Bass River Estuarine System
Total Maximum Daily Load
For Total Nitrogen
(CN 392.1)

COMMONWEALTH OF MASSACHUSETTS
EXECUTIVE OFFICE OF ENERGY AND ENVIRONMENTAL AFFAIRS
MATTHEW A. BEATON, SECRETARY
MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION
MARTIN SUUBERG, COMMISSIONER
BUREAU OF WATER RESOURCES
DOUGLAS FINE, ASSISTANT COMMISSIONER
May 2017
Key Feature: Total Nitrogen TMDLs for the Bass River Estuarine System
Location: US Environmental Protection Agency (EPA) Region 1, Yarmouth/Dennis, MA
Land Type: New England Coastal
303d Listing: Bass River (MA96-12) is listed in Category 5 of the 2014 Integrated List of Waters for Estuarine Bioassessments and was found to be impaired for nutrients during the MEP study. Bass River has a completed TMDL for fecal coliform (EPA #36771). Segments found to be impaired for nutrients during the MEP study and will be included in a future List of Waters: Run Pond (MA96265_2018), Bass River “Grand Cove” (MA96-118_2018), Dinah’s Pond (MA96-112_2018), Kelley’s Bay (MA96-113_2018), Follins Pond (MA96-114_2018), Mill Pond (MA96-117_2018), Mill Pond Stream/Weir Creek (MA96-116_2018), Mill Pond Stream/Muddy Creek (MA96-115_2018).

Data Sources: University of Massachusetts – Dartmouth/School for Marine Science and Technology; US Geological Survey; Applied Coastal Research and Engineering, Inc.; Town of Dennis; Town of Yarmouth

Data Mechanism: Massachusetts Surface Water Quality Standards, Ambient Data, and Linked Watershed Model

Monitoring Plan: Town of Dennis monitoring program (technical assistance from SMAST) and Town of Yarmouth monitoring program (technical assistance from SMAST)

Control Measures: Sewering, Storm Water Management, Attenuation by Impoundments and Wetlands, Fertilizer Use By-laws, Landfill Management
Executive Summary

Problem Statement

Excessive nitrogen (N) originating from a range of sources has added to the impairment of the environmental quality of the Bass River Estuarine System. Excessive N is indicated by:

- Undesirable increases in macro algae
- Periodic extreme decreases in dissolved oxygen concentrations that threaten aquatic life
- Reductions in the diversity of benthic animal populations
- Significant loss of eelgrass habitat
- Periodic algae blooms

With proper management of N inputs these trends can be reversed. Without proper management more severe problems might develop, including:

- Periodic fish kills
- Unpleasant odors and scum
- Benthic communities reduced to the most stress-tolerant species, or in the worst cases, near loss of the benthic animal communities

Coastal communities rely on clean, productive, and aesthetically pleasing marine and estuarine waters for tourism, recreational swimming, fishing, and boating, as well as for commercial fin fishing and shellfishing. Failure to reduce and control N loadings could result in an overabundance of macro-algae, a higher frequency of extreme decreases in dissolved oxygen concentrations and fish kills, widespread occurrence of unpleasant odors and visible scum, and a complete loss of benthic macroinvertebrates throughout most of the embayments. As a result of these environmental impacts, commercial and recreational uses of the Bass River System will be greatly reduced.

Sources of Nitrogen

Nitrogen enters the waters of coastal embayments from the following sources:

- The watershed
 - Natural background
 - Septic Systems
 - Runoff
 - Fertilizers
 - Agricultural activities
 - Landfills
 - Wastewater treatment facilities
- Atmospheric deposition
- Nutrient-rich bottom sediments in the embayments

Figure ES-A and Figure ES-B illustrate the percent contribution of all the sources of N and the controllable N sources to the estuary system, respectfully. Values are based on Table IV-3 and
Figure IV-7 from the Massachusetts Estuaries Project (MEP) Technical Report. As evident, most of the present *controllable* load to this system comes from septic systems.

Figure ES-A: Percent Contributions of All Nitrogen Sources to the Bass River Estuarine System

[Diagram showing contributions of all nitrogen sources to the Bass River Estuarine System.]

Figure ES-B: Percent Contributions of Controllable Nitrogen Sources to the Bass River Estuarine System

[Diagram showing contributions of controllable nitrogen sources to the Bass River Estuarine System.]
Target Threshold N Concentrations and Loadings

The watershed of the Bass River estuarine system is located on Cape Cod, Massachusetts and lies within the towns of Yarmouth and Dennis and also extends into a small portion of the southwest corner of Brewster. The total N loading (the quantity of N) to this system is 338 kg N/day with the majority of the load originating from the subwatersheds of Bass River-Middle (101 kg N/day), Follins Pond (76 kg N/day) and Kelleys Bay (49 kg N/day). The resultant concentrations of N ranged from 0.310-1.129 mg/L in the entire system (range of annual means collected from 13 stations during 2003-2008 as reported in Table VI-1 of the MEP Technical Report, and included in Appendix A of this report).

In order to restore and protect this estuarine system, N loadings, and subsequently the concentrations of N in the water, must be reduced to levels below those that cause the observed environmental impacts. This N concentration will be referred to as the target threshold N concentration. The Massachusetts Estuaries Project (MEP) has determined that by achieving a total N concentration of 0.42 mg/L near sentinel station BR-7 in the mid reach of Bass River (see Figure 5), water and habitat quality will be restored in these systems. The mechanism for achieving the target threshold N concentrations is to reduce the N loadings to the watershed of the harbor estuarine system. Based on the MEP sampling and modeling analyses and their Technical Report, the MEP study has determined that the Total Maximum Daily Load (TMDL) of N that will meet the target threshold N concentration of 0.42 mg/L is 206 kg N/day (note: this number is different from the tech report, as negative benthic flux was set to zero in the TMDL). To meet the TMDL this report suggests that a 47% reduction of the total watershed nitrogen load for the entire system will be required. This document presents the TMDL for the Bass River system and suggests possible options to both Yarmouth and Dennis on how to reduce the N loadings to meet the recommended TMDL and protect the waters of this embayment system.

Implementation

The primary goal of TMDL implementation will be lowering the concentrations of N by targeting loadings from on-site subsurface wastewater disposal (septic) systems. The MEP Technical Report for the Bass River system indicated that by reducing septic loads by 97% to 100% in the Dinahs Pond, Follins Pond, Kelleys Bay and Mill Pond and Stream (Weir Creek and Muddy Creek) subwatersheds along with a 69% reduction of septic load in the Bass River-Middle subwatershed the target thresholds can be met. However, there are other loading reduction scenarios that could achieve the target threshold N concentrations and could be verified through additional modeling. The MEP Technical Report also evaluated other options such as widening the culvert at the railroad bridge; however, such options were not considered effective for this particular system.

Local officials can explore other loading reduction scenarios through additional modeling as part of their Comprehensive Wastewater Management Plan (CWMP). Implementing best management practices (BMPs) to reduce N loadings from fertilizers and runoff where possible will also help to lower the total N load to the system. Methods for reducing N loadings from these sources are explained in detail in the “MEP Embayment Restoration Guidance for Implementation Strategies” which is available on the MassDEP website.
The appropriateness of any of the alternatives will depend on local conditions and will have to be determined on a case-by-case basis using an adaptive management approach. This adaptive management approach will incorporate the priorities and concepts included in the updated area wide management plan established under Clean Water Act Section 208. Finally, growth within the communities of Dennis and Yarmouth, that would exacerbate the problems associated with N Loadings, should be guided by considerations of water quality associated impacts.
Table of Contents

Executive Summary .. iii
List of Figures ... vii
List of Tables .. viii
Introduction .. 1
Description of Water Bodies and Priority Ranking ... 2
Problem Assessment ... 6
Pollutant of Concern, Sources, and Controllability ... 13
Description of the Applicable Water Quality Standards ... 14
Methodology - Linking Water Quality and Pollutant Sources ... 16
Application of the Linked Watershed-Embayment Model .. 17
Total Maximum Daily Loads .. 23
TMDL Values for the Bass River Estuarine System ... 30
Implementation Plans ... 31
Monitoring Plan .. 35
Reasonable Assurances ... 36
Public Participation ... 37
Works Cited .. 38
Appendix A: Summary of the Nitrogen Concentrations for the Bass River Estuarine System 39
Appendix B: Bass River Estuarine System estimated waste load allocation (WLA) from runoff of all impervious areas within 200 feet of its waterbodies. ... 41
Appendix C: Bass River Estuarine System Nine Total Nitrogen TMDLs 43
Appendix D: Response to Comments .. 44

List of Figures

Figure ES-A: Percent Contributions of All Nitrogen Sources to the Bass River Estuarine System iv
Figure ES-B: Percent Contributions of Controllable Nitrogen Sources to the Bass River Estuarine System .. iv
Figure 1: Watershed Delineations for the Bass River Estuarine System 3
Figure 2: Map of the Bass River Estuarine System(from USGS maps) .. 4
Figure 3: Resident Population for Yarmouth and Dennis ... 7
Figure 4: Percent Contribution of Nitrogen Sources to the Bass River Estuarine System 14
Figure 5: Water Quality Sampling Stations in the Bass River Estuarine System 21
Figure 6: Bass River Estuarine System Locally Controllable N Sources 26
List of Tables

Table 1: Waterbodies of the Bass River Estuarine System listed in the 2014 Integrated List of Waters5
Table 2: Impaired Waterbodies of the Bass River Estuarine System6
Table 3: General Summary of Conditions Related to the Major Indicators of Habitat Impairment Observed in the Bass River Estuarine System9
Table 4: Present Nitrogen Concentrations and Sentinel Station Target Threshold Nitrogen Concentration for the Bass River Estuarine System ...19
Table 5: Present Nitrogen Loadings to the Bass River Estuarine System22
Table 6: Present Watershed Nitrogen Loading Rates, Calculated Loading Rates that are Necessary to Achieve Target Threshold Nitrogen Concentrations, and the Percent Reductions of the Existing Loads Necessary to Achieve the Target Threshold Loadings* ...23
Table 7: The Total Maximum Daily Loads (TMDL) for the Bass River Estuarine System31
Table 8: Summary of the Present Septic System Loads, and the Loading Reductions Necessary to Achieve the TMDL by Reducing Septic System Loads Only† ...32
Introduction

Section 303(d) of the Federal Clean Water Act requires each state (1) to identify waters that are not meeting water quality standards and (2) to establish Total Maximum Daily Loads (TMDLs) for such waters for the pollutants of concern. The TMDL allocation establishes the maximum loadings of these pollutants of concern, taking into consideration all contributing sources to that water body, while allowing the system to meet and maintain its water quality standards and designated uses, including compliance with numeric and narrative standards. The TMDL development process may be described in four steps, as follows:

1. Determination and documentation of whether or not a water body is presently meeting its water quality standards and designated uses.

2. Assessment of present water quality conditions in the water body, including estimation of present loadings of pollutants of concern from both point sources (discernable, confined, and concrete sources such as pipes) and non-point sources (diffuse sources that carry pollutants to surface waters through runoff or groundwater).

3. Determination of the loading capacity of the water body. EPA regulations define the loading capacity as the greatest amount of loading that a water body can receive without violating water quality standards. If the water body is not presently meeting its designated uses, then the loading capacity will represent a reduction relative to present loadings.

4. Specification of load allocations, based on the loading capacity determination, for non-point sources and point sources that will ensure that the water body will not violate water quality standards.

After public comment and final approval by the EPA, the TMDL will serve as a guide for future implementation activities. The MassDEP will work with the towns of Dennis and Yarmouth to develop specific implementation strategies to reduce N loadings, and will assist in developing a monitoring plan for assessing the success of the nutrient reduction strategies.

In the Bass River Estuarine System the pollutant of concern for these TMDLs (based on observations of eutrophication) is the nutrient nitrogen. Nitrogen is the limiting nutrient in coastal and marine waters, which means that as its concentration increase so does the amount of plant matter. This leads to nuisance populations of macro-algae and increased concentrations of phytoplankton and epiphyton which impairs the healthy ecology of the affected water bodies.

The TMDLs for total N for the Bass River Estuarine System are based primarily on data collected, compiled and analyzed by University of Massachusetts Dartmouth’s School of Marine Science and Technology (SMAST) Coastal Systems Program and the towns of Dennis and Yarmouth as part of the Massachusetts Estuaries Project (MEP). The data were collected over a study period from 2003 through 2008, a period which will be referred to as the “present conditions” in the TMDL report since it contains the most recent data available. The
accompanying MEP Technical Report can be found at http://www.mass.gov/eea/agencies/massdep/water/watersheds/the-massachusetts-estuaries-project-and-reports.html The MEP Technical Report presents the results of the analyses of the coastal embayment systems using the MEP Linked Watershed-Embayment N Management Model (Linked Model). The analyses were performed to assist the watershed community with making decisions on current and future wastewater planning, wetland restoration, anadromous fish runs, shellfisheries, open-space and harbor maintenance programs. A critical element of this approach is the assessments of water quality monitoring data, historical changes in eelgrass distribution, time-series water column oxygen measurements and benthic community structure that was conducted on this embayment. These assessments served as the basis for generating a total N loading threshold for use as a goal for watershed N management. The TMDLs are based on the site specific total N threshold generated for this estuarine system. Thus, the MEP offers a science-based management approach to support the wastewater management planning and decision-making process for both Dennis and Yarmouth and Brewster.

Description of Water Bodies and Priority Ranking

The Bass River Estuarine System is one of the largest estuaries on Cape Cod and its watershed is shared by the towns of Dennis and Yarmouth and a very small part of Brewster (see Figures 1 and 2). The system runs roughly north to south and is comprised of a tidal river connecting a series of large kettle ponds (Mill Pond, Follins Pond and Dinahs Pond) to Nantucket Sound. It also encompasses a small lagoonal tributary basin (known as Davis Beach or School Street Marsh) behind the barrier beach east of the river’s mouth which supported salt marsh and has now been partially filled and developed. The barrier beach itself grew from a spit that was formed as marine sands and gravels were deposited east to west by coastal processes during the post-glacial sea level rise. The lithology of the watershed is characterized by sand and gravel deposits in the lower portion of the system, while the upper watershed is comprised of boulders and glacial drift overlying the outwash sand and gravel of the Falmouth moraine.

The primary ecological threat to the Bass River Estuarine System as a coastal resource is degradation resulting from nutrient enrichment. Loading of the critical eutrophying nutrient, nitrogen, to the Bass River Estuarine System has impaired its animal and plant habitats and resulted in ecological changes and lost marine resources. Nitrogen related habitat impairment within the Bass River Estuarine System shows a gradient of high to low, moving from the upper basins of Mill Pond and Follins Pond to the tidal inlet.

Nitrogen enrichment occurs through two primary mechanisms, 1) high rates of nitrogen entering from the surrounding watershed and/or 2) low rates of flushing due to "restricted" tidal exchange with the low nitrogen waters of Nantucket Sound. Because of its structure, the Bass River system is more susceptible to nitrogen enrichment than most estuaries in the region. This is because of the combined effect of the long meandering river, the presence of several ponds and coves, and the tidal restriction at Route 6. Over the length of the system, there is considerable attenuation of the tide range. Between the inlet at Nantucket Sound and Kelleys Bay, north of the Route 6 crossing, the average tide range is reduced from 3.4 feet to 1.9 feet, a reduction of 44%. The
reduction is caused by frictional losses along the 6.25 mile-long reach of the River, to the culvert entrance of Mill Pond at the head of the system.

Figure 1: Watershed Delineations for the Bass River Estuarine System

The Bass River Estuary is a complex system as evidenced by its size and structure. Its ponds and coves delineate a number of subbasins (Davis Beach, Grand Cove, Dinahs Pond, Kelleys Bay, Follins Pond and Mill Pond) and its long tidal reach results in a well defined salinity gradient from the inlet (most saline) to Mill Pond (least saline). The upper reaches of the system appear to be the most nitrogen sensitive; however, the N loads emanating from the upper portion eventually have an impact on the lower reaches, and therefore the system has to be managed holistically.

This estuarine system constitutes an important component of the area’s natural and cultural resources and the uses of the system must be balanced. The Bass River watershed is an attractive location due to its extensive shoreline, sheltered bays and accessibility for fishing, swimming and boating. Paradoxically, these attributes also increase the pressure for development which tends to threaten the very qualities which make it so desirable. In particular, the Bass River Estuarine system is at risk of further eutrophication from high nutrient loads in the groundwater and runoff from the watershed.

The nitrogen loading to the Bass River estuary, like almost all embayments in southeastern Massachusetts, results primarily from on-site disposal of residential (and some commercial)
wastewater. The towns of Dennis and Yarmouth, like most of Cape Cod has seen rapid growth over the past five decades and does not have a centralized wastewater treatment system or decentralized facilities that remove nitrogen. As such, all of the developed areas in the Bass River watershed are not connected to any municipal sewerage wastewater treatment and disposal is primarily through privately maintained on-site septic systems. As present and future increased levels of nutrients impacts the coastal embayments in the towns of Dennis and Yarmouth, water quality degradation will increase, with additional impairment and loss of environmental resources, as evidenced by the recent macroalgal blooms within the Bass River estuary.

Figure 2: Map of the Bass River Estuarine System (from USGS maps)
In the current *Massachusetts Year 2014 Integrated List of Waters* (MassDEP, 2015), Bass River and its tributaries are impaired for estuarine bioassessments and fecal coliform (Table 1). A pathogen TMDL has been prepared for the Bass River to address bacteria impairment.

