on historic state-wide and in-lake water quality data, best professional judgment, and through consultation with NHDES and US EPA sufficient to attain water quality standards and support designated uses. The preliminary in-lake TP concentration target is 14 µg/L.

- Using the mean of five empirical models that link in-lake TP concentration and load, calibrated to lake-specific conditions, to estimate the load responsible for observed in-lake TP concentrations.

- Determining the overall mean annual in-lake TP concentration from those models, given that the observed in-lake concentrations may represent only a portion of the year or a specific location within the lake.

- Using the predicted mean annual in-lake TP concentration to predict Secchi disk transparency, chl a concentration and algal bloom frequency.

- Using the aforementioned empirical models to determine the TP load reduction needed to meet the numeric concentration target.

- Using a GIS-based spreadsheet model to provide a relative estimate of loads from watershed land areas and uses under current and various projected scenarios to assist stakeholders in developing TP reduction strategies.
Documentation of the model approach is presented in Appendix B. This approach is viewed as combining an appropriate level of modeling with the available water quality and watershed data to generate a reasonably reliable estimate of TP loading and concentration under historic, current, and potential future conditions. It offers a rational estimate of the direction and magnitude of change necessary to support the designated uses protected by New Hampshire.
5.0 TMDL Allocation

The allocations for the Pearly Lake TMDL are expressed as both annual loads and daily loads. However, annual loads better align with the design and implementation of watershed and lake management strategies. The TMDL requires an allocation of the total load of the resource. The allocation includes a waste load allocation (WLA), load allocation (LA), and margin of safety (MOS). The sum of these allocations is equal to the target annual load or TMDL for the resource. Each of these allocations is defined in detail in the following subsections. Seasonal variation is also included in the loading allocations.

The equation for the Pearly Lake TMDL analysis is as follows:

\[
\text{TMDL} = \text{LA} + \text{WLA} + \text{MOS}
\]

In the case of Pearly Lake, the TMDL is equivalent to the target annual load of 119 kg/yr. Allocations of this load are described below.

5.1 Wasteload Allocations (WLAs) and Load Allocations (LAs)

Wasteload allocations identify the portion of the loading capacity that is allocated to point sources and load allocations identify the portion of the loading capacity that is allocated to nonpoint sources and natural background. Point sources in this watershed include stormwater outfalls, stormwater runoff from present or future construction activities and NPDES permitted discharges (the former FPU WWTP surface water discharge was modeled as a residual load since the discharge was eliminated in 2009 when FPU’s rapid infiltration basins became operational). Nonpoint sources may include diffuse stormwater runoff, surface water base flow (including groundwater in seepage), septic systems, internal recycling, waterfowl, and atmospheric deposition. The real challenge in splitting out point sources from nonpoint sources resides with the available data. In order to accurately develop allocations for these two categories of sources it is essential to have not only a complete accounting of each point source, but also a delineation of the associated drainage area and an estimate of existing pollutant loading. Generating this loading estimate is further compounded by the fact that stormwater discharges are highly variable in frequency, duration, and quality. Because sufficient information at the parcel level was simply not available in this watershed, it is infeasible to draw a distinction between stormwater from existing or future regulated point sources, non-regulated point sources, and nonpoint sources. Therefore, a single wasteload allocation (WLA) has been set for the entire watershed, which includes both point and nonpoint sources (Table 6-1). This allocation is also expressed as a percent reduction (Table 6-1).

5.2 Margin of Safety (MOS)

A MOS in this TMDL accounts for substantial uncertainty in inputs to the models. In addition, the empirical equations used to predict in-lake TP concentrations, mean and maximum chl a, SDT, and algal bloom probability also introduces variability into the predictions described in Section 3.5. See Appendix A for a discussion of the MOS for each of the three approaches used to set the target.
6.0 Evaluation of Alternative Loading Scenarios

The ENSR-LRM model was used to evaluate a number of alternative loading scenarios and the probable lake response to these loadings. These scenarios included:

- Current Loading
- Natural Environmental Background Loading (Predevelopment)
- Removal of Septic Load
- Removal of Internal Load
- Target Load Based on Natural Background Loading that Meets 14 µg/L Target

The current loading scenario (baseline model run) is discussed above in Section 3.0. Each scenario described below represents a change from the current loading scenario. The discussion of each scenario includes only the portions of the current loading scenario that were altered for the specific simulation. A comparison of the results of each of the alternative scenarios is presented in Tables 6-1 and 6-2. More detailed model output can be found in Tables C-9 through C-13 in Appendix C.

6.1 Natural Environmental Background Phosphorus Loading

Natural environmental background levels of TP in the lake were evaluated using the ENSR-LRM model. Natural background was defined as background TP loading from non-anthropogenic sources. Hence, land uses in the watershed were set to its assumed “natural” state of forests and wetlands. Loading was then calculated using the ENSR-LRM model as described above. This estimate is useful as it sets a realistic lower bound of TP loading and in-lake concentrations possible for Pearly Lake. Loadings and target concentrations below these levels are very unlikely to be achieved.

To estimate background loading, the internal TP load, septic and residual WWTP loads were removed, waterfowl loads were kept the same and all developed lands were converted to forests. The developed land was split into mixed, deciduous, and coniferous forest categories in the same percentages as the current watershed forest composition. Wetland areas were not changed because it was assumed no wetland had been lost due to development. The TP load under this scenario is 132.3 kg/yr. The calculated background loading of TP to Pearly Lake would result in a mean in-lake TP concentration of 14 µg/L, a mean Secchi Disk transparency of 3 m, and a bloom probability of chl a > 15 µg/L of <1%. Estimated TP loading to the lake under this scenario is approximately 44% lower than current loads to the lake.
<table>
<thead>
<tr>
<th>Inputs</th>
<th>Current Load (kg/yr)</th>
<th>Predevelopment / Natural Environmental Background (kg/yr)</th>
<th>Current Load without Septic Load (kg/yr)</th>
<th>Current Load without Internal Load (kg/yr)</th>
<th>Target Load (WLA) to Obtain In-lake Target Concentration (kg/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric</td>
<td>19.4</td>
<td>19.4</td>
<td>19.4</td>
<td>19.4</td>
<td>19.4</td>
</tr>
<tr>
<td>Internal</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Waterfowl</td>
<td>23.1</td>
<td>23.1</td>
<td>23.1</td>
<td>23.1</td>
<td>10.2</td>
</tr>
<tr>
<td>Septic System</td>
<td>6.1</td>
<td>0.0</td>
<td>0.0</td>
<td>6.1</td>
<td>6.1</td>
</tr>
<tr>
<td>Watershed Load- College Rd Inlet</td>
<td>27.1</td>
<td>7.1</td>
<td>27.1</td>
<td>27.1</td>
<td>8.5</td>
</tr>
<tr>
<td>Watershed Load- Mountain Road Inlet</td>
<td>53.3</td>
<td>32.9</td>
<td>53.3</td>
<td>53.3</td>
<td>33.3</td>
</tr>
<tr>
<td>Watershed Load- Bower Inlet</td>
<td>41.5</td>
<td>30.6</td>
<td>41.5</td>
<td>41.5</td>
<td>35.7</td>
</tr>
<tr>
<td>Watershed Load- Direct Drainage</td>
<td>19.0</td>
<td>19.3</td>
<td>19.0</td>
<td>19.0</td>
<td>19.0</td>
</tr>
<tr>
<td>Residual from former FPU WWTP Discharge</td>
<td>48.1</td>
<td>0.0</td>
<td>48.1</td>
<td>48.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Total Load</td>
<td>237.8</td>
<td>132.3</td>
<td>231.7</td>
<td>237.6</td>
<td>132.3</td>
</tr>
<tr>
<td>Total Overall Load Reduction</td>
<td>0.0</td>
<td>105.5</td>
<td>6.1</td>
<td>0.2</td>
<td>105.5</td>
</tr>
<tr>
<td>Percent Overall Reduction</td>
<td>0.0%</td>
<td>44.4%</td>
<td>2.6%</td>
<td>0.1%</td>
<td>44.4%</td>
</tr>
<tr>
<td>Total Watershed Load</td>
<td>140.9</td>
<td>89.8</td>
<td>140.9</td>
<td>140.9</td>
<td>96.6</td>
</tr>
<tr>
<td>Total Watershed Reduction</td>
<td>0.0</td>
<td>51.1</td>
<td>0.0</td>
<td>0.0</td>
<td>44.3</td>
</tr>
<tr>
<td>Percent Watershed Reduction</td>
<td>0.0%</td>
<td>36.3%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>31.4%</td>
</tr>
</tbody>
</table>
Table 6-2. Lake Water Quality Response to Different Loading Scenarios for Pearly Lake.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Current Load</th>
<th>Natural Environmental Background</th>
<th>Current Load without Septic Load</th>
<th>Current Load without Internal Load</th>
<th>Target Load to Obtain 14 μg/L In-lake Concentration (kg/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP Load (kg/yr)</td>
<td>237.8</td>
<td>132.3</td>
<td>231.7</td>
<td>237.6</td>
<td>132.3</td>
</tr>
<tr>
<td>Mean Annual TP (μg/L)</td>
<td>26</td>
<td>14</td>
<td>25</td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>Mean Secchi Disk Transparency (m)</td>
<td>1.9</td>
<td>3</td>
<td>1.9</td>
<td>1.9</td>
<td>3</td>
</tr>
<tr>
<td>Mean Chlorophyll a (μg/L)</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Peak Chlorophyll a (μg/L)</td>
<td>35</td>
<td>17</td>
<td>34</td>
<td>35</td>
<td>17</td>
</tr>
<tr>
<td>Probability of Summer Bloom (Chl a > 15 μg/L)</td>
<td>16.5%</td>
<td>0.5%</td>
<td>14.9%</td>
<td>16.4%</td>
<td>0.5%</td>
</tr>
</tbody>
</table>
6.2 Septic System Load Removal

This scenario involved removal of the septic loads only. It is a reasonable approximation of what would occur if the lake were sewered or all existing septic systems exported TP at a negligible concentration. Under this scenario, total loading is decreased by approximately 3% over current loading and Pearly Lake would likely not support designated uses. Removal of all septic sources would likely be costly and not substantially impact the lake. However, this analysis did not account for actively failing septic systems. Such systems may have localized impacts on TP and should be addressed as they are discovered. This analysis also did not account for any contributions from the septic system serving the Lakeview apartment buildings on College Road since the leach field for this system is located more than 125 feet from the lake (see section 3.2).

6.3 Internal Load Removal

Pearly Lake currently experiences low hypolimnetic DO during the summer. These conditions allow TP release from the sediments to the hypolimnion, which can elevate TP concentrations in the water column. Mixing events move TP up in the water column where it is available for algal growth. Under this scenario, internal loading is removed as a source of TP. Total loading is reduced by approximately 0.1% under this scenario. Just addressing internal loading would not be sufficient for Pearly Lake to support its designated uses.

6.4 Reduction of Watershed Loads to Meet In-lake Target of 14 µg/L

As discussed in sections 2.6 and 6.1 and as shown in Tables 4-1 and 6-1, this TMDL is based on a target in-lake TP concentration of 14 µg/L for Pearly Lake which is based on the estimated natural background load of 132.3 kg/yr. To achieve this load, current loads must be reduced by approximately 44 percent (Tables 4-1 and 6-1). Table 4-1 shows the assumed reductions (in kg/yr and percent) for each source. As shown, no reductions in atmospheric or septic system loads were assumed (i.e., all septic systems were assumed to be functioning properly). It was assumed waterfowl loads could be reduced by approximately 56% and subwatershed loads could be reduced from 0 to approximately 68% with an overall reduction in watershed loading of approximately 31%. This reduction in subwatershed and overall watershed loading should be technologically achievable as it is within the maximum estimated achievable reduction of approximately 60-70% (Center for Watershed Protection 2000). The internal load and the residual load from the former FPU WWTP were assumed to be reduced by 100%. The residual load from the WWTP is expected to continue to dissipate over time since the surface water discharge from the WWTP into the Mountain Road inlet tributary was eliminated in 2009. Reductions in the watershed load and residual WWTP loads are expected to result in an eventual reduction in internal loading. For more information on implementation and how compliance with this TMDL will be determined, see Section 7.0.

6.5 Modeling Assumptions and Uncertainty

While the alternative loading scenarios presented above provide a reasonable accounting of sources of TP loading to Pearly Lake and their individual impacts on the total contributions to the lake, there are several limitations to the modeling analysis:

- As stated in the Section 3.0 above, precipitation varies among years and hence hydrologic loading will vary. This may greatly influence TP loads in any given year, given the importance of runoff to loading.

- Spatial analysis has innate limitations related to the resolution and timeliness of the underlying data. In places, local knowledge was used to ensure the land use distribution in the ENSR-LRM model was reasonably accurate, but data layers were not 100% verified on the ground. In addition, land uses were aggregated into classes which were then assigned export coefficients; variability in export within classes was not evaluated or expressed.

- TP export coefficients as well as runoff/baseflow exports were representative but also had limitations as they were not calculated for the study water body, but rather are regional estimates.
• The TP loading estimate from septic systems was limited by the assumptions associated with this calculation (described in section 3.2 in the “Septic Systems” subsection) and the assumptions made about the proximity of the systems to the lake and their influence on the total loading.

• In some cases, water quality data for Pearly Lake and its tributaries are limited, restricting calibration of the model (e.g., only two TP samples were available for the College Road Inlet).

• The loading estimate for the residual load from the former FPU WWTF was limited by the assumptions made in section 3.2.

• The loading estimate for the waterfowl was limited by the assumptions made in section 3.2.

The loading estimate for the natural background condition, which is the basis for this TMDL, was limited by the assumptions made of loadings that occurred prior to any anthropogenic (i.e., human) activities or influences and are therefore approximate.
7.0 Implementation Plan

Successful implementation of this TMDL will not be based on meeting the in-lake target TP concentration of 14 ug/l or the reduction target of 44% (105.5 kg/yr). Rather, compliance will be based on continued lake monitoring and assessment of monitoring results using the methods described for assessing water quality standards attainment in the most recent version of the Consolidated Assessment Listing Methodology\(^1\) (CALM) for the response variables (DO, cyanobacteria, and chl a), with the exception that the mean and peak chl a thresholds will be 5 and 17 ug/L respectively (see Table 6-2 for the target load scenario).

It is first recommended that monitoring be conducted to confirm calibration of the model. For example only two samples (which had relatively high TP concentrations) were available for calibration of the College Road inlet subwatershed. Monitoring should be conducted in this area to confirm that these values are representative and if so, additional monitoring should be conducted to get a better handle on the primary source(s). For example, are the high TP levels primarily a result of fertilizer applied to the campus lawns and athletic fields, or does the leachfield serving the Lakeview apartment buildings contribute significant TP (the calibrated model did not assume any loading from this leachfield since it was located more than 125 feet from the lake). In addition, since there are significant amounts of wetlands surrounding the lake monitoring is recommended to confirm the contribution of TP associated with wetlands to the lake. If substantially different than assumed in the model, it may impact the TMDL.

Monitoring should also be conducted in the Mountain Road Inlet watershed to confirm that the high TP levels in this inlet are largely due to the historical loadings from the former FPU WWTP surface water discharge. In the model, the residual WWTP load was estimated to be approximately 20% of the total current load. Since the source of this load was eliminated in 2009, the residual WWTP load is expected to dissipate with time. Monitoring should be conducted to confirm that this is the case. Further information regarding recommended monitoring activities is provided in Section 8.

To track progress towards the load reduction goal, it is recommended that estimates of TP reductions associated with each load reduction activity be quantified. After significant load reductions have been implemented, monitoring should be conducted to determine if compliance has been achieved or if additional reductions are necessary. This is especially important when the estimated TP load reductions associated with implemented activities approach the load reduction goal since it’s possible that, due to the model uncertainties, compliance will be achieved before the TP load reduction goal is met. The process of implementing load reduction activities and monitoring in a step-wise fashion is called phased implementation and is the recommended approach for implementing this TMDL.

The discussion below provides general recommendations for possible future load reduction activities (commonly called best management practices or BMPs). The recommendations are intended to provide options of potential watershed and lake management strategies that can improve water quality to achieve compliance. Although a comprehensive diagnostic/feasibility study and detailed implementation plan is

\(^1\) The CALM describes the process used to assess water quality data and determine if it is meeting standards or if it causing impairment and should be listed on the Section 303(d) list of impaired waters requiring a TMDL. The most recent version of the CALM when this TMDL report was written was the 2012 Section 305(b) and 303(d) Consolidated Assessment and Listing Methodology by the NHDES. NHDES R-WD-12-2. http://des.nh.gov/organization/divisions/water/wmb/swqa/2012/documents/2012-calm.pdf.
beyond the scope of this report, the following discussion should help to narrow the range of management options in accordance with assumed loading issues and desired loading reductions.

An estimate of the load reductions needed to achieve the target of 132.3 kg/yr is provided in Tables 4-1 and 6-1. Table 4-1 shows the assumed load reductions for each source. As shown, the estimated reduction target is approximately 105 kg/yr which is approximately 44% of the predicted current load. As discussed in Section 3.3, other combinations of source reductions are possible which may become evident as monitoring continues and the implementation plan is refined.

No reductions in the atmospheric and septic system loads are anticipated (Table 4-1). This assumes that the septic systems are functioning properly. To keep septic system loads from increasing, owners should be encouraged to maintain their systems and to replace aging or failed systems. Where new septic systems are proposed, homeowners should be encouraged to build them more than 125 feet from the lake. This is consistent with the model which assumes that only septic systems within 125 of the lake contribute TP loading.

The reductions in Table 4-1 assume that loadings from waterfowl can be can be reduced by approximately 56% (from approximately 55 to approximately 24 birds). Elimination of waterfowl feeding, discouraging waterfowl with the use of decoys (such as trumpeter swan and coyote) and the regrowth of a vegetated buffer around the immediate shoreline can help reduce the resident waterfowl population and associated TP loadings.

It is assumed that the internal lake loadings and the residual TP load from the former FPU WWTP will eventually be reduced by 100% (Table 4-1). As discussed in section 3.2, prior to 2009, the FPU WWTP discharged to a wetland in the Mountain Road inlet for over 40 years. Calibration of the model suggests that there is a significant residual load in the inlet from the former WWTP discharge. The surface water discharge from the WWTP was eliminated in 2009. Consequently, over time, it is anticipated that the residual load from this former discharge will eventually dissipate. Likewise the internal lake load (which is estimated to be less than 1% of the total current load) is anticipated to dissipate over time as other TP load reduction BMPs are implemented.

With regards to watershed reductions, Table 6-1 indicates that approximately 31% of the current watershed TP load should be reduced. As shown in Table 4-1, assumed reductions in each subwatershed range from 0 to approximately 68%. This reduction in subwatershed and overall watershed loading should be technologically achievable as they are within the maximum estimated achievable reduction of approximately 60-70% (Center for Watershed Protection 2000). It is assumed that watershed reductions would be obtained mainly from the runoff portion of the load and, as stated earlier, it is anticipated that implementation would be phased in over a period of several years, with monitoring and adjustment as necessary.

There are a number of BMPs that may be appropriate for implementation in the Pearly Lake watershed (Table 7-1). BMPs fall into three main functional groups: 1) Recharge / Infiltration Practices, 2) Low Impact Development Practices, and 3) Extended Detention Practices. Table 7-1 lists the practices, the pollutants typically removed and the degree of effectiveness for each type of BMP. Specific information on the BMPs is well summarized by the Center for Watershed Protection (2000).

The natural wetlands in the watershed naturally function to slow runoff water thereby encouraging infiltration of water and removal of TP through settling, soil adsorption and plant uptake. These functions should be preserved.

Although agriculture constitutes only a small portion of the watershed, agricultural BMPs should be considered. The Bower and Mountain Road Inlet subwatershed have the largest percentage of agriculture land, which is classified as non-manure hayland. Hayland does not have a large TP export coefficient, but buffer strips around the fields help to prevent TP from any fertilizers that may be applied from entering the lake through overland runoff. Likewise, maintaining buffers between lawn areas and streams and encouraging minimal use of fertilizers is recommended. On June 4, 2013, New Hampshire passed a new fertilizer law (RSA 431:4-a) which limits the nutrient content (total phosphorus and soluble and total nitrogen) and application rates of
residential turf fertilizer2. The law became effective on January 1, 2014 and should therefore help to reduce the impact of fertilizers on TP loading in Pearly Lake in the future.

Detention practices can improve the quality of storm water originating from the highways and developments in the Pearly Lake watershed. Designing and installing BMPs that encourage infiltration or stormwater detention would reduce channel erosion and reduce TP concentrations by settling and contact with the soil prior to entry to the lake.

