A Total Maximum Daily Load Analysis for the East Branch of Salmon and Mountain Brooks in the Farmington River Regional Basin

Final – September 2010

This document has been established pursuant to the requirements of Section 303(d) of the Federal Clean Water Act

______________________________________ __________________________
Betsey Wingfield, Chief Date
Bureau of Water Protection and Land Reuse

_____________________________ __________________________
Amey W. Marrella Date
Commissioner

STATE OF CONNECTICUT
DEPARTMENT OF
ENVIRONMENTAL PROTECTION
79 Elm Street
Hartford, CT 06106-5127
(860) 424-3020
TABLE OF CONTENTS

Introduction 1
Priority Ranking 3
Description of Waterbody 3
Pollutant of Concern and Pollutant Sources 3
Applicable Surface Water Quality Standards 4
Numeric Water Quality Target 5
Margin of Safety 6
Seasonal Analysis 6
TMDL Implementation 6
Water Quality Monitoring Plan 9
Reasonable Assurance 10
Provisions for Revising the TMDL 11
Public Participation 11
References 12

TABLES

Table 1 The status of impairment for each subject waterbody based on the 2008 List
Table 2 Potential sources of bacteria for each of the subject waterbodies
Table 3 Applicable indicator bacteria criteria for the subject waterbodies
Table 4 Summary of the TMDL analysis

FIGURES

Figure 1 Basin Location Map 13
Figure 2 Designated MS4 Areas Map 14
Figure 3 Both Basins Land Use and TMDL Percent Reductions Map 15
Figure 4 Mountain Brook Land Use and TMDL % Reductions Map 17

APPENDICES

Appendix A Site Specific Information and TMDL Calculations
Appendix B Municipal Stormwater Alternative Monitoring Guidance
Appendix C Cumulative Frequency Distribution Model
Appendix D Special Considerations for Salmon Brook
INTRODUCTION

A Total Maximum Daily Load (TMDL) analysis was completed for indicator bacteria in the Salmon Brook Sub-Regional Basin. The waterbodies included in this TMDL analysis are Salmon Brook and Mountain Brook (Figure 1). These waterbodies are included on the 2008 List of Connecticut Waterbodies Not Meeting Water Quality Standards\(^1\) (2008 List) due to exceedences of the indicator bacteria criteria contained within the State Water Quality Standards (WQS)\(^2\). Under section 303(d) of the Federal Clean Water Act (CWA), States are required to develop TMDLs for waters impaired by pollutants that are included on the 2008 List for which technology-based controls are insufficient to achieve water quality standards. Please refer to the 2008 List for more information on impaired waterbodies throughout the State. The 2008 List is included as Appendix C in the 2008 Integrated Water Quality Report to Congress\(^3\), which contains information regarding all assessed waterbodies in the State.

In general, the TMDL represents the maximum loading that a waterbody can receive without exceeding the water quality criteria, which have been adopted into the WQS for that parameter. In this TMDL, loadings are expressed as the average percent reduction from current loadings that must be achieved to meet water quality standards. The United States Environmental Protection Agency (EPA) November 15, 2006 memorandum entitled Establishing TMDL 'Daily' Loads in Light of the Decision by the U.S. Court of Appeals for the D.C. Circuit in Friends of the Earth, Inc. v. EPA, et al., No.05-5015, (April 25, 2006) and Implications for NPDES Permits\(^4\), recommends that TMDL submittals express allocations in terms of daily time increments. The percent reduction TMDLs for the Salmon Brook Sub-Regional Basin are applicable each and every day until recreational use goals are attained. Federal regulations require that the TMDL analysis identify the portion of the total loading which is allocated to point source discharges (termed the Wasteload Allocation or WLA) and the portion attributed to nonpoint sources (termed the Load Allocation or LA), which contribute that pollutant to the waterbody. In addition, TMDLs must include a Margin of Safety (MOS) to account for uncertainty in establishing the relationship between pollutant loadings and water quality. Seasonal variability in the relationship between pollutant loadings and WQS attainment is also considered in this TMDL analysis.

The Salmon Brook Sub-Regional Basin extends into the Connecticut municipalities of Hartland, Granby, East Granby, and Suffield. Within each of these municipalities are designated urban areas, as defined by the US Census Bureau\(^5\) (Figure 2). These municipalities are required to comply with the General Permit for the Discharge of Stormwater from Small Municipal Separate Storm Sewer Systems (MS4 permit). The general permit is applicable to municipalities that are identified in Appendix A of the MS4 permit, that contain designated urban areas and discharge stormwater via a separate storm sewer system to surface waters of the State. The permit requires municipalities to develop a program to reduce the discharge of pollutants, as well as to protect water quality. The Stormwater Management Plan (plan) must include the following six control measures: public education and outreach; public participation; illicit discharge detection and elimination; management of stormwater from construction sites (greater than 1 acre); post-construction stormwater management; and pollution prevention and good
housekeeping. Each regulated municipality must identify, implement, and measure the
effectiveness of measures utilized to comply with plan requirements. Additional information
regarding the general permit can be obtained on the Connecticut Department of Environmental
depNav_GID=1654.

TMDLs that have been established by states are submitted to the Regional Office of the
EPA for review. The EPA can either approve the TMDL or disapprove the TMDL and act in lieu
of the State. TMDLs provide a scientific basis for local stakeholders to develop and implement
Watershed Based Management Plans (WBMP), which describe the control measures necessary
to achieve acceptable water quality conditions. Therefore, WBMPs derived from TMDLs
typically include an implementation schedule and a description of ongoing monitoring activities
to confirm that the TMDL will be effectively implemented and that WQS are achieved and
maintained where technically and economically feasible. Public participation during
development of the TMDL analysis and subsequent preparation of WBMPs is vital to the success
of resolving water quality impairments.

TMDL analyses for indicator bacteria in the Salmon Brook Sub-Regional Basin are
provided herein. As required in a TMDL analysis, load allocations are determined, a margin of
safety is included, and seasonal variation is considered. This document also includes
recommendations for a water quality monitoring plan, as well as a discussion of guidance for
TMDL Implementation.
PRIORITY RANKING

Table 1. The impairment status and TMDL development priority for each subject waterbody based on the 2008 List.

<table>
<thead>
<tr>
<th>Waterbody Name</th>
<th>Waterbody Segment ID</th>
<th>Waterbody Segment Description</th>
<th>303(d) Listed (Yes/No)</th>
<th>Impaired Use Cause</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mountain Brook</td>
<td>CT4320-19_01</td>
<td>From mouth at confluence with Hungary Brook (just upstream of railroad crossing on Hungary Brook), upstream to confluence with unnamed tributary just upstream of Copper Hill Road crossing, Suffield.</td>
<td>Yes</td>
<td>Recreation Escherichia coli</td>
<td>H</td>
</tr>
<tr>
<td>Salmon Brook</td>
<td>CT4320-00_01</td>
<td>From mouth at confluence with Farmington River (downstream of Floydville Road crossing), East Granby, upstream to Massachusetts border (includes Salmon Brook and East Branch Salmon Brook sections), Granby.</td>
<td>Yes</td>
<td>Recreation Escherichia coli</td>
<td>H</td>
</tr>
</tbody>
</table>

"H" indicates that the waterbody is a high priority because assessment information suggested a TMDL may be needed to restore the water quality impairment and a TMDL was planned for development within 3 years.

DESCRIPTION OF EACH WATERBODY

See "Site Specific Information" in Appendices A-1 and A-2.

POLLUTANT OF CONCERN AND POLLUTANT SOURCES

Potential sources of indicator bacteria include point and nonpoint sources, such as stormwater runoff and illicit discharges/hook ups to storm sewers. Potential sources that are tentatively identified based on land-use (Figure 3) for each of the waterbodies are presented in Table 2.
Table 2. Potential sources of bacteria for each subject waterbody.

<table>
<thead>
<tr>
<th>Waterbody Name</th>
<th>Nonpoint sources</th>
<th>Point Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mountain Brook</td>
<td>Unspecified Urban Stormwater, Source Unknown, Agriculture</td>
<td>Regulated stormwater runoff, Illicit connections/Hook ups to storm sewers,</td>
</tr>
<tr>
<td>Salmon Brook</td>
<td>Unspecified Urban Stormwater, Agriculture, Source Unknown</td>
<td>Regulated stormwater runoff, Illicit connections/Hook ups to storm sewers</td>
</tr>
</tbody>
</table>

There are no municipal wastewater treatment plants that discharge to Salmon Brook or its tributaries. These operations receive indicator bacteria limits in their National Pollutant Discharge Elimination (NPDES) Permits. Disinfection required under the NPDES Permit is sufficient to reduce indicator bacteria densities to below levels of concern in the effluent when in use and functioning properly (See Numeric Water Quality Target for further explanation). Since there are no treatment plants or NPDES industrial permits in the basin, these factors are not influencing the water quality in the Salmon Brook watershed.

APPLICABLE SURFACE WATER QUALITY STANDARDS

Connecticut's WQS establish criteria for bacterial indicators of sanitary water quality that are based on protecting recreational uses such as swimming (both designated and non-designated swimming areas), kayaking, wading, water skiing, fishing, boating, aesthetic enjoyment and others. Indicator bacteria criteria are used as general indicators of sanitary quality based on the results of EPA research conducted in areas with known human fecal material contamination. The EPA established a statistical correlation between levels of indicator bacteria and human illness rates, and set forth guidance for States to establish numerical criteria for indicator bacteria organisms so that recreational use of the water can occur with minimal health risks. However, it should be noted that the correlation between indicator bacteria densities and human illness rates varies greatly between sites and the presence of indicator bacteria does not necessarily indicate that human fecal material is present since indicator bacteria occur in all warm-blooded animals.

The applicable water quality criteria for indicator bacteria to the Salmon Brook Sub-Regional Basin are presented in Table 3. The general recreational criteria listed in the WQS for “all other recreational uses” are applicable throughout the watershed since there are no designated or non-designated swimming areas located in segments covered by the TMDL.
Table 3. Applicable indicator bacteria criteria for the subject waterbodies.