Table 1: Waterbodies of the Bass River Estuarine System listed in the 2014 Integrated List of Waters

<table>
<thead>
<tr>
<th>Name</th>
<th>Segment ID</th>
<th>Description</th>
<th>Size</th>
<th>Category</th>
<th>Pollutants addressed by TMDL</th>
<th>EPA TMDL Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bass River</td>
<td>MA96-12</td>
<td>Route 6, Dennis/Yarmouth to mouth at Nantucket Sound, Dennis/Yarmouth (excluding Grand Cove, Dennis).</td>
<td>0.69 square miles</td>
<td>4a</td>
<td>Fecal Coliform</td>
<td>36771</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 (Requires a TMDL)</td>
<td>Estuarine Bioassessments</td>
<td></td>
</tr>
<tr>
<td>Flax Pond</td>
<td>MA96090</td>
<td>Dennis</td>
<td>15 acres</td>
<td>3 (no uses assessed)</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Complete description of this embayment system is presented in Chapters I and IV of the MEP Technical Report. A majority of the information presented here is drawn from this report. Chapters VI and VII of the MEP Technical Report provide assessment data that show that the Bass River Estuarine System is impaired because of nutrients, low dissolved oxygen levels, elevated chlorophyll *a* levels, and degraded eelgrass and benthic fauna habitat. Table 2 lists the MEP study impaired parameters.

The embayment addressed by this document have been determined to be “high priority” based on three significant factors: (1) the initiative that the towns of Dennis and Yarmouth have taken to assess the conditions of the entire embayment system; (2) the commitment made by the town to restore the Bass River Estuarine System; and (3) the extent of impairment in the Bass River Estuarine System. In both marine and freshwater systems, an excess of nutrients results in degraded water quality, adverse impacts to ecosystems and limits on the use of water resources. Observations are summarized in the Problem Assessment section below and detailed in Chapter VII, Assessment of Embayment Nutrient Related Ecological Health, of the MEP Technical Report. Follins Pond, Dinah’s Pond, Kelleys Bay, Grand Cove, Mill Pond, Weir Creek, and Muddy Creek will be listed as impaired for nutrients in a future (2018) Massachusetts Integrated List of Waters.
Table 2: Impaired Waterbodies of the Bass River Estuarine System*
* Waterbodies found to be impaired by SMAST during the MEP study.

<table>
<thead>
<tr>
<th>Name</th>
<th>Segment ID</th>
<th>Description</th>
<th>SMAST Impaired Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bass River (Lower, Middle, and School St Marsh)</td>
<td>MA96-12_2014</td>
<td>Route 6, Dennis/Yarmouth to mouth at Nantucket Sound, Dennis/Yarmouth (excluding Grand Cove, Dennis.</td>
<td>Nutrients, DO Level, Chlorophyll a, Benthic Fauna, Eelgrass, Macroalgae</td>
</tr>
<tr>
<td>Dinah’s Pond</td>
<td>MA96-112_2018</td>
<td>Yarmouth</td>
<td>Nutrients, DO Level, Chlorophyll a, Benthic Fauna, Eelgrass, Macroalgae</td>
</tr>
<tr>
<td>Follins Pond</td>
<td>MA96-114_2018</td>
<td>Yarmouth/Dennis</td>
<td>Nutrients, DO Level, Chlorophyll a, Benthic Fauna, Macroalgae</td>
</tr>
<tr>
<td>Kelleys Bay</td>
<td>MA96-113_2018</td>
<td>Dennis/Yarmouth</td>
<td>Nutrients, DO Level, Chlorophyll a, Benthic Fauna, Macroalgae</td>
</tr>
<tr>
<td>Run Pond</td>
<td>MA96265</td>
<td>Dennis</td>
<td>Nutrients</td>
</tr>
<tr>
<td>Bass River “Grand Cove” portion</td>
<td>MA96-118_2018</td>
<td>“Grand Cove” portion of Bass River, north of Main Street (Route 28), Yarmouth</td>
<td>Nutrients, DO Level, Chlorophyll a, Benthic Fauna, Eelgrass, Macroalgae</td>
</tr>
<tr>
<td>Mill Pond</td>
<td>MA96-117_2018</td>
<td>Yarmouth</td>
<td>Nutrients, DO Level, Chlorophyll a, Benthic Fauna</td>
</tr>
<tr>
<td>Mill Pond Stream: Weir Creek</td>
<td>MA96-116_2018</td>
<td>Headwaters, outlet Mill Pond, Yarmouth to mouth at confluence with Muddy Creek, Yarmouth</td>
<td>Nutrients, DO Level, Chlorophyll a, Benthic Fauna</td>
</tr>
<tr>
<td>Mill Pond Stream: Muddy Cr</td>
<td>MA96-115_2018</td>
<td>Headwaters, outlet North Dennis Road Pond, Yarmouth to mouth at inlet Follins Pond, Yarmouth</td>
<td>Nutrients, DO Level, Chlorophyll a, Benthic Fauna</td>
</tr>
</tbody>
</table>

Problem Assessment

Water quality problems associated with development within the watershed result primarily from septic systems and from runoff, including fertilizers. The water quality problems affecting nutrient-enriched embayments generally include periodic decreases of dissolved oxygen, decreased diversity and quantity of benthic animals and periodic algae blooms. In the most severe cases habitat degradation could lead to periodic fish kills, unpleasant odors and scums and near loss of the benthic community and/or presence of only the most stress-tolerant species of benthic animals.

Coastal communities, including Yarmouth and Dennis, rely on clean, productive and aesthetically pleasing marine and estuarine waters for tourism, recreational swimming, fishing and boating, as well as commercial fin fishing and shell fishing. The continued degradation of this coastal embayment as described above will significantly reduce the recreational and commercial value and use of these important environmental resources.
Figure 3 shows how the populations of Yarmouth and Dennis has more than doubled from less than 2,000 people in 1930 to close to 25,000 and 15,000 people (respectively) in 2010. Increases in N loading to estuaries are directly related to increasing development and population in the watershed. The towns of Yarmouth and Dennis have been among the fastest growing towns in the Commonwealth over the past several decades and do not have a centralized wastewater treatment system. This increase in population contributes to a decrease in undeveloped land and an increase in septic systems, runoff from impervious surfaces and fertilizer use. All the residences in the Bass River watershed are serviced by privately maintained conventional on-site septic systems with the exception of 54 innovative/alternative septic systems (Howes, 2011). These unsewered areas contribute significantly to the system through transport in direct groundwater discharges to estuarine waters and through surface water flows from freshwater tributaries and ponds. The Town of Yarmouth operates a regional septage treatment facility for the disposal of pump out from local septic systems located throughout the Town of Yarmouth.

Habitat and water quality assessments were conducted on this estuarine system based upon water quality monitoring data, changes in eelgrass distribution, time-series water column oxygen measurements and benthic community structure. The MEP evaluation of habitat quality supported by each area considers its natural structure and its ability to support eelgrass beds and the types of infaunal communities that they support (Table 3). As a basis for a nitrogen threshold determination, the MEP study focused on major habitat quality indicators: (1) bottom water dissolved oxygen and chlorophyll-a concentrations, (2) eelgrass distribution over time and (3) benthic animal communities (see Chapter VII of the Technical Report).

The Bass River embayment system is a complex estuary composed of two functional types of component basins: embayments (Mill Pond, Follins Pond, Dinah’s Pond, Kelleys Bay, Grand
Cove, Bass River); and a salt marsh basin (School Street Marsh /Weir Creek). As reported in the MEP Technical Report, the Bass River system is showing some nitrogen related impairment within each of its component basins however, there is a strong habitat quality gradient. The upper portion including Mill Pond, Follins Pond, Dinah’s Pond, Kelleys Bay as well as Grand Cove are demonstrating significantly impaired infauna habitat. Since Mill Pond, Follins Pond and Kelleys Bay have not historically supported eelgrass, they have been classified by SMAST as significantly impaired basins due to loss of benthic animal habitat. Nitrogen enrichment has resulted in phytoplankton blooms, periodic oxygen depletions, macroalgal accumulations and significantly reduced to virtual loss of benthic communities in these subembayments. The Bass River is also nitrogen enriched, but has less nitrogen due to its structure and high flushing. The mid and lower reaches currently support high quality benthic habitat, but loss of historical eelgrass coverage indicates that they have become significantly impaired. The School Street Marsh/ Weir Creek subembayment has not supported eelgrass in the past and currently functions as a wetland basin, with natural organic enrichment and periodic low oxygen. However, it too may be showing some modest signs of impairment. Overall the areas of significant and moderate habitat impairment (eelgrass and/or benthic habitat) comprise more than 90% of the estuarine area of the system.
Table 3: General Summary of Conditions Related to the Major Indicators of Habitat Impairment Observed in the Bass River Estuarine System

<table>
<thead>
<tr>
<th>Health Indicator</th>
<th>Upper Reach</th>
<th></th>
<th>Mid Reach</th>
<th></th>
<th>Lower Reach</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mill Pond</td>
<td>Follins Pond</td>
<td>Dinah’s Pond</td>
<td>Kelleys Bay</td>
<td>Mid River</td>
<td>Grand Cove</td>
</tr>
<tr>
<td>Dissolved Oxygen (DO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levels almost always > 4mg/L, and generally >5 mg/L, WQMP, levels >air saturation periodic.</td>
<td>MI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periodic depletions to < 1 mg/L, <3 mg/L 10% of time, <5 mg/L ~25% of 27 day record, similar to WQMP BR-2 & BR-3 results, levels >air saturation periodic.</td>
<td>SI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generally >4 mg/L, infrequently below 4 mg/L (5% of record), <5 mg/L 23% of record, levels >air saturation periodic.</td>
<td>MI/SI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generally ~6 mg/L and above 5 mg/L, 93% of record, rarely <4 mg/L; WQMP min= 4.3 mg/L.</td>
<td>MI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generally >4 mg/L, >6 mg/L 98% of the time, min = 4.7 mg/L (133 samples WQMP), >6 mg/L 41% of time.</td>
<td>MI/H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll</td>
<td>Blooms, overall average 24.7 ug/L in WQMP samplings.</td>
<td>SI</td>
<td>Ave ~10 ug/L, and >15 ug/L 16% of record; WQMP ave= 11.5 ug/L.</td>
<td>MI/SI</td>
<td>Ave 5.2 ug/L rarely ~15 ug/L over 27 day record; WQMP ave= 9.3 ug/L.</td>
<td>MI</td>
</tr>
<tr>
<td>Ave ~7.7 ug/L and >15 ug/L 7% of record; WQMP ave= 7.6 ug/L.</td>
<td>MI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rare depletion <3 mg/L WQMP, generally >4 mg/L (93% of record & 93% WQMP samples), <5 mg/L of 30% of record, wetland influenced.</td>
<td>MI/H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave 3.9 ug/L WQMP average.</td>
<td>MI/H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health Indicator</td>
<td>Upper Reach</td>
<td>Mid Reach</td>
<td>Lower Reach</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroalgae</td>
<td>Mill Pond: Patchy surface mat, epiphytes on Ruppia, a brackish SAV [2] (H/MI)</td>
<td>Drift algae generally sparse, some mod. dense patches. [MI]</td>
<td>Sparse drift algae, only BSR-20 had any significant accumulation, which appeared to be Ulva from upper basins. (H)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Follins Pond: Areas of dense drift algae, possibly Gracillaria, some Ulva. (SI)</td>
<td>Drift algae generally sparse, some mod. dense patches. [MI]</td>
<td>Areas of mod. accumulation of Ulva and filamentous and branched forms. (MI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dinah’s Pond: Areas of dense drift algae, but heavy with epiphytes, no temporal data on changes in bed coverage. (MI)</td>
<td>Loss of extensive eelgrass coverage 1951-1995, no eelgrass in 2001/2006 MassDEP and MEP surveys. (SI)</td>
<td>Loss of extensive eelgrass coverage 1951-1995, no eelgrass in 2001/2006 MassDEP and MEP surveys. (SI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kelleys Bay: Mod # of individuals, low diversity, main basin dominated by stress and organic enrichment indicators (e.g. tubificids, Capitella, Streblospio); lower basin by transitional (SI/SD)</td>
<td>Loss of extensive eelgrass coverage 1951-1995, no eelgrass in 2001/2006 MassDEP and MEP surveys. (SI)</td>
<td>Loss of extensive eelgrass coverage 1951-1995, no eelgrass in 2001/2006 MassDEP and MEP surveys. (SI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mid River: Low # of individuals (<75) and species (7), 50% of community is stress indicator species, Capitella. (SI/SD)</td>
<td>High # of individuals and low species (7), diversity (~1) and evenness (~0.8), some deep burrowers, crustaceans, polychaetes and mollusk species. (H)</td>
<td>Mod-high # of individuals, species (17), diversity (~2) & evenness (~0.5), crustaceans, mollusk & polychaete species, dominated by transitional species (amphipods & cumaceans), wetland influenced. (H)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grand Cove: High # of individuals, species (31), diversity (>3) and evenness (>0.8), some deep burrowers, crustaceans, polychaetes and mollusk species, dominated by a cumacean, remainder of community dominated by organic (H)</td>
<td>High # of individuals and low species (7), diversity (~1) and evenness (~0.8), some deep burrowers, crustaceans, polychaetes and mollusk species, some transitional species. (H)</td>
<td>High # of individuals, species (25), diversity (~3) and evenness (~0.7), some deep burrowers, crustaceans, polychaetes and mollusk species, some transitional species. (H)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower River: School Street Marsh/Weir Creek Basin: Sparse drift algae with patches of attached Codium. (H)</td>
<td>Sparse drift algae with patches of attached Codium. (H)</td>
<td>Sparse drift algae with patches of attached Codium. (H)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infaunal Animals</td>
<td>Infaunal Animals</td>
<td>Infaunal Animals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High # of individuals, low diversity, main basin dominated by stress and organic enrichment indicators (e.g. tubificids, Capitella, Streblospio); lower basin by transitional (SI)</td>
<td>Low # of individuals (<75) and species (7), 50% of community is stress indicator species, Capitella. (SI/SD)</td>
<td>Low # of individuals (<75) and species (7), diversity (~1) and evenness (~0.8), some deep burrowers, crustaceans, polychaetes and mollusk species. (H)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mill Pond: Mod # of individuals, low diversity, main basin dominated by stress and organic enrichment indicators (e.g. tubificids, Capitella, Streblospio); lower basin by transitional (SI/SD)</td>
<td>Low # of individuals (<75) and species (7), diversity (~1) and evenness (~0.8), some deep burrowers, crustaceans, polychaetes and mollusk species. (H)</td>
<td>Low # of individuals (<75) and species (7), diversity (~1) and evenness (~0.8), some deep burrowers, crustaceans, polychaetes and mollusk species. (H)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Follins Pond: Mod # of individuals, low diversity, main basin dominated by stress and organic enrichment indicators (e.g. tubificids, Capitella, Streblospio); lower basin by transitional (SI/SD)</td>
<td>Low # of individuals (<75) and species (7), diversity (~1) and evenness (~0.8), some deep burrowers, crustaceans, polychaetes and mollusk species. (H)</td>
<td>Low # of individuals (<75) and species (7), diversity (~1) and evenness (~0.8), some deep burrowers, crustaceans, polychaetes and mollusk species. (H)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dinah’s Pond: Mod # of individuals, low diversity, main basin dominated by stress and organic enrichment indicators (e.g. tubificids, Capitella, Streblospio); lower basin by transitional (SI/SD)</td>
<td>Low # of individuals (<75) and species (7), diversity (~1) and evenness (~0.8), some deep burrowers, crustaceans, polychaetes and mollusk species. (H)</td>
<td>Low # of individuals (<75) and species (7), diversity (~1) and evenness (~0.8), some deep burrowers, crustaceans, polychaetes and mollusk species. (H)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kelleys Bay: Mod # of individuals, low diversity, main basin dominated by stress and organic enrichment indicators (e.g. tubificids, Capitella, Streblospio); lower basin by transitional (SI/SD)</td>
<td>Low # of individuals (<75) and species (7), diversity (~1) and evenness (~0.8), some deep burrowers, crustaceans, polychaetes and mollusk species. (H)</td>
<td>Low # of individuals (<75) and species (7), diversity (~1) and evenness (~0.8), some deep burrowers, crustaceans, polychaetes and mollusk species. (H)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mid River: Mod # of individuals, low diversity, main basin dominated by stress and organic enrichment indicators (e.g. tubificids, Capitella, Streblospio); lower basin by transitional (SI/SD)</td>
<td>Low # of individuals (<75) and species (7), diversity (~1) and evenness (~0.8), some deep burrowers, crustaceans, polychaetes and mollusk species. (H)</td>
<td>Low # of individuals (<75) and species (7), diversity (~1) and evenness (~0.8), some deep burrowers, crustaceans, polychaetes and mollusk species. (H)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grand Cove: Mod # of individuals, low diversity, main basin dominated by stress and organic enrichment indicators (e.g. tubificids, Capitella, Streblospio); lower basin by transitional (SI/SD)</td>
<td>Low # of individuals (<75) and species (7), diversity (~1) and evenness (~0.8), some deep burrowers, crustaceans, polychaetes and mollusk species. (H)</td>
<td>Low # of individuals (<75) and species (7), diversity (~1) and evenness (~0.8), some deep burrowers, crustaceans, polychaetes and mollusk species. (H)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower River: Mod # of individuals, low diversity, main basin dominated by stress and organic enrichment indicators (e.g. tubificids, Capitella, Streblospio); lower basin by transitional (SI/SD)</td>
<td>Low # of individuals (<75) and species (7), diversity (~1) and evenness (~0.8), some deep burrowers, crustaceans, polychaetes and mollusk species. (H)</td>
<td>Low # of individuals (<75) and species (7), diversity (~1) and evenness (~0.8), some deep burrowers, crustaceans, polychaetes and mollusk species. (H)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>School Street Marsh/Weir Creek Basin: Mod # of individuals, low diversity, main basin dominated by stress and organic enrichment indicators (e.g. tubificids, Capitella, Streblospio); lower basin by transitional (SI/SD)</td>
<td>Low # of individuals (<75) and species (7), diversity (~1) and evenness (~0.8), some deep burrowers, crustaceans, polychaetes and mollusk species. (H)</td>
<td>Low # of individuals (<75) and species (7), diversity (~1) and evenness (~0.8), some deep burrowers, crustaceans, polychaetes and mollusk species. (H)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Health Indicator</th>
<th>Upper Reach</th>
<th>Mid Reach</th>
<th>Lower Reach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mill Pond</td>
<td>Follins Pond</td>
<td>Dinah’s Pond</td>
</tr>
<tr>
<td>Overall</td>
<td>SI benthic habitat (dominated by single enrichment species), high chlorophyll</td>
<td>SI benthic habitat, low DO and accumulations of drift algae.</td>
<td>presence of eelgrass, with high epiphyte growth, SI benthic habitat.</td>
</tr>
</tbody>
</table>

1 From Table VIII-1 in the MEP Technical Report
H - Healthy Habitat Conditions*
MI – Moderately Impaired*
SI – Significantly Impaired- considerably and appreciably changed from normal conditions*
SD – Severe degradation
* - These terms are more fully described in MEP report “Site-Specific Nitrogen Thresholds for Southeastern Massachusetts Embayments: Critical Indicators” December 22, 2003
2 SAV - rooted submerged aquatic vegetation
3 WQMP – Dennis and Yarmouth Water Quality Monitoring Program
-- no evidence this basin is supportive of eelgrass
Pollutant of Concern, Sources, and Controllability

In the coastal embayments of the towns of Yarmouth and Dennis as in most marine and coastal waters the limiting nutrient is N. Nitrogen concentrations beyond those expected naturally contribute to undesirable conditions including the severe impacts described above, through the promotion of excessive growth of plants and algae.