Retrofitting developed land with low impact designs is a highly desirable option, especially near the lake. Numerous homes are very close to the lake and provide no vegetated buffer. Educational programs can help raise the awareness of homeowners and inform them how they can alter drainage on their property to reduce nutrients entering the lake. Another option to engage the community is through technical assistance programs, such as BMP training for municipal officials and septic system inspection programs. Guidelines for evaluating TP export to lakes are found in “Phosphorus Control in Lake Watersheds: A Technical Guide to Evaluating New Development” (Dennis et al., 1992). Recent guidance for low impact living on the shoreline, “Landscaping at the Waters Edge: An Ecological Approach”, has been developed by UNH Cooperative Extension (2007).

With regards to possible funding, Section 319 of the Clean Water Act was established to assist states in nonpoint source control efforts. Under Section 319, grant money can be used for technical assistance, financial assistance, education training, technology transfer, demonstration projects and monitoring to assess the success of specific nonpoint source implementation projects.

US EPA has identified a minimum of nine elements that must be included in a Section 319 management plan for achieving improvements in water quality. A summary of the nine elements is provided below. The full description can be found in US EPA (2005).

1) Identification of causes of impairment and pollutant sources.

2) An estimate of the load reductions expected from management measures.

3) A description of the nonpoint source measures needed to achieve load reductions.

4) An estimate of the technical and financial assistance needed and the cost.

5) An information and education component.

6) A schedule for implementation.

7) Description of milestones to determine if goals are being met.

8) Criteria to determine progress in reducing loads.

9) Monitoring to evaluate effectiveness of implementation efforts over time.

This TMDL was written to meet the criteria of the first element. Application materials and instructions for 319 funding can be obtained through:

Nonpoint Coordinator
New Hampshire Department of Environmental Services

2 The law only applies to fertilizer applied to residential turf. It does not apply to agricultural land, golf courses, parks, athletic fields and sod farms.
Proactive planning can prevent the further degradation of lake water quality. The TMDL process is intended to give a direction and goal for planning and watershed management. As the lake improves, the implementation strategy should be re-evaluated and adjusted as necessary using current monitoring data and modeling, until compliance is ultimately achieved (i.e., the phased implementation approach).
Table 7-1. Best Management Practices Selection Matrix.

<table>
<thead>
<tr>
<th>Management Practice</th>
<th>Ability to Mitigate</th>
<th>Applicability</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recharge / Infiltration Practices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infiltration Swale</td>
<td></td>
<td></td>
<td>Permeable site soils required. Pre-treatment recommended.</td>
</tr>
<tr>
<td>Infiltration Trench/Snail</td>
<td></td>
<td></td>
<td>Permeable site soils required. Pre-treatment recommended.</td>
</tr>
<tr>
<td>Retention/Infiltration Basin</td>
<td></td>
<td></td>
<td>Permeable site soils required. Pre-treatment recommended.</td>
</tr>
<tr>
<td>Low Impact Development Practices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bioretention</td>
<td></td>
<td></td>
<td>Includes increasing roughness, sheetflow, flow path length, and flattening slopes.</td>
</tr>
<tr>
<td>Disconnecting Impervious Area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow Path Practices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Roof</td>
<td></td>
<td></td>
<td>Used as a component of LID site design.</td>
</tr>
<tr>
<td>Minimize Disturbance Area</td>
<td></td>
<td></td>
<td>Used as a component of LID site design.</td>
</tr>
<tr>
<td>Minimize Site Imperviousness</td>
<td></td>
<td></td>
<td>Used as a component of LID site design.</td>
</tr>
<tr>
<td>Porous Pavement</td>
<td></td>
<td></td>
<td>Includes limiting use of sidewalks, and reducing roadway length/width.</td>
</tr>
<tr>
<td>Preserve Infiltrable Soils</td>
<td></td>
<td></td>
<td>Used as a component of LID site design.</td>
</tr>
<tr>
<td>Preserve Natural Depression Areas</td>
<td></td>
<td></td>
<td>Used as a component of LID site design.</td>
</tr>
<tr>
<td>Rain Barrels/Cisterns</td>
<td></td>
<td></td>
<td>Used as a component of LID site design.</td>
</tr>
<tr>
<td>Rain Garden</td>
<td></td>
<td></td>
<td>Used as a component of LID site design.</td>
</tr>
<tr>
<td>Soil Amendment</td>
<td></td>
<td></td>
<td>Used as a component of LID site design.</td>
</tr>
<tr>
<td>Vegetated Filter Strip</td>
<td></td>
<td></td>
<td>Used as a component of LID site design.</td>
</tr>
<tr>
<td>Vegetation Preservation</td>
<td></td>
<td></td>
<td>Used as a component of LID site design.</td>
</tr>
<tr>
<td>Extended Detention Practices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Created Wetland/Soil Filter Detention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended Detention Pond</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet Detention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Best Management Practices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep Sump Catch Basins</td>
<td></td>
<td></td>
<td>Pre-treatment prior to Infiltration BMPs.</td>
</tr>
<tr>
<td>Sand/Organic Filter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swale</td>
<td></td>
<td></td>
<td>Dry swale with some infiltration.</td>
</tr>
<tr>
<td>Water Quality Inlet</td>
<td></td>
<td></td>
<td>Includes proprietary hydrodynamic devices. Pre-treatment prior to infiltration BMPs.</td>
</tr>
</tbody>
</table>

1 Impacts include channel enlargement/widening/embellishment, changes in flowrite structure, and reduced channel sinuosity.
2 Recharge and infiltration measures require permeable soils and pre-treatment is recommended. See specific BMP descriptions for more information.
8.0 Monitoring Plan

The New Hampshire Department of Environmental Services (NHDES) conducted water quality monitoring of Pearly Lake in the summers of 1977, 1990, and 2004 for Lake Trophic Studies. The Volunteer Lake Assessment Program (VLAP) began in 1992 and continues to the present day (NH DES 2006b). The deepest site in the center of the lake is the primary sampling location in Pearly Lake (Figure 2-1). Water quality samples collected during summer stratification are tested for epilimnetic and hypolimnetic TP. In addition, a composite sample of the water column to the depth of the thermocline is tested for chl a. A DO profile from top to bottom is conducted and a Secchi disk transparency measurement is taken.

It is recommended that VLAP sampling be continued to document the in-lake response, trends, and compliance with water quality criteria following implementation of TP reduction measures. As discussed in the previous section, successful implementation of this TMDL will be based on compliance with water quality criteria for DO, and thresholds for planktonic chl a and cyanobacteria. Data collected by VLAP includes DO and planktonic chl a, and should continue.

TP should also be collected to document lake response to TP reduction activities. To help prioritize implementation of TP reduction measures in the subwatersheds, it may be instructive for stakeholders to collect dry and wet weather TP samples (along with estimates of flow) in some of the tributaries draining suspected sources such as agricultural land. The TP loads should be calculated using concentration and flow data. Tributaries impacted by humans (i.e., not natural) with the highest TP load would be the target of initial efforts to reduce TP. Monitoring in the tributary from the Mountain Road subwatershed would provide insight into the pace of the residual load reduction from the former FPU WWTP discharge that was assumed in the modeling. Also, more monitoring data in the College Road inlet will contribute to the development of a more robust data set in that subwatershed area (only two phosphorous samples were available for this modeling) which will help confirm model calibration assumptions.

Bracketed sampling up and downstream of the Lakeview Apartments leach field could serve to confirm the baseline model run that phosphorous loading from that system is not impacting the lake (it is a large system but is located over 500 feet from the lake). Although septic systems are not believed to be a major source of TP loading, a survey of septic systems would help confirm model input, including the assumption that there are no failed septic systems. Bracketing could also be conducted around areas that are regularly fertilized (lawns, athletic fields, etc.) to estimate the relative contribution of fertilizer to TP loadings. Finally, bird counts should be regularly recorded to better quantify their impact and provide a baseline to measure mitigation measures.

Implementation of the monitoring plan is contingent on the availability of sufficient staff and funding. Prior to implementation of any new monitoring activities associated with this TMDL, it is recommended that NHDES be consulted to help ensure that the monitoring plan will achieve its objectives.
9.0 Reasonable Assurances

The TMDL provides reasonable assurances that nonpoint source reductions will occur by providing information on the cooperative efforts of the NH DES and watershed stakeholders to initiate the process of addressing nonpoint source pollution in the watershed. The successful reduction in nonpoint TP loading, however, depends on the willingness and motivation of stakeholders to get involved and the availability of federal, state, and local funds.

As discussed in section 5.1, sufficient data are simply not available in this watershed to draw an accurate distinction between nonpoint watershed sources and point sources of phosphorus. Given the difficulty in accurately separating these sources, the allocations in this TMDL are characterized as a single wasteload allocation (WLA) which includes both point and nonpoint sources. The State fully acknowledges that it will take a concerted effort to reduce phosphorus loading to the maximum extent practicable from as many sources as possible in order to fully support designated uses in this waterbody. In many cases, phosphorus reductions from individual sources can and should be greater than the prescribed reductions in this TMDL, in order to make up for areas of the watershed where greater reductions are not attainable.

Reasonable assurance that non-regulated point source and nonpoint source load reductions will occur include the following:

- RSA 485-A:12, which requires persons responsible for sources of pollution that lower the quality of waters below the minimum requirements of the classification to abate such pollution, will be enforced.

- NHDES will work with watershed stakeholders to identify specific phosphorus sources within the watershed. Technical assistance is available to mitigate phosphorus export from existing nonpoint sources. Requests for 319 funding to implement specific BMPs within the watershed shall receive high priority. The new NHDES Stormwater Manual provides information on site design techniques to minimize the impact of development on water quality as well as BMPs for erosion and sediment control and treatment of post-construction stormwater pollutants. Also of use to municipalities is the Innovative Land Use Planning Techniques Handbook, which provides model municipal ordinances including one on post-construction stormwater management. Both documents are accessible on the NHDES website at www.des.nh.gov. DES staff also provides assistance by working with Lake Associations to identify LID projects that would qualify for 319 funding.

- Per RSA 483-A:7 Lakes Management and Protection Plans, the lakes coordinator and the Office of Energy and Planning, in cooperation with regional planning agencies, and appropriate council on resources and development agencies, shall provide technical assistance and information in support of lake management and local shoreland planning efforts consistent with the guidelines established under RSA 483-A:7, and compatible with the criteria established under RSA 483-A:5.

- For lakes included in the NHDES Volunteer Lake Assessment Program, NHDES staff will meet with participants on an annual basis during field sampling visits and annual workshops to discuss TP reduction opportunities and assist them with securing 319 grants where eligible.
10.0 Public Participation

Public Participation and Comment

US EPA regulations (40 CFR 130.7 (c) (ii)) require that calculations to establish TMDLs be subject to public review. On July 11, 2014, a public notice (see Figure 10-1) announcing the availability of the draft TMDL for public review and comment was posted on the DES website (www.des.state.nh.us/wmb/TMDL). On that date, three copies of the draft report and three copies of the public notice were also mailed to the Town of Rindge’s Office of the Selectmen for distribution. In addition, copies of the draft report and the public notice were also provided to representatives of Franklin Pierce University, Comprehensive Environmental Incorporated (CEI), and the Pearly Lake volunteer monitoring group. Written public comments were accepted from July 11th through August 22nd (a period of 31 business days). A copy of the Public Notice can be found below. NHDES did not receive any written comments on the Draft Report, therefore, no substantive changes were made to the Final Report.
Figure 10-1. Public Notice

Date: July 11, 2014

Subject: PUBLIC NOTICE – Draft Pearly Lake Nutrient TMDL Report Available for Public Comment

PUBLIC COMMENTS ACCEPTED UNTIL 4 PM ON August 22, 2014

Dear Interested Party or Stakeholder:

The “Draft Total Maximum Daily Load (TMDL) Study for Nutrients in Pearly Lake is now available for public review and comment on the New Hampshire Department of Environmental Services website at:

A copy of the report is also available for review at the Rindge Town Hall.

The New Hampshire Department of Environmental Services (DES), in conjunction with the U.S. Environmental Protection Agency (EPA) and the environmental consulting firm AECOM, conducted a Total Maximum Daily Load (TMDL) study for total phosphorus for Pearly Lake in Rindge. Pearly Lake is on the 2012 list of impaired waters [i.e. the section 303(d) list] because of elevated algal growth (which can adversely affect swimming due to reduced water clarity) and low dissolved oxygen levels that can be harmful to fish and other aquatic organisms. Phosphorus is the nutrient responsible for algal growth in most freshwater lakes, ponds and rivers.

The TMDL conducted at Pearly Lake identified an in-lake target phosphorus value that, when met, should result in attainment of New Hampshire water quality standards. A phosphorus budget was constructed, phosphorus sources identified and phosphorus reductions allocated to meet the target value. A section of the report is dedicated to implementation and provides recommendations on watershed remediation activities to reduce phosphorus inputs to the lake.

Comments will be accepted until 4 pm on August 22, 2014. Only written comments will be accepted. All comments must include the name of the TMDL, the date and contact information (your name, address, phone, e-mail, and organization).

Comments can be mailed to:

TMDL Program
NHDES Watershed Management Bureau
29 Hazen Drive, P.O. Box 95
Concord, NH 03301
Attention Margaret P. Foss, TMDL Coordinator

or sent by email to TMDL@des.nh.gov. A public comment form can be found at http://des.nh.gov/organization/divisions/water/wmb/tmdl/documents/commentform.pdf. Use of the form is optional.

If you have any questions about the report, please contact Margaret Foss, NHDES TMDL Coordinator at (603) 271-5448 or via email at margaret.foss@des.nh.gov
11.0 References

New Hampshire Department of Environmental Services. 2010. 2010 303(d) Surface Water Quality List.

Appendix A: Methodology for Determining Target Criteria
1.0 Derivation of Total Phosphorus (TP) Target Values

As part of its contract with the US EPA, Region 1, AECOM is assisting the NH DES in developing Total Maximum Daily Loads (TMDLs) for 30 nutrient-impaired waterbodies in New Hampshire, under Task 1, Development of Lake Phosphorus TMDLs. To develop TMDLs for these waterbodies it is necessary to derive numeric total phosphorus (TP) target values (e.g., in-lake concentrations) for determining acceptable watershed nutrient loads. The background, approach, and TP target values are provided below.

1.1 Regulatory Background

As part of the national Nutrient Strategy originally set forth by the “Clean Water Action Plan” (US EPA, 1998), US EPA has directed the States to promulgate nutrient criteria or alternative means to address and reduce the effects of elevated nutrients (eutrophication) in lakes and ponds, reservoirs, rivers and streams, and wetlands. Where available, these nutrient criteria can be useful in developing TMDLs as well as in demonstrating potential compliance due to the implementation strategy selected to reduce impairment.

At this time, New Hampshire has not established a numeric water quality standard (or nutrient criterion) for TP to protect the designated water uses. Rather, New Hampshire has established a series of use-specific assessment criteria that are used to identify and list waters for impairment of designated uses under the unified Clean Water Act (CWA) Section 305(b) and Section 303(d) Consolidated Assessment and Listing Methodology (CALM) (NHDES, 2008a). Thus, while the 30 lakes considered by this investigation are considered likely to be impacted by excessive nutrients, the specific listed impairments are for the phytoplankton primary photopigment chlorophyll a (chl a) and the presence of cyanobacteria (indicator for primary contact recreation) and/or dissolved oxygen (DO) (indicator for aquatic life support) (NHDES, 2006, 2008b).

1.1.1 New Hampshire Water Use Assessment Criteria

The following assessment criteria have been established for evaluation compliance with water use support and for reporting and identifying waterbodies for listing on the unified CWA Section 305(b)/303(d) list in New Hampshire:

1.1.1.1 Chlorophyll a

Assessment for the trophic indicator photopigment chl a is evaluated through comparison of samples generally collected during the summer index period (defined as May 24 – September 15) to the freshwater chl a interim criterion of 15 ppb (0.015 mg/L) (NH DES, 2008a). If the criterion is exceeded then the waterbody is considered non-supporting for the primary contact recreation water use.

1.1.1.2 Dissolved Oxygen

Applicable water quality standards for DO include the following:

Env-Wq 1703.07 (b): Except as naturally occurs, or in waters identified in RSA 485-A:8, III, or subject to (c) below, class B waters shall have a DO content of at least 75% of saturation, based on a daily mean, and an instantaneous minimum DO concentration of at least 5 mg/L.

Env-Wq 1703.07 (d): Unless naturally occurring or subject to (a) above, surface waters within the top 25 percent of depth of thermally unstratified lakes, ponds, impoundments and reservoirs or within the epilimnion shall contain a DO content of at least 75 percent saturation, based on a daily mean and an instantaneous minimum DO content of at least 5 mg/L. Unless naturally occurring, the DO content below those depths shall be consistent with that necessary to maintain and protect existing and designated uses.

1.1.1.3 Cyanobacteria
A lake is listed as not supporting primary contact recreation if cyanobacteria scums are present. Reduction of TP loading will reduce the likelihood of scum formation.

1.1.2 Linkage of Assessment Criteria to TP TMDLs

The chl \(a\), cyanobacteria and DO assessment criteria described above provide NH DES with a consistent and efficient means to identify and list impaired waters for purposes of 305(b)/303(d). However, these parameters are not amenable to development of a TMDL for correction of these impairments for several reasons including:

- these are merely secondary indicators of eutrophication but not the primary cause (i.e., excessive nutrients);
- measurement of these parameters is complicated by physical (e.g., light availability) and temporal considerations (e.g., pre-dawn measurements);
- it is not feasible to establish watershed load allocations for chl \(a\) or DO;
- there are limited control technologies or best management practices (BMPs) for these parameters; and/or
- it is much more technically and economically feasible to address the primary cause (i.e., excessive nutrients) as a means to reduce or eliminate impairments.

While AECOM uses the term “excessive nutrients” as the primary cause, it is generally understood, and for purposes of this TMDL development assumed that, TP is the limiting nutrient for plant growth in these waters. Therefore, it is necessary to derive numeric TP target values that are both protective of the water uses and correlate to lake conditions under which the chl \(a\), the presence of cyanobacteria scums and DO assessment criteria are met. TP is used as a surrogate for impairments related to chl \(a\), cyanobacteria scums and DO.

1.2 Proposed TP TMDL Target Values

According to the 40 CFR Part 130.2, the TMDL for a waterbody is equal to the sum of the individual loads from point sources (i.e., wasteload allocations or WLAs), and load allocations (LAs) from nonpoint sources (including natural background conditions). Section 303(d) of the CWA also states that the TMDL must be established at a level necessary to implement the applicable water quality standards with seasonal variations and a margin of safety (MOS) which takes into account any lack of knowledge concerning the relationship between effluent limitations and water quality. In equation form, a TMDL may be expressed as follows:

\[
\text{TMDL} = \text{WLA} + \text{LA} + \text{MOS}
\]

Where:

- \text{WLA} = \text{Waste Load Allocation (i.e., loadings from point sources);}
- \text{LA} = \text{Load Allocation (i.e., loadings from nonpoint sources including natural background); and}
- \text{MOS} = \text{Margin of Safety.}

TMDLs can be expressed in terms of either mass per time, toxicity or other appropriate measure [40 CFR, Part 130.2 (i)]. However, in light of legal action, the US EPA has issued guidance that TMDLs should be expressed on a daily timescale to meet the wording of the legislation that created the program. Yet for lakes, daily nutrient loading limits are of little use in management, as lakes integrate loading over a much longer time period to manifest observed conditions. Expression of nutrient loads on seasonal to annual time scales is appropriate, although daily loads will be reported to meet program guidelines.

The MOS can be either explicit or implicit. If an explicit MOS is used, a portion of the total target load is allocated to the MOS. If the MOS is implicit, a specific value is not assigned to the MOS. Use of an implicit MOS may be appropriate when assumptions used to develop the TMDL are believed to be so conservative that they sufficiently account for the MOS.
1.3 Potential approaches to Derivation of TP target values.

While the need for development of nutrient criteria for lakes is well-documented, there is no clear consensus among the States or federal agencies regarding the best means to accomplish this goal, due to the complexity in defining precisely what concentrations will be protective of waterbodies' water quality as well as their designated uses. Some of the more common approaches include:

- Use of NH DES water quality recommendations;
- Use of nutrient levels for commonly accepted trophic levels; and
- Use of probabilistic equations to establish targets to reduce risk of adverse conditions.