<table>
<thead>
<tr>
<th>Waterbody</th>
<th>Waterbody Segment ID</th>
<th>Class</th>
<th>Bacterial Indicator</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mountain Brook</td>
<td>CT4320-19_01</td>
<td>A</td>
<td>Escherichia coli (E. coli)</td>
<td>Geometric Mean less than 126/100ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Single Sample Maximum 576/100ml</td>
</tr>
<tr>
<td>Salmon Brook</td>
<td>CT4320-00_01</td>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NUMERIC WATER QUALITY TARGET

TMDL calculations are performed consistent with the analytical procedures presented in the guidelines for *Development of TMDLs for Indicator Bacteria in Contact Recreation Areas Using the Cumulative Frequency Distribution Function Method* \(^7\) included as Appendix C. All data used in the analysis and the results of all calculations are presented in Appendix A. The results are summarized in Table 4 below.

Table 4. Summary of TMDL analysis.

<table>
<thead>
<tr>
<th>Waterbody</th>
<th>Waterbody Segment Description</th>
<th>Segment ID</th>
<th>Monitoring Site</th>
<th>Average Percent Reduction to Meet Water Quality Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TMDL</td>
</tr>
<tr>
<td>Mountain Brook</td>
<td>From mouth at confluence with Hungary Brook (just upstream of railroad crossing on Hungary Brook), upstream to confluence with unnamed tributary just US of Copper Hill Road crossing, Suffield.</td>
<td>CT4320-19_01</td>
<td>1832</td>
<td>11</td>
</tr>
<tr>
<td>Salmon Brook</td>
<td>From mouth at confluence with Farmington River (downstream of Floydville Road crossing), East Granby, upstream to Massachusetts border (includes Salmon Brook and East Branch Salmon Brook sections), Granby.</td>
<td>CT4320-00_01</td>
<td>907</td>
<td>09</td>
</tr>
</tbody>
</table>
MARGIN OF SAFETY

TMDL analyses are required to include a margin of safety (MOS) to account for uncertainties regarding the relationship between load and wasteload allocations, and water quality. The MOS may be either explicit or implicit in the analysis.

The analytical approach used to calculate the TMDLs incorporates an implicit MOS. Sampling results that indicate quality better than necessary to achieve consistency with the criteria are assigned a percent reduction of “zero” instead of a negative percent reduction. This creates an excess capacity that is averaged as a zero value thereby contributing to the implicit MOS. The indicator bacteria criteria used in this TMDL analysis were developed exclusively from data derived from studies conducted by EPA at high use designated public bathing areas with known human fecal contamination. Therefore, the criteria provide an additional level of protection when applied to waters not used as designated swimming areas or contaminated by human fecal material. As a result, achieving the criteria results in an "implicit MOS". Additional explanation concerning the implicit MOS incorporated into the analysis is provided in Appendix C.

SEASONAL ANALYSIS

The TMDLs presented in this document are applicable during the typical disinfection (summer) season from May 1 to September 30. Previous investigations by the DEP into seasonal trends of indicator bacteria densities in surface waters indicate that the summer months typically exhibit the highest densities of any season. This phenomenon is likely due to the enhanced ability of indicator bacteria to survive in surface waters and sediment when ambient temperatures more closely approximate those of warm-blooded animals, from which the bacteria originate. In addition, resident wildlife populations are likely to be more active during the warmer months and more migratory species are present during the summer. These factors combine to make the summer, recreational period representative of "worst-case" conditions. Achieving consistency with the TMDLs through the summer months will result in achieving full support of recreational uses throughout the remainder of the year.

TMDL IMPLEMENTATION GUIDANCE

The percent reductions established in this TMDL can be achieved by implementing control actions where technically and economically feasible, that are designed to reduce E. coli loading from nonpoint sources (Load Allocation) and point sources (Waste Load Allocation). These actions may be taken by State and Local government, academia, volunteer citizens groups, and individuals to promote effective watershed management.

It is important to note that the TMDLs are effective for the entire watershed because they are a measurement of compounded impacts at a single point. As such, corrective actions must be
undertaken at the source(s) whether it is a tributary or illicit discharge pipe, in order to achieve the required percent reductions. Also, the approach to TMDL Implementation is anticipated to be on a watershed wide scale, which will require that all sources within the regional basin that are contributing to the in-stream impairment be addressed. The DEP advocates that a watershed based plan for the Salmon Brook Sub-Regional Basin be developed to implement the TMDLs. This plan should follow guidelines provided by the EPA and include participation from all watershed towns. The following guidance offers suggestions regarding BMP implementation, however the goal is to allow responsible parties flexibility in developing a TMDL implementation plan (watershed based plan). The DEP supports an adaptive and iterative management approach where reasonable controls are implemented and water quality is monitored in order to evaluate for achievement of the TMDL goals and modification of controls as necessary.

A potential point source of E. coli to the Salmon Brook Sub-Regional Basin is regulated stormwater. Control actions for regulated stormwater include the General Permit for the Discharge of Stormwater from Small Municipal Separate Storm Sewer Systems (MS4 Permit). Under this permit, municipalities are required to implement minimum control measures in their Stormwater Management Plans to reduce the discharge of pollutants, protect water quality, and satisfy the appropriate water quality requirements of the Clean Water Act. The six minimum control measures are:

- Public Education and Outreach
- Public Participation/Involvement
- Illicit Discharge Detection and Elimination
- Construction Site Runoff Control
- Post-construction Runoff Control
- Pollution Prevention/Good Housekeeping

The minimum control measures include a number of Best Management Practices (BMP) for which an implementation schedule must be developed and submitted to the DEP as Part B Registration. Under the MS4 permit, all minimum control measures must be implemented by January 8, 2009. Information regarding Connecticut's MS4 permit can be found on the DEP's website at http://www.ct.gov/dep/cwp/view.asp?a=2709&q=324154&depNav_GID=1643#MS4GP. In addition, the EPA has developed fact sheets, which provide an overview of the Phase II final rule and MS4 permit, and provide detail regarding the minimum control measures, as well as optional BMPs not required in Connecticut's MS4 permit. The fact sheets can be found on the EPA's website at: http://cfpub.epa.gov/npdes/stormwater/swphases.cfm. Some of the information includes guidance for the development and implementation of Stormwater Management Plans, as well as guidance for establishing measurable goals for BMP implementation.

Upon approval of a TMDL by EPA, Section 6(k) of the MS4 Permit requires the municipality to review its plan to determine if its stormwater discharges contribute the pollutant(s) for which the TMDL had been designated. If the municipality contributes a pollutant(s) in excess of the designated TMDL allocation, the municipality must modify its plan to implement the TMDL within four months of TMDL approval by EPA. For the discharges to
the TMDL waterbody(ies), the municipality must assess the six minimum measures of its plan and modify the plan to implement additional, necessary controls for each appropriate measure. Particular focus should be placed on the following plan components: public education program, illicit discharge detection and elimination, stormwater structures cleaning, priority for the repair, upgrade, or retrofit of storm sewer structures.

The TMDLs establish a benchmark to measure the effectiveness of BMP implementation. Achievement of the TMDLs is directly linked to incorporation of the provisions of the MS4 permit by municipalities, as well as the implementation of other BMPs to address nonpoint sources. Potential nonpoint sources include domestic animal waste, agricultural runoff, wildlife and surface water base flow. BMPs for the management of nonpoint sources include nuisance wildlife control plans and pet waste ordinances. Nuisance wildlife information can be found on the DEP's website at http://www.ct.gov/dep/cwp/view.asp?a=2723&q=325944&depNav_GID=1655. Pet waste information can be found on the CT River Coastal Conservation District website at http://www.conservect.org/ctrivercoastal/give_a_bark_resources.shtml. As progress is made implementing BMPs, the “percent reduction” needed to meet criteria will decrease.

The DEP encourages all local stakeholders to continue their efforts by working together to formulate a watershed based plan to implement the TMDL. A watershed based plan formulated at the local level will most efficiently make use of local resources by assigning tasks to responsible parties and serving as an agreed roadmap to reducing bacteria levels in the Basin.

In addition, the members of the DEP's watershed management program will continue to provide technical and educational assistance to the local municipalities and other stakeholders, as well as identify potential funding sources, when available, for implementation of the TMDL and monitoring plan. Please use the following link for contact information for involved DEP staff: http://www.ct.gov/dep/cwp/view.asp?a=2719&q=325624&depNav_GID=1654.

WATER QUALITY MONITORING PLAN

Section 6(h)(1)(a) of the MS4 Permit specifies the following monitoring requirement:

“Stormwater monitoring shall be conducted by the Regulated Small MS4 annually starting in 2004. At least two outfalls apiece shall be monitored from areas of primarily industrial development, commercial development and residential development, respectively, for a total of six (6) outfalls monitored. Each monitored outfall shall be selected based on an evaluation by the MS4 that the drainage area of such outfall is representative of the overall nature of its respective land use type.”

This type of monitoring may be referred to as event monitoring because it is scheduled to coincide with a stormwater runoff event. Event monitoring can present numerous logistical difficulties for municipalities and may not be the most efficient way to measure progress in achieving water quality standards. This is particularly true for streams draining urbanized watersheds where many sources contribute to excursions above water quality criteria.
However, a comprehensive water quality monitoring program is necessary to guide TMDL implementation efforts. Therefore, the monitoring program should be designed to accomplish two objectives; source detection to identify specific sources of bacterial loading and direct BMP implementation efforts with fixed station monitoring to quantify progress in achieving TMDL established goals. In order to customize their monitoring plan to better identify TMDL pollutant sources and track the effectiveness of TMDL pollutant reduction measures, the municipality may request written approval from the DEP for an alternative monitoring program as allowed by Section 6(h)(1)(B) of the permit:

“The municipality may submit a request to the Commissioner in writing for implementation of an alternate sampling plan of equivalent or greater scope. The Commissioner will approve or deny such a request in writing.”