The embayments addressed in this TMDL report have had extensive data collected and analyzed through the Massachusetts Estuaries Program (MEP) and with the cooperation and assistance from the Towns of Yarmouth and Dennis, the USGS, and the Cape Cod Commission. Data collection included both water quality and hydrodynamics as described in Chapters I, IV, V, and VII of the MEP Technical Report.

Figure 4 illustrates the sources of N to the Bass River Estuarine System. Most of the controllable N affecting these systems originates from on-site subsurface wastewater disposal systems (septic systems). The level of “controllability” of each source, however, varies widely:

Atmospheric deposition to estuary surface – Although helpful, local controls are not adequate – it is only through region- and nation-wide air pollution control initiatives that significant reductions are feasible, however the N from these sources might be subjected to enhanced natural attenuation as it moves towards the estuary.

Atmospheric deposition to natural surfaces (forests, fields, etc) in the watershed – Cannot be adequately controlled locally, however, the N from these sources might be subjected to enhanced natural attenuation as it moves towards the estuary.

Fertilizer – Fertilizer and related N loadings can be reduced through best management practices (BMPs), bylaws and public education.

Impervious surfaces and storm-water runoff – sources of N can be controlled by BMPs, bylaws and storm-water infrastructure improvements and public education.

Landfill – The Town of Yarmouth owns a closed and capped landfill located near the outer edge of the Bass River watershed. A portion of the nitrogen load from this landfill drains to the Bass River watershed. Related N loadings can be controlled through appropriate BMP and management techniques.

Nitrogen from sediments - control by such measures as dredging is not feasible on a large scale. However, the concentrations of N in sediments, and thus the loadings from the sediments, will decline over time if sources in the watershed are removed, or reduced to the target levels discussed later in this document. Increased dissolved oxygen will help keep N from fluxing.
Septic systems—are the largest sources of controllable N. These sources of N can be controlled by a variety of case-specific methods including: sewering and treatment at centralized or decentralized locations, transporting and treating septage at treatment facilities with N removal technology either in or out of the watershed, or installing N-reducing on-site wastewater treatment systems.

Cost/benefit analyses will have to be conducted on all possible N loading reduction methodologies in order to select the optimal control strategies, priorities and schedules.

Figure 4: Percent Contribution of Nitrogen Sources to the Bass River Estuarine System

<table>
<thead>
<tr>
<th>Source</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Septic Systems</td>
<td>75%</td>
</tr>
<tr>
<td>Landfill</td>
<td>2%</td>
</tr>
<tr>
<td>Fertilizers</td>
<td>7%</td>
</tr>
<tr>
<td>Runoff from Impervious Surfaces</td>
<td>8%</td>
</tr>
<tr>
<td>Atm. Deposition to Estuary Surface</td>
<td>6%</td>
</tr>
<tr>
<td>Atm. Deposition to Natural Surfaces</td>
<td>2%</td>
</tr>
</tbody>
</table>

Description of the Applicable Water Quality Standards

The water quality classifications of the saltwater portions of the Bass River Estuarine System are SA (all surface waters subject to the rise and fall of the tide), and the freshwater portions of the system are classified as B. Water quality standards of particular interest to the issues of cultural eutrophication are dissolved oxygen, nutrients, aesthetics, and excess plant biomass and nuisance vegetation. The Massachusetts water quality standards (314 CMR 4.0) (MassDEP, 2007) contain descriptions of coastal and marine classes and numeric criteria for dissolved oxygen but have only narrative standards that relate to the other variables, as described below:

314 CMR 4.05(4) (a) Class SA. These waters are designated as an excellent habitat for fish, other aquatic life and wildlife, including for their reproduction, migration, growth and other critical functions, and for primary and secondary contact recreation. In certain waters, excellent habitat for fish, other aquatic life and wildlife may include, but is not limited to, seagrass. Where designated in the tables to 314 CMR 4.00 for shellfishing, these waters shall be suitable for shellfish harvesting without depuration (Approved and Conditionally Approved Shellfish Areas). These waters shall have excellent aesthetic value.
314 CMR 4.05(4)(b) Class SB. These waters are designated as a habitat for fish, other aquatic life and wildlife, including for their reproduction, migration, growth and other critical functions, and for primary and secondary contact recreation. In certain waters, habitat for fish, other aquatic life and wildlife may include, but is not limited to, seagrass. Where designated in the tables to 314 CMR 4.00 for shellfishing, these waters shall be suitable for shellfish harvesting with depuration (Restricted and Conditionally Restricted Shellfish Areas). These waters shall have consistently good aesthetic value.

314 CMR 4.05(5)(a) states “Aesthetics – All surface waters shall be free from pollutants in concentrations or combinations that settle to form objectionable deposits; float as debris, scum, or other matter to form nuisances; produce objectionable odor, color, taste, or turbidity; or produce undesirable or nuisance species of aquatic life.”

314 CMR 4.05(5)(b) states: “Bottom Pollutants or Alterations All surface waters shall be free from pollutants in concentrations or combinations or from alterations that adversely affect the physical or chemical nature of the bottom, interfere with the propagation of fish or shellfish, or adversely affect populations of non-mobile or sessile benthic organisms.”

314 CMR 4.05(5)(c) states, “Nutrients - Unless naturally occurring, all surface waters shall be free from nutrients in concentrations that would cause or contribute to impairment of existing or designated uses and shall not exceed the site specific criteria developed in a TMDL or as otherwise established…”

314 CMR 4.05(4)(a)1- Class SA, Dissolved Oxygen - Shall not be less than 6.0 mg/L. Where natural background conditions are lower, DO shall not be less than natural background conditions. Natural seasonal and daily variations that are necessary to protect existing and designated uses shall be maintained.

314 CMR 4.05(3)(b)1- Class B, Dissolved Oxygen - Shall not be less than 6.0 mg/l in cold water fisheries and not less than 5.0 mg/l in warm water fisheries. Where natural background conditions are lower, DO shall not be less than natural background conditions. Natural seasonal and daily variations that are necessary to protect existing and designated uses shall be maintained.

Thus, the assessment of eutrophication is based on site-specific information within a general framework that emphasizes impairment of uses and preservation of a balanced indigenous flora and fauna. This approach is recommended by the US EPA in their draft Nutrient Criteria Technical Guidance Manual for Estuarine and Coastal Marine Waters (EPA-822-B-01-003, Oct 2001). The Guidance Manual notes that lakes, reservoirs, streams and rivers may be subdivided by classes, allowing reference conditions for each class and facilitating cost-effective criteria development for nutrient management. However, individual estuarine and coastal marine waters tend to have unique characteristics and development of individual water body criteria is typically required.
Methodology - Linking Water Quality and Pollutant Sources

Extensive data collection and analyses have been described in detail in the MEP Technical Report. Those data were used by SMAST to assess the loading capacity of each embayment. Physical (Chapter V), chemical and biological (Chapters IV, VII, and VIII) data were collected and evaluated. The primary water quality objective was represented by conditions that:

1) Restore the natural distribution of eelgrass because it provides valuable habitat for shellfish and finfish;
2) Prevent harmful or excessive algal blooms;
3) Restore and preserve benthic communities;
4) Maintain dissolved oxygen concentrations that are protective of the estuarine communities.

The details of the data collection, modeling and evaluation are presented and discussed in Chapters IV, V, VI, VII and VIII of the MEP Technical Report. The main aspects of the data evaluation and modeling approach are summarized below.

The core of the Massachusetts Estuaries Project analytical method is the Linked Watershed-Embayment Management Modeling Approach. It fully links watershed inputs with embayment circulation and N characteristics, and is characterized as follows:

- Requires site specific measurements within the watershed and each sub-embayment;
- Uses realistic “best-estimates” of N loads from each land-use (as opposed to loads with built-in “safety factors” like Title 5 design loads);
- Spatially distributes the watershed N loading to the embayment;
- Accounts for N attenuation during transport to the embayment;
- Includes a 2D or 3D embayment circulation model depending on embayment structure;
- Accounts for basin structure, tidal variations, and dispersion within the embayment;
- Includes N regenerated within the embayment;
- Is validated by both independent hydrodynamic, N concentration, and ecological data;
- Is calibrated and validated with field data prior to generation of “what if” scenarios.

The Linked Model has been applied previously to watershed N management in over 60 embayments thus far throughout Southeastern Massachusetts. In these applications it became clear that the model can be calibrated and validated and has use as a management tool for evaluating watershed N management options.

The Linked Model, when properly calibrated and validated for a given embayment becomes a N management-planning tool as described in the model overview below. The model can assess solutions for the protection or restoration of nutrient-related water quality and allows testing of management scenarios to support cost/benefit evaluations. In addition, once a model is fully functional it can be refined for changes in land-use or embayment characteristics at minimal cost. Also, since the Linked Model uses a holistic approach that incorporates the entire watershed, embayment and tidal source waters, it can be used to evaluate all projects as they relate directly or indirectly to water quality conditions within its geographic boundaries. It should be noted that
this approach includes high-order, watershed and sub-watershed scale modeling necessary to develop critical nitrogen targets for each major sub-embayment. The models, data and assumptions used in this process are specifically intended for the purposes stated in the MEP Technical Report, upon which this TMDL is based. As such, the Linked Model process does not contain the type of data or level and scale of analysis necessary to predict the fate and transport of nitrogen through groundwater from specific sources. In addition, any determinations related to direct and immediate hydrologic connection to surface waters are beyond the scope of the MEP’s Linked Model process.

The Linked Model provides a quantitative approach for determining an embayment's (1) N sensitivity, (2) N threshold loading levels (TMDL) and (3) response to changes in loading rate. The approach is fully field validated and unlike many approaches, accounts for nutrient sources, attenuation and recycling and variations in tidal hydrodynamics (Figure I-4 of the MEP Technical Report). This methodology integrates a variety of field data and models, specifically:

- Monitoring - multi-year embayment nutrient sampling
- Hydrodynamics
 - Embayment bathymetry (depth contours throughout the embayment)
 - Site-specific tidal record (timing and height of tides)
 - Water velocity records (in complex systems only)
 - Hydrodynamic model
- Watershed Nitrogen Loading
 - Watershed delineation
 - Stream flow (Q) and N load
 - Land-use analysis (GIS)
 - Watershed N model
- Embayment TMDL - Synthesis
 - Linked Watershed-Embayment Nitrogen Model
 - Salinity surveys (for linked model validation)
 - Rate of N recycling within embayment
 - Dissolved oxygen record
 - Macrophyte survey
 - Infaunal survey (in complex systems)

Application of the Linked Watershed-Embayment Model

The approach developed by the MEP for applying the linked model to specific embayments, for the purpose of developing target N loading rates, includes:

1) Selecting one or two stations within the embayment system located close to the inland-most reach or reaches which typically have the poorest water quality within the system. These are called “sentinel” stations;
2) Using site-specific information and a minimum of three years of sub-embayment-specific data to select target threshold N concentrations for each sub-embayment. This is done by refining the draft target threshold N concentrations that were developed as the initial step of the MEP process. The target threshold N concentrations that were selected generally occur in higher quality waters near the mouth of the embayment system;

3) Running the calibrated water quality model using different watershed N loading rates to determine the loading rate that will achieve the target threshold N concentration at the sentinel station. Differences between the modeled N load required to achieve the target threshold N concentration and the present watershed N load represent N management goals for restoration and protection of the embayment system as a whole.

Previous sampling and data analyses and the modeling activities described above resulted in four major outputs that were critical to the development of the TMDL. Two outputs are related to N concentration:

- The present N concentrations in the sub-embayments
- Site-specific target threshold N concentrations

And, two outputs are related to N loadings:

- The present N loads to the sub-embayments
- Load reductions necessary to meet the site specific target N concentrations

In summary: if the water quality standards are met by reducing the N concentration (and thus the N load) at the sentinel station(s), then the water quality goals will be met throughout the entire system.

A brief overview of each of the outputs follows:

Nitrogen concentrations in the embayment

1) Observed “present” conditions:

Table 4 presents the average concentrations of N measured in this estuarine system from six years of data collection by the Towns of Yarmouth and Dennis water quality monitoring programs and SMAST (2003-2008). The overall means and standard deviations of the averages are presented in Appendix A (taken from Table VI-1 of the MEP Technical Report). Water quality sampling stations are shown in Figure 5 below. The sentinel station is BR-7.
Table 4: Present Nitrogen Concentrations and Sentinel Station Target Threshold Nitrogen Concentration for the Bass River Estuarine System

<table>
<thead>
<tr>
<th>Sub-embayment</th>
<th>Observed Nitrogen Concentration (^1) (mg/L)</th>
<th>Target Threshold Nitrogen Concentration(mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mill Pond</td>
<td>1.032</td>
<td></td>
</tr>
<tr>
<td>Follins Pond</td>
<td>0.804-0.807(^2)</td>
<td></td>
</tr>
<tr>
<td>Dinah’s Pond</td>
<td>0.843</td>
<td></td>
</tr>
<tr>
<td>Kelleys Pond</td>
<td>0.790</td>
<td></td>
</tr>
<tr>
<td>Upper Bass River</td>
<td>0.485-0.796(^3)</td>
<td>0.42(^4)</td>
</tr>
<tr>
<td>Grand Cove</td>
<td>0.564</td>
<td></td>
</tr>
<tr>
<td>Lower River/marsh</td>
<td>0.367-0.418(^5)</td>
<td></td>
</tr>
<tr>
<td>Nearshore</td>
<td>0.353</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Average total N concentrations from present loading based on an average of the annual N means from 2003-2008. Sampling stations locations shown on Figure 5.

\(^2\) Range of means from multiple stations (BR-2, BR03)

\(^3\) Range of means from multiple stations (BR-6, BR-7, BR-8, BR-10)

\(^4\) Target threshold N concentration at sentinel station BR-7 for eelgrass restoration

\(^5\) Range of means from multiple stations (BR-11, BR-12, BR-13)

2) Modeled site-specific target threshold N concentrations:

A major component of TMDL development is the determination of the maximum concentrations of N (based on field data) that can occur without causing unacceptable impacts to the aquatic environment. This is called the target threshold nitrogen concentration. Prior to conducting the analytical and modeling activities described above, SMAST selected appropriate nutrient-related environmental indicators and tested the qualitative and quantitative relationship between those indicators and N concentrations. The Linked Model was then used to determine site-specific target threshold N concentrations by using the specific physical, chemical and biological characteristics of each harbor embayment system.