1.3.1 Target based on population of NH lakes

In the Lake and Reservoir Technical Guidance Manual (US EPA, 2000a), the US EPA provided a statistical approach for determining nutrient criteria that was subsequently used to develop a set of ecoregion-specific ambient water quality recommendations that were issued in 2000-2001 (US EPA, 2000b; US EPA 2000c).

The US EPA approach consists of selecting a pre-determined percentile from the distribution of measured variables from either (1) known reference lakes, (i.e., the highest quality or least impacted lakes) or (2) general population of lakes including both impaired and non-impaired lakes. The US EPA defined reference lakes as those representative of the least impacted conditions or what was considered to be the most attainable conditions for lakes within a state or ecoregion.

NHDES used a similar statistical approach when developing preliminary TP criteria for freshwaters in New Hampshire (NHDES, 2005). The NHDES evaluation identified statistically significant relationships between chl a and TP for lakes. Statistical relationships were based on: 1) the median of TP samples taken at one-third the water depth in unstratified lakes and at the mid-epilimnion depth in stratified lakes; and 2) the median of composite chl a samples of the water column to the mid-metalimnion depth in stratified lakes and to the two-thirds water depth in unstratified lakes during the summer months (June through September). A total of 168 lakes were included in the analysis of which 23 were impaired for chl a (i.e., lakes with chl a greater than or equal to 15 μg/L). Of the 23 impaired lakes, approximately 14 were stratified (60%) and 9 were unstratified (40%).

Figure A-2 shows the cumulative frequency plots for the impaired and non-impaired lakes. Based on Figure A-2, an initial TP target of 11.5 μg/L was selected. As shown, 20% of the impaired lakes and 80% of the non-impaired lakes have TP concentrations $< 11.5 \mu$g/L which means that 20% of the non-impaired lakes have TP concentrations $\geq 11.5 \mu$g/L. After rounding, a target of 12 μg/L strikes a reasonable balance between the percent of lakes that are impaired at concentrations below this level and the percent of lakes that are not impaired at concentrations above this concentration. A value of 12 μg/L is very similar to TP targets set by other methods discussed below. However, as discussed in the next section, a target of 14 μg/L was set for Pearly Lake because 14 μg/L is the predicted in-lake value under natural background conditions, and it is not practical to reduce TP below background levels.

Setting the TMDL based on an in-lake target concentration of 12 μg/L includes an implicit MOS for the following reasons. As discussed above, the target of 12 μg/L is primarily based on summer epilimnetic concentrations. This TMDL, however, is based on empirical models that predict mean annual TP lake concentrations assuming fully mixed conditions. Studies on other lakes indicate that mean annual concentrations can be 14% to 40% higher than summer epilimnetic concentrations (Nurnberg 1996, 1998). A value of 15 μg/L could have been used in the models to predict the TMDL. However, in order to include an MOS, 12 μg/L was used. By setting the target equal to 12 μg/L in the models used to determine the TMDL, an implicit MOS of approximately 20% is provided.
In 2009, DES refined its analysis to include TP and chlorophyll a thresholds based on trophic criteria and the EPA reference approach (NHDES, 2009\(^3\)). EPA guidance recommends using the distributions of water quality parameters in reference lakes (i.e., lakes with minimal human disturbance) and all lakes to identify targets for water quality criteria. The 75\(^{\text{th}}\) percentile of concentrations in the reference lakes provides one estimate of the criteria. The 25\(^{\text{th}}\) percentile in all lakes is another estimate. The two values bound the range of potential criteria concentrations for a parameter. Using the reference approach, the summer epilimnetic TP and chlorophyll a target concentrations are the following:

<table>
<thead>
<tr>
<th>Oligotrophic</th>
<th>Mesotrophic</th>
<th>Eutrophic</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP (ug/L)</td>
<td>< 8</td>
<td>≤ 12</td>
</tr>
<tr>
<td>Chlorophyll a (ug/L)</td>
<td>< 3.3</td>
<td>≤ 5</td>
</tr>
</tbody>
</table>

The above concentrations are currently being used to assess lakes and agree fairly well with literature values from other trophic studies presented in the section 1.3.2. Since Pearly Lake is mesotrophic (NHDES, 1997), a TP target of 12 ug/L would apply.

The target of 12 ug/L for mesotrophic lakes may be somewhat conservative (i.e., low) for colored lakes since color can attenuate light in the water column and suppress algal growth and its impacts on designated uses.

1.3.2 Trophic State Classification of Water bodies

Trophic state is an alternative means of setting a TP target concentration. One of the more powerful paradigms in limnology is the concept and classification of lakes as to their so-called trophic state. A trophic state classification is typically based on a generally recognized set or range of chemical concentrations and physical and biological responses. Lakes are generally classified as oligotrophic, mesotrophic, or eutrophic; the three states representing a gradient between least affected to most impacted waterbodies. Classification is based on the proximity of a lake’s chemistry and biology to the list of characteristic for a specific trophic type. Classification may be based on both quantitative (e.g., chemical concentrations, turbidity) and/or qualitative factors (e.g., presence of pollution-tolerant species, aesthetic appearance).

While this system is widely accepted, there is no consensus regarding the absolute nutrient or trophic parameter value that defines a waterbody trophic state, although some guidelines have been suggested (US EPA, 1999). Indeed, it should be remembered that classification of lakes into the categories produces an arbitrary difference among lakes that may show very little differences in nutrient concentration. Despite its limitations, the trophic state concept is easily understood and widely used by limnologists, lake associations, state agencies, etc., to classify lakes and manage lakes. Further, it can be used as an indirect means of linking impairment of designated uses with critical nutrient levels or threshold values (i.e., the transition from one trophic state to another is likely associated with effects on designated uses).

To provide a means of quantifying the decision-making about trophic classification, waterbodies may be classified according to the Carlson Trophic State Index (TSI), a widely used indicator of trophic state (Carlson 1977). Carlson’s TSI is an algal biomass-based index that relates the relationship between trophic parameters to levels of lake productivity. The TSI method provides three equations relating log-transformed concentrations of TP, chl a, and SDT to algal biomass, resulting in three separate TSI scores (e.g., TSI(TP), TSI(chl a), TSI(SDT)). The three equations are scaled such that the same TSI value should be obtained for a lake regardless of what parameter is used. Comparison of the results of the TSI system to more traditional trophic state classification identified TSI scores that are associated with the transition from one trophic state to another (Carlson, 1977).

For purposes of comparison, we initially used a system assuming thresholds or criteria for the transition from an oligotrophic to a mesotrophic state (estimated as a TSI value of 35) and for transition from a mesotrophic state to a eutrophic state (estimated as a TSI value of 50). The selected TSI thresholds are based on general lake attributes and are not specific to the New England ecoregions. However, Table A-2 represents a first approximation of the range of trophic indicators assigned to a trophic state.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Oligotrophic (TSI < 30)</th>
<th>Mesotrophic (30 ≤ TSI < 50)</th>
<th>Eutrophic (TSI > 50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP (µg/L)</td>
<td><10</td>
<td>10-24</td>
<td>>24</td>
</tr>
<tr>
<td>Chl a (µg/L)</td>
<td><1.5</td>
<td>1.5-7.2</td>
<td>>7.2</td>
</tr>
<tr>
<td>SDT (m)</td>
<td>>6</td>
<td>2-6</td>
<td><2</td>
</tr>
</tbody>
</table>

It can be seen that the NH criterion for chl a (15 µg/L) will generally not be exceeded by a lake having a mesotrophic status (chl a of 1.5 – 7.2 µg/L). In most cases, mesotrophic conditions are also supportive of all aquatic life conditions. It can also be seen that the proposed NH criterion of 12 µg/L TP discussed in Section 1.3.1 will place the lake in the mesotrophic category. However, the ranges of concentrations considered by this approach are relatively large and alternative numeric criteria could be used equally as well. Accordingly, development or refinement based on ecoregion-specific information regarding trophic response and/or protection of designated uses was used to refine these ranges.

Based on our inspection of the water quality and biotic responses of the 30 New Hampshire lakes of this study, it appears that these lakes are more responsive to inputs of TP than the general class of national lakes that Carlson considered in devising his classes. For example, AECOM considers it likely that allowing > 20 µg/L
TP for an in-lake surface concentration will result in eutrophic lake conditions in these lakes and uses that contention as justification to narrow the range of appropriate mean concentrations to 10-20 µg/L. The midpoint of this range is approximately 15 µg/L. An annual mean concentration of 15 µg/L TP is also coincidentally the threshold value for mesotrophic lakes used by the New Hampshire Lay Lakes Monitoring Program (LLMP) (Craycraft and Schloss, 2005).

The trophic status classification is assumed to be based on mean annual TP. However, most water quality samples are taken during summer conditions. Total algal growth is typically predicted from spring turnover TP values, which tend to be higher by approximately 20% on mean (Nurnberg, 1996, 1998). Therefore, using a TP target of 20% lower than 15 µg/L would more appropriately predict the actual potential chl a. An implicit MOS of 20% would result in a target concentration for Pearly Lake of 13 µg/L.

As mentioned in the previous section, in 2009 NHDES developed interim TP and chl a criteria based on lake trophic level for the protection of aquatic life (NHDES, 2009) which were first used to develop the 2010 303(d) list (NHDES, 2010b). The study evaluated median chl a and TP concentrations for 233 lakes and developed interim criterion using the reference concentration approach (EPA, 2000d). Reference lakes were defined as lakes with average specific conductance values less than 50 uS/cm. As shown in the table below, the criteria vary by trophic class where the trophic class is based on NHDES trophic evaluations. Where multiple trophic evaluations have been conducted, the best (i.e. cleanest) trophic class is used to determine the appropriate criterion. The “best” trophic class for Pearly Lake is mesotrophic. In accordance with the 2010 Consolidated Listing and Assessment Methodology (NHDES, 2010a), the medians are based on summer data (i.e., samples taken from May 24th to September 15th).

<table>
<thead>
<tr>
<th>Trophic Class</th>
<th>Median TP (µg/L)</th>
<th>Median Chl (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligotrophic</td>
<td>< 8.0</td>
<td>< 3.3</td>
</tr>
<tr>
<td>Mesotrophic</td>
<td><=12.0</td>
<td><= 5.0</td>
</tr>
<tr>
<td>Eutrophic</td>
<td><= 28</td>
<td><= 11</td>
</tr>
</tbody>
</table>

To be fully protective, the target used in the TMDL should be most stringent TP needed to protect all designated uses. As mentioned, the criteria shown in the table above are for the protection of the aquatic life use. As discussed in the previous section, the median TP for the protection of primary contact recreational uses (i.e., swimming) should be no greater than 12 µg/L. Consequently, if the lake is eutrophic or mesotrophic, the target TP was set equal to 12 µg/L in order to be protective of both uses. However, if a lake is oligotrophic, the target TP was set equal to 8 µg/L since this is more stringent than the 12 µg/L threshold for the protection of primary contact recreation. Since Pearly Lake is mesotrophic, the target TP according to the lake trophic level is 12 µg/L. However, as discussed in section 1.4, the only exception to this rule is if the predicted TP concentration under “natural” conditions (i.e., no anthropogenic sources) exceeded the TP target discussed above. When this situation occurred, as it does in the case of Pearly Lake, the target was set equal to the natural TP concentration. As discussed in section 6.1 (see Table 6-2), the predicted natural TP concentration is 14 µg/L, which is more than 12 µg/L, therefore the target TP is 14 µg/L.

1.3.3. Probabilistic Approach to Setting TP Target Goal

Target TP goals can also be determined using a probabilistic approach that aims at reducing the level and frequency of deleterious algal blooms (as indicated by chl a levels). The concept is to set a TP criterion that achieves a desired probability (i.e., risk) level of incurring an algal bloom in a lake system. Based on the level of acceptable risk or how often a system can experience an exceedance of an adverse condition (in this case defined as a chl a level of 15 µg/L), the TP criterion is selected.
Water quality modeling performed by Walker (1984, 2000) provides a means to calculate the TP level associated with any set level of exceedance of any set target level. For these TMDLs, the goal is to minimize the potential risk of exceedance of 15 µg/L chl a (summer algal bloom), but not place the criterion so low that it could not realistically be achieved due to TP contributions from natural background conditions. The corresponding TP concentration are used as the basis for developing target TMDLs, although not as the final target TP target value, since it incorporates no MOS factor and does not account for uncertainty in the TP loading and concentration estimates.

Based on our analysis of Pearly Lake, the background TP concentration of 14 µg/L corresponded to a potential risk of exceedance of 15 µg/L chl a in the summer of 0.5%, which is considered low enough to support designated uses in the lake.

For this method, the MOS is implicit due to conservative assumptions because the Walker bloom probability model is based on summer water quality data. However, the TP concentrations predicted by the ENSR-LRM model are annual mean concentrations which are typically higher than summer values. Applying the bloom probability model to annual mean concentrations rather than lower summer concentrations will result in an overestimate of the probability of blooms occurring in the summer.

1.4 Summary of Derivation of TP Target Goal

As part of its US EPA/NH DES contract for developing TMDLs for 30 nutrient-impaired New Hampshire waterbodies, AECOM developed an approach and rationale for deriving numeric TP target values for determining acceptable watershed nutrient loads. These TP target values are protective of the water uses and correlate to lake conditions under which the existing New Hampshire chl a, cyanobacteria, and DO assessment criteria are met.

To derive these criteria, AECOM considered the following options: (1) examination of the distribution of TP concentrations in impaired and unimpaired lakes in New Hampshire; (2) use of nutrient levels for commonly-accepted trophic levels; and (3) use of probabilistic equations to establish targets to reduce risk of adverse conditions. All three approaches yield a similar target value. Because the first option uses data from New Hampshire lakes, it is viewed as the primary target setting method. The other two methods confirm the result of the first method, a target of 12 µg/L is appropriate. This target would lead to the desired low probability of algal blooms and a mean chl a level that supports all expected lake uses in mesotrophic lakes such as Pearly Lake. Based on the data that went in the data for these analyses, there is an MOS of approximately 20%.

For watersheds that do not have permitted discharges such as MS4 systems (i.e., WLA = 0), the LA term simplifies to the amount of watershed TP load needed to produce a modeled in-lake concentration of 12 µg/L. Urban watersheds will need to account for the influence of stormwater when determining acceptable loads.

Based on the above discussion, a target value of 12 µg/L TP will be used to establish target TP loading for the 30 nutrient New Hampshire TMDLs, with the following exceptions:

- If modeling indicates that TP loadings under “natural” conditions will result in TP concentrations greater than 12 µg/L, then the TMDL target will be set equal to the modeled TP concentration corresponding to the all natural loading scenario for that lake. There is no need, nor is it usually feasible, to reduce loadings below those occurring under natural conditions. Furthermore, state surface water quality standards allow exceedances of criteria (i.e, targets) if they are due to naturally occurring conditions. For example, Env-Wq 1703.14 (b) states the following:

 “Class B waters shall contain no TP or nitrogen in such concentrations that would impair any existing or designated uses, unless naturally occurring.”

- If observed monitoring data indicates actual chl a violations are occurring in the lake at TP concentrations less than 12 µg/L, then the target shall be set equal to either 1) the median concentration of the sampling data with a 20% reduction to incorporate an MOS (or another percent
reduction determined appropriate for that particular lake) or 2) to the modeled concentration corresponding to background (i.e. natural) conditions.

As discussed in section 1.3.2, the lowest (i.e., most stringent) criterion needed to protect the aquatic life and primary contact recreational uses was used as the target unless the predicted natural TP concentration was higher, as is the case for Pearly Lake. For reasons discussed in section 1.3.2 above, a target TP of 14 ug/L was selected for Pearly Lake.
Appendix B: ENSR-LRM Methodology Documentation
APPENDIX B:
LLRM – Lake Loading Response Model Users Guide
(also called SHEDMOD or ENSR-LRM)

Model Overview
The Lake Loading Response Model, or LLRM, originated as a teaching tool in a college course on watershed management, where it was called SHEDMOD. This model has also been historically called ENSR-LRM. The intent was to provide a spreadsheet program that students could use to evaluate potential consequences of watershed management for a target lake, with the goal of achieving desirable levels of phosphorus (TP), nitrogen (N), chlorophyll a (Chl) and Secchi disk transparency (SDT). For the NH Lake TMDLs only TP, Chl and SDT were simulated. As all cells in the spreadsheet are visible, the effect of actions could be traced throughout the calculations and an understanding of the processes and relationships could be developed.

LLRM remains spreadsheet based, but has been enhanced over the years for use in watershed management projects aimed at improving lake conditions. It is still a highly transparent model, but various functions have been added and some variables have been refined as new literature has been published and experience has been gained. It is adaptable to specific circumstances as data and expertise permit, but requires far less of each than more complex models such as SWAT or BASINS. This manual provides a basis for proper use of LLRM.

Model Platform
LLRM runs within Microsoft Excel. It consists of three numerically focused worksheets within a spreadsheet:
1. Reference Variables – Provides values for hydrologic, export and concentration variables that must be entered for the model to function. Those shown are applicable to the northeastern USA, and some would need to be changed to apply to other regions.
2. Calculations – Uses input data to generate estimates of water, N and TP loads to the lake. All cells shaded in blue must have entries if the corresponding input or process applies to the watershed and lake. If site-specific values are unavailable, one typically uses the median value from the Reference Variables sheet.
3. Predictions – Uses the lake area and inputs calculated in the Calculations sheet to predict the long-term, steady state concentration of N, TP and Chl in the lake, plus the corresponding SDT. This sheet applies five empirical models and provides the average final results from them.

Watershed Schematic
Generation of a schematic representation of the watershed is essential to the model. It is not a visible part of the model, but is embodied in the routing of water and nutrients performed by the model and it is a critical step. For the example provided here, the lake and watershed shown in Figure 1 is modeled. It consists of a land area of 496.5 hectares (ha) and a lake with an area of 40 ha. There are two defined areas of direct drainage (F and G), from which water reaches the lake by overland sheetflow, piped or ditched stormwater drainage, or groundwater seepage (there are no tributaries in these two drainage basins). There is also a tributary (Trib 1) that is interrupted by a small pond, such that the corresponding watershed might best be represented as two parts, upstream and downstream of that pond, which will provide some detention and nutrient removal functions. There is another tributary (Trib 2) that consists of two streams that combine to form one that then enters the lake, the classic “Y” drainage pattern. With differing land uses associated with each of the upper parts of the Y and available data for each near the confluence, this part of the watershed is best subdivided into three drainage areas. As shown in Figure 2, the watershed of Figure 1 is represented as the lake with two direct drainage units, a tributary with an upper and lower drainage unit, and a tributary with two upper and one lower drainage units. The ordering is important on several levels, most notably as whatever nutrient loading attenuation occurs in the two lower tributary basins will apply to loads generated in the corresponding upper basins. Loads are generated and may be managed in any of the drainage basins, but how they affect the lake will be determined by how those loads are processed on the way to the lake. LLRM is designed to provide flexibility when testing management scenarios, based on watershed configuration and the representation of associated processes.
Figure 1. Watershed Map for Example System

Figure 2. Watershed Schematic for Example System
Model Elements

There are three main types of inputs necessary to run LLRM:

1. Hydrology inputs – These factors govern how much water lands on the watershed and what portion is converted to runoff or baseflow. The determination of how much precipitation becomes runoff vs. baseflow vs. deep groundwater not involved in the hydrology of the target system vs. loss to evapotranspiration is very important, and requires some knowledge of the system. All precipitation must be accounted for, but all precipitation will not end up in the lake. In the northeast, runoff and baseflow may typically account for one to two thirds of precipitation, the remainder lost to evapotranspiration or deep groundwater that may feed surface waters elsewhere, but not in the system being modeled. As impervious surface increases as a percent of total watershed area, more precipitation will be directed to runoff and less to baseflow. There are two routines in the model to allow “reality checks” on resultant flow derivations, one using a standard areal water yield based on decades of data for the region or calculated from nearby stream gauge data, and the other applying actual measures of flow to check derived estimates.

2. Nutrient yields – Export coefficients for N and TP determine how much of each is generated by each designated land use in the watershed. These export values apply to all like land use designations; one cannot assign a higher export coefficient to a land use in one basin than to the same land use in another basin. Differences are addressed through attenuation. This is a model constraint, and is imposed partly for simplicity and partly to prevent varied export assignment without justification. Where differing export really does exist for the same land uses in different basins of the watershed, attenuation can be applied to adjust what actually reaches the lake. Nutrient export coefficients abound in the literature, and ranges, means and medians are supplied in the Reference Variables sheet. These are best applied with some local knowledge of export coefficients, which can be calculated from land area, flow and nutrient concentration data. However, values calculated from actual data will include attenuation on the way to the point of measurement. As attenuation is treated separately in this model, one must determine the pre-attenuation export coefficients for entry to initiate the model. The model provides a calculation of the export coefficient for the “delivered” load that allows more direct comparison with any exports directly calculated from data later in the process.