The DEP advises municipalities with discharges that contribute pollutant(s) for which a TMDL(s) has been designated to request approval for an alternative monitoring program to address both source detection and progress quantification objectives. Source detection monitoring may include visual inspection of storm sewer outfalls under dry weather conditions, event sampling of individual storm sewer outfalls, and monitoring of ambient (in-stream) conditions at closely spaced intervals to identify “hot spots” for more detailed investigations leading to specific sources of high bacteria loads. Such monitoring may be performed by municipal staff, citizen volunteers, or contracted to an environmental consulting firm. Further guidance for an Alternative Municipal Monitoring is attached as Appendix B.

Progress in achieving TMDL established goals through BMP implementation may be most effectively gauged through implementing a fixed station ambient monitoring program. DEP strongly recommends that routine monitoring be performed at the same sites used to generate the data used to perform the TMDL calculations. Sampling should be scheduled at regularly spaced intervals during the recreational season (May 1- Sept 30). In this way the data set at the end of each season will include ambient values for both “wet” and “dry” conditions in relative proportion to the number of “wet” and “dry” days that occurred during that period. As additional data is generated over time it will be possible to repeat the TMDL calculations and compare the percent reductions needed under “dry” and “wet” conditions to the percent reductions needed at the time of TMDL adoption. Additional schedule sampling guidance can be found in Appendix B of this document.

All pollutant parameters must be analyzed using methods prescribed in Title 40, CFR, Part 136 (1990). Electronic submission of data to DEP is highly encouraged. Results of monitoring that indicate unusually high levels of contamination or potentially illegal activities should be forwarded to the appropriate municipal or State agency for follow-up investigation and enforcement. Consistent with the requirements of the MS4 permit, the following parameters should be included in any monitoring program:

\[
\begin{align*}
\text{pH (SU)} \\
\text{Hardness (mg/l)}
\end{align*}
\]
CONDUCTIVITY (umhos)
Oil and grease (mg/l)
Chemical Oxygen Demand (mg/l)
Turbidity (NTU)
Total Suspended Solids (mg/l)
Total Phosphorous (mg/l)
Ammonia (mg/l)
Total Kjeldahl Nitrogen (mg/l)
Nitrate plus Nitrite Nitrogen (mg/l)
E. coli (col/100ml)
Precipitation (in)

DEP will continue to explore ways to provide funding support for monitoring efforts linked to TMDL implementation or other activities that exceed the minimum requirements of the MS4 permit. DEP is also committed to providing technical assistance in monitoring program design and establishing procedures for electronic data submission.

REASONABLE ASSURANCE

The MS4 Permit is a legally enforceable document that provides reasonable assurance that the municipalities will take steps towards achieving the target TMDLs and reducing point sources of stormwater containing bacteria. If portions of a watershed are not subject to the Connecticut's MS4 Permit Program, the DEP has the authority to include those additional municipally-owned or municipally-operated Small MS4s located outside an Urbanized Area as may be designated by the Commissioner. This option could be pursued if future monitoring indicates non-attainment of recreational goals in the Salmon Brook Sub-Regional Basin.

The NPDES permits for all municipal wastewater treatment plants within the watershed provide an enforceable mechanism for regulating discharges of bacteria to surface waterbodies. Each permit contains limits for bacteria loading in the effluent discharging to the receiving waterbody. These limits and other components of the permit can be adjusted as needed if the wastewater discharge is shown to influence the water quality of the receiving waterbody.

In addition, the DEP continues to work with watershed stakeholders to draft Watershed Based Plans (WBPs) under the CWA 319 program. http://www.ct.gov/dep/cwp/view.asp?a=2719&q=335504&depNav_GID=1654. As part of these WBPs, watershed stakeholders are required to investigate impairments and promote the implementation of nonpoint source pollution best management practices and stormwater management practices in the watershed. The DEP approves CWA 319 Watershed Based Plans, including those that address management measures to reduce bacteria and source mitigation in order to support the TMDLs. WBPs include watershed-wide and place-based recommendations aimed at reducing nonpoint sources of pollution, including bacteria. These recommended WBP projects may be eligible for CWA 319 funding, as long as such projects are not used for permit compliance.
PROVISIONS FOR REVISING THE TMDLs

The DEP reserves the authority to modify the TMDLs as needed to account for new information made available during the implementation of the TMDLs. Modification of the TMDLs will only be made following an opportunity for public participation and will be subject to the review and approval of the EPA. New information, which will be generated during TMDL implementation, includes monitoring data, new or revised State or Federal regulations adopted pursuant to Section 303(d) of the Clean Water Act, and the publication by EPA of national or regional guidance relevant to the implementation of the TMDL program. The DEP will propose modifications to the TMDL analysis only in the event that a review of the new information indicates that such a modification is warranted and is consistent with the anti-degradation provisions in Connecticut Water Quality Standards. The subject waterbodies of this TMDL analysis will continue to be included on the List of Connecticut Water bodies Not Meeting Water Quality Standards until monitoring data confirms that recreational uses are fully supported.

PUBLIC PARTICIPATION

This TMDL document was public noticed in the Hartford Courant and the Register Citizen on June 2, 2010. The document was also directly mailed to various Town Officials in the affected municipalities. At the close of the public comment period, no official comments were received by CT DEP staff. It is expected that open forums will continue as implementation of the TMDL occurs.

SPECIAL CONSIDERATIONS

During the development of this TMDL some concerns were raised about the East Branch of Salmon Brook segment, including issues with monitoring site selection and data representation. One site was used in the upper reaches of a 13.5 mile segment of East Branch of Salmon Brook to calculate load reductions. A plan was developed to collect additional bacteria data along the remaining distance of the Salmon Brook segment.

Grab samples were collected at five locations and analyzed for E.coli data. The original sample location was utilized as a comparison site, with the additional four sites located downstream along the stream corridor approximately 1.5 miles apart as the river flows. Three sample collection trips were taken, with two during dry events (no rain for 72 hours), and one wet event (during precipitation). All resultant data, including coordinates, site description, and precipitation values are included in Appendix D.

While the additional data values collected along Salmon Brook fluctuate slightly from headwaters to mouth, the largest results would not be outliers in the original TMDL dataset. None of the dry data exceeds existing single sample maximum values. This fact is also true for all dry data in the initial TMDL dataset.

The landuse of the Salmon Brook watershed shifts as the water flows downstream to the Farmington River. The bacteria counts between the five locations are relatively similar during
each sampling trip. This suggests that the loading due to landuse impacts is at least partially mediated by buffer zones along the stream banks.

Analysis of the additional data collected by DEP staff allows for a conclusion that the bacteria counts throughout Salmon Brook will be relatively similar over the course of the year. This conclusion shows that this TMDL document created using data from monitoring station 907 will result in an accurate calculation of bacteria reductions for Salmon Brook.
REFERENCES

Final E. coli TMDL
E Branch of Salmon and Mountain Brooks
September 2010
Final *E. coli* TMDL
E Branch of Salmon and Mountain Brooks
September 2010
Figure 3: Salmon Brook and Mountain Brook Land Use and TMDL Percent Reductions Map

Map Data: CTDEP
Map Created: April 2009

Final *E. coli* TMDL
E Branch of Salmon and Mountain Brooks
September 2010
Appendix A

A-1 Site Specific Information for Salmon Brook
A-2 Site Specific Information for Mountain Brook
Appendix A-1
Salmon Brook Subregional Basin
Waterbody Specific Information

Impaired Waterbody
Waterbody Name: Salmon Brook
Waterbody Segment ID: CT 4320-00_01
Waterbody Segment Description: From mouth at confluence with Farmington River (DS of Floydville Road crossing), East Granby, US to Massachusetts border (includes Salmon Brook and East Branch Salmon Brook sections), Granby.

Impairment Description:
Designated Use Impairment: Recreation
Size of Impaired Segment: 13.547 linear miles
Surface Water Classification: Class A

Watershed Description:
Total Regional Drainage Basin Area: 29267.699 acres
Tributary To: Farmington River
Subregional Basin Name & Code: Salmon Brook, 4320
Regional Basin: Farmington River
Major Basin: Connecticut
Watershed Towns: Hartland, Suffield, Granby, East Granby
Phase II GP applicable? Hartland-N Suffield-Y Granby-Y East Granby-Y
Applicable Season: Recreation Season (May 1 to September 30)

Landuse:

<table>
<thead>
<tr>
<th>Land Use Category</th>
<th>Percent Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forested</td>
<td>63% (18421 acres)</td>
</tr>
<tr>
<td>Urban/Developed</td>
<td>12%(3545.283 acres)</td>
</tr>
<tr>
<td>Water/Wetland</td>
<td>6%(1711.688 acres)</td>
</tr>
<tr>
<td>Agriculture</td>
<td>19%(5559.274 acres)</td>
</tr>
</tbody>
</table>

Appendix A-1
Salmon Brook
TMDL Summary

The TMDL analysis for Salmon Brook was conducted at one site (907), which is representative of the upstream portion of the segment. Further downstream the landuse increases to a higher percentage of urban developed land and a second monitoring location could be added for future analysis. The current analysis indicates that the monitoring site is only currently influenced by sources of bacteria active under wet weather conditions. The overall TMDL reduction percentage is 9%, calculated from a 20% Waste Load Allocation (WLA) and a 0% Load Allocation (LA). The WLA is applicable to regulated stormwater. Reduction in the WLA can be achieved through the detection and elimination of illicit discharges to the storm sewers, as well as the installation of engineered controls to reduce the surge of stormwater to the river, promote groundwater recharge, and improve water quality. Under current watershed conditions the river is able to assimilate bacteria loads during dry weather conditions. None of the sample data collected for this TMDL analysis during dry conditions resulted in colony counts exceeding set limits for recreational use. Agricultural usage and domesticated animals in the area are likely to contribute to the bacteria loading. It is important to note that any major changes in development levels or land use conditions could reduce the ability of the waterbody to handle the bacteria load.
Data Used in the Analysis

Monitoring Site: 007, Site description: Small Pond Woodhaven Riding Facility, rte 180