The target threshold nitrogen concentration of 0.42 mg/l at Station BR-7 for the sub-embayments listed in Table 4 was determined as follows:

The approach for determining nitrogen loading rates, which will maintain acceptable habitat quality throughout an embayment system, is to first identify a sentinel location within the embayment and second to determine the nitrogen concentration within the water column which will restore that location to the desired habitat quality. The sentinel location is selected such that the restoration of that one site will necessarily bring the other regions of the system to acceptable habitat quality levels. Once the sentinel site and its target threshold nitrogen concentration are determined, the MEP study modeled nitrogen loads until the targeted nitrogen concentration was achieved.
The determination of the critical nitrogen threshold for maintaining high quality habitat with the Bass River Estuarine System is based on the nutrient and oxygen levels, temporal trends in eelgrass distribution and benthic community indicators. The Bass River Estuarine System exhibits a gradient of nutrient related habitat degradation from the most inland reaches of the overall system (Mill Pond, Follins Pond, Dinah’s Pond, Kelleys Bay) to higher quality habitat within the Bass River and near the tidal inlet. The basin of School Street Marsh/Weir Creek was found to be partially naturally nutrient and organic matter enriched (as a wetland influenced basin), however, the existing benthic communities suggest a possible moderate level of enrichment. The primary habitat impairment within the Bass River Estuarine System relates to the loss of the eelgrass beds from the mid and lower reaches of the Bass River and Grand Cove, as well as the significantly impaired benthic animal habitat in the upper ponds. The impairments to both the infaunal habitat and the eelgrass habitat within the basins of the system are supported by the variety of other indicators including oxygen depletion, chlorophyll a and TN levels, all of which support the conclusion that these impairments are the result of nitrogen enrichment, primarily from watershed loading. The gradient in impairment follows the gradient in nitrogen enrichment, where the upper ponds have high ebb tide TN levels (0.70 mg N/L) declining to the Lower Bass River (0.39 mg N/L) to the tidal inlet (0.34 mg N/L). While the lower river exhibits the lowest nitrogen levels within the system, the levels are still too high to support eelgrass beds in deep basins. The results of the MEP water quality and infaunal surveys, coupled with the temporal trends in eelgrass coverage supports the need to lower nitrogen levels throughout the Bass River Estuary, specifically within the mid and lower reaches of the Bass River and Grand Cove to potentially restore over 300 acres of eelgrass habitat. The lowering of nitrogen levels will also be necessary to restore the severely degraded infaunal habitat within the upper basins.

It is expected that restoration of the impaired infaunal habitats within these upper basins will be achieved with the restoration of eelgrass habitat within the mid and lower reaches of the river. Therefore the most appropriate sentinel station for this system was established by the MEP study at the long term water quality monitoring station BR-7 within the mid-reach of the Bass River (see Figure 5). Based on historic documented eelgrass coverage in this estuary, this site represents the upper most extent of its habitat. The goal is to restore the historically documented fringing eelgrass beds along the river channels (at station BR-6) and the extensive beds at BR-7 and below.

To achieve the restoration target of restoring eelgrass coverage in the channel of the river as well as the fringing eelgrass beds requires lowering the level of nitrogen enrichment. As there has been no significant eelgrass habitat within the Bass River estuary for more than a decade, determination of a target threshold nitrogen concentration that would restore eelgrass at the sentinel location was based on comparison to other local embayments of similar depths and structure under the MEP studies. Similar systems like Bournes Pond estuary, where eelgrass is confined to the lower estuary, exhibit nitrogen concentrations that support fringing eelgrass at 0.45 mg N/L and within the open water channel at a lower level (0.42 mg N/L), which is very similar to the situation in the Bass River estuary in the vicinity of stations BR-6 and BR-7.

Although the target threshold N concentration is established for eelgrass habitat restoration (and associated water clarity, shellfish and fisheries resources) benthic infaunal habitat quality must also be supported. Benthic animals are more tolerant of nutrient enrichment than eelgrass. At
present, the regions with moderately to significantly impaired infaunal habitat within the Bass River system have average tidal nitrogen concentrations of 0.52 – 0.95 mg N/L. The observed impairment is consistent with MEP observations in other enclosed basins such as Perch Pond, Bourne’s Pond, Popponesset Bay where levels of <0.50 mg N/L were supportive of healthy infaunal habitat and where moderately impaired habitat was found around 0.60 mg N/L.

Figure 5: Water Quality Sampling Stations in the Bass River Estuarine System

The findings of the analytical and modeling investigations for these embayment systems are discussed and explained below.

The target threshold N concentration for an embayment represents the average water column concentration of N that will support the habitat quality and dissolved oxygen concentrations being sought. The water column N level is ultimately controlled by the integration of the watershed N load, the N concentration in the inflowing tidal waters (boundary condition), dilution and flushing via tidal flows. The water column N concentration is modified by the extent of sediment uptake and/or regeneration and by direct atmospheric deposition. Target threshold N concentrations in this study were developed to restore or maintain SA waters or high habitat quality. In this system, high habitat quality was defined as stable eelgrass beds in the lower reach of Bass River and healthy infaunal habitat throughout the system.
Nitrogen loadings to the embayment

1) Present Loading rates:

In the Bass River Estuarine System overall, the highest N loading from controllable sources is from on-site wastewater treatment systems. The MEP Technical Report (Figure IV-7) calculates that septic systems account for 82% of the controllable N load to the overall system. Other controllable sources include the landfill (2%), fertilizers (8%), and runoff from impervious surfaces (8%). Nitrogen rich sediments in this system are also a minor contribution. However, reducing the N load to the estuary will also reduce N in the sediments since the magnitude of the benthic contribution is related to the watershed load. Atmospheric nitrogen deposition to the estuary and watershed surface area was minor (8% of the total load), however this source is considered uncontrollable.

A subwatershed breakdown of N loading, by source, is presented in Table 5. The data on which Table 5 is based can be found in Table ES-1 of this TMDL report and Table IV-2 of the MEP Technical Report.

Table 5: Present Nitrogen Loadings to the Bass River Estuarine System

<table>
<thead>
<tr>
<th>Sub-embayment</th>
<th>Present Land Use Load¹ (kg N/day)</th>
<th>Present Septic System Load (kg N/day)</th>
<th>Present Watershed Load² (kg N/day)</th>
<th>Present Atmospheric Deposition³ (kg N/day)</th>
<th>Present Benthic Flux⁴ (kg N/day)</th>
<th>Total Nitrogen Load from All Sources⁵ (kg N/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run Pond</td>
<td>1.370</td>
<td>7.014</td>
<td>8.384</td>
<td>0.222</td>
<td>-</td>
<td>8.606</td>
</tr>
<tr>
<td>School Street Marsh</td>
<td>2.386</td>
<td>9.496</td>
<td>11.882</td>
<td>0.247</td>
<td>4.371</td>
<td>16.500</td>
</tr>
<tr>
<td>Bass River - Middle</td>
<td>13.162</td>
<td>54.512</td>
<td>67.674</td>
<td>3.841</td>
<td>29.285</td>
<td>100.800</td>
</tr>
<tr>
<td>Grand Cove</td>
<td>1.134</td>
<td>6.159</td>
<td>7.293</td>
<td>1.071</td>
<td>17.911</td>
<td>26.275</td>
</tr>
<tr>
<td>Dinah’s Pond</td>
<td>0.778</td>
<td>3.559</td>
<td>4.337</td>
<td>0.310</td>
<td>0</td>
<td>4.647</td>
</tr>
<tr>
<td>Kelleys Bay</td>
<td>3.718</td>
<td>16.408</td>
<td>20.126</td>
<td>0.778</td>
<td>28.157</td>
<td>49.061</td>
</tr>
<tr>
<td>Follins Pond</td>
<td>7.036</td>
<td>27.085</td>
<td>34.121</td>
<td>2.658</td>
<td>39.596</td>
<td>76.375</td>
</tr>
<tr>
<td>Mill Pond</td>
<td>7.882</td>
<td>19.416</td>
<td>27.238</td>
<td>0.833</td>
<td>1.609</td>
<td>29.680</td>
</tr>
<tr>
<td>Bass River System Total</td>
<td>44.312</td>
<td>173.507</td>
<td>217.819</td>
<td>12.955</td>
<td>120.929</td>
<td>351.703</td>
</tr>
</tbody>
</table>

¹Includes fertilizers, runoff, landfill and atmospheric deposition to lakes and natural surfaces
²Includes fertilizer, runoff, landfill, atmospheric deposition to lakes and natural surfaces and wastewater inputs
³Atmospheric deposition to the estuarine surface only
⁴Nitrogen loading from sediments, negative fluxes have been set to zero
⁵Composed of fertilizer, runoff, landfill, wastewater, atmospheric deposition and benthic nitrogen input

As previously indicated, the present N loadings to this embayment system must be reduced in order to restore the impaired conditions and to avoid further nutrient-related adverse environmental impacts. The critical final step in the development of the TMDL is modeling and analysis to determine the loadings required that will achieve the target threshold N concentrations.
a) Nitrogen loads necessary for meeting the site-specific target threshold N concentrations:

Table 6 lists the present watershed N loadings from the Bass River Estuarine System and the percent watershed load reductions necessary to achieve the target threshold N concentration at the sentinel station (see following section).

It is very important to note that load reductions can be produced through a variety of strategies: reduction of any or all sources of N; increasing the natural attenuation of N within the freshwater systems; and/or modifying the tidal flushing through inlet reconfiguration (where appropriate). This scenario establishes the general degree and spatial pattern of reduction that will be required for restoration of the N impaired portions of this system. The towns of Yarmouth, Dennis and Brewster should take any reasonable actions to reduce the controllable N sources.

Table 6: Present Watershed Nitrogen Loading Rates, Calculated Loading Rates that are Necessary to Achieve Target Threshold Nitrogen Concentrations, and the Percent Reductions of the Existing Loads Necessary to Achieve the Target Threshold Loadings*

<table>
<thead>
<tr>
<th>Sub-embayment</th>
<th>Present Total Watershed Load 1 (kg/day)</th>
<th>Target Threshold Watershed Load 2 (kg/day)</th>
<th>% Watershed Load Reductions Needed to Achieve Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run Pond</td>
<td>8.384</td>
<td>8.384</td>
<td>0</td>
</tr>
<tr>
<td>Bass River - Lower</td>
<td>36.764</td>
<td>36.764</td>
<td>0</td>
</tr>
<tr>
<td>School Street Marsh</td>
<td>11.882</td>
<td>11.882</td>
<td>0</td>
</tr>
<tr>
<td>Bass River - Middle</td>
<td>67.674</td>
<td>29.833</td>
<td>-55.92</td>
</tr>
<tr>
<td>Grand Cove</td>
<td>7.293</td>
<td>7.293</td>
<td>0</td>
</tr>
<tr>
<td>Dinah’s Pond</td>
<td>4.337</td>
<td>0.778</td>
<td>-82.06</td>
</tr>
<tr>
<td>Kelleys Bay</td>
<td>20.126</td>
<td>3.860</td>
<td>-80.82</td>
</tr>
<tr>
<td>Follins Pond</td>
<td>34.121</td>
<td>7.858</td>
<td>-76.97</td>
</tr>
<tr>
<td>Mill Pond</td>
<td>27.238</td>
<td>7.847</td>
<td>-71.19</td>
</tr>
<tr>
<td>Bass River System Total</td>
<td>217.819</td>
<td>114.499</td>
<td>-47.43</td>
</tr>
</tbody>
</table>

1 Composed of fertilizer, runoff, landfill, atmospheric deposition to lakes and natural surfaces and wastewater inputs

2 Target threshold watershed load is the N load from the watershed (including natural background) needed to meet the target threshold N concentrations identified in Table 4, above.

*From Tables ES-2 and VIII-3 in the MEP Technical Report

Total Maximum Daily Loads

As described in EPA guidance, a total maximum daily load (TMDL) identifies the loading capacity of a water body for a particular pollutant. EPA regulations define loading capacity as the greatest amount of loading that a water body can receive without violating water quality standards. The TMDLs are established to protect and/or restore the estuarine ecosystem, including eelgrass, the leading indicator of ecological health, thus meeting water quality goals for aquatic life support. Because there are no “numerical” water quality standards for N, the TMDLs for the Bass River estuarine system are aimed at establishing the loads that would correspond to specific N concentrations determined to be protective of the water quality and ecosystems.
The development of a TMDL requires detailed analyses and mathematical modeling of land use, nutrient loads, water quality indicators, and hydrodynamic variables (including residence time) for each waterbody system. The results of the mathematical model are correlated with estimates of impacts on water quality, including negative impacts on eelgrass (the primary indicator), as well as dissolved oxygen, chlorophyll \(a \) and benthic infauna.

The TMDL can generally be defined by the equation:

\[
TMDL = BG + WLAs + LAs + MOS
\]

Where: TMDL = loading capacity of receiving water
BG = natural background
WLAs = portion allotted to point sources
LAs = portion allotted to (cultural) non-point sources
MOS = margin of safety

Background Loading

Natural background N loading is included in the loading estimates, but is not quantified or presented separately. Background loading was calculated on the assumption that the entire watershed is forested with no anthropogenic sources of N. It is accounted for in this TMDL but not defined as a separate component. Readers are referred to Table ES-1 of the MEP Technical Report for estimated loading due to natural conditions.

Waste Load Allocations

Waste load allocations identify the portion of the loading capacity allocated to existing and future point sources of wastewater. In the Bass River estuary system there are no permitted surface water discharges in the watershed with the exception of stormwater. A TMDL may establish an aggregate WLA that applies to numerous sources. EPA interprets 40 CFR 130.2(h) to require that allocations for NPDES regulated discharges of storm water also be included in the waste load component of the TMDL. In the Bass River system this load includes runoff from impervious surfaces.

For purposes of the Bass River TMDLs, MassDEP also considered the nitrogen load reductions from regulated MS4 sources necessary to meet the target nitrogen concentrations. In estimating the nitrogen loadings from regulated stormwater sources, MassDEP considered that most stormwater runoff in the MS4 communities is not discharged directly into surface waters, but, rather, percolates into the ground. The geology on Cape Cod and the Islands consists primarily of glacial outwash sands and gravels, and water moves rapidly through this type of soil profile. A systematic survey of stormwater conveyances on Cape Cod and the Islands was never undertaken prior to the MEP study used in the development of this TMDL. Nevertheless, most catch basins on Cape Cod and the Islands are known to MassDEP to have been designed as leaching catch basins in light of the permeable overburden. MassDEP, therefore, recognized that
most stormwater that enters a catch basin in the regulated area will percolate into the local groundwater table rather than directly discharge to a surface waterbody.

As described in the Methodology Section (above), the Linked Model accounts for stormwater loadings and groundwater loading in one aggregate allocation as a non-point source. However, MassDEP also considered that some stormwater may be discharged directly to surface waters through outfalls. In the absence of specific data or other information to accurately quantify stormwater discharged directly to surface waters, MassDEP assumed that all impervious surfaces within 200 feet of the shoreline, as calculated from MassGIS data layers, would discharge directly to surface waters, whether or not it in fact did so. MassDEP selected this approach because it considered it unlikely that any stormwater collected farther than 200 feet from the shoreline would be directly discharged into surface waters. Although the 200 foot approach provided a gross estimate, MassDEP considered it a reasonable and conservative approach given the lack of pertinent data and information about stormwater collection systems on Cape Cod.

Although the vast majority of storm water percolates into the ground and proceeds into the embayments through groundwater migration on Cape Cod, an estimated waste load was based on an assumption that runoff from all impervious surfaces within 200 ft of the shoreline discharges directly to the waterbodies. This calculated load is 0.39% of the total N load, or 1.03 kg/day, as compared to the overall N load of 262.85 kg/day to the embayment (see Appendix B for details). This conservative load is obviously negligible when compared to other sources.

Load Allocations

Load allocations identify the portion of loading capacity allocated to existing and future nonpoint sources. In the case of the Bass River estuary system the locally controllable nonpoint source loadings are from on-site subsurface wastewater disposal systems (septic systems) and other land uses which include storm-water runoff, (except from impervious cover within 200 feet of the waterbody which is defined above as part of the waste load) fertilizers and the landfill. Figure 4 (above) and Figure 6 (below) illustrate that septic systems are the most significant portion of the controllable N load (173.5 kg N/day), with fertilizers and runoff contribution a distant second (20 kg N/day each) and the landfill load even less (4.9 kg N/day). In addition, there are nonpoint sources of N from sediments, natural background and atmospheric deposition that are not feasibly controllable.
Generally, storm-water that is subject to the EPA Phase II Program is considered a part of the waste load allocation, rather than the load allocation (see waste load allocation discussion). As discussed above and presented in Chapter IV, V, and VI, of the MEP Technical Report, on Cape Cod and the Islands the vast majority of storm-water percolates into the aquifer and enters the embayment system through groundwater, thus defining the stormwater in pervious areas to be a component of the nonpoint source load allocation. Therefore, the TMDL accounts for storm-water and groundwater loadings in one aggregate allocation as a non-point source, thus combining the assessments of wastewater and storm-water for the purpose of developing control strategies.