3. Other nutrient inputs – five other sources of N and TP are recognized in the model:
 a. Atmospheric deposition – both wet and dry deposition occur and have been well documented in the literature. The area of deposition should be the entire lake area. Choice of an export coefficient can be adjusted if real data for precipitation and nutrient concentrations is available.
 b. Internal loading – loads can be generated within the lake from direct release from the sediment (dissolved TP, ammonium N), resuspension of sediment (particulate TP or N) with possible dissociation from particles, or from macrophytes (“leakage” or scenescence). All of these modes have been studied and can be estimated with a range, but site specific data for surface vs. hypolimnetic concentrations, pre-stratification whole water column vs. late summer hypolimnetic concentrations, changes over time during dry periods (limited inflow), or direct sediment measures can be very helpful when selecting export coefficients.
 c. Waterfowl and other wildlife – Inputs from various bird species and other water dependent wildlife (e.g., beavers, muskrats, mink or otter) have been evaluated in the literature. Site specific data on how many animals use the lake for how long is necessary to generate a reliable estimate.
 d. Point sources – LLRM allows for up to three point sources, specific input points for discharges with known quantity and quality. The annual volume, average concentration, and basin where the input occurs must be specified.
 e. On-site wastewater disposal (septic) systems – Septic system inputs in non-direct drainage basins is accounted for in baseflow export coefficients, but a separate process is provided for direct drainage areas where dense housing may contribute disproportionately. The number of houses in two zones (closer and farther away, represented here as <100 ft and 100-300 ft from the lake) can be specified, with occupancy set at either seasonal (90 days) or year round (365 days). For the NH lake nutrient TMDLs, one zone of 125 feet from the lake was used. The number of people per household, water use per person per day, and N and TP concentrations and attenuation factors must be specified. Alternatively, these inputs can be accounted for in the baseflow export coefficient for direct drainage areas if appropriate data are available, but this module allows estimation from what is often perceived as a potentially large source of nutrients.

LLRM then uses the input information to make calculations that can be examined in each corresponding cell, yielding wet and dry weather inputs from each defined basin, a combined total for the watershed, a summary...
of other direct inputs, and total loads of TP and N to the lake, with an overall average concentration for each as an input level. Several constraining factors are input to govern processes, such as attenuation, and places to compare actual data to derived estimates are provided. Ultimately, the lake area and loading values are transferred to the Prediction sheet where, with the addition of an outflow TP concentration and lake volume, estimation of average in-lake TP, N, Chl and SDT is performed. The model is best illustrated through an example, which is represented by the watershed in Figures 1 and 2. Associated tables are directly cut and pasted from the example model runs.

Hydrology

Water is processed separately from TP and N in LLRM. While loading of water and nutrients are certainly linked in real situations, the model addresses them separately, then recombines water and nutrient loads later in the calculations. This allows processes that affect water and nutrient loads differently (e.g., many BMPs) to be handled effectively in the model.

Water Yield

Where a cell is shaded, an entry must be made if the corresponding portion of the model is to work. For the example watershed, the standard yield from years of data for a nearby river, to which the example lake eventually drains, is 1.6 cubic feet per square mile (cfsm) as shown below. That is, one can expect that in the long term, each square mile of watershed will generate 1.6 cubic feet per second (cfs). This provides a valuable check on flow values derived from water export from various land uses later in the model.

<table>
<thead>
<tr>
<th>COEFFICIENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STD. WATER YIELD (CFSM)</td>
<td>1.6</td>
</tr>
<tr>
<td>PRECIPITATION (METERS)</td>
<td>1.21</td>
</tr>
</tbody>
</table>

Precipitation

The precipitation landing on the lake and watershed, based on years of data collected at a nearby airport, is 1.21 m (4 ft, or 48 inches) per year, as shown above. Certainly there will be drier and wetter years, but this model addresses the steady state condition of the lake over the longer term.

Runoff and Baseflow Coefficients

Partitioning coefficients for water for each land use type have been selected from literature values and experience working in this area. Studies in several of the drainage basins to the example lake and for nearby tributaries outside this example system support the applied values with real data. It is expected that the sum of export coefficients for runoff and baseflow will be <1.0; some portion of the precipitation will be lost to deep groundwater or evapotranspiration.
<table>
<thead>
<tr>
<th>LAND USE</th>
<th>Precip Coefficient (Fraction)</th>
<th>Precip Export (kg/ha/yr)</th>
<th>N Export (kg/ha/yr)</th>
<th>Runoff Export Coeff.</th>
<th>Baseflow Export Coeff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban 1 (Residential)</td>
<td>0.30</td>
<td>0.65</td>
<td>5.50</td>
<td>0.15</td>
<td>0.010</td>
</tr>
<tr>
<td>Urban 2 (Roads)</td>
<td>0.40</td>
<td>0.75</td>
<td>5.50</td>
<td>0.10</td>
<td>0.010</td>
</tr>
<tr>
<td>Urban 3 (Mixed Urban/Commercial)</td>
<td>0.60</td>
<td>0.80</td>
<td>5.50</td>
<td>0.05</td>
<td>0.010</td>
</tr>
<tr>
<td>Urban 4 (Industrial)</td>
<td>0.50</td>
<td>0.70</td>
<td>5.50</td>
<td>0.05</td>
<td>0.010</td>
</tr>
<tr>
<td>Urban 5 (Parks, Recreation Fields, Institutional)</td>
<td>0.10</td>
<td>0.80</td>
<td>5.50</td>
<td>0.05</td>
<td>0.010</td>
</tr>
<tr>
<td>Agric 1 (Cover Crop)</td>
<td>0.15</td>
<td>0.80</td>
<td>6.08</td>
<td>0.30</td>
<td>0.010</td>
</tr>
<tr>
<td>Agric 2 (Row Crop)</td>
<td>0.30</td>
<td>1.00</td>
<td>9.00</td>
<td>0.30</td>
<td>0.010</td>
</tr>
<tr>
<td>Agric 3 (Grazing)</td>
<td>0.30</td>
<td>0.40</td>
<td>5.19</td>
<td>0.30</td>
<td>0.010</td>
</tr>
<tr>
<td>Agric 4 (Feedlot)</td>
<td>0.45</td>
<td>224.00</td>
<td>2923.20</td>
<td>0.30</td>
<td>0.010</td>
</tr>
<tr>
<td>Forest 1 (Upland)</td>
<td>0.10</td>
<td>0.20</td>
<td>2.86</td>
<td>0.40</td>
<td>0.005</td>
</tr>
<tr>
<td>Forest 2 (Wetland)</td>
<td>0.05</td>
<td>0.10</td>
<td>2.86</td>
<td>0.40</td>
<td>0.005</td>
</tr>
<tr>
<td>Open 1 (Wetland/Lake)</td>
<td>0.05</td>
<td>0.10</td>
<td>2.46</td>
<td>0.40</td>
<td>0.005</td>
</tr>
<tr>
<td>Open 2 (Meadow)</td>
<td>0.05</td>
<td>0.10</td>
<td>2.46</td>
<td>0.30</td>
<td>0.005</td>
</tr>
<tr>
<td>Open 3 (Excavation)</td>
<td>0.40</td>
<td>0.80</td>
<td>5.19</td>
<td>0.20</td>
<td>0.005</td>
</tr>
<tr>
<td>Other 1</td>
<td>0.10</td>
<td>0.20</td>
<td>2.46</td>
<td>0.40</td>
<td>0.050</td>
</tr>
<tr>
<td>Other 2</td>
<td>0.35</td>
<td>1.10</td>
<td>5.50</td>
<td>0.25</td>
<td>0.050</td>
</tr>
<tr>
<td>Other 3</td>
<td>0.60</td>
<td>2.20</td>
<td>9.00</td>
<td>0.05</td>
<td>0.050</td>
</tr>
</tbody>
</table>

Setting export coefficients for the division of precipitation between baseflow, runoff and other components (deep groundwater, evapotranspiration) that do not figure into this model is probably the hardest part of model set-up. Site specific data are very helpful, but a working knowledge of area hydrology and texts on the subject is often sufficient. This is an area where sensitivity testing is strongly urged, as some uncertainty around these values is to be expected. There is more often dry weather data available for tributary streams than wet weather data, and some empirical derivation of baseflow coefficients is recommended. Still, values are being assigned per land use category, and most basins will have mixed land use, so clear empirical validation is elusive. As noted, sensitivity testing by varying these coefficients is advised to determine the effect on the model of the uncertainty associated with this difficult component of the model.

Nutrient Yields for Land Uses

Phosphorus and Nitrogen in Runoff

The values applied in the table above are not necessarily the medians from the Reference Variables sheet, since there are data to support different values being used here. There may be variation across basins that is not captured in the table below, as the same values are applied to each land use in each basin; that is a model constraint. Values for “Other” land uses are inconsequential in this case, as all land uses are accounted for in this example watershed without creating any special land use categories. Yet if a land use was known to have strong variation among basins within the watershed, the use of an “Other” land use class for the strongly differing land use in one or another basin could incorporate this variability.

Phosphorus and Nitrogen in Baseflow

Baseflow coefficients are handled the same way as for runoff coefficients above. While much of the water is likely to be delivered with baseflow, a smaller portion of the TP and N loads will be delivered during dry weather, as the associated water first passes through soil. In particular, TP is removed effectively by many soils, and transformation of nitrogen among common forms is to be expected.

The table above is commonly adjusted to calibrate the model, but it is important to justify all changes. Initial use of the median TP export value for a land use may be based on a lack of data or familiarity with the system, and when the results strongly over- or under-predict actual in-lake concentrations, it may be necessary to adjust the export value for one or more land use categories to achieve acceptable agreement. However, this should not be done without a clear understanding of why the value is probably higher or lower than represented by the median; the model should not be blindly calibrated, and field examination of conditions that affect export values is strongly recommended.
Other Nutrient Inputs

Atmospheric Deposition

Both wet and dry deposition nutrient inputs are covered by the chosen values, and are often simple literature value selections. Where empirical data for wet or dry fall are available, coefficients should be adjusted accordingly. Regional data are often available and can be used as a reality check on chosen values. Choices of atmospheric export coefficients are often based on dominant land use in the contributory area, but as the airshed for a lake is usually much larger than the watershed, it is not appropriate to use land use from the watershed as the sole criterion for selecting atmospheric export coefficients. Fortunately, except where the lake is large and the watershed is small, atmospheric inputs tend not to have much influence on the final concentrations of TP or N in the lake, so this is not a portion of the model on which extreme investigation is usually necessary.

For the example system, a 40 ha lake is assumed to receive 0.2 kg TP/ha/yr and 6.5 kg N/ha/yr, the median values from the Reference Variables sheet. The model then calculates the loads in kg/yr to the lake and uses them later in the summary.

AREAL SOURCES

<table>
<thead>
<tr>
<th>Affected</th>
<th>P Export</th>
<th>N Export</th>
<th>P Load</th>
<th>N Load</th>
<th>Period of</th>
<th>P Rate of</th>
<th>N Rate of</th>
<th>P Load</th>
<th>N Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (ha)</td>
<td>(kg/ha/yr)</td>
<td>(kg/ha/yr)</td>
<td>(kg/yr)</td>
<td>(kg/yr)</td>
<td>Release</td>
<td>Release</td>
<td>Release</td>
<td>(mg/m²/day)</td>
<td>(mg/m²/day)</td>
</tr>
<tr>
<td>Direct Atmospheric Deposition</td>
<td>40</td>
<td>0.20</td>
<td>6.50</td>
<td>8</td>
<td>260</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal Loading</td>
<td>20</td>
<td>2.00</td>
<td>5.00</td>
<td>20</td>
<td>100</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>40</td>
</tr>
</tbody>
</table>

Internal Loading

Internal release of TP or N is generally described as a release rate per square meter per day. It can be a function of direct dissolution release, sediment resuspension with some dissociation of available nutrients, or release from rooted plants. The release rate is entered as shown in the table above, along with the affected portion of the lake, in this case half of the 40 ha area, or 20 ha. The period of release must also be specified, usually corresponding to the period of deepwater anoxia or the plant growing season. The model then calculates a release rate as kg/ha/yr and a total annual load as shown in the table above.

For the NH lake nutrient TMDLs, the release rate from internal loading was calculated using water quality data (pre-stratification vs. late summer hypolimnetic TP concentrations or late summer hypolimnetic vs. late summer epilimnetic TP concentrations) and dividing by the anoxic area of the lake.

Waterfowl or Other Wildlife

Waterfowl or other wildlife inputs are calculated as a direct product of the number of animal-years on the lake (e.g., 100 geese spending half a year = 50 bird-years) and a chosen input rate in kg/animal/yr, as shown in the table below. Input rates are from the literature as shown in the Reference Variables sheet, while animal-years must be estimated for the lake.

NON-AREAL SOURCES

<table>
<thead>
<tr>
<th>Source Units</th>
<th>Volume</th>
<th>P Load/Unit</th>
<th>N Load/Unit</th>
<th>P Conc.</th>
<th>N Conc.</th>
<th>P Load</th>
<th>N Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterfowl</td>
<td>50</td>
<td>0.20</td>
<td>0.95</td>
<td>10</td>
<td>47.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point Sources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-1</td>
<td>45000</td>
<td>3.00</td>
<td>12.00</td>
<td>135</td>
<td>540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-2</td>
<td>0</td>
<td>3.00</td>
<td>12.00</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-3</td>
<td>0</td>
<td>3.00</td>
<td>12.00</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Basin in which Point Source occurs (0=NO, 1=YES)

<table>
<thead>
<tr>
<th>Basin</th>
<th>BASIN 1</th>
<th>BASIN 2</th>
<th>BASIN 3</th>
<th>BASIN 4</th>
<th>BASIN 5</th>
<th>BASIN 6</th>
<th>BASIN 7</th>
<th>BASIN 8</th>
<th>BASIN 9</th>
<th>BASIN 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS-1</td>
<td>0</td>
</tr>
<tr>
<td>PS-2</td>
<td>0</td>
</tr>
<tr>
<td>PS-3</td>
<td>0</td>
</tr>
</tbody>
</table>

Point Source Discharges

LLRM allows for three point source discharges. While some storm water discharges are legally considered point sources, the point sources in LLRM are intended to be daily discharge sources, such as wastewater treatment facility or cooling water discharges. The annual volume of the discharge must be entered as well as the average concentration for TP and TN, as shown in the table above. The model then calculates the input of TP and TN. It is also essential to note which basin receives the
discharge, denoted by a 1 in the appropriate column. As shown in the table above, the example system has a discharge in Basin 4, and no discharges in any other basin (denoted by 0).

On-Site Wastewater Disposal Systems

While the input from septic systems in the direct drainage areas around the lake can be addressed through the baseflow export coefficient, separation of that influence is desirable where it may be large enough to warrant management consideration. In such cases, the existing systems are divided into those within 100 ft of the lake and those between 100 and 300 ft of the lake, each zone receiving potentially different attenuation factors. For the NH lake TMDLs, a single 125 foot zone was used. A further subdivision between dwelling occupied all year vs. those used only seasonally is made. The number of people per dwelling and the water use per person per day are specified, along with the expected concentrations of TP and TN in septic system effluent, as shown in the table below. The model then calculates the input of water, TP and TN from each septic system grouping. If data are insufficient to subdivide systems along distance or use gradients, a single line of this module can be used with average values entered.

Direct Septic System Load

<table>
<thead>
<tr>
<th>Septic System Grouping (by occupancy or location)</th>
<th>Days of Occupancy/Y</th>
<th>Distance from Lake (ft)</th>
<th>Number of Dwellings</th>
<th>Number of People per Dwelling</th>
<th>Water per Person per Day (cu.m)</th>
<th>P Conc. (ppm)</th>
<th>N Conc. (ppm)</th>
<th>P Attenuation Factor</th>
<th>N Attenuation Factor</th>
<th>Water Load (cu.m/yr)</th>
<th>P Load (kg/yr)</th>
<th>N Load (kg/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 Septic Systems</td>
<td>365</td>
<td>100</td>
<td>25</td>
<td>2.5</td>
<td>0.25</td>
<td>8</td>
<td>20</td>
<td>0.1</td>
<td>0.9</td>
<td>5703</td>
<td>9.1</td>
<td>102.7</td>
</tr>
<tr>
<td>Group 2 Septic Systems</td>
<td>365</td>
<td>100 - 200</td>
<td>20</td>
<td>2.0</td>
<td>0.25</td>
<td>8</td>
<td>20</td>
<td>0.1</td>
<td>0.9</td>
<td>17055</td>
<td>13.7</td>
<td>273.9</td>
</tr>
<tr>
<td>Group 3 Septic Systems</td>
<td>90</td>
<td>100</td>
<td>40</td>
<td>2.0</td>
<td>0.25</td>
<td>8</td>
<td>20</td>
<td>0.1</td>
<td>0.9</td>
<td>5625</td>
<td>4.5</td>
<td>90.0</td>
</tr>
<tr>
<td>Group 4 Septic Systems</td>
<td>90</td>
<td>100 - 300</td>
<td>100</td>
<td>2.0</td>
<td>0.25</td>
<td>8</td>
<td>20</td>
<td>0.1</td>
<td>0.9</td>
<td>5625</td>
<td>4.5</td>
<td>90.0</td>
</tr>
</tbody>
</table>

Total Septic System Loading: 31250 cu.m/yr, 31.8 kg/yr, 517.0 kg/yr

Subwatershed Functions

The next set of calculations addresses inputs from each defined basin within the system. Basins can be left as labeled, 1, 2, 3, etc., or the blank line between Basin # and Area (Ha) can be used to enter an identifying name. In this case, basins have been identified as the East Direct drainage, the West Direct drainage, Upper Tributary #1, Lower Tributary #1, East Upper Tributary #2, West Upper Tributary #2, and Lower Tributary #2, matching the watershed and schematic maps in Figures 1 and 2.

Land Uses

The area of each defined basin associated with each defined land use category is entered, creating the table below. The model is set up to address up to 10 basins; in this case there are only seven defined basins, so the other three columns are left blank and do not figure in to the calculations. The total area per land use and per basin is summed along the right and bottom of the table. Three “Other” land use lines are provided, in the event that the standard land uses provided are inadequate to address all land uses identified in a watershed. It is also possible to split a standard land use category using one of the “Other” lines, where there is variation in export coefficients within a land use that can be documented and warrants separation.

Land use data is often readily available in GIS formats. It is always advisable to ground truth land use designation, especially in rapidly developing watersheds. The date on the land use maps used as sources should be as recent as possible.

Basin Areas

<table>
<thead>
<tr>
<th>Basin 1</th>
<th>Basin 2</th>
<th>Basin 3</th>
<th>Basin 4</th>
<th>Basin 5</th>
<th>Basin 6</th>
<th>Basin 7</th>
<th>Basin 8</th>
<th>Basin 9</th>
<th>Basin 10</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Use</td>
<td>Area (Ha)</td>
</tr>
<tr>
<td>Urban 1</td>
<td>12.0</td>
<td>8.5</td>
<td>8.4</td>
<td>47.4</td>
<td>6.7</td>
<td>4.5</td>
<td>18.1</td>
<td>105.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban 2</td>
<td>3.7</td>
<td>5.5</td>
<td>0.0</td>
<td>5.9</td>
<td>0.8</td>
<td>0.6</td>
<td>2.3</td>
<td>18.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban 3</td>
<td>3.6</td>
<td>5.8</td>
<td>0.0</td>
<td>5.9</td>
<td>0.8</td>
<td>0.6</td>
<td>2.3</td>
<td>19.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban 4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>23.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>23.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban 5</td>
<td>0.0</td>
<td>3.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agric 1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>12.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>12.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agric 2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>18.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>18.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agric 3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agric 4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>9.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>9.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest 1</td>
<td>7.7</td>
<td>17.3</td>
<td>50.3</td>
<td>93.3</td>
<td>9.2</td>
<td>32.0</td>
<td>38.6</td>
<td>240.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest 2</td>
<td>0.0</td>
<td>0.0</td>
<td>16.5</td>
<td>16.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>16.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open 1</td>
<td>2.5</td>
<td>0.1</td>
<td>2.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.1</td>
<td>14.2</td>
<td>19.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open 2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open 3</td>
<td>5.1</td>
<td>0.1</td>
<td>0.0</td>
<td>2.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other 1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other 2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other 3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>31.6</td>
<td>42.6</td>
<td>60.7</td>
<td>200.9</td>
<td>50.8</td>
<td>37.7</td>
<td>72.4</td>
<td>496.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Load Generation

At this point, the model will perform a number of calculations before any further input is needed. These are represented by a series of tables with no shaded cells, and include calculation of water, TP and TN loads from runoff and baseflow as shown below. These loads are intermediate products, not subject to attenuation or routing, and have little utility as individual values. They are the precursors of the actual loads delivered to the lake, which require some additional input information.