<table>
<thead>
<tr>
<th>Date</th>
<th>Precip.(in)</th>
<th>Condition</th>
<th>E. coli</th>
<th>Rank</th>
<th>Proportion</th>
<th>Criteria</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/14/06</td>
<td>0.38</td>
<td>WET</td>
<td>10</td>
<td>1.0</td>
<td>0.1500</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>6/20/06</td>
<td>0.38</td>
<td>WET</td>
<td>1900</td>
<td>20.0</td>
<td>0.9333</td>
<td>602</td>
<td>74</td>
</tr>
<tr>
<td>7/3/06</td>
<td>0.00</td>
<td>DRY</td>
<td>31</td>
<td>12.0</td>
<td>0.4167</td>
<td>194</td>
<td>0</td>
</tr>
<tr>
<td>7/9/06</td>
<td>0.00</td>
<td>DRY</td>
<td>62</td>
<td>19.0</td>
<td>0.6500</td>
<td>180</td>
<td>0</td>
</tr>
<tr>
<td>7/10/06</td>
<td>0.00</td>
<td>DRY</td>
<td>31</td>
<td>12.0</td>
<td>0.4167</td>
<td>194</td>
<td>0</td>
</tr>
<tr>
<td>8/16/06</td>
<td>0.00</td>
<td>DRY</td>
<td>10</td>
<td>1.0</td>
<td>0.1500</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>9/3/06</td>
<td>0.00</td>
<td>DRY</td>
<td>10</td>
<td>1.0</td>
<td>0.1500</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>9/6/06</td>
<td>0.00</td>
<td>DRY</td>
<td>10</td>
<td>1.0</td>
<td>0.1500</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>9/12/06</td>
<td>0.00</td>
<td>DRY</td>
<td>10</td>
<td>1.0</td>
<td>0.1500</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>9/18/06</td>
<td>0.00</td>
<td>DRY</td>
<td>115</td>
<td>22.0</td>
<td>0.7333</td>
<td>221</td>
<td>0</td>
</tr>
<tr>
<td>9/24/06</td>
<td>0.00</td>
<td>WET</td>
<td>285</td>
<td>26.0</td>
<td>0.8567</td>
<td>350</td>
<td>0</td>
</tr>
<tr>
<td>9/30/06</td>
<td>0.00</td>
<td>DRY</td>
<td>20</td>
<td>9.0</td>
<td>0.3000</td>
<td>76</td>
<td>0</td>
</tr>
<tr>
<td>10/1/06</td>
<td>0.10</td>
<td>DRY</td>
<td>480</td>
<td>27.0</td>
<td>0.9000</td>
<td>410</td>
<td>16</td>
</tr>
<tr>
<td>7/11/06</td>
<td>0.00</td>
<td>DRY</td>
<td>41</td>
<td>14.0</td>
<td>0.5333</td>
<td>135</td>
<td>0</td>
</tr>
<tr>
<td>7/17/06</td>
<td>0.00</td>
<td>DRY</td>
<td>41</td>
<td>14.0</td>
<td>0.5333</td>
<td>135</td>
<td>0</td>
</tr>
<tr>
<td>7/23/06</td>
<td>0.00</td>
<td>DRY</td>
<td>41</td>
<td>14.0</td>
<td>0.5333</td>
<td>135</td>
<td>0</td>
</tr>
<tr>
<td>8/2/06</td>
<td>0.00</td>
<td>DRY</td>
<td>285</td>
<td>26.0</td>
<td>0.8567</td>
<td>350</td>
<td>0</td>
</tr>
<tr>
<td>8/8/06</td>
<td>0.00</td>
<td>DRY</td>
<td>115</td>
<td>22.0</td>
<td>0.7333</td>
<td>221</td>
<td>0</td>
</tr>
<tr>
<td>8/14/06</td>
<td>0.00</td>
<td>DRY</td>
<td>285</td>
<td>26.0</td>
<td>0.8567</td>
<td>350</td>
<td>0</td>
</tr>
<tr>
<td>8/20/06</td>
<td>0.00</td>
<td>DRY</td>
<td>20</td>
<td>9.0</td>
<td>0.3000</td>
<td>76</td>
<td>0</td>
</tr>
<tr>
<td>8/27/06</td>
<td>0.00</td>
<td>WET</td>
<td>480</td>
<td>27.0</td>
<td>0.9000</td>
<td>410</td>
<td>16</td>
</tr>
<tr>
<td>9/4/06</td>
<td>0.00</td>
<td>DRY</td>
<td>120</td>
<td>23.0</td>
<td>0.7833</td>
<td>256</td>
<td>0</td>
</tr>
<tr>
<td>9/11/06</td>
<td>0.00</td>
<td>DRY</td>
<td>41</td>
<td>14.0</td>
<td>0.5333</td>
<td>135</td>
<td>0</td>
</tr>
<tr>
<td>9/18/06</td>
<td>0.00</td>
<td>DRY</td>
<td>41</td>
<td>14.0</td>
<td>0.5333</td>
<td>135</td>
<td>0</td>
</tr>
<tr>
<td>10/5/06</td>
<td>0.00</td>
<td>DRY</td>
<td>120</td>
<td>23.0</td>
<td>0.7833</td>
<td>256</td>
<td>0</td>
</tr>
<tr>
<td>10/12/06</td>
<td>0.00</td>
<td>DRY</td>
<td>41</td>
<td>14.0</td>
<td>0.5333</td>
<td>135</td>
<td>0</td>
</tr>
<tr>
<td>10/19/06</td>
<td>0.00</td>
<td>DRY</td>
<td>41</td>
<td>14.0</td>
<td>0.5333</td>
<td>135</td>
<td>0</td>
</tr>
<tr>
<td>10/26/06</td>
<td>0.00</td>
<td>DRY</td>
<td>120</td>
<td>23.0</td>
<td>0.7833</td>
<td>256</td>
<td>0</td>
</tr>
<tr>
<td>11/2/06</td>
<td>0.00</td>
<td>DRY</td>
<td>41</td>
<td>14.0</td>
<td>0.5333</td>
<td>135</td>
<td>0</td>
</tr>
<tr>
<td>11/9/06</td>
<td>0.00</td>
<td>DRY</td>
<td>41</td>
<td>14.0</td>
<td>0.5333</td>
<td>135</td>
<td>0</td>
</tr>
<tr>
<td>11/16/06</td>
<td>0.00</td>
<td>DRY</td>
<td>41</td>
<td>14.0</td>
<td>0.5333</td>
<td>135</td>
<td>0</td>
</tr>
<tr>
<td>11/23/06</td>
<td>0.00</td>
<td>DRY</td>
<td>41</td>
<td>14.0</td>
<td>0.5333</td>
<td>135</td>
<td>0</td>
</tr>
<tr>
<td>11/30/06</td>
<td>0.00</td>
<td>DRY</td>
<td>41</td>
<td>14.0</td>
<td>0.5333</td>
<td>135</td>
<td>0</td>
</tr>
<tr>
<td>12/7/06</td>
<td>0.00</td>
<td>DRY</td>
<td>41</td>
<td>14.0</td>
<td>0.5333</td>
<td>135</td>
<td>0</td>
</tr>
<tr>
<td>12/14/06</td>
<td>0.00</td>
<td>DRY</td>
<td>41</td>
<td>14.0</td>
<td>0.5333</td>
<td>135</td>
<td>0</td>
</tr>
<tr>
<td>12/21/06</td>
<td>0.00</td>
<td>DRY</td>
<td>41</td>
<td>14.0</td>
<td>0.5333</td>
<td>135</td>
<td>0</td>
</tr>
</tbody>
</table>

Statistics

- # Samples DRY: 17
- # Samples WET: 13
- # Samples Total: 30

- Geometric Mean: 59
- Log std deviation: 0.7945

Avg % Reduction

- Wet (WLA): 20
- Dry (LA): 0
- Total (TMDL): 9

Notes:

- Precipitation and E. coli data provided by Wunderground.com site #KCTSU0FF1 and CTDEP respectively.
- **WET** condition defined as greater than 0.1" precipitation in 24 hours or 0.25" precipitation in 48 hours, or 2.0" precipitation in 96 hours.

Final *E. coli* TMDL

E Branch of Salmon and Mountain Brooks

September 2010
Final *E. coli* TMDL
E Branch of Salmon and Mountain Brooks
September 2010
Appendix A-2
Mountain Brook
Waterbody specific information

Impeared Waterbody
Waterbody Name: Mountain Brook
Waterbody Segment IDs: CT 4320-19_01
Waterbody Segment Description: From mouth at confluence with Hungary Brook (just US of railroad crossing on Hungary Brook), US to confluence with unnamed tributary just US of Copper Hill Road crossing, Suffield.

Impairment Description:
Designated Use Impairment: Recreation
Size of Impaired Segments: 1.3655 linear miles
Surface Water Classification: Class A

Watershed Description:
Drainage Basin Area: 2267.764 acres
Tributary To: Salmon Brook
Subregional Basin Name & Code: Salmon Brook, 4320
Regional Basin: Farmington River
Major Basin: Connecticut
Watershed Towns: Suffield
Phase II GP applicable? Suffield- Y
Applicable Season: Recreation Season (May 1 to September 30)

Landuse:

<table>
<thead>
<tr>
<th>Land Use Category</th>
<th>Percent Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forested</td>
<td>48.96% (1110.19 acres)</td>
</tr>
<tr>
<td>Urban/Developed</td>
<td>11.11% (251.836 acres)</td>
</tr>
<tr>
<td>Water/Wetland</td>
<td>9.17% (208.122 acres)</td>
</tr>
<tr>
<td>Agriculture</td>
<td>30.53% (692.274 acres)</td>
</tr>
</tbody>
</table>