The sediment loading rates incorporated into the TMDL are lower than the existing benthic input listed in Table 5 above because projected reductions of N loadings from the watershed will result in reductions of nutrient concentrations in the sediments and therefore, over time, reductions in loadings from the sediments will occur. Benthic N flux is a function of N loading and particulate organic N (PON). Projected benthic fluxes are based upon projected PON concentrations and watershed N loads and are calculated by multiplying the present N flux by the ratio of projected PON to present PON using the following formulae:

Projected N flux = \((\text{present N flux}) \times \frac{\text{PON projected}}{\text{PON present}}\)

When: \(\text{PON projected} = (R_{\text{load}}) \times D_{\text{PON}} + \text{PON present offshore}\)

When: \(R_{\text{load}} = \frac{\text{projected N load}}{\text{Present N load}}\)

And: \(D_{\text{PON}}\) is the PON concentration above background determined by:
\(D_{\text{PON}} = (\text{PON present embayment} - \text{PON present offshore})\)
The benthic flux modeled for the Bass River estuary system is reduced from existing conditions based on the load reduction and the observed PON concentrations within each sub-embayment relative to Nantucket Sound (boundary condition). The benthic flux input to each sub-embayment was reduced (toward zero) based on the reduction of N in the watershed load. There was one exception to the rule. Since there was a negative benthic flux (nutrient uptake) recorded in the lower Bass River and Dinah’s Pond under present conditions, a more conservative approach was used for these segments in the TMDL by assuming zero benthic flux for these segments in the future. This conservative approach was used and is considered part of the margin of safety in the TMDL.

The loadings from atmospheric sources incorporated into the TMDL however, are the same rates presently occurring because, as discussed above, local control of atmospheric loadings is not considered feasible.

Margin of Safety

Statutes and regulations require that a TMDL include a margin of safety (MOS) to account for any lack of knowledge concerning the relationship between load and wasteload allocations and water quality [CWA para 303 (d)(20©, 40C.G.R. para 130.7©(1)]. The MOS must be designed to ensure that any uncertainties in the data or calculations used to link pollutant sources to water quality impairment modeling will be accounted for in the TMDL and ensure protection of the beneficial uses. The EPA’s 1991 TMDL Guidance explains that the MOS may be implicit, i.e., incorporated into the TMDL through conservative assumptions in the analysis, or explicit, i.e., expressed in the TMDL as loadings set aside for the MOS. The MOS for the Bass River Embayment System TMDLs is implicit and the conservative assumptions in the analyses that account for the MOS are described below.

An explicit MOS quantifies an allocation amount separate from other Load and Wasteload Allocations. An explicit MOS can incorporate reserve capacity for future unknowns, such as population growth or effects of climate change on water quality. An implicit MOS is not specifically quantified but consists of statements of the conservative assumptions used in the analysis. The MOS for the Bass River Embayment System TMDLs is implicit. MassDEP used conservative assumptions to develop numeric model applications that account for the MOS. These assumptions are described below, and they account for all sources of uncertainty, including the potential impacts of changes in climate.

While the general vulnerabilities of coastal areas to climate change can be identified, specific impacts and effects of changing estuarine conditions are not well known at this time (http://www.mass.gov/eea/waste-mgnt-recycling/air-quality/climate-change-adaptation/climate-change-adaptation-report.html). Because the science is not yet available, MassDEP is unable to analyze climate change impacts on streamflow, precipitation, and nutrient loading with any degree of certainty for TMDL development. In light of these uncertainties and informational gaps, MassDEP has opted to address all sources of uncertainty through an implicit MOS. MassDEP does not believe that an explicit MOS approach is appropriate under the circumstances or will provide a more protective or accurate MOS than the implicit MOS approach, as the
available data simply does not lend itself to characterizing and estimating loadings to derive numeric allocations within confidence limits. Although the implicit MOS approach does not expressly set aside a specific portion of the load to account for potential impacts of climate change, MassDEP has no basis to conclude that the conservative assumptions that were used to develop the numeric model applications are insufficient to account for the lack of knowledge regarding climate change.

Conservative assumptions that support an implicit MOS:

1. Use of conservative data in the linked model

The watershed N model provides conservative estimates of N loads to the embayment. Nitrogen transfer through direct groundwater discharge to estuarine waters is based upon studies indicating negligible aquifer attenuation and dilution, i.e. 100% of load enters embayment. This is a conservative estimate of loading because studies have also shown that in some areas less than 100% of the load enters the estuary. In this context, “direct groundwater discharge” refers to the portion of fresh water that enters an estuary as groundwater seepage into the estuary itself, as opposed to the portion of fresh water that enters as surface water inflow from streams, which receive much of their water from groundwater flow. Nitrogen from the upper watershed regions, which travels through ponds or wetlands, almost always enters the embayment via stream flow, and is directly measured (over 12-16 months) to determine attenuation. In these cases the land-use model has shown a slightly higher predicted N load than the measured discharges in the streams/rivers that have been assessed to date. Therefore, the watershed model as applied to the surface water watershed areas again presents a conservative estimate of N loads because the actual measured N in streams was lower than the modeled concentrations.

The hydrodynamic and water quality models have been assessed directly. In the many instances where the hydrodynamic model predictions of volumetric exchange (flushing) have also been directly measured by field measurements of instantaneous discharge, the agreement between modeled and observed values has been >95%. Field measurement of instantaneous discharge was performed using acoustic doppler current profilers (ADCP) at key locations within the embayment (with regards to the water quality model, it was possible to conduct a quantitative assessment of the model results as fitted to a baseline dataset - a least squares fit of the modeled versus observed data showed an R²>0.95, indicating that the model accounted for 95% of the variation in the field data). Since the water quality model incorporates all of the outputs from the other models, this excellent fit indicates a high degree of certainty in the final result. The high level of accuracy of the model provides a high degree of confidence in the output; therefore, less of a margin of safety is required.

In the case of N attenuation by freshwater ponds, attenuation was derived from measured N concentrations, pond delineations and pond bathymetry. These attenuation factors were higher than that used in the land-use model. The reason was that the pond data were temporally limited and a more conservative value of 50% was more protective and defensible.

Similarly, the water column N validation dataset was also conservative. The model is validated to measured water column N. However, the model predicts average summer N concentrations.
The very high or low measurements are marked as outliers. The effect is to make the N threshold more accurate and scientifically defensible. If a single measurement two times higher than the next highest data point in the series raises the average 0.05 mg N/L, this would allow for a higher “acceptable” load to the embayment. Marking the very high outlier is a way of preventing a single and rare bloom event from changing the N threshold for a system. This effectively strengthens the data set so that a higher margin of safety is not required.

Finally, the predicted reductions in benthic regeneration of N are most likely underestimates, i.e. conservative. The reduction is based solely on a reduced deposition of PON, due to lower primary production rates under the reduced N loading in these systems. As the N loading decreases and organic inputs are reduced, it is likely that rates of coupled remineralization-nitrification, denitrification and sediment oxidation will increase. It was also conservatively assumed that the present benthic flux uptake measured in the Bass Rivers system (-10.916 kg/day) does not exist under future loading conditions and as such was designated as “0” for purposes of the TMDL.

Benthic regeneration of N is dependent upon the amount of PON deposited to the sediments and the percentage that is regenerated to the water column versus being denitrified or buried. The regeneration rate projected under reduced N loading conditions was based upon two assumptions (1) PON in the embayment in excess of that of inflowing tidal water (boundary condition) results from production supported by watershed N inputs and(2) Presently enhanced production will decrease in proportion to the reduction in the sum of watershed N inputs and direct atmospheric N input. The latter condition would result in equal embayment versus boundary condition production and PON levels if watershed N loading and direct atmospheric deposition could be reduced to zero (an impossibility of course). This proportional reduction assumes that the proportion of remineralized N will be the same as under present conditions, which is almost certainly an underestimate. As a result, future N regeneration rates are overestimated which adds to the margin of safety.

2. Conservative sentinel station/target threshold nitrogen concentration

Conservatism was used in the selection of the sentinel stations and target threshold N concentrations. The sites were chosen that had stable eelgrass or benthic animal (infaunal) communities, and not those just starting to show impairment, which would have slightly higher N concentration. Meeting the target threshold N concentrations at the sentinel stations will result in reductions of N concentrations in the rest of the system.

3. Conservative approach

The target loads were based on tidally averaged N concentrations on the outgoing tide, which is the worst case condition because that is when the N concentrations are the highest. The N concentrations will be lower on the flood tides and therefore this approach is conservative.

Finally, the linked model accounted for all stormwater loadings and groundwater loadings in one aggregate allocation as a nonpoint source and this aggregate load is accounted for in the load allocation. The method of calculating the WLA in the TMDL for regulated stormwater was
conservative as it did not disaggregate this negligible load from the modeled stormwater LA, hence this approach further enhances the margin of safety.

In addition to the margin of safety within the context of setting the N threshold levels as described above, a programmatic margin of safety also derives from continued monitoring of these embayments to support adaptive management. This continuous monitoring effort provides the ongoing data to evaluate the improvements that occur over the multi-year implementation of the N management plan. This will allow refinements to the plan to ensure that the desired level of restoration is achieved.

Seasonal Variation

Since the TMDLs for the waterbody segments are based on the most critical time period, i.e. the summer growing season, the TMDLs are protective for all seasons. The daily loads can be converted to annual loads by multiplying by 365 (the number of days in a year). Nutrient loads to the embayment are based on annual loads for two reasons. The first is that primary production in coastal waters can peak in both the late winter-early spring and in the late summer-early fall periods. Second, as a practical matter, the types of controls necessary to control the N load, the nutrient of primary concern, by their very nature do not lend themselves to intra-annual manipulation since the majority of the N is from non-point sources. Thus, the annual loads make sense since it is difficult to control non-point sources of N on a seasonal basis and N sources can take considerable time to migrate to impacted waters.

TMDL Values for the Bass River Estuarine System

As outlined above, the total maximum daily loadings of N that would provide for the restoration and protection of the embayment were calculated by considering all sources of N grouped by natural background, point sources and non-point sources. A more meaningful way of presenting the loadings data from an implementation perspective is presented in Table 7 and Appendix C.

In this table the N loadings from the atmosphere are listed separately from the target watershed threshold loads which are composed of natural background N along with locally controllable N from the on-site subsurface wastewater disposal systems, the landfill, storm-water runoff and fertilizer sources. In the case of the Bass River system the TMDLs were calculated by projecting reductions in locally controllable septic systems in the middle Bass River subwatershed as well as Dinah’s Pond, Kelleys Bay, Follins Pond and Mill Pond and Stream subwatersheds. Once again the goals of these TMDLs are to achieve the identified target threshold N concentration at the identified sentinel station. The target loads identified in this table represents one alternative-loading scenario to achieve that goal but other scenarios may be possible and approvable as well.
Table 7: The Total Maximum Daily Loads (TMDL) for the Bass River Estuarine System

<table>
<thead>
<tr>
<th>Sub-embayment</th>
<th>Target Threshold Watershed Load(^1) (kg N/day)</th>
<th>Atmospheric Deposition (kg N/day)</th>
<th>Nitrogen Load from Sediments(^2) (kg N/day)</th>
<th>TMDL(^3) (kg N/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run Pond</td>
<td>8.384</td>
<td>0.222</td>
<td>0</td>
<td>8.606</td>
</tr>
<tr>
<td>Bass River - Lower</td>
<td>36.764</td>
<td>2.995</td>
<td>0</td>
<td>39.759</td>
</tr>
<tr>
<td>School Street Marsh</td>
<td>11.882</td>
<td>0.247</td>
<td>3.610</td>
<td>15.739</td>
</tr>
<tr>
<td>Bass River - Middle</td>
<td>29.833</td>
<td>3.841</td>
<td>24.042</td>
<td>57.716</td>
</tr>
<tr>
<td>Bass River(^4)</td>
<td></td>
<td></td>
<td>113.214</td>
<td></td>
</tr>
<tr>
<td>Grand Cove</td>
<td>7.293</td>
<td>1.071</td>
<td>13.699</td>
<td>22.063</td>
</tr>
<tr>
<td>Dinah’s Pond</td>
<td>0.778</td>
<td>0.310</td>
<td>0</td>
<td>1.088</td>
</tr>
<tr>
<td>Kelleys Bay</td>
<td>3.860</td>
<td>0.778</td>
<td>17.337</td>
<td>21.975</td>
</tr>
<tr>
<td>Follins Pond</td>
<td>7.858</td>
<td>2.658</td>
<td>19.540</td>
<td>30.056</td>
</tr>
<tr>
<td>Mill Pond, Weir Creek and Muddy Creek</td>
<td>7.847</td>
<td>0.833</td>
<td>0.607</td>
<td>9.287</td>
</tr>
<tr>
<td>Bass River System Total</td>
<td>114.499</td>
<td>12.955</td>
<td>78.835</td>
<td>206.289</td>
</tr>
</tbody>
</table>

\(^1\) Target threshold watershed load (including natural background) is the load from the watershed needed to meet the embayment target threshold nitrogen concentration identified in Table 4.

\(^2\) Projected sediment N loadings obtained by reducing the present benthic flux loading rates (Table 5) proportional to proposed watershed load reductions and factoring in the existing and projected future concentrations of PON. (Negative fluxes set to zero.)

\(^3\) Sum of target threshold watershed load, sediment load and atmospheric deposition load.

\(^4\) The TMDL for the Bass River is the sum of the Lower and Middle Bass and the School Street Marsh.

Implementation Plans

The critical element of this TMDL process is achieving the sentinel station specific target threshold N concentrations presented in Table 4 above that are necessary for the restoration and protection of water quality and eelgrass habitat within the Bass River estuarine system. In order to achieve these target threshold N concentrations, N loading rates must be reduced throughout the harbor embayment system. Table 7 lists the target threshold watershed loads for this embayment. If this threshold load is achieved, this embayment will be protected.

Septic Systems:
Table 8 below presents a load reduction scenario based solely on reducing the septic loads from the Bass River estuary watershed.
Table 8: Summary of the Present Septic System Loads, and the Loading Reductions Necessary to Achieve the TMDL by Reducing Septic System Loads Only

<table>
<thead>
<tr>
<th>Sub-embayment</th>
<th>Present Septic Load (kg/day)</th>
<th>Threshold Septic Load (kg/day)</th>
<th>Threshold Septic Load % Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run Pond</td>
<td>7.014</td>
<td>7.014</td>
<td>0.0%</td>
</tr>
<tr>
<td>Bass River - Lower</td>
<td>29.858</td>
<td>29.858</td>
<td>0.0%</td>
</tr>
<tr>
<td>School Street Marsh</td>
<td>9.496</td>
<td>9.496</td>
<td>0.0%</td>
</tr>
<tr>
<td>Bass River - Middle</td>
<td>54.512</td>
<td>16.671</td>
<td>-69.4%</td>
</tr>
<tr>
<td>Grand Cove</td>
<td>6.159</td>
<td>6.159</td>
<td>0.0%</td>
</tr>
<tr>
<td>Dinah’s Pond</td>
<td>3.559</td>
<td>0.0</td>
<td>-100.0%</td>
</tr>
<tr>
<td>Kelleys Bay</td>
<td>16.408</td>
<td>0.142</td>
<td>-99.1%</td>
</tr>
<tr>
<td>Follins Pond</td>
<td>27.085</td>
<td>0.822</td>
<td>-97.0%</td>
</tr>
<tr>
<td>Mill Pond, Weir Creek and Muddy Creek</td>
<td>19.416</td>
<td>0.025</td>
<td>-99.9%</td>
</tr>
</tbody>
</table>

1Note: From Table VIII-2 of the MEP Technical Report (Howes, 2011).

As previously noted, there is a variety of loading reduction scenarios that could achieve the target threshold N concentrations. Local officials can explore other loading reduction scenarios through additional modeling as part of their Comprehensive Wastewater Management Plan (CWMP). It must be demonstrated however, that any alternative implementation strategies will be protective of the entire embayment system and that none of the embayment will be negatively impacted. To this end, additional linked model runs can be performed by the MEP to assist the planning efforts of the town in achieving target N loads that will result in the desired target threshold N concentration.

The CWMP should include a schedule of the selected strategies and estimated timelines for achieving those targets. However, the MassDEP realizes that an adaptive management approach may be used to observe implementation results over time and allow for adjustments based on those results. This adaptive management approach will incorporate the priorities and concepts included in the updated area wide management plan established under the Clean Water Act Section 208. If a community chooses to implement TMDL measures without a CWMP it must demonstrate that these measures will achieve the target threshold N concentration. (Note: Communities that choose to proceed without a CWMP will not be eligible for State Revolving Fund 0% loans.)

Because the vast majority of controllable N load is from septic systems for private residences the CWMP should assess the most cost-effective options for achieving the target N watershed loads, including but not limited to, sewering and treatment for N control of sewage and septage at either centralized or de-centralized locations and denitrifying systems for all private residences.

Stormwater:
EPA and MassDEP authorized most of the watershed communities of Yarmouth and Dennis for coverage under the NPDES Phase II General Permit for Stormwater Discharges from Small Municipal Separate Storm Sewer Systems (MS4s) in 2003. EPA and MassDEP reissued the
MS4 permit in April 2016. The reissued permit takes effect on March 31, 2017. The NPDES permits issued in Massachusetts to implement the Phase II Stormwater program do not establish numeric effluent limitations for stormwater discharges, rather, they establish narrative requirements, including best management practices, to meet the following six minimum control measures and to meet State Water Quality Standards.

1. Public education and outreach particularly on the proper disposal of pet waste,
2. Public participation/involvement,
3. Illicit discharge detection and elimination,
4. Construction site runoff control,
5. Post construction runoff control, and
6. Pollution prevention/good housekeeping.

Communities with urbanized areas subject to MS4 Phase II permits, must use best management practices to comply with each of these six minimum control measures and demonstrate attainment of measurable goals they have set for each measure. Therefore, compliance with the requirements of the Phase II stormwater permit in the Towns of Yarmouth and Dennis will contribute to the goal of reducing the nitrogen load as prescribed in this TMDL for the Bass River estuarine system watershed.