Water Load Generation: Runoff

<table>
<thead>
<tr>
<th>Basin 1</th>
<th>Basin 2</th>
<th>Basin 3</th>
<th>Basin 4</th>
<th>Basin 5</th>
<th>Basin 6</th>
<th>Basin 7</th>
<th>Basin 8</th>
<th>Basin 9</th>
<th>Basin 10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Direct</td>
<td>W. Direct</td>
<td>Upper T1</td>
<td>Lower T1</td>
<td>W. Upper T2</td>
<td>E. Upper T2</td>
<td>Lower T2</td>
<td>W. Upper T2</td>
<td>E. Upper T2</td>
<td>Lower T2</td>
<td>Total</td>
</tr>
<tr>
<td>Land Use</td>
<td>(CU/MYR)</td>
</tr>
<tr>
<td>Urban 1 (Residential)</td>
<td>42256</td>
<td>30053</td>
<td>30932</td>
<td>172056</td>
<td>24182</td>
<td>1627</td>
<td>7</td>
<td>65563</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Urban 2 (Roads)</td>
<td>18050</td>
<td>2647</td>
<td>0</td>
<td>28767</td>
<td>4050</td>
<td>2717</td>
<td>10827</td>
<td>0</td>
<td>0</td>
<td>90805</td>
</tr>
<tr>
<td>Urban 3 (Mixed Urban/Commercial)</td>
<td>26136</td>
<td>42108</td>
<td>0</td>
<td>43074</td>
<td>9485</td>
<td>4089</td>
<td>18591</td>
<td>0</td>
<td>0</td>
<td>137673</td>
</tr>
<tr>
<td>Urban 4 (Industrial)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>142175</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>142175</td>
</tr>
<tr>
<td>Urban 5 (Parks, Recreation Fields, Institutional)</td>
<td>0</td>
<td>3872</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3872</td>
</tr>
<tr>
<td>Agric 1 (Cover Crop)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13872</td>
<td>22325</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>23712</td>
</tr>
<tr>
<td>Agric 2 (Row Crop)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>58806</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>58806</td>
</tr>
<tr>
<td>Agric 3 (Grazing)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14526</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14526</td>
</tr>
<tr>
<td>Agric 4 (Feedlot)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2723</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2723</td>
</tr>
<tr>
<td>Forest 1 (Upland)</td>
<td>9325</td>
<td>21175</td>
<td>60863</td>
<td>109263</td>
<td>11126</td>
<td>38720</td>
<td>40600</td>
<td>0</td>
<td>0</td>
<td>291073</td>
</tr>
<tr>
<td>Forest 2 (Wetland)</td>
<td>0</td>
<td>150</td>
<td>0</td>
<td>8746</td>
<td>0</td>
<td>0</td>
<td>1153</td>
<td>0</td>
<td>0</td>
<td>10049</td>
</tr>
<tr>
<td>Open 1 (Wetland/Lake)</td>
<td>1494</td>
<td>334</td>
<td>1210</td>
<td>56</td>
<td>0</td>
<td>37</td>
<td>8591</td>
<td>0</td>
<td>0</td>
<td>11722</td>
</tr>
<tr>
<td>Open 2 (Meadow)</td>
<td>1210</td>
<td>768</td>
<td>0</td>
<td>6199</td>
<td>38</td>
<td>0</td>
<td>122</td>
<td>0</td>
<td>0</td>
<td>8336</td>
</tr>
<tr>
<td>Open 3 (Excavation)</td>
<td>593</td>
<td>454</td>
<td>0</td>
<td>10991</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12038</td>
</tr>
<tr>
<td>Other 1</td>
<td>0</td>
</tr>
<tr>
<td>Other 2</td>
<td>0</td>
</tr>
<tr>
<td>Other 3</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>100323</td>
<td>126173</td>
<td>92565</td>
<td>522564</td>
<td>143794</td>
<td>61816</td>
<td>14337</td>
<td>0</td>
<td>0</td>
<td>1190582</td>
</tr>
<tr>
<td>Total (CFS)</td>
<td>0.11</td>
<td>0.14</td>
<td>0.10</td>
<td>0.59</td>
<td>0.16</td>
<td>0.07</td>
<td>0.16</td>
<td>0.00</td>
<td>0.00</td>
<td>1.33</td>
</tr>
</tbody>
</table>

Water Load Generation: Baseflow

<table>
<thead>
<tr>
<th>Basin 1</th>
<th>Basin 2</th>
<th>Basin 3</th>
<th>Basin 4</th>
<th>Basin 5</th>
<th>Basin 6</th>
<th>Basin 7</th>
<th>Basin 8</th>
<th>Basin 9</th>
<th>Basin 10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Direct</td>
<td>W. Direct</td>
<td>Upper T1</td>
<td>Lower T1</td>
<td>W. Upper T2</td>
<td>E. Upper T2</td>
<td>Lower T2</td>
<td>W. Upper T2</td>
<td>E. Upper T2</td>
<td>Lower T2</td>
<td>Total</td>
</tr>
<tr>
<td>Land Use</td>
<td>(CU/MYR)</td>
</tr>
<tr>
<td>Urban 1 (Residential)</td>
<td>21780</td>
<td>15428</td>
<td>15246</td>
<td>86028</td>
<td>12091</td>
<td>8139</td>
<td>3</td>
<td>2781</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Urban 2 (Roads)</td>
<td>4501</td>
<td>6614</td>
<td>0</td>
<td>7169</td>
<td>1008</td>
<td>678</td>
<td>2732</td>
<td>0</td>
<td>0</td>
<td>22702</td>
</tr>
<tr>
<td>Urban 3 (Mixed Urban/Commercial)</td>
<td>2178</td>
<td>3509</td>
<td>0</td>
<td>3585</td>
<td>504</td>
<td>339</td>
<td>1366</td>
<td>0</td>
<td>0</td>
<td>11480</td>
</tr>
<tr>
<td>Urban 4 (Industrial)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>142175</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>142175</td>
</tr>
<tr>
<td>Urban 5 (Parks, Recreation Fields, Institutional)</td>
<td>0</td>
<td>1936</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1936</td>
</tr>
<tr>
<td>Agric 1 (Cover Crop)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2775</td>
<td>44649</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>47424</td>
</tr>
<tr>
<td>Agric 2 (Row Crop)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>58806</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>58806</td>
</tr>
<tr>
<td>Agric 3 (Grazing)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14520</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14520</td>
</tr>
<tr>
<td>Agric 4 (Feedlot)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1815</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1815</td>
</tr>
<tr>
<td>Forest 1 (Upland)</td>
<td>37301</td>
<td>84700</td>
<td>243852</td>
<td>437855</td>
<td>44845</td>
<td>15480</td>
<td>16240</td>
<td>0</td>
<td>0</td>
<td>1164291</td>
</tr>
<tr>
<td>Forest 2 (Wetland)</td>
<td>0</td>
<td>1203</td>
<td>0</td>
<td>6986</td>
<td>0</td>
<td>0</td>
<td>920</td>
<td>0</td>
<td>0</td>
<td>80393</td>
</tr>
<tr>
<td>Open 1 (Wetland/Lake)</td>
<td>11933</td>
<td>2072</td>
<td>9680</td>
<td>450</td>
<td>0</td>
<td>294</td>
<td>6828</td>
<td>0</td>
<td>0</td>
<td>93773</td>
</tr>
<tr>
<td>Open 2 (Meadow)</td>
<td>7681</td>
<td>4609</td>
<td>0</td>
<td>31729</td>
<td>233</td>
<td>0</td>
<td>1539</td>
<td>0</td>
<td>0</td>
<td>50575</td>
</tr>
<tr>
<td>Open 3 (Excavation)</td>
<td>297</td>
<td>277</td>
<td>0</td>
<td>5489</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6076</td>
</tr>
<tr>
<td>Other 1</td>
<td>0</td>
</tr>
<tr>
<td>Other 2</td>
<td>0</td>
</tr>
<tr>
<td>Other 3</td>
<td>0</td>
</tr>
<tr>
<td>Point Source #1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>45000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>45000</td>
</tr>
<tr>
<td>Point Source #2</td>
<td>0</td>
</tr>
<tr>
<td>Point Source #3</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>15.6</td>
<td>20.6</td>
<td>15.7</td>
<td>70.2</td>
<td>147.1</td>
<td>10.2</td>
<td>28.8</td>
<td>0.0</td>
<td>0.0</td>
<td>315.2</td>
</tr>
<tr>
<td>Total (CFS)</td>
<td>0.10</td>
<td>0.14</td>
<td>0.13</td>
<td>0.79</td>
<td>1.52</td>
<td>0.13</td>
<td>0.31</td>
<td>0.00</td>
<td>0.00</td>
<td>2.97</td>
</tr>
</tbody>
</table>
Load Routing Pattern

The model must be told how to route all inputs of water, TP and TN before they reach the lake. Since attenuation in an upstream basin can affect inputs in an upstream basin that passes through the downstream basin, the model must be directed as to where to apply attenuation factors and additive effects. In the table below, each basin listed on the lines labeled on the left that passes through the downstream basin is denoted with a 1 in the column of the basin through which it passes. Otherwise, a 0 appears in each shaded cell. All basins pass through themselves, so the first line has a 1 in each cell. Basins 1 and 2 go direct to the lake, and so all other cells on the
corresponding lines have 0 entries. Basin 3 passes through Basin 4 (see Figure 2), and so the line for Basin 3 has a 1 in the column for Basin 4. Likewise, Basins 5 and 6 pass through Basin 7, so the corresponding lines have a 1 entered in the column for Basin 7.

ROUTING PATTERN

<table>
<thead>
<tr>
<th>Basin in left hand column passes through basin in column below if indicated by a 1</th>
<th>E. Direct</th>
<th>W. Direct</th>
<th>Upper T1</th>
<th>Lower T1</th>
<th>W. Upper T2</th>
<th>E. Upper T2</th>
<th>Lower T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1=YES</td>
<td>0=NO</td>
<td>XXX=BLANK</td>
<td>Basin 1</td>
<td>Basin 2</td>
<td>Basin 3</td>
<td>Basin 4</td>
<td>Basin 5</td>
</tr>
<tr>
<td>(CU.M/YR)</td>
<td>(CU.M/YR)</td>
<td>(CU.M/YR)</td>
<td>(CU.M/YR)</td>
<td>(CU.M/YR)</td>
<td>(CU.M/YR)</td>
<td>(CU.M/YR)</td>
<td>(CU.M/YR)</td>
</tr>
</tbody>
</table>

INDIVIDUAL BASIN

<table>
<thead>
<tr>
<th>1-direct</th>
<th>W-direct</th>
<th>Upper T1</th>
<th>Lower T1</th>
<th>W-upper T2</th>
<th>E-upper T2</th>
<th>Lower T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basin 1 OUTPUT</td>
<td>XXX</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Basin 2 OUTPUT</td>
<td>0</td>
<td>XXX</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Basin 3 OUTPUT</td>
<td>0</td>
<td>0</td>
<td>XXX</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Basin 4 OUTPUT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>XXX</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Basin 5 OUTPUT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>XXX</td>
<td>0</td>
</tr>
<tr>
<td>Basin 6 OUTPUT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>XXX</td>
</tr>
<tr>
<td>Basin 7 OUTPUT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>XX</td>
<td>0</td>
</tr>
<tr>
<td>Basin 8 OUTPUT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Basin 9 OUTPUT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Basin 10 OUTPUT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

CUMULATIVE DRAINAGE AREAS

<table>
<thead>
<tr>
<th>1-direct</th>
<th>W-direct</th>
<th>Upper T1</th>
<th>Lower T1</th>
<th>W-upper T2</th>
<th>E-upper T2</th>
<th>Lower T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basin 1 OUTPUT</td>
<td>XXX</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Basin 2 OUTPUT</td>
<td>0</td>
<td>XXX</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Basin 3 OUTPUT</td>
<td>0</td>
<td>0</td>
<td>XXX</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Basin 4 OUTPUT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>XXX</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Basin 5 OUTPUT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>XXX</td>
<td>0</td>
</tr>
<tr>
<td>Basin 6 OUTPUT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>XXX</td>
</tr>
<tr>
<td>Basin 7 OUTPUT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>XX</td>
<td>0</td>
</tr>
<tr>
<td>Basin 8 OUTPUT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Basin 9 OUTPUT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Basin 10 OUTPUT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

CUMULATIVE DRAINAGE AREAS

<table>
<thead>
<tr>
<th>1-direct</th>
<th>W-direct</th>
<th>Upper T1</th>
<th>Lower T1</th>
<th>W-upper T2</th>
<th>E-upper T2</th>
<th>Lower T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basin 1 OUTPUT</td>
<td>XXX</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Basin 2 OUTPUT</td>
<td>0</td>
<td>XXX</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Basin 3 OUTPUT</td>
<td>0</td>
<td>0</td>
<td>XXX</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Basin 4 OUTPUT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>XXX</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Basin 5 OUTPUT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>XXX</td>
<td>0</td>
</tr>
<tr>
<td>Basin 6 OUTPUT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>XXX</td>
</tr>
<tr>
<td>Basin 7 OUTPUT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>XX</td>
<td>0</td>
</tr>
<tr>
<td>Basin 8 OUTPUT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Basin 9 OUTPUT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Basin 10 OUTPUT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The model then combines the appropriate watershed areas as shown above, generating larger sub-watersheds that are used later to calculate overall export coefficients, comparative water yields, and related checks for model accuracy.

Load Routing and Attenuation

With the loads calculated previously for each basin under wet and dry conditions and the routing of those loads specified, the model can then combine those loads and apply attenuation values chosen to reflect expected losses of water, TP or TN while the generated loads are on their way to the lake.

Water

Water is attenuated mostly by evapotranspiration losses. Some depression storage is expected, seepage into the ground is possible, and wetlands can remove considerable water on the way to the lake. In general, a 5% loss is to be expected in nearly all cases, and greater losses are plausible with lower gradient or wetland dominated landscapes. In the example system, only the lower portion of Tributary 2 is expected to have more than a 5% loss, with a 15% loss linked to the wetland associated with this drainage area and tributary (see Figure 1).
The resulting output volume for each basin is calculated in the table below, and two reality check opportunities are provided. First any actual data can be added for direct comparison; average flows are available for only two points, the inlets of the two tributaries, but these are useful. In many cases no flow data may be available. The model therefore generates an estimate of the expected average flow as a function of all contributing upstream watershed area and the water yield provided near the top of the Calculations sheet (covered previously). While this flow estimate is approximate, it should not vary from the modeled flow by more than about 20% unless there are unusual circumstances.

In the example, the ratio of the calculated flow from the complete model generation and routing to the estimated yield from the contributing drainage area ranges from 0.902 to 1.095, suggesting fairly close agreement. As some ratios are lower than 1 and others are higher than 1, no model-wide adjustment is likely to bring the values into closer agreement. Slight changes in attenuation for each basin could be applied, but are not necessary when the values agree this closely.

Phosphorus

The same approach applied to attenuation of water is applied to the phosphorus load, as shown in the table below. Here attenuation can range from 0 to 1.0, with the value shown representing the portion of the load that reaches the terminus of the basin. With natural or human enhanced removal processes, it is unusual for all of the load to pass through a basin, but it is also unusual for more than 60 to 70% of it to be removed. What value to pick depends on professional judgment regarding the nature of removal processes in each basin. Infiltration, filtration, detention and uptake will lower the attenuation value entered below, and knowledge of the literature on Best Management Practices is needed to make reliable judgments on attenuation values.

In the example system, the direct drainage basins were assigned values of 0.90, representing a small amount of removal mainly by infiltration processes. Upper Tributary #1 has a small pond and was accorded a value of 0.75 (25% removal); a larger pond might have suggested a value
closer to 0.5. Lower Tributary #1 has an assigned value of 0.85 based on channel processes that favor uptake and adsorption. West and East Upper Tributary #2 have value based on drainage basin features as evaluated in the field, while the wetland associated with Lower Tributary #2 garners it the lowest load pass-through at 0.7. A more extensive wetland with greater sheet flow might have earned a value near 0.5. Resulting output loads are then calculated.

Nitrogen

The same process used with water and TP attenuation applies to TN, but attenuation of TN is rarely identical to that for TP. Nitrogen moves more readily through soil, and while transformations occur in the stream, losses due to denitrification require slower flows and low oxygen levels not commonly encountered in steeper, rockier channels. However, losses from uptake and possibly denitrification are possible in wetland areas, such as that associated with Lower Tributary #2. Accordingly, attenuation values are assigned as shown in the table below, with generally lower losses for TN than for TP. As with TP attenuation, choosing appropriate values does require some professional judgment.

Load Routing and Attenuation: Nitrogen

<table>
<thead>
<tr>
<th>LOAD ROUTING AND ATTENUATION: NITROGEN</th>
<th>BASIN 1</th>
<th>BASIN 2</th>
<th>BASIN 3</th>
<th>BASIN 4</th>
<th>BASIN 5</th>
<th>BASIN 6</th>
<th>BASIN 7</th>
<th>BASIN 8</th>
<th>BASIN 9</th>
<th>BASIN 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E. Direct</td>
<td>W. Direct</td>
<td>Upper T1</td>
<td>Lower T1</td>
<td>W. Upper T2</td>
<td>Lower T2</td>
<td>E. Upper T2</td>
<td>Lower T2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BASIN 1 INDIVIDUAL</td>
<td>246.5</td>
<td>315.6</td>
<td>290.1</td>
<td>1963.3</td>
<td>1892.4</td>
<td>1876.1</td>
<td>416.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>BASIN 2 OUTPUT</td>
<td>XXX</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>BASIN 3 OUTPUT</td>
<td>0.0</td>
<td>XXX</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>BASIN 4 OUTPUT</td>
<td>0.0</td>
<td>0.0</td>
<td>XXX</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>BASIN 5 OUTPUT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>XXX</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>BASIN 6 OUTPUT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>XXX</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>BASIN 7 OUTPUT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>XXX</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>BASIN 8 OUTPUT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>XXX</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>BASIN 9 OUTPUT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>XXX</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>BASIN 10 OUTPUT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>XXX</td>
<td>0.0</td>
</tr>
<tr>
<td>CUMULATIVE TOTAL</td>
<td>246.5</td>
<td>315.6</td>
<td>290.1</td>
<td>1963.3</td>
<td>1892.4</td>
<td>1876.1</td>
<td>416.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>BASIN ATTENUATION</td>
<td>0.95</td>
<td>0.95</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.79</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>OUTPUT LOAD</td>
<td>234.2</td>
<td>299.8</td>
<td>232.1</td>
<td>1855.8</td>
<td>1543.8</td>
<td>146.0</td>
<td>1579.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Load and Concentration Summary

Water

Water loads were handled to the extent necessary in the previous loading calculations, and are used in this section only to allow calculation of expected TP and TN concentrations, facilitating reality checks with actual data.

Phosphorus

Using the calculated load of TP for each basin and the corresponding water volume, an average expected concentration can be derived, as shown in the table below. Where sampling provides actual data, values can be compared to determine how well the model represents known reality. Sufficient sampling is needed to make the reality check values reliable; it is not appropriate to assume that either the data or the model is necessarily accurate when the values disagree. However, with enough data to adequately characterize the concentrations observed in the stream, the model can be adjusted to produce a better match. Estimated and actual concentrations are used to generate a ratio for easy comparison.