Appendix A-2
Mountain Brook
TMDL Summary

The TMDL analysis for Mountain Brook was conducted at one site (1832), which is roughly a mile from the confluence with Hungary Brook, which then flows into Salmon Brook. This site is located in segment CT4320-19_01 which is the furthest downstream segment of Mountain Brook and the more agricultural portion of the basin. TMDL analysis indicates that the site is influenced by sources of bacteria active under both wet weather and dry weather conditions. The Waste Load Allocation (WLA) reduction (24%) is significantly higher than the Load Allocation (LA) reduction (2%) on this segment. The higher WLA value indicates that the stream is more influenced by point sources of \textit{e.coli} and stormwater. Reductions in the WLA can be achieved through the detection and elimination of illicit discharges to the storm sewers or directly to the brook and the upgrade of failed sanitary infrastructure, as well as, the installation of engineered controls to reduce the surge of stormwater to the brook, promote groundwater recharge, and improve water quality. Since illicit discharges and failed sanitary collection systems may also be active under dry conditions, it is likely that corrective actions aimed at eliminating these sources will also reduce the Load Allocation (LA). Agricultural usage and domesticated animals in the area are likely to contribute to the bacteria loading as are any waterfowl that use the pond and wetland areas upstream of the sample location.
Waterbody Name: Mountain Brook

Waterbody Segment ID: CT-230-19-01

Data Used in the Analysis

Monitoring Site: 1832, Site description: at Copper Hill Road Suffield, CT

<table>
<thead>
<tr>
<th>Date</th>
<th>Precip(in)</th>
<th>Condition</th>
<th>E.coli</th>
<th>Rank</th>
<th>Proportion</th>
<th>Criteria Value</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/14/06</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
<td>WET</td>
<td>150</td>
<td>26.0</td>
<td>0.8452</td>
</tr>
<tr>
<td>6/20/06</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>WET</td>
<td>3050</td>
<td>31.0</td>
<td>1.0000</td>
</tr>
<tr>
<td>7/3/06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>DRY</td>
<td>98</td>
<td>18.0</td>
<td>0.5806</td>
</tr>
<tr>
<td>7/25/06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>DRY</td>
<td>63</td>
<td>12.0</td>
<td>0.4194</td>
</tr>
<tr>
<td>8/1/06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>DRY</td>
<td>190</td>
<td>23.0</td>
<td>0.7419</td>
</tr>
<tr>
<td>8/10/06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>DRY</td>
<td>10</td>
<td>1.0</td>
<td>0.1129</td>
</tr>
<tr>
<td>8/18/06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>DRY</td>
<td>10</td>
<td>1.0</td>
<td>0.1129</td>
</tr>
<tr>
<td>8/22/06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>DRY</td>
<td>10</td>
<td>1.0</td>
<td>0.1129</td>
</tr>
<tr>
<td>8/31/06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>DRY</td>
<td>20</td>
<td>7.0</td>
<td>0.2501</td>
</tr>
<tr>
<td>9/6/06</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>DRY</td>
<td>10</td>
<td>1.0</td>
<td>0.1129</td>
</tr>
<tr>
<td>9/12/06</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>DRY</td>
<td>20</td>
<td>7.0</td>
<td>0.2501</td>
</tr>
<tr>
<td>9/17/07</td>
<td>0.06</td>
<td>0.41</td>
<td>2.82</td>
<td>WET</td>
<td>170</td>
<td>21.0</td>
<td>0.8335</td>
</tr>
<tr>
<td>9/13/07</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>DRY</td>
<td>330</td>
<td>26.0</td>
<td>0.8337</td>
</tr>
<tr>
<td>6/21/07</td>
<td>0.10</td>
<td>0.13</td>
<td>0.13</td>
<td>WET</td>
<td>130</td>
<td>19.0</td>
<td>0.6129</td>
</tr>
<tr>
<td>6/27/07</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>DRY</td>
<td>10</td>
<td>1.0</td>
<td>0.1129</td>
</tr>
<tr>
<td>7/11/07</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>WET</td>
<td>41</td>
<td>10.0</td>
<td>0.3307</td>
</tr>
<tr>
<td>7/23/07</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>DRY</td>
<td>96</td>
<td>17.0</td>
<td>0.5494</td>
</tr>
<tr>
<td>8/20/07</td>
<td>0.20</td>
<td>0.00</td>
<td>0.00</td>
<td>DRY</td>
<td>20</td>
<td>7.0</td>
<td>0.2501</td>
</tr>
<tr>
<td>7/16/07</td>
<td>0.07</td>
<td>0.17</td>
<td>0.17</td>
<td>WET</td>
<td>10</td>
<td>1.0</td>
<td>0.1129</td>
</tr>
<tr>
<td>6/24/07</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>DRY</td>
<td>41</td>
<td>10.0</td>
<td>0.3307</td>
</tr>
<tr>
<td>8/23/07</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>DRY</td>
<td>63</td>
<td>12.0</td>
<td>0.4194</td>
</tr>
<tr>
<td>8/12/08</td>
<td>0.06</td>
<td>0.12</td>
<td>0.12</td>
<td>DRY</td>
<td>85</td>
<td>15.0</td>
<td>0.4839</td>
</tr>
<tr>
<td>8/4/08</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>WET</td>
<td>2100</td>
<td>30.0</td>
<td>0.9677</td>
</tr>
<tr>
<td>7/11/08</td>
<td>0.30</td>
<td>0.03</td>
<td>0.03</td>
<td>DRY</td>
<td>500</td>
<td>27.0</td>
<td>0.6710</td>
</tr>
<tr>
<td>8/10/08</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>WET</td>
<td>300</td>
<td>25.0</td>
<td>0.8065</td>
</tr>
<tr>
<td>7/23/08</td>
<td>1.35</td>
<td>1.70</td>
<td>1.70</td>
<td>WET</td>
<td>250</td>
<td>24.0</td>
<td>0.7742</td>
</tr>
<tr>
<td>8/7/08</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>DRY</td>
<td>170</td>
<td>21.0</td>
<td>0.6935</td>
</tr>
<tr>
<td>7/31/08</td>
<td>1.19</td>
<td>1.19</td>
<td>1.19</td>
<td>WET</td>
<td>1900</td>
<td>29.0</td>
<td>0.9355</td>
</tr>
<tr>
<td>8/6/08</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
<td>WET</td>
<td>1600</td>
<td>28.0</td>
<td>0.9032</td>
</tr>
<tr>
<td>8/14/08</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>DRY</td>
<td>60</td>
<td>10.0</td>
<td>0.5101</td>
</tr>
<tr>
<td>8/20/08</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>DRY</td>
<td>63</td>
<td>12.0</td>
<td>0.4194</td>
</tr>
</tbody>
</table>

Statistics

- # Samples DRY: 16
- # Samples WET: 13
- # Samples Total: 31
- Geometric Mean: 91
- Log std deviation: 0.7364

Avg % Reduction

- Wet (WLA): 24
- Dry (LA): 2
- Total (TMCL): 11

Precipitation and E. coli data provided by Wunderground.com, site # KCTSU991 and CTDEP respectively.

WET Condition defined as greater than 0.1" precipitation in 24 hours or 0.25" precipitation in 48 hours, or 2.0" precipitation in 24 hours.
TMDL needed from current condition (magenta squares) to meet criteria (blue line). Current condition based on dry and wet weather data.

Waste Load Allocation (WLA) needed from current condition (magenta squares) to meet criteria (blue line). Current condition based on wet weather data.

Load Allocation (LA) needed from current condition (magenta squares) to meet criteria (blue line). Current condition based on dry weather data.
Appendix B. Municipal Stormwater Alternative Monitoring Guidance
CTDEP investigates impaired waterbodies to determine the major causes of impairment. This information is expressed as Total Maximum Daily Load (TMDL). TMDLs provide the framework for restoring impaired waters by establishing the maximum amount of a pollutant that a waterbody can take in without adverse impact to fish, wildlife, recreation, or other public uses. If a TMDL includes requirements for control of stormwater discharges it is the responsibility of the municipalities within the watershed to implement the recommendations of the TMDL (typically bacteria reduction). Management of stormwater quality within the municipality is governed by the General Permit for the Discharge of Stormwater from Small Municipal Separate Storm Sewer Systems (MS4 General Permit).

The MS4 General Permit is required for any municipality with urbanized areas that initiates, creates, originates or maintains any discharge of stormwater from a storm sewer system to waters of the state. The MS4 permit requires towns to design a Stormwater Management Plan (SMP) to reduce the discharge of pollutants in stormwater to improve water quality. The plan must address the following 6 minimum measures.

1. Public Education and Outreach.
2. Public Involvement/Participation.
3. Illicit discharge detection and elimination.
4. Construction site stormwater runoff control.
5. Post-construction stormwater management in the new development and redevelopment.
6. Pollution prevention/good housekeeping for municipal operations.

Section 6(k) of the MS4 General Permit requires a municipality to modify their Stormwater Management Plan to implement the TMDL within 4 months of TMDL approval by EPA if stormwater within the municipality contributes pollutant(s) in excess of the allocation established within the TMDL. For the discharges to the TMDL waterbody(ies), the municipality must assess the six minimum measures of its plan and modify the plan to implement additional, necessary controls for each appropriate measure. Particular focus should be placed on the following plan components: public education program, illicit discharge detection and elimination, stormwater structures cleaning, priority for the repair, upgrade, or retrofit of storm sewer structures. The goal of the modifications is to establish a program to improve water quality consistent with the requirements of the TMDL. Modifications to the Stormwater Management Plan in response to TMDL development should be submitted to the Stormwater Program of CTDEP for review and approval.

Also required under the MS4 General Permit is annual stormwater monitoring. The permit provides a general framework for monitoring stormwater quality within a municipality. At minimum, stormwater from six sample locations are to be collected annually: two outfalls from commercial areas, two from industrial areas, and two from residential areas. These six sample locations are point source discharges that drain areas with distinct characteristics. Each
A stormwater sample is tested for 12 parameters using methods prescribed in Title 40, CFR, Part 136.

- pH (SU)
- Total Suspended Solids (mg/l)
- Hardness (mg/l)
- Total Phosphorous (mg/l)
- Conductivity (umos)
- Ammonia (mg/l)
- Oil and grease (mg/l)
- Total Kjeldahl Nitrogen (mg/l)
- Chemical Oxygen Demand (mg/l)
- Nitrate plus Nitrite Nitrogen (mg/l)
- Turbidity (NTU)
- E. coli (col/100ml)

However, CTDEP encourages municipalities affected by the establishment of a TMDL to develop an alternative stormwater monitoring plan to assess progress in meeting the goals of the TMDL. Alternate monitoring programs are established in accordance with Section 6(h)(1)(B) of the MS4 permit which allows towns to submit written requests to the Commissioner for the review and approval of alternate stormwater monitoring plans of equivalent or greater scope. This gives towns freedom to develop a plan that better assesses the stormwater quality in their watershed. The monitoring program should be designed to accomplish two objectives; source detection to identify specific sources of bacterial loading and direct BMP implementation efforts with fixed station monitoring to quantify progress in achieving TMDL established goals.