Climate Change:
MassDEP recognizes that long-term (25+ years) climate change impacts to southeastern Massachusetts, including the area of this TMDL, are possible based on known science. Massachusetts Executive Office of Energy and Environmental Affairs 2011Climate Change Adaptation Report: http://www.mass.gov/eea/waste-mgmt-recycling/air-quality/green-house-gas-and-climate-change/climate-change-adaptation/climate-change-adaptation-report.html predicts that by 2100 the sea level could be from 1 to 6 feet higher than the current position and precipitation rates in the Northeast could increase by as much as 20 percent. However, the details of how climate change will affect sea level rise, precipitation, streamflow, sediment and nutrient loading in specific locations are generally unknown. The ongoing debate is not about whether climate change will occur, but the rate at and the extent to which it will occur and the adjustments needed to address its impacts. EPA’s 2012 Climate Change Strategy http://water.epa.gov/scitech/climatechange/upload/epa_2012_climate_water_strategy_full_report_final.pdf states: “Despite increasing understanding of climate change, there still remain questions about the scope and timing of climate change impacts, especially at the local scale where most water-related decisions are made.” For estuarine TMDLs in southeastern Massachusetts, MassDEP recognizes that this is particularly true, where water quality management decisions and implementation actions are generally made and conducted at the municipal level on a sub-watershed scale.

EPA’s Climate Change Strategy identifies the types of research needed to support the goals and strategic actions to respond to climate change. EPA acknowledges that data are missing or not available for making water resource management decisions under changing climate conditions. In addition, EPA recognizes the limitation of current modeling in predicting the pace and magnitude of localized climate change impacts and recommends further exploration of the use of tools, such as atmospheric, precipitation and climate change models, to help states evaluate pollutant load impacts under a range of projected climatic shifts.
In 2013, EPA released a study entitled, “Watershed modeling to assess the sensitivity of streamflow, nutrient, and sediment loads to potential climate change and urban development in 20 U.S. watersheds.” (National Center for Environmental Assessment, Washington D.C.; EPA/600/R-12/058F). The closest watershed to southeastern Massachusetts that was examined in this study is a New England coastal basin located between Southern Maine and Central Coastal Massachusetts. These watersheds do not encompass any of the watersheds in the Massachusetts Estuary Project (MEP) region, and it has vastly different watershed characteristics, including soils, geography, hydrology and land use – key components used in a modeling analysis. The initial “first order” conclusion of this study is that, in many locations, future conditions, including water quality, are likely to be different from past experience. However, most significantly, this study did not demonstrate that changes to TMDLs (the water quality restoration targets) would be necessary for the region. EPA’s 2012 Climate Change Strategy also acknowledges that the Northeast, including New England, needs to develop standardized regional assumptions regarding future climate change impacts. EPA’s 2013 modeling study does not provide the scientific methods and robust datasets needed to predict specific long-term climate change impacts in the MEP region to inform TMDL development.

MassDEP believes that impacts of climate change should be addressed through TMDL implementation with an adaptive management approach in mind. Adjustments can be made as environmental conditions, pollutant sources, or other factors change over time. Massachusetts Coastal Zone Management (CZM) has developed a StormSmart Coasts Program (2008) to help coastal communities address impacts and effects of erosion, storm surge and flooding which are increasing due to climate change. The program, www.mass.gov/czm/stormsmart offers technical information, planning strategies, legal and regulatory tools to communities to adapt to climate change impacts.

As more information and tools become available, there may be opportunities to make adjustments in TMDLs in the future to address predictable climate change impacts. When the science can support assumptions about the effects of climate change on the nitrogen loadings to the Bass River Embayment the TMDL can be reopened, if warranted.

The watershed communities of Yarmouth and Dennis are urged to meet the target threshold N concentrations by reducing N loadings from any and all sources, through whatever means are available and practical, including reductions in on-site subsurface wastewater disposal system loadings as well as reductions in stormwater runoff and/or fertilizer use within the watershed through the establishment of local by-laws and/or the implementation of stormwater Best Management Practices (BMPs).

It should also be noted that a very small portion of the Town of Brewster is in the Bass River watershed. Thus the development of any implementation plan should also include this town when coordinating efforts to maximize the reduction in N loading where possible and appropriate.

MassDEP’s MEP Implementation Guidance report: http://www.mass.gov/dep/water/resources/coastalr.htm#guidance provides N loading reduction
strategies that are available to Nantucket and could be incorporated into the implementation plans. The following topics related to N reduction are discussed in the Guidance:

- **Wastewater Treatment**
 - On-Site Treatment and Disposal Systems
 - Cluster Systems with Enhanced Treatment
 - Community Treatment Plants
 - Municipal Treatment Plants and Sewers
- **Tidal Flushing**
 - Channel Dredging
 - Inlet Alteration
 - Culvert Design and Improvements
- **Storm-water Control and Treatment** *
 - Source Control and Pollution Prevention
 - Storm-water Treatment
- **Attenuation via Wetlands and Ponds**
- **Water Conservation and Water Reuse**
- **Management Districts**
- **Land Use Planning and Controls**
 - Smart Growth
 - Open Space Acquisition
 - Zoning and Related Tools
- **Nutrient Trading**

* Dennis and Yarmouth are two of the 237 communities in Massachusetts covered (at least in part) by the Phase II storm-water program requirements.

Monitoring Plan

MassDEP is of the opinion that there are two forms of monitoring that are useful to determine progress towards achieving compliance with the TMDL. MassDEP’s position is that implementation will be conducted through an iterative process where adjustments maybe needed in the future. The two forms of monitoring include 1) tracking implementation progress as approved in the Dennis and Yarmouth CWMP plans and 2) monitoring water quality and habitat conditions in the estuaries, including but not limited to, the sentinel stations identified in the MEP Technical Report.

The CWMP will evaluate various options to achieve the goals set out in the TMDL report and the MEP Technical Report. It will also make a final recommendation based on existing or additional modeling runs, set out required activities, and identify a schedule to achieve the most cost effective solution that will result in compliance with the TMDL. Once approved by the Department tracking progress on the agreed upon plan will, in effect, also be tracking progress towards water quality improvements in conformance with the TMDL.
Relative to water quality, MassDEP believes that an ambient monitoring program much reduced from the data collection activities needed to properly assess conditions and to populate the model, will be important to determine actual compliance with water quality standards. Although the TMDL values are not fixed, the target threshold N concentrations at the sentinel stations are fixed. Through discussions amongst the MEP it is generally agreed that existing monitoring programs which were designed to thoroughly assess conditions and populate water quality models can be substantially reduced for compliance monitoring purposes. Although more specific details need to be developed on a case-by-case basis MassDEP believes that about half the current effort (using the same data collection procedures) would be sufficient to monitor compliance over time and to observe trends in water quality changes. In addition, the benthic habitat and communities would require periodic monitoring on a frequency of about every 3-5 years. Finally, in addition to the above, existing monitoring conducted by MassDEP for eelgrass should continue into the future to observe any changes that may occur to eelgrass populations as a result of restoration efforts.

The MEP will continue working with the watershed communities to develop and refine monitoring plans that remain consistent with the goals of the TMDL. Through the adaptive management approach ongoing monitoring will be conducted and will indicate if water quality standards are being met. If this does not occur other management activities would have to be identified and considered to reach to goals outlined in this TMDL. It must be recognized however that development and implementation of a monitoring plan will take some time, but it is more important at this point to focus efforts on reducing existing watershed loads to achieve water quality goals.

Reasonable Assurances

MassDEP possesses the statutory and regulatory authority, under the water quality standards and/or the State Clean Water Act (CWA), to implement and enforce the provisions of the TMDL through its many permitting programs including requirements for N loading reductions from on-site subsurface wastewater disposal systems. However, because most non-point source controls are voluntary, reasonable assurance is based on the commitment of the locality involved. The towns of Dennis and Yarmouth have demonstrated this commitment through the comprehensive wastewater planning that they initiated well before the generation of the TMDL. The towns expects to use the information in this TMDL to generate support from their citizens to take the necessary steps to remedy existing problems related to N loading from on-site subsurface wastewater disposal systems, storm-water, and runoff (including fertilizers), and to prevent any future degradation of these valuable resources. Moreover, reasonable assurances that the TMDL will be implemented include enforcement of regulations, availability of financial incentives and local, state and federal programs for pollution control. Storm-water NPDES permit coverage will address discharges from municipally owned storm-water drainage systems. Enforcement of regulations controlling non-point discharges include local implementation of the Commonwealth’s Wetlands Protection Act and Rivers Protection Act, Title 5 regulations for on-site subsurface wastewater disposal systems and other local regulations (such as the Town of Rehoboth’s stable regulations). Financial incentives include federal funds available under Sections 319, 604 and 104(b) programs of the CWA, which are provided as part of the
Performance Partnership Agreement between MassDEP and EPA. Other potential funds and assistance are available through the Massachusetts Department of Agriculture’s Enhancement Program and the United States Department of Agriculture’s Natural Resources Conservation Services. Additional financial incentives include income tax credits for Title 5 upgrades and low interest loans for Title 5 on-site subsurface wastewater disposal system upgrades available through municipalities participating in this portion of the state revolving fund program.

As the town implements these TMDLs the loading values (kg/day of N) will be used by MassDEP for guidance for permitting activities and should be used by the community as a management tool.

Public Participation

MassDEP publically announced the draft TMDL in November 28, 2016 and copies were made available to all key stakeholders. The draft TMDL was posted on the Department’s web site for public review at the same time. In addition, a public meeting was held at the Dennis Council on Aging on December 14, 2016 for all interested parties and the public comment period extended until close of business January 16, 2017. Patti Kellogg (MassDEP) summarized the Mass Estuaries Project and described the Draft Nitrogen TMDL Report findings. Two written comments were received by MassDEP during the public comment period. Included is MassDEP response to public comments and a scanned image of the attendance sheets from the meetings (Appendix D). MassDEP MEP representatives at the public meeting included Barbara Kickham, Kimberly Groff, and Brian Dudley.
Works Cited

MassDEP (2007). *Massachusetts Surface Water Quality Standards (314 CMR 4.00).* Massachusetts Department of Environmental Protection, 1 Winter Street, Boston, MA.

Appendix A: Summary of the Nitrogen Concentrations for the Bass River Estuarine System.
(From the MEP Technical Report, Linked Watershed-embayment Model to Determine Critical Nitrogen Loading Threshold for the Bass River Estuarine System, April 2011.)

Table VI-1. Town of Yarmouth water quality monitoring data and modeled Nitrogen concentrations for the Bass River System used in the model calibration plots of Figure VI-2 (Howes, 2011). All concentrations are given in mg/L N. “Data mean” values are calculated as the average of the separate yearly means.

<table>
<thead>
<tr>
<th>Sub-embayment</th>
<th>Station</th>
<th>2003 Mean</th>
<th>2004 Mean</th>
<th>2005 Mean</th>
<th>2006 Mean</th>
<th>2007 Mean</th>
<th>2008 Mean</th>
<th>Mean</th>
<th>s.d. all data</th>
<th>N</th>
<th>Model Min</th>
<th>Model Max</th>
<th>Model Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mill Pond</td>
<td>BR-1</td>
<td>1.129</td>
<td>0.909</td>
<td>1.018</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1.032</td>
<td>0.331</td>
<td>16</td>
<td>0.934</td>
<td>0.964</td>
<td>0.949</td>
</tr>
<tr>
<td>Follins Pond –up</td>
<td>BR-2</td>
<td>0.930</td>
<td>0.569</td>
<td>0.740</td>
<td>0.893</td>
<td>1.084</td>
<td>--</td>
<td>0.804</td>
<td>0.223</td>
<td>25</td>
<td>0.729</td>
<td>0.769</td>
<td>0.751</td>
</tr>
<tr>
<td>Follins Pond –lo</td>
<td>BR-3</td>
<td>0.845</td>
<td>0.605</td>
<td>0.761</td>
<td>0.838</td>
<td>0.949</td>
<td>1.002</td>
<td>0.807</td>
<td>0.227</td>
<td>27</td>
<td>0.723</td>
<td>0.766</td>
<td>0.747</td>
</tr>
<tr>
<td>Dinahs Pond</td>
<td>BR-4</td>
<td>0.727</td>
<td>0.814</td>
<td>0.924</td>
<td>0.811</td>
<td>0.959</td>
<td>0.919</td>
<td>0.843</td>
<td>0.181</td>
<td>31</td>
<td>0.664</td>
<td>0.722</td>
<td>0.696</td>
</tr>
<tr>
<td>Kelleys Bay</td>
<td>BR-5</td>
<td>0.663</td>
<td>0.789</td>
<td>0.860</td>
<td>0.734</td>
<td>0.881</td>
<td>0.900</td>
<td>0.790</td>
<td>0.137</td>
<td>30</td>
<td>0.589</td>
<td>0.753</td>
<td>0.695</td>
</tr>
<tr>
<td>Bass River – uppermost</td>
<td>BR-6</td>
<td>0.684</td>
<td>0.864</td>
<td>0.841</td>
<td>0.739</td>
<td>0.834</td>
<td>0.832</td>
<td>0.796</td>
<td>0.162</td>
<td>31</td>
<td>0.464</td>
<td>0.727</td>
<td>0.607</td>
</tr>
<tr>
<td>Bass River – upper</td>
<td>BR-7</td>
<td>0.570</td>
<td>0.372</td>
<td>0.471</td>
<td>0.621</td>
<td>0.804</td>
<td>--</td>
<td>0.529</td>
<td>0.177</td>
<td>26</td>
<td>0.422</td>
<td>0.629</td>
<td>0.523</td>
</tr>
<tr>
<td>Bass River – upper</td>
<td>BR-8</td>
<td>0.460</td>
<td>0.346</td>
<td>0.349</td>
<td>0.605</td>
<td>0.736</td>
<td>0.659</td>
<td>0.485</td>
<td>0.171</td>
<td>30</td>
<td>0.407</td>
<td>0.591</td>
<td>0.493</td>
</tr>
<tr>
<td>Grand Cove</td>
<td>BR-9</td>
<td>0.588</td>
<td>0.403</td>
<td>0.471</td>
<td>0.628</td>
<td>0.763</td>
<td>0.738</td>
<td>0.564</td>
<td>0.164</td>
<td>30</td>
<td>0.492</td>
<td>0.548</td>
<td>0.520</td>
</tr>
<tr>
<td>Bass River – upper</td>
<td>BR-10</td>
<td>0.423</td>
<td>0.436</td>
<td>0.343</td>
<td>0.481</td>
<td>0.694</td>
<td>0.676</td>
<td>0.479</td>
<td>0.157</td>
<td>30</td>
<td>0.343</td>
<td>0.550</td>
<td>0.438</td>
</tr>
<tr>
<td>Bass River – lower</td>
<td>BR-11</td>
<td>0.393</td>
<td>0.329</td>
<td>0.310</td>
<td>0.423</td>
<td>0.443</td>
<td>--</td>
<td>0.367</td>
<td>0.096</td>
<td>51</td>
<td>0.316</td>
<td>0.509</td>
<td>0.389</td>
</tr>
<tr>
<td>Location</td>
<td>BR</td>
<td>0.402</td>
<td>0.398</td>
<td>0.380</td>
<td>0.435</td>
<td>0.440</td>
<td>0.496</td>
<td>0.418</td>
<td>0.075</td>
<td>26</td>
<td>0.323</td>
<td>0.461</td>
<td>0.372</td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Marsh – lower</td>
<td>BR-12</td>
<td>0.414</td>
<td>0.349</td>
<td>0.321</td>
<td>0.383</td>
<td>0.411</td>
<td>0.384</td>
<td>0.370</td>
<td>0.088</td>
<td>58</td>
<td>0.306</td>
<td>0.440</td>
<td>0.340</td>
</tr>
<tr>
<td>Bass River– lower</td>
<td>BR-13</td>
<td></td>
</tr>
<tr>
<td>Nearshore</td>
<td>BR-14</td>
<td>0.358</td>
<td>0.334</td>
<td>0.339</td>
<td>0.344</td>
<td>0.420</td>
<td>0.359</td>
<td>0.353</td>
<td>0.057</td>
<td>53</td>
<td>0.305</td>
<td>0.334</td>
<td>0.306</td>
</tr>
</tbody>
</table>
Appendix B: Bass River Estuarine System estimated waste load allocation (WLA) from runoff of all impervious areas within 200 feet of its waterbodies.

<table>
<thead>
<tr>
<th>System Name</th>
<th>Impervious Area in 200 ft buffer (acres)</th>
<th>Total Impervious Area in Watershed (acres)</th>
<th>Total Watershed Area (acres)</th>
<th>% Impervious of Total Watershed Area</th>
<th>Impervious Area in 200 ft buffer as % of Total Watershed Impervious Area</th>
<th>MEP Total Unattenuated Watershed Impervious Load (kg/day)</th>
<th>MEP Total Unattenuated Watershed Load (kg/day)</th>
<th>Impervious buffer (200ft) WLA (kg/day)</th>
<th>Buffer area WLA as % of MEP Total Unattenuated Watershed Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bass River</td>
<td>104</td>
<td>2,009</td>
<td>11,157.8</td>
<td>18%</td>
<td>5.2%</td>
<td>19.98</td>
<td>262.85</td>
<td>1.03</td>
<td>0.39%</td>
</tr>
</tbody>
</table>

1- The entire impervious area within a 200 foot buffer zone around all waterbodies as calculated from GIS. Due to the soils and geology of Cape Cod it is unlikely that runoff would be channeled as a point source directly to a waterbody from areas more than 200 feet away. Some impervious areas within approximately 200 feet of the shoreline may discharge stormwater via pipes directly to the waterbody. For the purposes of the wasteload allocation (WLA) it was assumed that all impervious surfaces within 200 feet of the shoreline discharge directly to the waterbody.