The TP loads previously calculated represent the load passing through each basin, but do not represent what reaches the lake, as not all basins are terminal input sources. The model must be told which basins actually drain directly to the lake, and for which the exiting load is part of the total load to the lake.
LOAD AND CONCENTRATION SUMMARY: PHOSPHORUS

<table>
<thead>
<tr>
<th>Basin</th>
<th>E. Direct</th>
<th>W. Direct</th>
<th>Upper T1</th>
<th>Lower T1</th>
<th>E. Upper T2</th>
<th>Lower T2</th>
<th>Water (Cu.M/YR)</th>
<th>P (Cu.M)</th>
<th>P (MG/L)</th>
<th>P (KG/YR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>176314</td>
<td>234714</td>
<td>344045</td>
<td>1496765</td>
<td>305820</td>
<td>21482</td>
<td>176314</td>
<td>14.2</td>
<td>0.081</td>
<td>14.2</td>
</tr>
<tr>
<td>2</td>
<td>344045</td>
<td>1496765</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>344045</td>
<td>18.8</td>
<td>0.080</td>
<td>18.8</td>
</tr>
<tr>
<td>3</td>
<td>1496765</td>
<td>305820</td>
<td>21482</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1496765</td>
<td>12.2</td>
<td>0.035</td>
<td>12.2</td>
</tr>
<tr>
<td>4</td>
<td>305820</td>
<td>21482</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>305820</td>
<td>193.8</td>
<td>0.129</td>
<td>193.8</td>
</tr>
<tr>
<td>5</td>
<td>21482</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>21482</td>
<td>104.9</td>
<td>0.386</td>
<td>104.9</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

CALCULATED CONC./MEASURED CONC. 1.035 1.056 0.886 0.129 1.188 1.038 1.049 #DIV/0! #DIV/0! #DIV/0!

REALITY CHECK CONC. FROM DATA 0.078 0.076 0.040 0.150 0.325 0.035 0.125

CALCULATED CONC./REALITY CHECK 1.035 1.056 0.886 0.129 1.188 1.038 1.049 #DIV/0! #DIV/0! #DIV/0!

TERMINAL DISCHARGE 1 1 0 1 1 0 1 1 1 1

LOAD TO RESOURCE TOTAL WATER (Cu.M/YR) 176314 234714 0 1496765 0 0 800671 0 0 0 2708464

NITROGEN

LOAD AND CONCENTRATION SUMMARY: NITROGEN

<table>
<thead>
<tr>
<th>Basin</th>
<th>E. Direct</th>
<th>W. Direct</th>
<th>Upper T1</th>
<th>Lower T1</th>
<th>E. Upper T2</th>
<th>Lower T2</th>
<th>Water (Cu.M/YR)</th>
<th>N (Cu.M)</th>
<th>N (MG/L)</th>
<th>N (KG/YR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>176314</td>
<td>234714</td>
<td>344045</td>
<td>1496765</td>
<td>305820</td>
<td>21482</td>
<td>176314</td>
<td>234.2</td>
<td>1.328</td>
<td>234.2</td>
</tr>
<tr>
<td>2</td>
<td>344045</td>
<td>1496765</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>344045</td>
<td>299.8</td>
<td>1.277</td>
<td>299.8</td>
</tr>
<tr>
<td>3</td>
<td>1496765</td>
<td>305820</td>
<td>21482</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1496765</td>
<td>232.1</td>
<td>1.038</td>
<td>232.1</td>
</tr>
<tr>
<td>4</td>
<td>305820</td>
<td>21482</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>305820</td>
<td>1885.8</td>
<td>1.260</td>
<td>1885.8</td>
</tr>
<tr>
<td>5</td>
<td>21482</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>21482</td>
<td>1543.8</td>
<td>5.048</td>
<td>1543.8</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>146.8</td>
<td>0.680</td>
<td>146.8</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>179.8</td>
<td>1.877</td>
<td>179.8</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

CALCULATED CONC./MEASURED CONC. 0.929 1.030 1.038 1.068 1.188 1.046 1.078 #DIV/0! #DIV/0! #DIV/0!

REALITY CHECK CONC. FROM DATA 1.430 1.230 1.038 1.325 1.188 1.046 1.078

CALCULATED CONC./REALITY CHECK 0.929 1.030 1.038 1.068 1.188 1.046 1.078 #DIV/0! #DIV/0! #DIV/0!

TERMINAL DISCHARGE 1 1 0 1 1 0 1 1 1 1

LOAD TO RESOURCE TOTAL WATER (Cu.M/YR) 176314 234714 0 1496765 0 0 800671 0 0 0 2708464

NITROGEN

For the example system, the ratio of the calculated concentration to average actual values derived from substantial sampling (typically on the order of 10 or more samples representing the range of dry to wet conditions) ranges from 0.886 to 1.188, or from 11% low to 19% high, within a generally acceptable range of ±20%. This is not a strict threshold, especially with lower TP concentrations where detection limits and intervals of expression for methods can produce higher percent deviation with very small absolute differences. Yet in general, <20% difference between observed and expected watershed basin output values is considered reasonable for a model at this level of sophistication.

That some values are higher than expected and others lower suggests that now model-wide adjustment will improve agreement (such as an export coefficient change), but attenuation values for individual basins could be adjusted if there is justification.

For the example system, Basins 1, 2, 4 and 7 contribute directly to the lake, and are so denoted by a 1 in their respective columns on the line for terminal discharge. These loads will be summed to derive a watershed load of TP to the lake.

Nitrogen

The model process followed for TN is identical to that applied to TP loads from basins. For TN in the example system, comparison of expected vs. observed values yields a range of ratios from 0.929 to 1.188, representing 7% low to 19% high. Only one out of seven values is lower than 1, so perhaps some adjustment of the TN export coefficients is in order, but most individual basin values are within 8% of each other, so without clear justification, the judgment exercised in the original choices for export coefficients and attenuation is not generally overridden. The same basins denoted as terminal discharges for TP are so noted for TN, allowing calculation of the total watershed load of TN to the lake.

Grand Totals

The final portion of the Calculation sheet is a summary of all loads to the lake and a grand total load with associated concentrations for TP and TN, as shown below. The breakdown of sources is provided for later consideration in both overall target setting and in consideration of BMPs. For the example system, the watershed load is clearly dominant, and would need to be addressed if substantial reductions in loading were considered necessary. The loads of water, TP and TN are then transferred automatically to the Prediction sheet to facilitate estimation of in-lake concentrations of TP, TN and Chl and a value for SDT. The derived overall input concentration for TP is also transferred; the in-lake predictive models for TN do not require that overall input concentration, but the comparison of...
TP and TN input levels can be insightful when considering what types of algae are likely to dominate the lake phytoplankton.

LOAD SUMMARY

<table>
<thead>
<tr>
<th>DIRECT LOADS TO LAKE</th>
<th>P (KG/YR)</th>
<th>N (KG/YR)</th>
<th>WATER (CU.M/YR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATOMICHERIC</td>
<td>8.0</td>
<td>260.0</td>
<td>484000</td>
</tr>
<tr>
<td>INTERNAL</td>
<td>40.0</td>
<td>100.0</td>
<td>0</td>
</tr>
<tr>
<td>WATERFOWL</td>
<td>10.0</td>
<td>47.5</td>
<td>0</td>
</tr>
<tr>
<td>SEPTIC SYSTEM</td>
<td>31.8</td>
<td>517.0</td>
<td>31250</td>
</tr>
<tr>
<td>WATERSHED LOAD</td>
<td>331.7</td>
<td>3998.4</td>
<td>2707372</td>
</tr>
<tr>
<td>TOTAL LOAD TO LAKE</td>
<td>421.5</td>
<td>4922.9</td>
<td>3222622</td>
</tr>
</tbody>
</table>

(Watershed + direct loads)

TOTAL INPUT CONC. (MG/L) 0.131 1.528

Water Quality Predictions

Prediction of TP, TN, Chl and SDT is based on empirical equations from the literature, nearly all pertaining to North American systems. Only a few additional pieces of information are needed to run the model; most of the needed input data are automatically transferred from the Calculations sheet. As shown below, only the concentration of TP leaving the lake and the lake volume must be entered on the Prediction sheet. If the outflow TP level is not known, the in-lake surface concentration is normally used. If the volume is not specifically known, an average depth can be multiplied by the lake area to derive an input volume, which will then recalculate the average depth one cell below. The nature of the TN prediction models does not require any TN concentration input.

IN-LAKE MODELS FOR PREDICTING CONCENTRATIONS: Current Conditions

THE TERMS

PHOSPHORUS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>UNITS</th>
<th>DERIVATION</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP</td>
<td>Lake Total Phosphorus Conc.</td>
<td>ppb</td>
<td>From in-lake models</td>
<td>To Be Predicted</td>
</tr>
<tr>
<td>KG</td>
<td>Phosphorus Load to Lake</td>
<td>kg/yr</td>
<td>From export model</td>
<td>422</td>
</tr>
<tr>
<td>L</td>
<td>Phosphorus Load to Lake</td>
<td>g P/m²/yr</td>
<td>KG/1000/A</td>
<td>1.05</td>
</tr>
<tr>
<td>TPIn</td>
<td>Influent (Inflow) Total Phosphorus</td>
<td>ppb</td>
<td>From export model</td>
<td>131</td>
</tr>
<tr>
<td>TPOut</td>
<td>Effluent (Outlet) Total Phosphorus</td>
<td>ppb</td>
<td>From data, if available</td>
<td>72</td>
</tr>
<tr>
<td>I</td>
<td>Inflow</td>
<td>m³/yr</td>
<td>From export model</td>
<td>3222622</td>
</tr>
<tr>
<td>A</td>
<td>Lake Area</td>
<td>m²</td>
<td>From data</td>
<td>400000</td>
</tr>
<tr>
<td>V</td>
<td>Lake Volume</td>
<td>m³</td>
<td>From data</td>
<td>1625300</td>
</tr>
<tr>
<td>Z</td>
<td>Mean Depth</td>
<td>m</td>
<td>Volume/area</td>
<td>4.063</td>
</tr>
<tr>
<td>F</td>
<td>Flushing Rate</td>
<td>flushings/yr</td>
<td>Inflow/volume</td>
<td>1.98</td>
</tr>
<tr>
<td>S</td>
<td>Suspended Fraction</td>
<td>no units</td>
<td>Effluent TP/Influent TP</td>
<td>0.57</td>
</tr>
<tr>
<td>Qs</td>
<td>Areal Water Load</td>
<td>m³/yr</td>
<td>Z(F)</td>
<td>8.09</td>
</tr>
<tr>
<td>Vs</td>
<td>Settling Velocity</td>
<td>m</td>
<td>Z(S)</td>
<td>2.33</td>
</tr>
<tr>
<td>Rp</td>
<td>Retention Coefficient (settling rate)</td>
<td>no units</td>
<td>((Vs+13.2)/2)/((Vs+13.2)/2)+Qs</td>
<td>0.49</td>
</tr>
<tr>
<td>Rf</td>
<td>Retention Coefficient (flushing rate)</td>
<td>no units</td>
<td>1/(1+F^0.5)</td>
<td>0.41</td>
</tr>
</tbody>
</table>

NITROGEN

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>UNITS</th>
<th>DERIVATION</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN</td>
<td>Lake Total Nitrogen Conc.</td>
<td>ppb</td>
<td>From in-lake models</td>
<td>To Be Predicted</td>
</tr>
<tr>
<td>KG</td>
<td>Nitrogen Load to Lake</td>
<td>kg/yr</td>
<td>From export model</td>
<td>4923</td>
</tr>
<tr>
<td>L1</td>
<td>Nitrogen Load to Lake</td>
<td>g N/m²/yr</td>
<td>KG/1000/A</td>
<td>12.31</td>
</tr>
<tr>
<td>L2</td>
<td>Nitrogen Load to Lake</td>
<td>mg N/m²/yr</td>
<td>KG/1000000/A</td>
<td>1230</td>
</tr>
<tr>
<td>C1</td>
<td>Coefficient of Attenuation, from F</td>
<td>fraction/yr</td>
<td>2.7183^((0.5541(ln(F))-0.367)</td>
<td>1.01</td>
</tr>
<tr>
<td>C2</td>
<td>Coefficient of Attenuation, from L</td>
<td>fraction/yr</td>
<td>2.7183^((0.71(ln(L2))-6.426)</td>
<td>1.30</td>
</tr>
<tr>
<td>C3</td>
<td>Coefficient of Attenuation, from L/Z</td>
<td>fraction/yr</td>
<td>2.7183^((0.594(ln(L2)/Z))-4.14)</td>
<td>1.85</td>
</tr>
</tbody>
</table>
Phosphorus Concentration

TP concentration is predicted from the equations shown below. The mass balance calculation is simply the TP load divided by the water load, and assumes no losses to settling within the lake. Virtually all lakes have settling losses, but the other equations derive that settling coefficient in different ways, providing a range of possible TP concentration values. Where there is knowledge of the components of the settling calculations, a model might be selected as most representative or models might be eliminated as inapplicable, but otherwise the average of the five empirical models (excluding the mass balance calculation) is accepted as the predicted TP value for the lake.

<table>
<thead>
<tr>
<th>THE MODELS</th>
<th>PHOSPHORUS</th>
<th>PRED. CONC. (ppb)</th>
<th>PERMIS. CONC. (ppb)</th>
<th>CRITICAL CONC. (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>FORMULA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass Balance</td>
<td>TP=L/(Z(F))*1000</td>
<td>131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Maximum Conc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kirchner-Dillon 1975</td>
<td>TP=L(1-Rp)/(Z(F))*1000</td>
<td>67</td>
<td>18</td>
<td>36</td>
</tr>
<tr>
<td>(K-D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vollenweider 1975</td>
<td>TP=L/(Z(S+F))*1000</td>
<td>101</td>
<td>27</td>
<td>55</td>
</tr>
<tr>
<td>(V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larsen-Mercier 1976</td>
<td>TP=L(1-Rlm)/(Z(F))*1000</td>
<td>76</td>
<td>21</td>
<td>41</td>
</tr>
<tr>
<td>(L-M)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones-Bachmann 1976</td>
<td>TP=0.84(L)/(Z(0.65+F))*1000</td>
<td>83</td>
<td>22</td>
<td>45</td>
</tr>
<tr>
<td>(J-B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reckhow General (1977)</td>
<td>TP=L/(11.6+1.2(Z(F)))*1000</td>
<td>50</td>
<td>13</td>
<td>27</td>
</tr>
<tr>
<td>(Rg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average of Model Values (without mass balance)</td>
<td>75</td>
<td>20</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Measured Value (mean, median, other)</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From Vollenweider 1968</td>
<td>Permissible Load (g/m²/yr)</td>
<td>Lp=10^((0.501503(log(Z(F)))-1.0018))</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Critical Load (g/m²/yr)</td>
<td>Lc=Z(Cp)</td>
<td>0.57</td>
<td></td>
</tr>
</tbody>
</table>

The predicted in-lake TP concentration can be compared to actual data (an average value is entered in the shaded cell as a reality check) and to calculation of the permissible and critical concentrations as derived from Vollenweider’s 1968 work. For the example lake, the predicted TP level of 75 µg/L is an exact match for the measured value of 75 µg/L, but both are well above the critical concentration.

The permissible concentration is the value above which algal blooms are to be expected on a potentially unacceptable frequency, while the critical concentration is the level above which unacceptable algal growths are to be expected, barring extreme flushing, toxic events, or light limitation from suspended sediment.

Use of the range of values derived from these empirical equations provides some sense for the uncertainty in the analysis. Changing input loads, lake volume, or other key variables allows for sensitivity analysis.

Nitrogen Concentration

Prediction of TN is based on three separate empirical equations from the same work, each calculating settling losses differently. A mass balance equation is applied as well, as with the prediction of TP. An actual mean value is normally entered in the shaded cell as a reality check. For the example system, the actual mean TN value is within the range of predicted values, but is about 5.6% lower than the average of predicted values. One might consider adjusting export coefficients or attenuation rates in the Calculations sheet, to bring these values closer together, but the discrepancy is relatively minor.
NITROGEN

<table>
<thead>
<tr>
<th>Method</th>
<th>Equation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Balance (Maximum Conc.)</td>
<td>TN = L/(Z(F)) * 1000</td>
<td>1528</td>
</tr>
<tr>
<td>Bachmann 1980</td>
<td>TN = L/(Z(C1+F)) * 1000</td>
<td>1011</td>
</tr>
<tr>
<td>Bachmann 1980</td>
<td>TN = L/(Z(C2+F)) * 1000</td>
<td>923</td>
</tr>
<tr>
<td>Bachmann 1980</td>
<td>TN = L/(Z(C3+F)) * 1000</td>
<td>789</td>
</tr>
<tr>
<td>Average of Model Values</td>
<td></td>
<td>908</td>
</tr>
<tr>
<td>(without mass balance)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured Value</td>
<td></td>
<td>860</td>
</tr>
</tbody>
</table>

Chlorophyll Concentration, Water Clarity and Bloom Probability

Once an average in-lake TP concentration has been established, the Predictions sheet derives corresponding Chl and SDT values, as shown below. Five different equations are used to derive a predicted Chl value, and an average is derived. Peak Chl is estimated with three equations, with an average generated. Average and maximum expected SDT are estimated as well. Bloom frequency is based on the relationship of mean Chl to other threshold levels from other studies, and the portion of time that Chl is expected to exceed 10, 15, 20, 30 and 40 ug/L is derived.

A set of shaded cells are provided for entry of known measured values for comparison. For the example lake, the average and peak Chl levels predicted from the model are slightly higher than actual measured values, while the average and maximum SDT from the model are slightly lower than observed values, consistent with the Chl results. Agreement is generally high, however, with differences between 10 and 20%. There were not enough data to construct a dependable actual distribution of Chl over the range of thresholds provided for the example lake.

There are other factors besides nutrients that can strongly affect the standing crop of algae and resulting Chl levels, including low light from suspended sediment, grazing by zooplankton, presence of heterotrophic algae, and flushing effects from high flows. Consequently, close agreement between predicted and actual Chl will be harder to achieve than for predicted and actual TP. Knowledge of those other potentially important influences can help determine if model calibration is off, or if closer agreement is not rationally achievable.
Predicted CHL and Water Clarity

<table>
<thead>
<tr>
<th>Model</th>
<th>Value</th>
<th>Mean</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Chlorophyll (ug/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carlson 1977</td>
<td>45.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dillon and Rigler 1974</td>
<td>38.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones and Bachmann 1976</td>
<td>44.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oglesby and Schaffner 1978</td>
<td>40.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modified Vollenweider 1982</td>
<td>35.5</td>
<td>41.0</td>
<td>37.5</td>
</tr>
<tr>
<td>Peak Chlorophyll (ug/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modified Vollenweider (TP) 1982</td>
<td>119.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vollenweider (CHL) 1982</td>
<td>133.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modified Jones, Rast and Lee 1979</td>
<td>139.5</td>
<td>130.8</td>
<td>118.1</td>
</tr>
<tr>
<td>Secchi Transparency (M)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oglesby and Schaffner 1978</td>
<td>0.8</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Modified Vollenweider 1982</td>
<td>2.9</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>Bloom Probability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability of Chl >10 ug/L (% of time)</td>
<td>99.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability of Chl >15 ug/L (% of time)</td>
<td>96.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability of Chl >20 ug/L (% of time)</td>
<td>88.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability of Chl >30 ug/L (% of time)</td>
<td>64.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability of Chl >40 ug/L (% of time)</td>
<td>42.0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evaluating Initial Results

LLRM is not meant to be a “black box” model. One can look at any cell and discern which steps are most important to final results in any given case. Several quality control processes are recommended in each application.

Checking Values

Many numerical entries must be made to run LLRM. Be sure to double check the values entered. Simple entry errors can cause major discrepancies between predictions and reality. Where an export coefficient is large, most notably with Agric4, feedlot area, it is essential that the land use actually associated with that activity be accurately assessed and entered.

Following Loads

For any individually identified load that represents a substantial portion of the total load (certainly >25%, perhaps as small a portion as 10%), it is appropriate to follow that load from generation through delivery to the lake, observing the losses and transformations along the way. Sometimes the path will be very short, and sometimes there may be multiple points where attenuation is applied. Consider dry vs. wet weather inputs and determine if the ratio is reasonable in light of actual data or field observations. Are calculated concentrations at points of measurement consistent with the actual measurements? Are watershed processes being adequately represented? One limitation of the model involves application of attenuation for all loads within a defined basin; loads may enter at the distal or proximal ends of the basin, and attenuation may not apply equally to all sources. Where loading and attenuation are not being properly represented, consider subdividing the basin to work with drainages of the most meaningful sizes.

Reality Checks

LLRM can be run with minimal actual water quality data, but to gain confidence in the predictions it is necessary to compare results with sufficient amounts of actual data for key points in the modeled system. Ideally, water quality will be tested at all identified nodes, including the output points for all basins, any point source discharges, any direct discharge pipes to the lake, and in the lake itself. Wet and dry weather sampling should be conducted. Flow values are highly desirable, but without a longer term record, considerable uncertainty will remain; variability in flow is often extreme, necessitating large data sets to get representative statistical representation. Where there are multiple measurement points, compare not just how close predicted values are to observed values, but the pattern. Are observed values consistently over- or underpredicted? A rough threshold of ±20% is recommended as a starting point, with a mix of values in the + or – categories.
Sensitivity Testing

The sensitivity of LLRM can be evaluated by altering individual features and observing the effect on results. For any variable for which the value is rather uncertain, enter the maximum value conceivable, and record model results. Then repeat the process with the minimum plausible value, and compare to ascertain how much variation can be induced by error in that variable. Which variables seem to have the greatest impact on results? Those variables should receive the most attention in reality checking, ground truthing, and future monitoring, and would also be the most likely candidates for adjustment in model calibration, unless the initially entered values are very certain.