Monitoring may be performed by municipal staff, citizen volunteers, or contracted to an environmental consulting firm. In order to secure DEP approval, the program must include sampling to address both objectives (source detection and progress quantification). Source detection monitoring may include such activities as visual inspection of storm sewer outfalls under dry weather conditions, event sampling of individual storm sewer outfalls, and monitoring of ambient (in-stream) conditions at closely spaced intervals to identify “hot spots” for more detailed investigations leading to specific sources of high bacteria loads.

DEP strongly recommends that stream monitoring be performed at the same locations DEP sampled during TMDL development. Samples should also be collected at other key locations within the watershed, such as above and below potential contributing sources or areas slated for BMP implementation. Since watershed borders and TMDLs do not follow town borders there is a possibility DEP did not sample locations in your town. If this is the case collecting a sample where the waterbody enters your town and another where the waterbody leaves your town maybe helpful to determine how stormwater from your town influences water quality. In all cases, sampling should be scheduled at regularly spaced intervals during the recreational season. In this way, the data set at the end of each season will include ambient values for both “wet” and “dry” conditions.
Appendix C. Cumulative Frequency Distribution Function Method
DEVELOPMENT OF TOTAL MAXIMUM DAILY LOADS (TMDLs)
FOR INDICATOR BACTERIA IN CONTACT RECREATION AREAS USING THE CUMULATIVE FREQUENCY DISTRIBUTION FUNCTION METHOD

Lee E. Dunbar, Assistant Director
Mary E. Becker, Environmental Analyst
CT Department of Environmental Protection
Total Maximum Daily Load Program

Last revised: November 8, 2005

OVERVIEW OF APPROACH

The analytical methodology presented in this document provides a defensible scientific and technical basis for establishing TMDLs to address recreational use impairments in surface waters. Representative ambient water quality monitoring data for a minimum of 21 sampling dates during the recreational season (May 1 – September 31) is required for the analysis. The reduction in bacteria density from current levels needed to achieve consistency with the criteria is quantified by calculating the difference between the cumulative relative frequency of the sample data set and the criteria adopted by Connecticut to support recreational use. Connecticut’s adopted water quality criteria for indicator bacteria (Escherichia coli) are represented by a statistical distribution of the geometric mean 126 and log standard deviation 0.4 for purposes of the TMDL calculations.

TMDLs developed using this approach are expressed as the average percentage reduction from current conditions required to achieve consistency with criteria. The procedure partitions the TMDL into wet weather allocation and dry weather allocation components by quantifying the contribution of ambient monitoring data collected during periods of high stormwater influence and minimal stormwater influence to the current condition. The partition is used to determine the effect of high stormwater influence on the contribution of sources to the waterbody. TMDLs developed using this analytical approach provide an ambient monitoring benchmark ideally suited for quantifying progress in achieving water quality goals as a result of TMDL implementation.

APPLICABILITY

The methodology is intended solely for use in developing TMDLs for waters that are identified as impaired on the List of Connecticut Water Bodies Not Meeting Water Quality Standards. It is expected that implementation of these TMDLs will be accomplished through implementing the provisions of the Small Municipal Separate Storm Sewer System general permit (MS4 permit) in designated urban areas, as well as through measures that address non-point sources. The
method as described here is not intended for use as an assessment tool for purposes of identifying use attainment status relative to listing or delisting of waterbody segments pursuant to Section 303(d) of the federal Clean Water Act. Assessment of use support is performed in accordance with the Department’s guidance document, *Connecticut Consolidated Assessment and Listing Methodology (CT-CALM)*³.

BACKGROUND

TMDLs are established by the State in accordance with the requirements established in the federal Clean Water Act. Section 303(d) of the Act requires the State to perform an assessment of waters within the State relative to their ability to support designated uses including recreational use. The procedure used by the Department to assess use attainment is described in the guidance document, *CT-CALM*³. The list of waterbody segments in Connecticut that do not currently support recreational use is updated to incorporate the most recent monitoring information by the Department every two years. As a result of this process, waterbodies may be added to or deleted from the list of impaired waters in accordance with the *CT-CALM* guidance. Once complete, the list is submitted to the Regional office of the federal EPA for approval. Section 303(d) of the Act requires the State to establish TMDLs for each pollutant contributing to the impairment of each waterbody segment identified on the list.

WATER QUALITY CRITERIA FOR INDICATOR BACTERIA

Connecticut’s adopted water quality criteria for the indicator bacteria *Escherichia coli* (*E.coli*) in the CT Water Quality Standards⁴ include a geometric mean and upper confidence limit (i.e. single sample maximum), which are based on three recreational use categories. The categories include designated swimming, non-designated swimming, and all other recreational uses. ‘Designated swimming’ includes areas that have been designated by State or Local authorities. ‘Non-designated swimming’ includes waters suitable for swimming but have not been designated by State or Local authorities, as well as water that support recreational activities where full body contact is likely, such as tubing or water skiing. ‘All other recreational uses’ include waters that support recreational activities where full body contact is infrequent, such as fishing, boating, kayaking, and wading. The recreational uses and applicable criteria are provided in the following table.

<table>
<thead>
<tr>
<th>Recreational Use Category</th>
<th>Indicator Bacteria</th>
<th>Geometric Mean</th>
<th>Single Sample Maximum Upper Confidence Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designated Swimming</td>
<td>E.coli</td>
<td>126col/100mls</td>
<td>235col/100mls 75th Percentile</td>
</tr>
</tbody>
</table>

Final *E. coli* TMDL
E Branch of Salmon and Mountain Brooks
September 2010
The indicator bacteria, *E. coli*, is not pathogenic, rather its presence in water is an indicator of contamination with fecal material that may also contribute pathogenic organisms. Connecticut’s criteria are based on federal guidance. In this guidance, the basis for the criteria and the relationship between the geometric mean criterion and the single sample maximum criterion is explained in detail.

The geometric mean criterion was derived by EPA scientists from epidemiological studies at beaches where the incidence of swimming related health effects (gastrointestinal illness rate) could be correlated with indicator bacteria densities. EPA’s recommended criteria reflect an average illness rate of 8 illnesses per 1000 swimmers exposed. This condition was predicted to exist based on studies cited in the federal guidance when the steady-state geometric mean density of *E. coli* was 126 col/100ml. The distribution of individual sample results around the geometric mean is such that approximately half of all individual samples are expected to exceed the geometric mean and half will be below the geometric mean.

EPA also derived a single sample maximum criterion from this same database to support decisions by public health officials regarding the closure of beaches when an elevated risk of illness exists. Because approximately half of all individual sample results for a beach where the risk of illness is considered “acceptable” are expected to exceed the geometric mean criteria of 126 col/100ml, an upper boundary to the range of individual sample results was statistically derived that will be exceeded at frequencies less than 50% based on the variability of sample data. The mean log standard deviation for *E. coli* densities at the freshwater beach sites studied by EPA was 0.4. The single sample maximum criterion of 235 col/100mls, 410 col/100mls, and 576 col/100mls adopted by Connecticut represents the 75th, 90th, and 95th percentile upper confidence limit, respectively, for a statistical distribution of data with a geometric mean of 126 and a log standard deviation of 0.4 as recommended by EPA.

Consistent with the State’s disinfection policy (Water Quality Standard #23), the critical period for application of the indicator bacteria criteria is the recreational season, defined as May 1 through September 30. For waters that do not receive point discharges of treated sewage subject to the disinfection policy, a review of ambient monitoring data contained in the State’s Ambient Monitoring Database confirms that bacteria densities are typically highest during the summer.

Table 1. Applicable indicator bacteria (*E. coli*) water quality criteria for recreational uses

<table>
<thead>
<tr>
<th>Recreational Use Category</th>
<th>Indicator Bacteria</th>
<th>Geometric Mean</th>
<th>Single Sample Maximum Upper Confidence Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-designated Swimming</td>
<td></td>
<td></td>
<td>410col/100mls 90th Percentile</td>
</tr>
<tr>
<td>All Other Recreational Uses</td>
<td></td>
<td></td>
<td>576col/100mls 95th Percentile</td>
</tr>
</tbody>
</table>

Final *E. coli* TMDL
E Branch of Salmon and Mountain Brooks
September 2010
months. Consistency with criteria during the summer is indicative of consistency at all times of the year. Lower densities reported during other portions of the year are most likely a result of several environmental factors including more rapid die-off of enteric bacteria in colder temperatures and reduced loadings from wildlife and domestic animal populations. Further, human exposure to potentially contaminated water is greatly reduced during the colder months, particularly exposure that results from immersion in the water since cold temperatures discourage participation in recreational activities that typically involve immersion.

Connecticut’s adopted criteria are based on federal guidance and reflect an idealized distribution of bacteria monitoring data for sites studied by EPA that can be represented by statistical distribution with a geometric mean of 126 col/100ml and a log standard deviation of 0.4. The criteria can therefore be expressed as a cumulative frequency distribution or “criteria curve” as shown in figures 1a through 1c for each of the specified recreational uses in Connecticut’s bacteria criteria.

Figure 1a. Cumulative Relative Frequency Distribution representing water quality to support designated swimming use.
Indicator Bacteria Criteria: 'Non-Designated Swimming'

Figure 1b. Cumulative Relative Frequency Distribution representing water quality to support non-designated swimming use.

Indicator Bacteria Criteria: 'All Other Recreational Uses'

Figure 1c. Cumulative Relative Frequency Distribution representing water quality criteria to support all other recreational uses.