2- This includes the unattenuated nitrogen loads from wastewater from septic systems, fertilizer, runoff from both natural and impervious surfaces, atmospheric deposition to freshwater waterbodies and the nitrogen load from the landfill.

3- The impervious watershed 200ft buffer area (acres) divided by total watershed impervious area (acres) then multiplied by total impervious watershed load (kg/day).

4- The impervious watershed buffer area WLA (kg/day) divided by the total watershed load (kg/day) then multiplied by 100.
Appendix C: Bass River Estuarine System Nine Total Nitrogen TMDLs

<table>
<thead>
<tr>
<th>Sub-embayment</th>
<th>Segment ID</th>
<th>Description</th>
<th>TMDL (kg N/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run Pond</td>
<td>MA96265_20181</td>
<td>Dennis.</td>
<td>8.606</td>
</tr>
<tr>
<td>Bass River - Lower</td>
<td></td>
<td></td>
<td>39.759</td>
</tr>
<tr>
<td>School Street Marsh</td>
<td></td>
<td></td>
<td>15.739</td>
</tr>
<tr>
<td>Bass River - Middle</td>
<td></td>
<td></td>
<td>57.716</td>
</tr>
<tr>
<td>Bass River</td>
<td>MA96-12</td>
<td>Route 6, Dennis/Yarmouth to mouth at Nantucket Sound, Dennis/Yarmouth (excluding Grand Cove, Dennis).</td>
<td>113.214</td>
</tr>
<tr>
<td>Bass River “Grand Cove” portion</td>
<td>MA96-118_20181</td>
<td>“Grand Cove” portion of Bass River, north of Main Street (Route 28), Yarmouth.</td>
<td>22.063</td>
</tr>
<tr>
<td>Dinah’s Pond</td>
<td>MA96-112_20181</td>
<td>Yarmouth.</td>
<td>1.088</td>
</tr>
<tr>
<td>Kelleys Bay</td>
<td>MA96-113_20181</td>
<td>Dennis/Yarmouth.</td>
<td>21.975</td>
</tr>
<tr>
<td>Follins Pond</td>
<td>MA96-114_20181</td>
<td>Yarmouth/Dennis.</td>
<td>30.056</td>
</tr>
<tr>
<td>Mill Pond</td>
<td>MA96-117_20181</td>
<td>Yarmouth.</td>
<td>7.332</td>
</tr>
<tr>
<td>Mill Pond Stream: Weir Creek</td>
<td>MA96-116_20181</td>
<td>Headwaters, outlet Mill Pond, Yarmouth to mouth at confluence with Muddy Creek, Yarmouth.</td>
<td>1.629</td>
</tr>
<tr>
<td>Mill Pond Stream: Muddy Creek</td>
<td>MA96-115_20181</td>
<td>Headwaters, outlet North Dennis Road Pond, Yarmouth to mouth at inlet Follins Pond, Yarmouth.</td>
<td>0.326</td>
</tr>
<tr>
<td>Total for Bass River Estuarine System</td>
<td></td>
<td></td>
<td>206.289</td>
</tr>
</tbody>
</table>

1. To be included in a future Integrated List of Waters.
2. Bass River TMDL includes Lower and Middle Bass River and School Street Marsh (Weir Creek), as referenced in the SMAST Tech Report.
Appendix D: Response to Comments

Massachusetts Estuaries Project (MEP)
Response to Comments For
DRAFT TOTAL MAXIMUM DAILY LOAD (TMDL) REPORTS FOR
BASS RIVER (CONTROL #392.0)
PARKERS RIVER (CONTROL #335.0)
SWAN POND RIVER (CONTROL #393.0)
(REPORTS DATED NOVEMBER, 2016)

PUBLIC COMMENTS RECEIVED ON DECEMBER 14, 2016, FOLLOWED BY MASSDEP RESPONSES:

1. How are seasonal homes accounted for in the development of the TMDL? There is a trend that many residences are changing from seasonal occupation to year-round occupation which will affect the TMDL load analysis.

 MassDEP Response: From the Bass River Technical Report, page 37: “To estimate wastewater flows, the Massachusetts Estuaries Project obtained parcel-by-parcel water use data from the Town of Yarmouth and the Dennis Water District. The water use data was linked to the respective town parcel databases by the Cape Cod Commission GIS staff. Measured water use is used to estimate wastewater-based nitrogen loading from the individual parcels; average water use for each parcel is used for parcels with multiple years of data. The final wastewater nitrogen load for each parcel is based upon the measured water-use, wastewater nitrogen concentration, and consumptive loss of water before the remainder is treated in a septic system.”

2. The Planning Department does not collect information on the conversion of seasonal homes to year round. How should this change in land use be accounted for in planning?

 MassDEP Response: The building department considers zoning, which may not distinguish between year-round and seasonal home use. The Comprehensive Water Resources Management Plan (CWRMP) looks at 20 year projections of flows. Given the seasonal shifts in occupancy and rapid population growth observed throughout Cape Cod, the parcel-by-parcel water use was considered the most accurate and appropriate approach. There is also a provision for the community to receive 0% financing for Nitrogen Management Projects, through State Revolving Funds (SRF), however, the community must demonstrate controlled growth to qualify for this financing.

3. How is loading from the various sources for each watershed accounted for in the analysis?

 MassDEP Response: The landuse is evaluated to determine nitrogen loads. First, a parcel-by-parcel analysis is used to evaluate the water use for each home and septic systems are the major contributor. Some areas in Denis and Yarmouth are serviced
by wastewater treatment plants and are identified and accounted for in the analysis. The tech report describes the method for estimating the loads attributed to fertilizer. A default value of 1.08 lb/5,000 sq ft nitrogen, is used for the average lawn. The load from stormwater is largely associated with runoff from impervious surface within the watershed and a loading factor is applied. On the land side the contribution from atmospheric deposition on the natural landscape is estimated. This process is well documented in the Technical Report.

Excerpt from the Technical Report of Swan, Bass, and Parkers Rivers Estuarine Systems:

Extensive data collection and analyses have been described in detail in the MEP Technical Report. The details of the data collection, modeling and evaluation are presented and discussed in Chapters IV, V, VI, VII and VIII of the MEP Technical Report. The Linked Model provides a quantitative approach for determining an embayment’s (1) N sensitivity, (2) N threshold loading levels (TMDL) and (3) response to changes in loading rate. This methodology integrates a variety of field data and models, specifically:

- **Monitoring - multi-year embayment nutrient sampling**
- **Hydrodynamics**
 - Embayment bathymetry (Depth contours throughout the embayment)
 - Site-specific tidal record (timing and height of tides)
 - Water velocity records (in complex systems only)
 - Hydrodynamic model
- **Watershed Nitrogen Loading**
 - Watershed delineation
 - Stream flow (Q) and N load
 - Land-use analysis (GIS)
 - Watershed N model
- **Embayment TMDL - Synthesis**
 - Linked Watershed-Embayment Nitrogen Model
 - Salinity surveys (for linked model validation)
 - Rate of N recycling within embayment
 - Dissolved oxygen record
 - Macrophyte survey
 - Infaunal survey

4. Did you quantify the impact of restrictions on fertilizer use through mechanisms like the institution of by-laws?

MassDEP Response: In general, funding limits the number of scenarios we can evaluate to achieve the goal of the TMDL. As a result, the MEP scenario analysis focuses on the septic loads and WWTP because as the modeling and land use analysis shows, the dominate contributor to the watershed nitrogen load is on-site septic systems. Fertilizer use accounted for 7-15% of the nitrogen load to the estuaries. Of that 7-15%, we estimate an additional reduction of 25% of fertilizer
use will be realized through stormwater BMPs. Therefore, while fertilizer restrictions can contribute to overall nitrogen reduction, even if we assume 100% compliance, we do not anticipate a significant reduction from such restrictions.

5. The conclusion seems to indicate that septic is the source of nitrogen. Does that mean the community needs to be sewered?

MassDEP Response: The there are several options for reducing the total nitrogen load in the watershed, however, in all likelihood there will be core areas that need a sewer system. The 208 Plan, developed by the Cape Cod Commission, identifies alternatives to assist with nitrogen removal, like aquaculture with shellfish, permeable reactive barriers (trenches or injection wells that intercept and denitrify the groundwater), and other options being explored that are not fully developed such as floating constructed wetlands. In addition, as part of the MEP we look at natural attenuation (the ability of lakes and ponds to remove nitrogen). In some cases, such as Parkers River, inlet widening is effective in increasing flushing with the high quality waters of Vineyard Sound. Because the vast majority of controllable N load is from septic systems for private residences, the CWRMP should assess the most cost-effective options for achieving the nitrogen reductions from these sources necessary to meet target N watershed loads, including but not limited to, sewer and treatment for N control of sewage and septage at either centralized or de-centralized locations and denitrifying systems for private residences.

6. Dinah Pond (Bass River System) would have to reduce septic system load by 100%. That would be difficult because Dinah Pond has a narrow opening and it is located near a cranberry bog.

MassDEP Response: The cranberry bog would contribute phosphorus more than nitrogen to the estuary. Nitrogen is the limiting nutrient for marine waters. BMPs can be employed to reduce the contribution of nutrients. The magnitude of reduction and the position in the watershed also needs to be considered to determine the benefit. If there are opportunities for nitrogen reduction at Dinah’s Pond, that can be reviewed as part of the CWRMP, as well as other additional scenarios of interest to the towns.

7. Swan River has extensive salt marsh. I am on the Conservation Commission and we have tried to maintain this salt marsh in a natural condition going back to the ‘70s. The salt marsh is supposed to assist in attenuation of nitrogen; has the salt marsh reached its limits, or its ability to absorb nitrogen? Is it constricted by flow?

MassDEP Response: Salt marshes have a natural ability to attenuate nitrogen and this capacity was considered in setting the target threshold concentrations. The restoration plan presented in the TMDL for the Swan Pond Estuarine System is addressing the septic load, the largest contributor to the nitrogen load in the watershed. The MEP did not directly evaluate the assimilative capacity of the salt
marsh to attenuate nitrogen. By reducing the nitrogen load, the environmental pressure on the salt marsh will be reduced and it will maintain its function. Without action to address the septic load, that system is not sustainable.

According to CDM Smith, a wastewater consulting engineering firm hired by the Town of Dennis – The constraint on Swan Pond River is that it is shallow, moves slowly, and has a large sinusoidal friction factor. The salt marsh is doing its job to the extent possible.

8. What effect would dredging have on the estuaries?

MassDEP Response: Dredging is site specific; in some cases it can be beneficial. Culvert improvements, inlet widening, can assist with flushing an estuary. However, in some cases dredging can worsen the problem by reducing the effect of flushing. The estuary will have the same tidal prism, i.e. same tidal volume, exchanging water with a larger volume of water in the estuary. Additional model runs can be done by SMAST, if requested, for additional cost.

9. What is the timeline for submitting the TMDL to EPA?

MassDEP Response: The public comment period ends 30 days from today (December 14, 2016), the date of the public meeting. The responses to your comments will be reviewed internally, then the final TMDL will be submitted to EPA. This generally takes several months. EPA’s formal approval of the TMDLs will take an additional few months. It may take up to one year for final approval of the TMDL. However, the final approval of the TMDL is not necessary for the towns to continue planning for the implementation of the CWRMP.

10. What does the TMDL mean to the town?

MassDEP Response: The TMDL formalizes the findings in the Tech Report and identifies the maximum amount of a pollutant that a body of water can receive while still meeting water quality standards. The town should evaluate potential alternatives to meet the TMDL targets through their CWRMP. The TMDL serves as the regulatory and technical basis for developing CWRMP. MassDEP reviews and approves a community’s CWRMP and makes subsequent permitting decisions based on its approved plan. MassDEP reviews the CWRMP to see if the towns will ultimately achieve compliance with the TMDL. The goal of the TMDL is habitat restoration, for either eelgrass or benthic infauna habitat. Through Implementation of the CWRMP should result in meeting the target concentration, observed improvements in water quality, and ultimately restoration of the eel grass and benthic community habitats that were impaired by excess nitrogen. While the focus is on achieving the target concentration the ultimate goal is habitat restoration. In addition to development of the CWRMP, the community will also need to evaluate progress towards achieving the TMDL goals, and
need to make mid-course corrections if necessary improvements are not being made in a timely manner. There are some funding programs that consider whether there is an approved TMDL when considering the competitiveness of a grant application, including SRF loans and the Southeast New England Program (SNEP) grants. It is to the advantage of the community to get federal grants and low interest loans wherever possible.

11. Once the TMDL is established and the 208 Plan is moving forward, is there a focus on the areas that are more impacted? Are those areas prioritized?

MassDEP Response: Communities decide through the CWRMP how best to implement the TMDL in order to achieve the desired water quality goals. MassDEP encourages cities and towns to prioritize the most impaired areas, however we continue to work with communities throughout the process to develop an implementation schedule that works for them and meets water quality goals. The towns of Dennis and Yarmouth are urged to meet the target threshold nitrogen concentrations by reducing N loadings from any and all sources, through whatever means are available and practical.

12. Have you identified any fish kills or beach closures as a result of the excess nitrogen?

Response from audience – About 3 years ago a fish kill was observed in Swan Pond. At the same event, blue crabs came out of the water in masse (known as a blue crab jamboree). Water was black from the micro-algal die-off resulting in low dissolved oxygen. Things are at a point where we need to take action. Historically, 15 years ago, pollution caused beach closures several times over a 2 to 3 year period.

MassDEP Response: Excess nitrogen and is one potential cause of fish kills.

13. Yarmouth needs to protect its archeological resources when implementing these projects. Bass River has archeological resources and during the construction phase of the culvert widening there is the potential to damage these resources. How is the Massachusetts Historical Commission (MHC) notified of sewer construction projects?

MassDEP Response: The MHC will be notified through the Massachusetts Environmental Policy Act or MEPA process. Certain large construction work, implementation of a CWRMP, or projects receiving state funding, generally trigger any number of thresholds in MEPA. MEPA staff would notify the MHC and request their review and comments on the project. Public notification of projects that require MEPA review are placed in the MEPA Environmental Monitor, which is published every two weeks.

14. Is the discharge of boat waste accounted for in the TMDL? In Wellfleet the oyster beds were closed because there was a report that human waste was discharged.
MassDEP Response: Incorporating additional load due to boat waste was not part of the evaluation. Discharge of boat waste is illegal within all Massachusetts waters, therefore if a discharge occurs, it is assumed to be an isolated occurrence and not a continuous discharge. There are boat pump out facilities available throughout the Cape which lends confidence that boats waste is not a significant source.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

**Public comment was received from the Association to Preserve Cape Cod, January 9, 2017.**

Re: Cape Cod Watershed TMDL Control Number 392.0 (Bass River), 393.0 (Swan Pond) and 335.0 (Parkers River)

Thank you for the opportunity to comment on the draft total maximum daily load (TMDL) for total nitrogen for the three subject estuarine areas of Yarmouth, Dennis and Brewster. Founded in 1968, the Association to Preserve Cape Cod (APCC) is the leading regional non-profit environmental advocacy and education organization on Cape Cod. Representing more than 5,000 members, APCC’s mission is to promote policies and programs that foster the preservation of the Cape’s natural resources. APCC focuses its efforts on the protection of groundwater, surface water, and wetland resources, preservation of open space, the promotion of responsible, planned growth and the achievement of an environmental ethic ([www.apcc.org](http://www.apcc.org)).

APCC appreciates the effort of the Department to engage the public and promote public awareness of the problem of excess nitrogen on Cape Cod, particularly nitrogen’s negative impact on coastal estuaries across our region. APCC does have concerns about some of the basic assumptions, time delays and reliability of the draft TMDLs. APCC is especially concerned that the Department does not fully comprehend the dynamics of what you refer to as the Cape Cod Watershed and the challenges of a regional economy based on part-time residence. This is a classic case of one size does not fit all. Lastly, APCC would like to take this opportunity to ask the Department to step up and meet its statutory obligations in a more proactive and interventive manner. We recognize that the Department has been increasingly challenged with reduced resources, but some necessary action does not cost money or significant agency staff time.

*Basic assumptions, time delays and reliability of TMDLs.*

To quote from the Massachusetts Estuaries Project (MEP) Linked Watershed Embayment Model Peer Review published in 2011, “The Massachusetts Estuaries Project (MEP) partnership was organized to provide a technical underpinning for development of total maximum daily loads (TMDLs), especially the establishment of water quality goals, source assessments and recommendations for source reductions. Nitrogen delivery to Cape Cod estuaries from human sources is dominated by septic inputs delivered to local waters through groundwater transport. This presents a unique challenge to local stakeholders who desire to protect and restore these
sensitive ecosystems for their important contribution to the local lifestyle and economy.” Id. At 4. The peer review panel specifically recommended “that model sensitivity analyses be conducted for the components and linkages in the watershed-embayment model for each specific estuary. Sensitivity analysis is the principal evaluation tool for characterizing the most and least important sources of uncertainty in environmental models. The Panel believes that a healthy recognition of uncertainty would encourage planning bodies to pursue an adaptive science and management strategy as they move forward to understand and remediate the impacts of excessive nitrogen loadings on the estuaries and embayments.” Id. at 31.