For example, the runoff coefficients for TP from the various land uses were set below the median literature values, based on knowledge of loads for some drainage areas from actual data for flow and concentration. However, it is possible that the actual load generated from various land uses is higher than initially assumed, and it is the attenuation that should be adjusted to achieve a predicted in-lake concentration that matches actual data. If the median TP export for runoff is entered into the Calculations sheet, substituting the unshaded values for the shaded values in the table below, the resulting in-lake TP prediction is 89 ug/L, much higher than the 75 ug/L from real data.

<table>
<thead>
<tr>
<th>LAND USE</th>
<th>Original</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>P Export P Export Coefficient Coefficient</td>
<td>(kg/ha/yr)</td>
<td>(kg/ha/yr)</td>
</tr>
<tr>
<td>Urban 1 (Residential)</td>
<td>0.65</td>
<td>1.10</td>
</tr>
<tr>
<td>Urban 2 (Roads)</td>
<td>0.75</td>
<td>1.10</td>
</tr>
<tr>
<td>Urban 3 (Mixed Urban/Commercial)</td>
<td>0.80</td>
<td>1.10</td>
</tr>
<tr>
<td>Urban 4 (Industrial)</td>
<td>0.70</td>
<td>1.10</td>
</tr>
<tr>
<td>Urban 5 (Parks, Recreation Fields, Institutional)</td>
<td>0.80</td>
<td>1.10</td>
</tr>
<tr>
<td>Agric 1 (Cover Crop)</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>Agric 2 (Row Crop)</td>
<td>1.00</td>
<td>2.20</td>
</tr>
<tr>
<td>Agric 3 (Grazing)</td>
<td>0.40</td>
<td>0.80</td>
</tr>
<tr>
<td>Agric 4 (Feedlot)</td>
<td>224.00</td>
<td>224.00</td>
</tr>
<tr>
<td>Forest 1 (Upland)</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Forest 2 (Wetland)</td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>Open 1 (Wetland/Lake)</td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>Open 2 (Meadow)</td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>Open 3 (Excavation)</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>Other 1</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Other 2</td>
<td>1.10</td>
<td>1.10</td>
</tr>
<tr>
<td>Other 3</td>
<td>2.20</td>
<td>2.20</td>
</tr>
</tbody>
</table>

To get a closer match for the known in-lake value, attenuation would have to be adjusted (reduction in the portion of the generated load that reaches the lake) by about 0.1 units (10%), as shown below. This would result in a predicted in-lake TP concentration of 77 ug/L, not far above the measured 75 ug/L. It is apparent that choice of export coefficients is fairly important, but that error in those choices can be compensated by adjustments in attenuation that are not too extreme to be believed. Yet those choices will affect the results of management scenario testing, and should be made carefully. The intent is to properly represent watershed processes, both loading and attenuation, not just the product of the two.

<table>
<thead>
<tr>
<th>BASIN 1</th>
<th>BASIN 2</th>
<th>BASIN 3</th>
<th>BASIN 4</th>
<th>BASIN 5</th>
<th>BASIN 6</th>
<th>BASIN 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Direct</td>
<td>W. Direct</td>
<td>Upper T1</td>
<td>Lower T1</td>
<td>W. Upper T2</td>
<td>E. Upper T2</td>
<td>Lower T2</td>
</tr>
<tr>
<td>ORIGINAL BASIN ATTENUATION</td>
<td>0.90</td>
<td>0.90</td>
<td>0.75</td>
<td>0.85</td>
<td>0.80</td>
<td>0.75</td>
</tr>
<tr>
<td>NEW BASIN ATTENUATION</td>
<td>0.80</td>
<td>0.80</td>
<td>0.65</td>
<td>0.75</td>
<td>0.70</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Aside from changes in all export coefficients, one might consider the impact of changing a single value. As that value applies to all areas given for the corresponding land use, its impact will be proportional to the magnitude of that area relative to other land uses. A change in forested land use exports may be very influential if most of
the watershed is forested. A much larger change would be necessary to cause similar impact for a land use that represents a small portion of the watershed.

Model Calibration

Actual adjustment of LLRM to get predicted results in reasonable agreement with actual data can be achieved by altering any of the input data. The key to proper calibration is to change values that have some uncertainty, and to change them in a way that makes sense in light of knowledge of the target watershed and lake. One would not change entered land use areas believed to be correct just to get the predictions to match actual data. Rather, one would adjust the export coefficients for land uses within the plausible range (see Reference Variables sheet), and in accordance with values that could be derived for selected drainage areas (within the target system or nearby) from actual data. Or one could adjust attenuation, determining that a detention area, wetland, or other landscape feature had somewhat greater or lesser attenuation capacity that initially estimated. Justification for all changes should be provided; model adjustment should be transparent and amenable to scrutiny.

For the example system, it may be appropriate to adjust either TN export coefficients or attenuation to get the average of the three empirical equation results for TN (see Predictions sheet) to match the observed average more closely. In the example, a predicted TN concentration of 908 ug/L was derived, while the average of quite a few in-lake samples was 860 ug/L. With a difference of <6%, this is not a major issue, but since all but one of the individual basin predictions for TN concentration were also overpredictions, adjustment can be justified.

If all the TN export coefficients in the Calculations sheet are reduced by 10%, an entirely plausible situation, the new TN prediction for the lake becomes 861 ug/L, a very close match for the observed 860 ug/L. Export coefficients were not changed selectively by land use; all were simply adjusted down a small amount, well within the range of possible variation in this system. Alternatively, if the TN attenuation coefficient for each basin is reduced in the Calculations sheet by 0.05 (representing 5% more loss of TN on the way to the lake), the new predicted in-lake TN concentration becomes 842 ug/L, not far below the observed 860 ug/L.

Attenuation in each basin was adjusted the same way, showing no bias. Either of these adjustments (export coefficients or attenuation values) would be reasonable within the constraints of the model and knowledge of the system.

The only way to change the export coefficient for land use in a single basin is to split off that land use into one of the “Other” categories and have it appear in only the basins where a different export coefficient is justified. This is hardly ever done, and justification should involve supporting data. Likewise, if one basin had a particularly large load and a feature that might affect that load, one might justify changing the attenuation for just that one basin, but justification should be strong to interject this level of individual basin bias.

Model Verification

Proper verification of models involves calibration with one set of data, followed by running the model with different input data leading to different results, with data to verify that those results are appropriate. Where data exist for conditions in a different time period that led to different in-lake conditions, such verification is possible with LLRM, but such opportunities tend to be rare. If the lake level was raised by dam modification, and in-lake data are available for before and after the pool rise, a simple change in the lake volume (entered in the Predictions sheet) can simulate this and allow verification. If in-lake data exist from a time before there was much development in the watershed, this could also allow verification by changing the land use and comparing results to historic TP and TN levels in the lake. However, small changes in watershed land use are not likely to yield sufficiently large changes in in-lake conditions to be detectable with this model. Additionally, as LLRM is a steady state model, testing conditions in one year with wetter conditions against another year with drier conditions, with no change in land use, is really not a valid approach.

Model verification is a function of data availability for at least two periods of multiple years in duration with different conditions that can be represented by the model. Where available, use of these data to verify model performance is strongly advised. If predictions under the second set of conditions do not reasonably match the available data, adjustments in export coefficients, attenuation, or other features of the model may be needed. Understanding why conditions are not being properly represented is an important aspect of modeling, even when it is not possible to bring the model into complete agreement with available data.
Scenario Testing

LLRM is meant to be useful for evaluating possible consequences of land use conversions, changes in discharges, various management options, and related alterations of the watershed or lake. The primary purpose of this model is to allow the user to project possible consequences of actions and aid management and policy decision processes. Testing a conceived scenario involves changing appropriate input data and observing the results. Common scenario testing includes determining the likely “original” or “pre-settlement” condition of the lake, termed “Background Condition” here, and forecasting the benefit from possible Best Management Practices (BMPs).

Background Conditions

Simulation of Background Conditions is most often accomplished by changing all developed land uses to forest, wetland or water, whichever is most appropriate based on old land use maps or other sources of knowledge about watershed features prior to development of roads, towns, industry, and related human features. Default export coefficients for undeveloped land use types are virtually the same, so the distinction is not critical if records are sparse.

For the example system, all developed land uses were converted to forested upland, although it is entirely possible that some wetlands were filled for development before regulations to protect wetlands were promulgated, and some may even have been filled more recently. The resulting land use table, shown below, replaces that in the original model representing current conditions. The watershed area is the same, although in some cases diversions may change this aspect as well. Many lakes have been created by human action, such that setting all land uses to an undeveloped state would correspond to not having a lake present, but the assumption applied here is that the user is interested in the condition of the lake as it currently exists, but in the absence of human influences.

<table>
<thead>
<tr>
<th>LAND USE</th>
<th>BASIN 1</th>
<th>BASIN 2</th>
<th>BASIN 3</th>
<th>BASIN 4</th>
<th>BASIN 5</th>
<th>BASIN 6</th>
<th>BASIN 7</th>
<th>BASIN 8</th>
<th>BASIN 9</th>
<th>BASIN 10</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban 1 (Residential)</td>
<td>0.0</td>
</tr>
<tr>
<td>Urban 2 (Roads)</td>
<td>0.0</td>
</tr>
<tr>
<td>Urban 3 (Mixed Urban/Commercial)</td>
<td>0.0</td>
</tr>
<tr>
<td>Urban 4 (Industrial)</td>
<td>0.0</td>
</tr>
<tr>
<td>Agric 1 (Cover Crop)</td>
<td>0.0</td>
</tr>
<tr>
<td>Agric 2 (Row Crop)</td>
<td>0.0</td>
</tr>
<tr>
<td>Agric 3 (Grazing)</td>
<td>0.0</td>
</tr>
<tr>
<td>Agric 4 (Feedlot)</td>
<td>0.0</td>
</tr>
<tr>
<td>Forest 1 (Upland)</td>
<td>27.1</td>
<td>40.6</td>
<td>60.7</td>
<td>176.0</td>
<td>50.5</td>
<td>37.6</td>
<td>56.2</td>
<td>496.6</td>
<td>0.0</td>
<td>0.0</td>
<td>496.6</td>
</tr>
<tr>
<td>Forest 2 (Wetland)</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>14.5</td>
<td>0.0</td>
<td>0.0</td>
<td>1.9</td>
<td>16.6</td>
<td>0.0</td>
<td>0.0</td>
<td>16.6</td>
</tr>
<tr>
<td>Open 1 (Wetland/Lake)</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.9</td>
<td>0.0</td>
<td>0.0</td>
<td>1.9</td>
</tr>
<tr>
<td>Open 2 (Meadow)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>10.2</td>
<td>0.0</td>
<td>0.0</td>
<td>9.1</td>
<td>19.3</td>
<td>0.0</td>
<td>0.0</td>
<td>19.3</td>
</tr>
<tr>
<td>Other 1</td>
<td>0.0</td>
</tr>
<tr>
<td>Other 2</td>
<td>0.0</td>
</tr>
<tr>
<td>Other 3</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Also altered in this example, but not shown explicitly here, are the internal load (reduced to typical background levels of 0.5 mg TP/m2/d and 2.0 mg TN/m2/d), point source (removed), septic system inputs (removed), and attenuation of TP and TN (values in cells lowered by 10%, representing lesser transport to the lake through the natural landscape).

Resulting in-lake conditions, as indicated in the column of the table below labeled “Background Conditions,” include a TP concentration of 16 ug/L and a TN level of 366 ug/L. Average Chl is predicted at 5.7 ug/L, leading to a mean SDT of 2.7 m. Bloom frequency is expected to be 8.6% for Chl >10 ug/L and 1.5% for Chl >15 ug/L, with values >20 ug/L very rare. While the example lake appears to have never had extremely high water clarity, it was probably much more attractive and useable than it is now, based on comparison with current conditions in the table. If this lake was in an ecoregion with a target TP level of <16 ug/L, it is expected that meeting that limit would be very difficult, given apparent natural influences.
SUMMARY TABLE FOR SCENARIO TESTING

<table>
<thead>
<tr>
<th>Background Conditions</th>
<th>Complete Build-out</th>
<th>WWTF Enhanced</th>
<th>Feasible BMPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorus (ppb)</td>
<td>Calibrated Model Value</td>
<td>Actual Data Model Value</td>
<td>Model Value</td>
</tr>
<tr>
<td>75</td>
<td>75</td>
<td>16</td>
<td>83</td>
</tr>
<tr>
<td>Nitrogen (ppb)</td>
<td>861</td>
<td>860</td>
<td>366</td>
</tr>
<tr>
<td>Mean Chlorophyll (ug/L)</td>
<td>40.7</td>
<td>37.5</td>
<td>5.7</td>
</tr>
<tr>
<td>Peak Chlorophyll (ug/L)</td>
<td>130.0</td>
<td>118.1</td>
<td>20.1</td>
</tr>
<tr>
<td>Mean Secchi (m)</td>
<td>0.8</td>
<td>1.0</td>
<td>2.7</td>
</tr>
<tr>
<td>Peak Secchi (m)</td>
<td>2.9</td>
<td>3.1</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Bloom Probability

Probability of Chl >10 ug/L	99.5%	8.6%	99.8%	92.6%	34.4%
Probability of Chl >15 ug/L	96.0%	1.5%	97.8%	73.6%	11.3%
Probability of Chl >20 ug/L	87.9%	0.3%	92.6%	52.3%	3.7%
Probability of Chl >30 ug/L	64.1%	0.0%	73.8%	22.5%	0.5%
Probability of Chl >40 ug/L	41.5%	0.0%	52.5%	9.2%	0.1%

Changes in Land Use

Another common scenario to be tested involves changes in land use. How much worse might conditions become if all buildable land became developed? For the example system, with current zoning and protection of some undeveloped areas, a substantial fraction of currently forested areas could still become low density residential housing. Adjusting the land uses in the corresponding input table to reflect a conversion of forest to low density urban development, as shown below, and adding 28 septic systems to that portion of the loading analysis (not shown here) an increase in TP, TN and Chl is derived, and a decrease in SDT are observed (see summary table above). TP rises to 83 ug/L and TN to 965 ug/L, but the change in Chl and SDT are not large, as the lake would already be hypereutrophic.

Changes in Wastewater Management

Managing wastewater is often a need in lake communities. In LLRM, wastewater treatment facilities (WWTF) are represented as point sources, with flow and concentration provided. On-site wastewater disposal (septic) systems are part of the baseflow of drainage areas with tributaries, and can be represented that way for direct drainage areas as well, but the option exists to account separately for septic systems in the direct drainage area. Changes to point sources or septic systems can be made in LLRM to simulate possible management actions.
In the example system, there is one small WWTF that discharges into Lower Tributary #1 and 250 residential units that contribute to septic system inputs in the two defined direct drainage areas (see Figure 1). If the units now served by septic systems were tied into the WWTF via a pumping station, the flow through the WWTF would increase from 45,000 cu.m/yr under current conditions to 71,953 cu.m/yr, the amount of wastewater calculated to be generated by those 250 residential units. If WWTF effluent limits for TP and TN were established at 0.1 and 3.0 mg/L, respectively, the concentration in the discharge would be reduced from 3.0 and 12.0 mg/L (current values from monitoring) to the new effluent limits. The result would be a higher flow from the WWTF with lower TP and TN levels, and an elimination of septic system inputs in the model, both simple changes to make, as shown in the table below.

NON-AREAL SOURCES

<table>
<thead>
<tr>
<th>Source Type</th>
<th>Number of Units</th>
<th>Volume (cu.m/yr)</th>
<th>P Load/Unit (kg/unit/yr)</th>
<th>N Load/Unit (kg/unit/yr)</th>
<th>P Conc. (ppm)</th>
<th>N Conc. (ppm)</th>
<th>P Load (kg/yr)</th>
<th>N Load (kg/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterfowl</td>
<td>50</td>
<td>0.20</td>
<td>0.95</td>
<td>10</td>
<td>0.1</td>
<td>47.5</td>
<td>0.2</td>
<td>47.5</td>
</tr>
<tr>
<td>Non-Point Sources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-1</td>
<td>71953</td>
<td>0.10</td>
<td>3.00</td>
<td>7.2</td>
<td>215.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-2</td>
<td>0</td>
<td>3.00</td>
<td>12.00</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-3</td>
<td>0</td>
<td>3.00</td>
<td>12.00</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basin where Point Source occurs</td>
<td>Yes/No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PS-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PS-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

DIRECT SEPTIC SYSTEM LOAD

<table>
<thead>
<tr>
<th>Septic System Grouping (by occupancy or location)</th>
<th>Days of Occupancy (yr)</th>
<th>Distance from Lake (ft)</th>
<th>Number of Dwellings</th>
<th>Number of People per Dwelling</th>
<th>Water per Person per Day (cu.m)</th>
<th>P Conc. (ppm)</th>
<th>N Conc. (ppm)</th>
<th>P Attenuation Factor</th>
<th>N Attenuation Factor</th>
<th>Water Load (cu.m/yr)</th>
<th>P Load (kg/yr)</th>
<th>N Load (kg/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 Septic Systems</td>
<td>365</td>
<td><100</td>
<td>0</td>
<td>2.5</td>
<td>0.25</td>
<td>8</td>
<td>20</td>
<td>0.2</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Group 2 Septic Systems</td>
<td>365</td>
<td>100 - 300</td>
<td>0</td>
<td>2.5</td>
<td>0.25</td>
<td>8</td>
<td>20</td>
<td>0.2</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Group 3 Septic Systems</td>
<td>90</td>
<td><100</td>
<td>0</td>
<td>2.5</td>
<td>0.25</td>
<td>8</td>
<td>20</td>
<td>0.2</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Group 4 Septic Systems</td>
<td>90</td>
<td>100 - 300</td>
<td>0</td>
<td>2.5</td>
<td>0.25</td>
<td>8</td>
<td>20</td>
<td>0.2</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Septic System Loading</td>
<td>0</td>
</tr>
</tbody>
</table>

The result, shown in the summary table for scenario testing above, is an in-lake TP concentration of 49 ug/L and a new TN level of 745 ug/L. These are both substantial reductions from the current levels, but continued elevated Chl (mean = 23.3 ug/L, peak = 76.1 ug/L) and a high probability of algal blooms is expected. Water clarity improves slightly (from 0.8 to 1.2 m on average), but at the cost of the sewerage and treatment, this is unlikely to produce a success story.

Best Management Practices

The application of BMPs is generally regarded as the backbone of non-point source pollution management in watershed programs. Considerable effort has been devoted to assessing the percent removal for various pollutants that can be attained and sustained by various BMPs. BMPs tend to fall into one of two categories: source controls and pollutant trapping. Source controls limit the generation of TP and TN and include actions like bans on lawn fertilizers containing TP or requirements for post-development infiltration to equal pre-development conditions, and would be most likely addressed in LLRM by a change in export coefficient. Pollutant trapping limits the delivery of generated loads to the lake and includes such methods as detention, infiltration, and buffer strips, and is most often addressed in LLRM by changes in attenuation values.

There are limits on what individual BMPs can accomplish. While some site specific knowledge and sizing considerations help modify general guidelines, the following table provides a sense for the level of removal achievable with common BMPs.

Range and Median for Expected Removal (%) for Key Pollutants by Selected Management Methods, Compiled from Literature Sources for Actual Projects and Best Professional Judgment Upon Data Review.

<table>
<thead>
<tr>
<th>Method</th>
<th>TSS Total</th>
<th>P Soluble</th>
<th>N Total</th>
<th>N Soluble</th>
<th>Metals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Street sweeping</td>
<td>5-20</td>
<td><5</td>
<td>5-20</td>
<td><5</td>
<td>5-20</td>
</tr>
<tr>
<td>Catch basin cleaning</td>
<td>5-10</td>
<td><10</td>
<td><10</td>
<td><1</td>
<td>5-10</td>
</tr>
</tbody>
</table>
While BMPs in series can improve removal, the result is rarely multiplicative; that is, application of two BMPs expected to remove 50% of TP are unlikely to result in 0.5 X 0.5 = 0.25 of the load remaining (75% removal) unless each BMP operates on a different fraction of TP (particulates vs. soluble, for example). This is where judgment and experience become critical to the modeling process. In general, BMPs rarely remove more than 2/3 of the load of P or N, and on average can be expected to remove around 50% of the P and 40% of the N unless very carefully designed, built and maintained. The luxury of space is not often affordable, forcing creativity or greater expense to achieve higher removal rates.