Final *E. coli* TMDL
E Branch of Salmon and Mountain Brooks
September 2010
TMDL

As with the cumulative relative frequency curves representing the criteria shown in Figure 1a through 1c, a cumulative relative frequency curve can be prepared using site-specific sample data to represent current conditions at the TMDL monitoring site. The TMDL for the monitored segment is derived by quantifying the difference between these two distributions as shown conceptually in Figures 2a through 2c. This is accomplished by calculating the reduction required at representative points on the sample data cumulative frequency distribution curve and then averaging the reduction needed across the entire range of sampling data. This procedure allows the contribution of each individual sampling result to be considered when estimating the percent reduction needed to meet a criterion that is expressed as a geometric mean.

Figure 2a. Reduction indicator bacteria density needed from current condition to meet ‘designated swimming’ criteria based on cumulative relative frequency distribution.
Figure 2b. Reduction indicator bacteria density needed from current condition to meet ‘non-designated swimming’ criteria based on cumulative relative frequency distribution.

Figure 2c. Reduction indicator bacteria density needed from current condition to meet ‘all other recreational uses’ criteria based on cumulative relative frequency distribution.
TMDL ALLOCATIONS

Federal regulations require that the TMDL analysis identify the portion of the total loading which is allocated to point source discharges and the portion attributed to non-point sources, which contribute that pollutant to the waterbody. Stormwater runoff is considered a point source subject to regulation under the NPDES permitting program in designated urbanized areas. Designated urban areas, as defined by the US Census Bureau, are required to comply with the General Permit for the Discharge of Stormwater from Small Municipal Separate Storm Sewer Systems (MS4 permit). The general permit is applicable to municipalities that contain designated urban areas (or MS4 communities) and discharge stormwater via a separate storm sewer system to surface waters of the State. TMDLs for indicator bacteria in waters draining urbanized areas must therefore be partitioned into a WLA to accommodate point source stormwater loadings of indicator bacteria and a LA to accommodate non-point loadings from unregulated sources. One common characteristic of urbanized areas is the high percentage of impervious surface. Much of the impervious surface is directly connected to nearby surface waters through stormwater drainage systems. As a result, runoff is rapid following rain events and flow in urban streams is typically dominated by stormwater runoff during these periods. Monitoring results for samples collected under these conditions are strongly influenced by stormwater quality. During dry conditions, urban streams contain little stormwater since urban watersheds drain quickly and baseflows are reduced due to lower infiltration rates and reduced recharge of groundwater. At baseflow, urban stream water quality is dominated by non-point sources of indicator bacteria since stormwater outfalls are inactive. A WLA for stormwater discharges is not warranted in non-designated urbanized areas and in waterbody segments where there are no stormwater outfalls. As such, sources of bacteria in these waterbodies segments are attributed solely to nonpoint sources. However, wet weather and dry weather percent reductions are partitioned in the LA analysis to demonstrate the effect of stormwater events on the contribution of nonpoint sources of bacteria to the waterbody.

The relative contribution of indicator bacteria loadings occurring during periods of high or low stormwater influence to the geometric mean indicator density is estimated by calculating separate averages of the reduction needed to achieve consistency with criteria under “wet” and “dry” conditions. In urbanized areas, the reduction needed under “wet” conditions is assigned to the WLA and the reduction needed under “dry” conditions is assigned to the LA. In non-designated urbanized areas, the LA is comprised of “wet” and “dry” conditions, which are partitioned into separate reduction goals. Separate reduction goals are established for baseflow and stormwater dominated periods that can assist local communities in selection of best management practices to improve water quality. The technique also facilitates the use of ambient stream monitoring data to track future progress in meeting water quality goals.

The sources contributing to the WLA and LA can be further subdivided depending on knowledge of sources present in the watershed (Table 2). Some existing sources such as dry weather flows from stormwater collections systems, illicit discharges to stormwater systems, and combined sewer overflows are allocated “100 percent reduction” since the management goal for these sources is elimination. Permitted discharges of treated and disinfected domestic wastewater (sewage treatment plants) are allocated “zero percent reduction” since disinfection required by
the NPDES permit is sufficient to reduce indicator bacteria levels to below levels of concern. Natural sources such as wildlife are also allocated a “zero percent reduction” since the management goal is to foster a sustainable natural habitat and stream corridor to the extent practicable. Management measures to control nuisance populations of some wildlife species that can result in elevated indicator bacteria densities such as Canadian geese however should be considered in developing an overall watershed management plan. The management goal for point sources in designated swimming areas is elimination when the source is determined to be the main contributor of bacteria to the swimming area. This is consistent with the United States Environmental Protection Agency’s (EPA) advisory for swimmers to avoid areas with discharge pipes and a recent study indicating an increased potential for health risk to people swimming in areas near storm drains.

<table>
<thead>
<tr>
<th>Source</th>
<th>Critical Conditions</th>
<th>Assigned To</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Site Septic</td>
<td>Baseflow (DRY)</td>
<td>LA</td>
</tr>
<tr>
<td>Domestic Animal</td>
<td>Baseflow (DRY)</td>
<td>LA</td>
</tr>
<tr>
<td>Natural (Wildlife)</td>
<td>Baseflow (DRY)</td>
<td>LA</td>
</tr>
<tr>
<td>Wastewater Treatment Plants</td>
<td>Baseflow (DRY)</td>
<td>WLA</td>
</tr>
<tr>
<td>Regulated Urban Runoff/Storm Sewers</td>
<td>Wet Weather Flow (WET)</td>
<td>WLA</td>
</tr>
<tr>
<td>Dry Weather Overflow</td>
<td>Baseflow (DRY)</td>
<td>None</td>
</tr>
<tr>
<td>Illicit Discharges</td>
<td>Baseflow (DRY)</td>
<td>None</td>
</tr>
<tr>
<td>Combined Sewer Overflow</td>
<td>Wet Weather Flow (WET)</td>
<td>None</td>
</tr>
</tbody>
</table>

Table 2: Establishing WLA and LA Pollutant Sources

MARGIN OF SAFETY

Federal regulations require that all TMDL analyses include either an implicit or explicit margin of safety (MOS). The analytical approach described here incorporates an implicit MOS. Factors contributing to the MOS include assigning a percent reduction of “zero” to sampling results that indicate quality better than necessary to achieve consistency with the criteria. The increase in loadings on those dates that could be assimilated by the stream without exceeding criteria is not quantified (as a negative percent reduction) and averaged with the load reductions needed on other sampling dates. Rather, this excess capacity is averaged as a zero value thereby contributing to the implicit MOS.

The means of implementing the TMDL also contributes to the MOS. The loading reductions specified in the TMDL for regulated stormwater discharges and nonpoint sources must be sufficient to achieve water quality standards since confirmation that these reductions have been achieved will be based on ambient monitoring data documenting that water quality standards are met. Further, achieving compliance with the requirements of the MS4 permit includes elimination of high loading sources such as illicit discharges and dry weather overflows from storm sewer systems. Eliminating loads from these sources, as opposed to allocating a percent reduction equal to that given other sources, contributes to the implicit MOS. Further assurance that implementing the TMDL will meet water quality standards is provided by the iterative...
implementation required for compliance with the MS4 permit. This approach mandates that additional management efforts must be implemented until ambient monitoring data confirms that standards are met.

Many of the best management practices that are implemented to address either wet or dry weather sources will have some degree of effectiveness in reducing loads under all conditions. For example, the TMDL allocates all the percent reduction needed to meet standards under wet weather conditions to the WLA. However, reductions resulting from best management practices implemented to reduce dry weather loads (LA) will provide some benefit during wet weather conditions as well. These reductions also contribute to the implicit MOS.

DATA REQUIREMENTS

Ambient monitoring data for a minimum of 21 sampling dates during the recreational season (May 1 – September 30) is required. Data collected at other times during the year are excluded from the analysis. In addition to data on indicator bacteria density, precipitation data for each sampling date and the week prior to the sampling is necessary. Sampling dates should be selected to insure that representative data is available for both wet and dry conditions. This may be accomplished most easily by selecting sampling dates without prior knowledge of the meteorological conditions likely to be encountered on that date.

Data must reflect current conditions in the TMDL segment. The monitoring location where data is collected must therefore be sited in an area that can be considered representative of water quality throughout the TMDL segment. Data obtained under unusual circumstances may be excluded from the analysis provided the reason for excluding that data is provided in the TMDL. Potential reasons for excluding data may include such things as evidence that a spill, upset in wastewater treatment, or sewer line breakage occurred that resulted in a short-term excursion from normal conditions. Data that represent conditions during an extreme storm event that resulted in widespread failure of wastewater treatment or stormwater best management practices may also be excluded. However, data for periods following typical rainfall events must be retained. Reasons for excluding any data must be provided in the TMDL Analysis.

All data must be less than five years old. If circumstances in any watershed suggest that conditions have changed during the most recent five-year period, the analysis may be restricted to more recent data in order to be representative of the current status provided the minimum data requirements are met.

Assurance of acceptable data quality must be provided. Typically, all data should be collected and results analyzed and reported pursuant to an EPA approved Quality Assurance Project Plan (QAPP). Data collected in the absence of a QAPP may be acceptable provided there is evidence that confirms acceptable data quality.
ANALYTICAL PROCEDURE – TMDL

1. The *E. coli* monitoring data is ranked from lowest to highest. In the event of ties, monitoring results are assigned consecutive ranks in chronological order of sampling date. The sample proportion \(p \) is calculated for each monitoring result by dividing the assigned rank \(r \) for each sample by the total number of sample results \(n \):

\[
p = \frac{r}{n}
\]

2. Next, a single sample criteria reference value is calculated for each monitoring result according to the specified recreational use (designated swimming, non-designated swimming, or all other) in a waterbody segment from the statistical distribution used to represent the criteria following the procedure described in steps 3 - 6 below:

3. | Designated Swimming | Non-Designated Swimming | All Other Recreational Uses |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>If the sample proportion is (\geq 0.75), the single sample criteria reference value is equivalent to the single sample criterion adopted into the Water Quality Standards (235 col/100ml)</td>
<td>If the sample proportion is (\geq 0.90), the single sample criteria reference value is equivalent to the single sample criterion adopted into the Water Quality Standards (410 col/100ml)</td>
<td>If the sample proportion is (\geq 0.95), the single sample criteria reference value is equivalent to the single sample criterion adopted into the Water Quality Standards (576 col/100ml)</td>
</tr>
</tbody>
</table>
4. **Designated Swimming** | **Non-Designated Swimming** | **All Other Recreational Uses**
--- | --- | ---
If the sample proportion is less than 0.75, and greater than 0.50, the single sample criteria reference value is calculated as: | If the sample proportion is less than 0.90, and greater than 0.50, the single sample criteria reference value is calculated as: | If the sample proportion is less than 0.95, and greater than 0.50, the single sample criteria reference value is calculated as:

\[
\text{criteria reference value} = \text{antilog}_{10} \left[\log_{10} 126 \text{ col/100ml} + (F \times 0.4) \right]
\]

N.B. 126 col/100ml is the geometric mean indicator bacteria criterion adopted into Connecticut’s Water Quality Standards, \(F \) is a factor determined from areas under the normal probability curve for a probability level equivalent to the sample proportion, 0.4 is the \(\log_{10} \) standard deviation used by EPA in deriving the national guidance criteria recommendations (Table 4).

5. **Designated Swimming**	**Non-Designated Swimming**	**All Other Recreational Uses**
If the sample proportion is equal to 0.50, the single sample reference criteria value is equal to the geometric mean criterion adopted into the Water Quality Standards (126 col/100 ml)

6. **Designated Swimming**	**Non-Designated Swimming**	**All Other Recreational Uses**
If the sample proportion is less than 0.50, the single sample reference criteria value is calculated as:

\[
\text{criteria reference value} = \text{antilog}_{10} \left[\log_{10} 126 \text{ col/100ml} - (F \times 0.4) \right]
\]

7. The percent reduction necessary to achieve consistency with the criteria is then calculated following the procedure described in steps 8 - 9 below:

8. If the monitoring result is less than the single sample reference criteria value, the percent reduction is zero.

9. If the monitoring result exceeds the single sample criteria reference value, the percent reduction necessary to meet criteria on that sampling date is calculated as:

\[
\text{percent reduction} = \left[\frac{(\text{monitoring result} - \text{criteria reference value})}{\text{monitoring result}} \right] \times 100
\]

10. The TMDL, expressed as the average percent reduction to meet criteria, is then calculated as the arithmetic average of the percent reduction calculated for each sampling date.
ANALYTICAL PROCEDURE – WET AND DRY WEATHER EVENTS

Precipitation data is reviewed and each sampling date is designated as a “dry” or “wet” sampling event. Although a site-specific protocol may be specified in an individual TMDL analysis, “wet” conditions are typically defined as greater than 0.1 inches precipitation in 24 hours or 0.25 inches precipitation in 48 hours, or 2.0 inches precipitation in 96 hours.

In designated urbanized areas the average percent reduction for all sampling events used to derive the TMDL that are designated as “wet” is computed and established as the WLA. The average percent reduction for all sampling events used to derive the TMDL that are designated as “dry” is computed and established as the LA.

In areas that do not have point sources, the average percent reduction for all sampling events used to derive the TMDL that are designated “wet” is computed as the wet weather LA, and the average percent reduction for all sampling events used to derive the TMDL that are designated as “dry” is computed as the dry weather LA.

ANALYTICAL PROCEDURE – SPREADSHEET MODEL

An Excel™ spreadsheet has been developed that performs all calculations necessary to derive a TMDL using this procedure. Copies of the spreadsheet in electronic form may be obtained from DEP by contacting Mary Becker at (860) 424-3262 or by email at mary.becker@ct.gov.
REFERENCES

3. Connecticut Consolidated Assessment and Listing Methodology for 305(b) and 303(d) Reporting. Connecticut Department of Environmental Protection, April 2004.

6. Water Quality Database. Connecticut Department of Environmental Protection, Monitoring and Assessment Program.

7. U.S. Census Bureau, March 2002. www.census.gov/geo/www/ua/ua_2k.html

Appendix D. Special Considerations for Salmon Brook Data

D-1 Data table of selected sites and descriptions
D-2 Map of selected sites
Appendix D-1 Additional Site Description and Values

<table>
<thead>
<tr>
<th>tripdate</th>
<th>StreamName</th>
<th>proximity</th>
<th>landmark/facility name</th>
<th>StationID</th>
<th>Municipality</th>
<th>bacteria</th>
<th>value</th>
<th>Precip</th>
<th>LAT</th>
<th>Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/2009</td>
<td>East Branch Salmon Brook</td>
<td>Immediately above small pond</td>
<td>Woodhaven Riding Facility #160 rte 189</td>
<td>907</td>
<td>Granby</td>
<td>e. coli</td>
<td>41</td>
<td>1.19°</td>
<td>42.013536</td>
<td>-72.843472</td>
</tr>
<tr>
<td>10/28/2009</td>
<td>East Branch Salmon Brook</td>
<td>DS of bridge</td>
<td>East Street Bridge</td>
<td>5927</td>
<td>Granby</td>
<td>e. coli</td>
<td>41</td>
<td>1.19°</td>
<td>41.997</td>
<td>-72.826</td>
</tr>
<tr>
<td>10/28/2009</td>
<td>East Branch Salmon Brook</td>
<td>downstream</td>
<td>Wells Road Bridge</td>
<td>2454</td>
<td>Granby</td>
<td>e. coli</td>
<td>790</td>
<td>1.19°</td>
<td>41.981274</td>
<td>-72.806592</td>
</tr>
<tr>
<td>10/28/2009</td>
<td>East Branch Salmon Brook</td>
<td>DS of 202 bridge over river</td>
<td>Route 202 North just after Romes Sporting Goods</td>
<td>5926</td>
<td>Granby</td>
<td>e. coli</td>
<td>770</td>
<td>1.19°</td>
<td>41.964</td>
<td>-72.791</td>
</tr>
<tr>
<td>10/28/2009</td>
<td>Salmon Brook</td>
<td>adjacent</td>
<td>Granbrook Park</td>
<td>310</td>
<td>East Granby</td>
<td>e. coli</td>
<td>63</td>
<td>1.19°</td>
<td>41.937</td>
<td>-72.775</td>
</tr>
<tr>
<td>10/27/2009</td>
<td>East Branch Salmon Brook</td>
<td>Immediately above small pond</td>
<td>Woodhaven Riding Facility #160 rte 189</td>
<td>907</td>
<td>Granby</td>
<td>e. coli</td>
<td>52</td>
<td>0.00°</td>
<td>42.013536</td>
<td>-72.843472</td>
</tr>
<tr>
<td>10/27/2009</td>
<td>East Branch Salmon Brook</td>
<td>DS of bridge</td>
<td>East Street Bridge</td>
<td>5927</td>
<td>Granby</td>
<td>e. coli</td>
<td>63</td>
<td>0.00°</td>
<td>41.997</td>
<td>-72.826</td>
</tr>
<tr>
<td>10/27/2009</td>
<td>East Branch Salmon Brook</td>
<td>downstream</td>
<td>Wells Road Bridge</td>
<td>2454</td>
<td>Granby</td>
<td>e. coli</td>
<td>160</td>
<td>0.00°</td>
<td>41.981274</td>
<td>-72.806592</td>
</tr>
<tr>
<td>10/27/2009</td>
<td>East Branch Salmon Brook</td>
<td>DS of 202 bridge over river</td>
<td>Route 202 North just after Romes Sporting Goods</td>
<td>5926</td>
<td>Granby</td>
<td>e. coli</td>
<td>51</td>
<td>0.00°</td>
<td>41.964</td>
<td>-72.791</td>
</tr>
<tr>
<td>10/27/2009</td>
<td>Salmon Brook</td>
<td>adjacent</td>
<td>Granbrook Park</td>
<td>310</td>
<td>East Granby</td>
<td>e. coli</td>
<td>160</td>
<td>0.00°</td>
<td>41.937</td>
<td>-72.775</td>
</tr>
<tr>
<td>10/22/2009</td>
<td>East Branch Salmon Brook</td>
<td>Immediately above small pond</td>
<td>Woodhaven Riding Facility #160 rte 189</td>
<td>907</td>
<td>Granby</td>
<td>e. coli</td>
<td>120</td>
<td>0.00°</td>
<td>42.013536</td>
<td>-72.843472</td>
</tr>
<tr>
<td>10/22/2009</td>
<td>East Branch Salmon Brook</td>
<td>DS of bridge</td>
<td>East Street Bridge</td>
<td>5927</td>
<td>Granby</td>
<td>e. coli</td>
<td>10</td>
<td>0.00°</td>
<td>41.997</td>
<td>-72.826</td>
</tr>
<tr>
<td>10/22/2009</td>
<td>East Branch Salmon Brook</td>
<td>downstream</td>
<td>Wells Road Bridge</td>
<td>2454</td>
<td>Granby</td>
<td>e. coli</td>
<td>86</td>
<td>0.00°</td>
<td>41.981274</td>
<td>-72.806592</td>
</tr>
<tr>
<td>tripdate</td>
<td>StreamName</td>
<td>proximity</td>
<td>landmark/facility name</td>
<td>StationID</td>
<td>Municipality</td>
<td>bacteria</td>
<td>value</td>
<td>Precip</td>
<td>LAT</td>
<td>Long</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>-----------</td>
<td>--------------</td>
<td>----------</td>
<td>-------</td>
<td>--------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>10/22/2009</td>
<td>East Branch Salmon</td>
<td>DS of 202 bridge over river</td>
<td>Route 202 North just after Romes Sporting Goods</td>
<td>5926</td>
<td>Granby</td>
<td>e. coli</td>
<td>20</td>
<td>0.00''</td>
<td>41.964</td>
<td>-72.791</td>
</tr>
<tr>
<td></td>
<td>Brook</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/22/2009</td>
<td>Salmon Brook</td>
<td>adjacent</td>
<td>Granbrook Park</td>
<td>310</td>
<td>East Granby</td>
<td>e. coli</td>
<td>31</td>
<td>0.00''</td>
<td>41.937</td>
<td>-72.775</td>
</tr>
</tbody>
</table>
Appendix D-2 Map of Additional Sites