In the example system, setting attenuation for all basins to 0.5 for P and 0.6 for N is viewed as a practical level of BMP application for a first cut at what BMPs might be able to do for the lake. Careful consideration of which BMPs will be applied where in which basins is in order in the final analysis, but to set a reasonable approximation of what can be achieved, these are supportable attenuation values. Note that values are not set at 0.5 or 0.6 of the value in place in the calibrated model, but rather a low end of 0.5 or 0.6. If, as with Basin 7 (Lower Tributary #2) in the example system, the attenuation values for P and N under current conditions are 0.70 and 0.75, the practical BMP values of 0.5 and 0.6, respectively, represent less of a decline through BMPs than for the direct drainage areas, which have current condition attenuation values of 0.9 for P and 0.95 for N.

In addition to setting P attenuation at 0.5 for P in all basins and 0.6 for N in all basins in the example system, the WWTF has been routed to a regional WWTF out of the watershed, and the all areas within 300 ft of the lake have been sewered, with that waste also going to the regional WWTF. Consequently, the WWTF and direct drainage septic system inputs have been eliminated. Finally, internal loading has been reduced to 0.5 mg P/m²/day and 2.0 mg N/m²²/day, achievable with nutrient inactivation and lowered inputs over time.

<table>
<thead>
<tr>
<th>BMP Category</th>
<th>P attenuation</th>
<th>N attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer strips</td>
<td>40-95</td>
<td>20-90</td>
</tr>
<tr>
<td></td>
<td>(50)</td>
<td>(30)</td>
</tr>
<tr>
<td>Conventional catch basins (Some sump capacity)</td>
<td>1-20</td>
<td>0-10</td>
</tr>
<tr>
<td></td>
<td>(5)</td>
<td>(0)</td>
</tr>
<tr>
<td>Modified catch basins (deep sumps and hoods)</td>
<td>25</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td>(25)</td>
<td>(5)</td>
</tr>
<tr>
<td>Advanced catch basins (sediment/floatables traps)</td>
<td>25-90</td>
<td>0-19</td>
</tr>
<tr>
<td></td>
<td>(60)</td>
<td>(52)</td>
</tr>
<tr>
<td>Porous Pavement</td>
<td>40-80</td>
<td>28-85</td>
</tr>
<tr>
<td></td>
<td>(60)</td>
<td>(52)</td>
</tr>
<tr>
<td>Vegetated swale</td>
<td>60-90</td>
<td>0-63</td>
</tr>
<tr>
<td></td>
<td>(70)</td>
<td>(30)</td>
</tr>
<tr>
<td>Infiltration trench/chamber</td>
<td>75-90</td>
<td>40-70</td>
</tr>
<tr>
<td></td>
<td>(80)</td>
<td>(60)</td>
</tr>
<tr>
<td>Infiltration basin</td>
<td>75-80</td>
<td>40-100</td>
</tr>
<tr>
<td></td>
<td>(80)</td>
<td>(65)</td>
</tr>
<tr>
<td>Sand filtration system</td>
<td>80-85</td>
<td>38-85</td>
</tr>
<tr>
<td></td>
<td>(80)</td>
<td>(62)</td>
</tr>
<tr>
<td>Organic filtration system</td>
<td>80-90</td>
<td>21-95</td>
</tr>
<tr>
<td></td>
<td>(80)</td>
<td>(58)</td>
</tr>
<tr>
<td>Dry detention basin</td>
<td>14-87</td>
<td>23-99</td>
</tr>
<tr>
<td></td>
<td>(70)</td>
<td>(65)</td>
</tr>
<tr>
<td>Wet detention basin</td>
<td>32-99</td>
<td>13-56</td>
</tr>
<tr>
<td></td>
<td>(70)</td>
<td>(27)</td>
</tr>
<tr>
<td>Constructed wetland</td>
<td>14-98</td>
<td>12-91</td>
</tr>
<tr>
<td></td>
<td>(70)</td>
<td>(49)</td>
</tr>
<tr>
<td>Pond/Wetland Combination</td>
<td>20-96</td>
<td>0-97</td>
</tr>
<tr>
<td></td>
<td>(76)</td>
<td>(55)</td>
</tr>
<tr>
<td>Chemical treatment</td>
<td>30-90</td>
<td>24-92</td>
</tr>
<tr>
<td></td>
<td>(70)</td>
<td>(63)</td>
</tr>
</tbody>
</table>

Draft TMDL for Pearly Lake
B-1
October 2012
The results, as indicated in the summary table for scenario testing above, include an in-lake P concentration of 24 ug/L and an N level of 540 ug/L. The predicted mean Chl is 9.3 ug/L, with a peak of 31.6 ug/L. SDT would be expected to average 2.0 m and have a maximum of 4.0 m. While much improved over current conditions, these are marginal values for supporting the range of lake uses, particularly contact recreation and potable water supply. As a first cut assessment of what BMPs might do for the system, it suggests that more extreme measures will be needed, or that in-lake maintenance should be planned as well, since algal blooms would still be expected. Further scenario testing with the model, combined with cost estimation for potential BMPs, may shed light on the cost effectiveness of rehabilitating the example lake.
Appendix C: Land Use Categories, Export Coefficients and Additional Calculations
Table C-1. Runoff and baseflow fraction ranges.

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>Med</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseflow fraction</td>
<td>0.01</td>
<td>0.20</td>
<td>0.40</td>
</tr>
<tr>
<td>Runoff fraction</td>
<td>0.10</td>
<td>0.40</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Table C-2. Runoff and baseflow factions used in the model for Pearly Lake.

<table>
<thead>
<tr>
<th>Landuse Category</th>
<th>Runoff Fraction</th>
<th>Baseflow Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban 1 (Residential)</td>
<td>0.40</td>
<td>0.25</td>
</tr>
<tr>
<td>Urban 2 (Mixed Urban/Commercial)</td>
<td>0.50</td>
<td>0.15</td>
</tr>
<tr>
<td>Urban 3 (Roads)</td>
<td>0.60</td>
<td>0.05</td>
</tr>
<tr>
<td>Urban 4 (Industrial)</td>
<td>0.60</td>
<td>0.05</td>
</tr>
<tr>
<td>Urban 5 (Parks, Recreation Fields, Institutional)</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Agric 1 (Cover Crop)</td>
<td>0.15</td>
<td>0.30</td>
</tr>
<tr>
<td>Agric 2 (Row Crop)</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Agric 3 (Grazing)</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Agric 4 (Hayland-Non-Manure)</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Forest 1 (Deciduous)</td>
<td>0.30</td>
<td>0.40</td>
</tr>
<tr>
<td>Forest 2 (Non-Deciduous)</td>
<td>0.30</td>
<td>0.40</td>
</tr>
<tr>
<td>Forest 3 (Mixed Forest)</td>
<td>0.30</td>
<td>0.40</td>
</tr>
<tr>
<td>Forest 4 (Wetland)</td>
<td>0.05</td>
<td>0.40</td>
</tr>
<tr>
<td>Open 1 (Wetland / Pond)</td>
<td>0.05</td>
<td>0.40</td>
</tr>
<tr>
<td>Open 2 (Meadow)</td>
<td>0.15</td>
<td>0.30</td>
</tr>
<tr>
<td>Open 3 (Cleared/Disturbed Land)</td>
<td>0.30</td>
<td>0.30</td>
</tr>
</tbody>
</table>
Table C-3. Land use categories from used in Pearly Lake ENSR-LRM.

<table>
<thead>
<tr>
<th>ENSR-LRM LAND USE</th>
<th>Land Cover Code</th>
<th>Land Cover Description</th>
<th>NWI code(^2)</th>
<th>Windshield Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban 1 (Residential)</td>
<td>110</td>
<td>Residential/Commercial/Industrial</td>
<td>not wetland area</td>
<td></td>
</tr>
<tr>
<td>Urban 2 (Mixed Urban/Commercial)</td>
<td>110</td>
<td>Residential/Commercial/Industrial</td>
<td>not wetland area</td>
<td></td>
</tr>
<tr>
<td>Urban 3 (Roads)</td>
<td>140</td>
<td>Transportation/Roads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban 4 (Industrial)</td>
<td>110</td>
<td>Residential/Commercial/Industrial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban 5 (Parks, Recreation Fields, Institutional)</td>
<td>790</td>
<td>Residential/Commercial/Industrial</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Agric 1 (Cover Crop)</td>
<td>211</td>
<td>Row Crops</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Agric 2 (Row Crop)</td>
<td>211</td>
<td>Hay/Pasture</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Agric 3 (Grazing)</td>
<td>212</td>
<td>Hay/Pasture</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Agric 4 (Hayland-no manure)</td>
<td>212</td>
<td>Hay/Pasture</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Agric 5 (Orchard)</td>
<td>221</td>
<td>Fruit Orchard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest 1 (Deciduous)</td>
<td>412</td>
<td>Beech/oak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest 2 (Non-Deciduous)</td>
<td>414</td>
<td>Paper birch/aspen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>419</td>
<td>Other hardwoods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest 3 (Mixed)</td>
<td>421</td>
<td>White/red pine</td>
<td>PF___</td>
<td></td>
</tr>
<tr>
<td>Forest 4 (Wetland)</td>
<td>422</td>
<td>Spruce/fir</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>423</td>
<td>Hemlock</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>424</td>
<td>Pitch pine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open 1 (Wetland / Lake)</td>
<td>500</td>
<td>Water</td>
<td>PSS___, L1___, PEM___</td>
<td></td>
</tr>
<tr>
<td>Open 2 (Meadow)</td>
<td>620</td>
<td>Open Water/Wetland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open 3 (Cleared/Disturbed Land)</td>
<td>212</td>
<td>Hay/Pasture</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Open 4 (Cleared/Disturbed Land)</td>
<td>790</td>
<td>Cleared/other open</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>710</td>
<td>Disturbed</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Land cover data created by GRANIT using Lansat 5 and 7 imagery and other available raster and vector data.

\(^2\) National Wetlands Inventory (NWI) data is used to improve the accuracy of wetland areas that are either not delineated in the land use and land cover data or poorly represented by raster cells.

Priority ranking is given to the Land Use data set for all non-wetland areas, NWI data for wetland areas, and Land cover for forest type areas.
<table>
<thead>
<tr>
<th>ENSR-LRM Land Use</th>
<th>Runoff P export coefficient range</th>
<th>Runoff P export coefficient used</th>
<th>Source</th>
<th>Baseflow P export coefficient range</th>
<th>Baseflow P export coefficient used</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban 1 (Residential)</td>
<td>0.11-8.42</td>
<td>0.9*</td>
<td>Reckhow et al. 1980, Schloss et al. 2000-Table 5</td>
<td>0.001-0.05</td>
<td>0.01</td>
<td>ENSR Unpublished Data; Mitchell et al. 1989</td>
</tr>
<tr>
<td>Urban 2 (Mixed Urban/Commercial)</td>
<td>0.11-8.42</td>
<td>2*</td>
<td>Reckhow et al. 1980</td>
<td>0.001-0.05</td>
<td>0.01</td>
<td>"</td>
</tr>
<tr>
<td>Urban 3 (Roads)</td>
<td>0.60-10</td>
<td>1.5*</td>
<td>Dudley et al. 1997</td>
<td>0.001-0.05</td>
<td>0.01</td>
<td>"</td>
</tr>
<tr>
<td>Urban 4 (Industry)</td>
<td>0.11-8.42</td>
<td>1.5*</td>
<td>Reckhow et al. 1980</td>
<td>0.001-0.05</td>
<td>0.01</td>
<td>"</td>
</tr>
<tr>
<td>Urban 5 (Park/Institutional/Recreation/Cemetery)</td>
<td>0.19-6.23</td>
<td>2*</td>
<td>Reckhow et al. 1980</td>
<td>0.001-0.05</td>
<td>0.01</td>
<td>"</td>
</tr>
<tr>
<td>Agric 1 (Cover Crop)</td>
<td>0.10-2.90</td>
<td>0.8</td>
<td>Reckhow et al. 1980</td>
<td>0.001-0.05</td>
<td>0.01</td>
<td>"</td>
</tr>
<tr>
<td>Agric 2 (Row Crop)</td>
<td>0.26-18.26</td>
<td>2.2</td>
<td>Reckhow et al. 1980</td>
<td>0.001-0.05</td>
<td>0.01</td>
<td>"</td>
</tr>
<tr>
<td>Agric 3 (Grazing)</td>
<td>0.14-4.90</td>
<td>0.8</td>
<td>Reckhow et al. 1980</td>
<td>0.001-0.05</td>
<td>0.01</td>
<td>"</td>
</tr>
<tr>
<td>Agric 4 (Hayland-No Manure)</td>
<td>0.35</td>
<td>0.35*</td>
<td>Dennis and Sage 1981</td>
<td>0.001-0.05</td>
<td>0.01</td>
<td>"</td>
</tr>
<tr>
<td>Forest 1 (Deciduous)</td>
<td>0.034-0.973</td>
<td>0.15</td>
<td>Schloss et al. 2000- Table 4</td>
<td>0.001-0.010</td>
<td>0.004</td>
<td>"</td>
</tr>
<tr>
<td>Forest 2 (Non-Deciduous)</td>
<td>0.01-0.138</td>
<td>0.093</td>
<td>Schloss et al. 2000- Table 4</td>
<td>0.001-0.010</td>
<td>0.004</td>
<td>"</td>
</tr>
<tr>
<td>Forest 3 (Mixed)</td>
<td>0.01-0.138</td>
<td>0.093</td>
<td>Schloss et al. 2000- Table 4</td>
<td>0.001-0.010</td>
<td>0.004</td>
<td>"</td>
</tr>
<tr>
<td>Forest 4 (Wetland)</td>
<td>0.003-0.439</td>
<td>0.082</td>
<td>Schloss et al. 2000-Table 4</td>
<td>0.001-0.010</td>
<td>0.004</td>
<td>"</td>
</tr>
<tr>
<td>Open 1 (Wetland / Pond)</td>
<td>0.009-0.25</td>
<td>0.065*</td>
<td>Schloss et al. 2000-Table 5</td>
<td>0.001-0.010</td>
<td>0.004</td>
<td>"</td>
</tr>
<tr>
<td>Open 2 (Meadow)</td>
<td>0.02-0.83</td>
<td>0.8</td>
<td>Reckhow et al. 1980</td>
<td>0.001-0.010</td>
<td>0.01</td>
<td>"</td>
</tr>
<tr>
<td>Open 3 (Bare Open)</td>
<td>0.25-1.75</td>
<td>1.75</td>
<td>Reckhow et al. 1980</td>
<td>0.001-0.010</td>
<td>0.01</td>
<td>"</td>
</tr>
</tbody>
</table>

*Value is not a median
Table C-5 Internal Loading calculations in Baseline Pearly Model

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP Difference August</td>
<td>0.07808</td>
<td>mg/L</td>
</tr>
<tr>
<td>Hypolimnion-Epilimnion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2009-2013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Size</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Hypolimnion Volume (below 3.0 m)</td>
<td>2,565,025</td>
<td>L</td>
</tr>
<tr>
<td>Internal TP Load</td>
<td>0.2</td>
<td>kg/yr</td>
</tr>
<tr>
<td>Surface Area of Anoxic Zone</td>
<td>0.17</td>
<td>Ha</td>
</tr>
<tr>
<td>Internal P Export coefficient</td>
<td>1.19</td>
<td>kg/ha/yr</td>
</tr>
</tbody>
</table>

Table C-6. Septic system calculations in Pearly Lake model

<table>
<thead>
<tr>
<th>Category</th>
<th># of Dwellings in 125 ft Buffer</th>
<th>People/Dwelling</th>
<th>TP Atten Factor</th>
<th>Mean TP Conc (mg/L)</th>
<th>P Load (kg/person/yr)</th>
<th>P Load (kg/yr)</th>
<th>Water (g al/day)</th>
<th># of Days</th>
<th>Water Load (m^3/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Round Residential</td>
<td>29.44</td>
<td>2.53</td>
<td>0.1</td>
<td>8</td>
<td>0.72</td>
<td>5.4</td>
<td>65</td>
<td>365</td>
<td>6689.3</td>
</tr>
<tr>
<td>Seasonal Residential</td>
<td>16.56</td>
<td>2.53</td>
<td>0.1</td>
<td>8</td>
<td>0.18</td>
<td>0.7</td>
<td>65</td>
<td>90</td>
<td>927.8</td>
</tr>
<tr>
<td>Total Septic System Loading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7617.0</td>
</tr>
</tbody>
</table>
Table C-7. Waterfowl loading calculations in Pearly Lake model.

<table>
<thead>
<tr>
<th>Bird Type</th>
<th># of Birds</th>
<th>P Load (kg/bird/day)</th>
<th>Non-Ice Days (days)</th>
<th>P Load (kg/yr)</th>
<th>Coefficient Source</th>
<th>Bird Count Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada Geese</td>
<td>55</td>
<td>0.001526</td>
<td>275.00</td>
<td>23</td>
<td>Scherer et al. 1995</td>
<td>FPU Student Thesis</td>
</tr>
</tbody>
</table>

Table C-8. WWTP Average Discharges by Year

<table>
<thead>
<tr>
<th>Year</th>
<th>Monthly Average (MGD)</th>
<th>Average Discharge (m³/day)</th>
<th>Average Yearly Discharge (m³/yr)</th>
<th>Daily Mean TP (lbs/day)</th>
<th>Average Annual TP (kg/yr)</th>
<th>lbs/m³</th>
<th>mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>0.044</td>
<td>166</td>
<td>60,448</td>
<td>0.069</td>
<td>11.5</td>
<td>0.000381</td>
<td>0.17</td>
</tr>
<tr>
<td>2002</td>
<td>0.040</td>
<td>153</td>
<td>55,769</td>
<td>0.094</td>
<td>15.5</td>
<td>0.000517</td>
<td>0.23</td>
</tr>
<tr>
<td>2003</td>
<td>0.043</td>
<td>162</td>
<td>59,136</td>
<td>0.052</td>
<td>8.6</td>
<td>0.000335</td>
<td>0.15</td>
</tr>
<tr>
<td>2004</td>
<td>0.040</td>
<td>151</td>
<td>55,267</td>
<td>0.023</td>
<td>3.9</td>
<td>0.000174</td>
<td>0.08</td>
</tr>
<tr>
<td>2005</td>
<td>0.042</td>
<td>159</td>
<td>57,915</td>
<td>0.037</td>
<td>6.1</td>
<td>0.000239</td>
<td>0.11</td>
</tr>
<tr>
<td>2006</td>
<td>0.043</td>
<td>162</td>
<td>59,182</td>
<td>0.092</td>
<td>15.2</td>
<td>0.000616</td>
<td>0.28</td>
</tr>
<tr>
<td>2007</td>
<td>0.042</td>
<td>169</td>
<td>58,030</td>
<td>0.088</td>
<td>14.6</td>
<td>0.000578</td>
<td>0.26</td>
</tr>
<tr>
<td>2008</td>
<td>0.047</td>
<td>178</td>
<td>64,929</td>
<td>0.129</td>
<td>21.4</td>
<td>0.000728</td>
<td>0.33</td>
</tr>
<tr>
<td>2009</td>
<td>0.047</td>
<td>177</td>
<td>64,609</td>
<td>0.113</td>
<td>18.7</td>
<td>0.000639</td>
<td>0.29</td>
</tr>
<tr>
<td>2010</td>
<td>0.045</td>
<td>171</td>
<td>62,437</td>
<td>0.079</td>
<td>13.1</td>
<td>0.000463</td>
<td>0.21</td>
</tr>
<tr>
<td>2011</td>
<td>0.047</td>
<td>177</td>
<td>64,571</td>
<td>0.105</td>
<td>17.4</td>
<td>0.000595</td>
<td>0.27</td>
</tr>
<tr>
<td>2012</td>
<td>0.040</td>
<td>150</td>
<td>54,648</td>
<td>0.069</td>
<td>11.5</td>
<td>0.000463</td>
<td>0.21</td>
</tr>
<tr>
<td>2013</td>
<td>0.039</td>
<td>148</td>
<td>53,965</td>
<td>0.072</td>
<td>11.9</td>
<td>0.000485</td>
<td>0.22</td>
</tr>
</tbody>
</table>