APCC notes that independent model sensitivity analyses were not reported in the draft reports. Instead the reports rely on so-called margins of safety as allowed by EPA. We believe that the peer review panel’s approach will provide more reliable results and a clearer picture of uncertainty. Both of these improvements will allow more effective interventions, better adaptive management and likely reduced overall implementation and maintenance costs.

15. **MassDEP Response**: The intent of the MEP methodology and approach was to provide site specific recommendations to be most cost effective and responsive to the needs of each community. A sensitivity analysis on each embayment has not been a part of this project, and would require significant additional funding to complete. However, expanding the scope of the MEP model and recommendations through the CWRMP is an option for each community. Additionally, it should be noted that the TMDL incorporates an adaptive management approach, where the target threshold concentration will be reevaluated if the goal of estuarine restoration is not achieved.

The MEP model has been used successfully throughout Cape Cod, the Islands, and Buzzards Bay in over 60 embayments. While there are areas of uncertainty in the model and in some of the input, this uncertainty has been adequately addressed and balanced in the Margin of Safety. Ultimately, if the goal of habitat restoration is not met, adaptive management of the target concentrations and load reductions will be used to evaluate the necessary changes.

APCC notes that the draft TMDLs published in November of 2016 are based upon data collected prior to 2011. The report does not explain the delay between data collection and promulgation of the draft reports.

16. **MassDEP Response**: The data collection period establishes the baseline for water quality modeling establishment of target concentrations for restoration of the estuaries. Data collection began almost simultaneously across Cape Cod, the Islands and Buzzards Bay. To this point in time, we have 42 estuaries with EPA approved TMDLs or were determined not to need a TMDL. Assuming the towns are in agreement, we anticipate going out for public comment for 6-8 estuaries this summer. The TMDLs are based on the results of the Technical Reports, therefore the towns have recommendations that will be summarized in the TMDL and can continue to work towards reduction in nutrient loads to the estuaries.
A great deal has occurred in the intervening years between data collection and issuance of the report, including improved and more extensive USGS groundwater modeling (e.g., Potential Effects of Sea-Level Rise on the Depth to Saturated Sediments of the Sagamore and Monomoy Flow Lenses on Cape Cod, Massachusetts published in 2016). Additionally, there have been new developments and improved understanding of the reduction in atmospheric deposition of nitrogen across Cape Cod. While the subject estuarine systems may not be significantly impacted by the atmospheric deposition of nitrogen because of relatively small surface areas, the assumption in the draft report stating “The loadings from atmospheric sources incorporated into the TMDL however, are the same rates presently occurring because, as discussed above, local control of atmospheric loadings is not considered feasible” is inaccurate. Reductions are documented and are expected to continue.

17. **MassDEP Response:** MassDEP recognizes the long lag time between data collection and the issuance of each TMDL report and that in the intervening years research is continuing in the area of climate influences on coastal resources and atmospheric deposition of N. Recent research on Buzzards Bay estuaries indicates atmospheric deposition of N has shown a decreasing trend since 2000. At the same time, development and construction of on-site septic systems on Cape Cod has continued, countering the potential benefit of decreases in atmospheric deposition. Williamson et al (2017) also acknowledged that while the overall N load estimated through the MEP was higher than the Nitrogen Loading Model (NLM) used, the relative loading was similar. Although improvements to atmospheric deposition are occurring due to improvements in energy and transportation technology, MassDEP considers local control of atmospheric deposition uncontrollable by the local municipalities. Atmospheric deposition of N was therefore incorporated into the TMDL and held constant. This adds to the Margin of Safety to attain water quality standards through adherence to the TMDL.

MassDEP recognizes that long-term climate change impacts to southeastern Massachusetts are possible based on known science. However, the details of how climate change will effect precipitation, streamflow, sediment and nutrient loading in specific locations are generally unknown. In light of the uncertainties, MassDEP has chosen to address the uncertainty of climate change through an implicit Margin of Safety (MOS) (i.e., additional loading incorporated into the TMDL through conservative assumptions). Furthermore, TMDLs are developed and implemented with an adaptive management approach. Adjustments can be made as environmental conditions, pollutant sources, or other factors change over time.

MassDEP incorporated language in the TMDL regarding climate change and determined that due to the large variability and unknown responses to climate change, it was beyond the scope of the MEP TMDLs to develop an explicit MOS for climate change at this time.

---

**Unique challenges facing Cape Cod**

Cape Cod is not a single watershed. Cape Cod has as many as 57 watersheds and 89 estuaries. Each watershed and estuary is unique and all encompass dynamic interfaces between fresh and saltwater as well as between ground and surface waters. There are no large scale riverine watersheds anywhere on the Cape.

Cape Cod has a disproportionate number of on-site septic systems per unit of population compared to the rest of Massachusetts. The area of the subject reports is dominated by Title 5 systems and include many pre-Title 5 systems such as cesspools. There are relatively few advanced treatment systems in the area and no public wastewater collection or treatment systems. This on-site infrastructure currently exists and is not subject to further permitting, (sic) unless there is additional development and build out. The area also contains a high proportion of second and seasonal homes that are used for 10 weeks or less per year. Since site specific loadings are calculated upon water consumption and not septic capacity, conversion of properties from seasonal to more year-round will have a detrimental impact on nitrogen loading. This specific uncertainty is not captured in any of the reports. Growth controls do not impact this uncertainty.

18. **MassDEP Response:** Refer to responses questions from the public meeting, #1 and #2 above.

The seasonal nature of Cape Cod’s population means that nitrogen arrives in estuaries in pulses and is not uniform throughout the year. Travel times (relatively fast) and travel distances (relatively short) do not equalize nitrogen flow arrival into estuaries across the year. While the reports acknowledge seasonal variability, they focus primarily on point sources. Since the report acknowledges that the nitrogen problem is largely non-point sources there is an absolute disconnect between problem and intervention. Ultimately we need to better understand and account for these pulses. Current TMDL computation may miss certain high load tipping points, or on the other hand, make intervention more expensive than is necessary to meet water quality standards.

19. **MassDEP Response:** The primary point source of nitrogen load in the MEP Tech Reports and the TMDLs is stormwater runoff from impervious surfaces within 200 feet of the estuaries. This was calculated for Bass River, Parkers River, and Swan Pond estuaries and determined to provide a diminimus contribution to the waste load allocation. Natural background, septic load, groundwater discharge from wastewater treatment plants, fertilizers, and runoff outside the 200 foot buffer of the estuary are considered non-point sources of nitrogen to the estuaries.

Swan Pond is at present significantly impacted by high nutrient levels. Efforts currently underway to replace the Route 28 bridge across Parkers River with a wider span bridge will improve nutrient flushing and help restore the upstream marsh; however, this will not address the root source of the problem. Until the nitrogen inputs from wastewater and runoff are addressed, non-point source pollution into this system will continue to negatively impact the community and the natural resources. Ultimately improved flushing is simply a “dilution is the solution to pollution” intervention.
20. **MassDEP Response:** The load reduction scenario provided in the Technical Report and the TMDL, assumed 100% sewering of the Swan Pond system to meet the target threshold load. Similarly, in the Parkers River system, roughly 80% of the watershed would require sewering to meet the target threshold load. Additional scenarios were evaluated by MEP that included widening of the Route 28 bridge across the Parkers River along with some sewering. Inlet widening would improve flushing with the cleaner waters of Vineyard Sound but would still require additional nitrogen load removal to meet the target threshold concentrations and recover the estuarine habitats.

*State action needed now*

The Commonwealth and DEP should take the following steps to help further reduce nitrogen and pathogen pollution:

1. Update Title 5 regulations to improve protection. Immediately begin the phase out of cesspools and pre-Title 5 septic systems.
2. Require pump out of on-site systems every 4 years. Provide a tax credit.
3. Impose statewide fertilizer reductions (excluding agriculture) in all regions of the state that have nitrogen impaired waters, including Cape Cod.
4. Provide for improved wetland buffer requirements utilizing tax incentives, conservation easements and by supporting local wetland bylaws that incorporate more protective buffer strips.
5. Significantly increase penalties for harvesting shellfish in closed areas.
6. Provide additional funding for restoration projects that will improve water quality in impaired waters at the same time as pollutant sources are being addressed and eliminated.
7. Support systematic comprehensive monitoring programs to monitor groundwater, surface water, coastal embayments and nitrogen loading in order to provide up-to-date models of nitrogen loading, track changes and track progress in addressing nutrient loading.

21. **MassDEP Response:** MassDEP acknowledges these thought-provoking and helpful suggestions. Resulting from feedback received during the Executive Order 562 process, MassDEP recently convened an external stakeholder group to review our Title 5 (310 CMR 15.00) and groundwater discharge permitting (310 CMR 5.00) regulations. This group will consider a range of questions related to these programs including: design flows for residential facilities, use of holding tanks to deal with peak flows, groundwater separation requirements for new construction if alternate technologies are used; the flow threshold for groundwater discharge permits; and designation and requirements for Nitrogen Sensitive Areas.

The Massachusetts Department of Agricultural Resources (MassDAR) promulgated plant nutrient regulations (330 CMR 31.00) in June 2015, which requires specific restrictions, including seasonal restrictions, on nutrient applications and set-backs from sensitive areas (public water supplies and surface water) and Nutrient Management Plans. Compliance with the MassDAR regulations will result in reductions in future N loading.
These regulations apply to both agricultural and non-agricultural land, including lawn and turf, and individual home owners.

Communities have the ability to develop wetland bylaws and regulations that meet the needs of their community and that exceed the requirements of the Wetlands Protection Act.

Shellfishing is monitored and regulated by the Division of Marine Fisheries.

Annual funding grants for water quality assessment and management planning is available under the Clean Water Act 604(b). In FFY 2017, the focus for the grants is nonpoint source assessment and planning projects including among many potential projects, development of green infrastructure, addressing water quality impairments, and assisting communities with stormwater utility issues (both regulated and non-regulated communities).

There are a number of funding sources for pollution abatement. State Revolving Funds, or SRF, are available for water pollution abatement planning and construction of projects to assist municipalities in complying with federal and state water quality requirements. SRF is provided as a loan on a competitive basis. Communities must file a Project Evaluation Form with MassDEP to be considered for these subsidized loans. Generally SRF loans are provided via a 2% interest loan; however, Nutrient Management Projects are eligible for 0% interest loans, referred to as the O’Leary Loans. For more information you can visit our web page [http://www.mass.gov/eea/agencies/massMassDEP/water/grants/clean-water-state-revolving-loan-fund-fact-sheet.html](http://www.mass.gov/eea/agencies/massMassDEP/water/grants/clean-water-state-revolving-loan-fund-fact-sheet.html). SRF loans are also available for planning purposes for Water Resources Management Plans (WRMPs) which in addition to wastewater management include consideration of water supply and stormwater. Guidance on WRMPs may also be found on the following link: [http://www.mass.gov/eea/agencies/massdep/water/grants/clean-water-state-revolving-fund.html](http://www.mass.gov/eea/agencies/massdep/water/grants/clean-water-state-revolving-fund.html).

The Massachusetts 319 Grant program provides up to $2 million per year in grants. TMDL implementation is a high priority in the 319 program. In fact, projects designed to address TMDL requirements are given additional points during project evaluation scoring. The 319 grant program Request For Proposal (RFP) includes this language: “Category 4a Waters: TMDL and draft TMDL implementation projects - The 319 program prioritizes funding for projects that will implement Massachusetts’ Total Maximum Daily Load (TMDL) analyses. Many rivers, estuaries and water bodies in the Commonwealth are impaired and thus do not meet Massachusetts’ Surface Water Quality Standards. The goal of the TMDL Program is to determine the likely cause(s) of those impairments and develop an analysis (the TMDL) that lists those cause(s).” For more details please see [http://www.mass.gov/eea/agencies/MassDEP/water/grants/watersheds-water-quality.html](http://www.mass.gov/eea/agencies/MassDEP/water/grants/watersheds-water-quality.html#1).

Community Preservation Act funds are intended to assist communities preserve open space, and historic sites, create affordable housing and develop outdoor recreational...
facilities. State Revolving funds can be used for open space preservation if a specific watershed property has been identified as a critical implementation measure for meeting the TMDL. The SRF solicitation should identify the land acquisition as a high priority project for this purpose which would then make it eligible for the SRF funding list. However, it should be noted that preservation of open space will only address potential future nitrogen sources (as predicted in the build-out scenario in the MEP Technical report) and not the current situation. The town will still have to reduce existing nitrogen sources to meet the TMDL. For detailed information on allowable uses of CPA funds, contact your town counsel or the secretary of state’s office. For more details please see http://www.communitypreservation.org/content/cpa-overview.

Regarding systematic monitoring, MassDEP notes at the time of the Governor’s Baker certification of the updated 208 Plan, the Executive Office of Energy and Environmental Affairs committed to funding $250,000 per year allocated over a four year period, for the Cape Cod Water Quality Monitoring Program, with an equal match of funds appropriated by Barnstable County. The monitoring program is intended to evaluate the efficacy of adaptive management measures to reduce nitrogen pollution of coastal waterways undertaken pursuant to the 208 plan and to support further assessment and water quality modeling.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Email from Bill Abdu concerning Bass River TMDL:

I am responding to a recent article in the Cape Cod Times of Dec 4, 2016 about comments on plans to reduce nitrogen in the coastal waters in Yarmouth and Dennis.

I purchased a home in South Dennis on Bass River and did some reconstruction that included an additional bedroom. Because of the additional bedroom, I had to expand the septic and as a result of this, at considerable extra expense, add a nitrogen reducing system (FAST System). This more than doubled the cost of the septic for a home used less than 2 months of the year.

Literary at the same time, a neighbor of mine did similar reconstruction, additional bedrooms and new septic. He is equal distance as I am to the water, but because his property line did not go to the water, he was not required by the town of Dennis or the state, to upgrade his septic to the nitrogen reducing system. His property line was separated from the water by another property owner, yet still the same distance to the water as my septic. Does leaching nitrogen in the ground respect property boundaries? His is a full-time year round occupancy home while my home is occupied less than 2 months of the year.

If this is not enough of a disparity or inconsistency in the laws and regulations, there are no restrictions on the use of nitrogen or phosphorous fertilizers, pesticides or herbicides on these water front and water bordering properties all of which of course flow into Bass River. The week that I'm putting in, as required by law, a nitrogen reducing septic at about 20 K to "save the river", all my neighbors that are on the river, through their lawn services, are spreading nitrogen
rich synthetic fertilizers on every single one their lawns, which of course is going to end up in the Bass River at the first rain while I suspect that very little of my nitrogen with either a conventional or FAST septic system will ever reach the river water.

And if that is not enough to turn your stomach, during the reconstruction and working with all of the many town offices in South Dennis, one town department requires water restrictions on all my faucets to limit the water use to "save the aquifer" on the Cape, while literally the next day, the water department, when they were putting in my water service line, asks if I want a greater diameter water service line to irrigate my lawn!

I don't mind at all paying my fair share to preserve the rivers and aquifer, but the inconsistencies and competing agendas, regulations and laws, ones that just make no sense and ones that really are not well thought out just need to change to be consistent and purposeful keeping the end goal in mind, keep the rivers clean and healthy. I have no problem paying my fair share to do this, but sometimes, I felt like I was the only one! If it's the right thing to do, all our laws and regulations should be consistent and make sense towards reaching this goal.

I wish you success in fixing this problem!

Bill Abdu
16 North Balch Street
Hanover New Hampshire
03755

22. MassDEP Response: Regarding nitrogen fertilizers, see response to question 20 above. The requirement for you to install a denitrifying system such as the FAST system is a local zoning or bylaw requirement. While MassDEP cannot speak to the specific requirements applicable to your neighbor’s circumstances, you are correct in stating that Nitrogen in ground water does not respect property lines. MassDEP encourages you to discuss your concerns regarding the local requirements for septic systems with your local community leaders regarding the requirements for septic system upgrades. In addition, as noted in Response to Comment 21, MassDEP has recently initiated a review of its regulations relating to Title 5 and groundwater discharge permits, including provisions related to Nitrogen Sensitive Area Designation. We note that although your home is currently used for only 2 months of the year; seasonal homes on Cape Cod are increasingly being occupied year round and it is important to plan for this potential outcome.
General Frequently Asked Questions:

1. Can a Comprehensive Water Resources Management Plan (CWRMP) include the acquisition of open space, and if so, can State Revolving Funds (SRF) be used for this?

MassDEP Response: State Revolving funds can be used for open space preservation if a specific watershed property has been identified as a critical implementation measure for meeting the TMDL. The SRF solicitation should identify the land acquisition as a high priority project for this purpose which would then make it eligible for the SRF funding list. However, it should be noted that preservation of open space will only address potential future nitrogen sources (as predicted in the build-out scenario in the MEP Technical report) and not the current situation. The town will still have to reduce existing nitrogen sources to meet the TMDL.

2. Do we expect eelgrass to return if the nitrogen goal is higher than the concentration that can support eelgrass?

MassDEP Response: There are a number of factors that can control the ability of eelgrass to re-establish in any area. Some are of a physical nature (such as boat traffic, water depth, or even sunlight penetration) and others are of a chemical nature like nitrogen. Eelgrass decline in general has been directly related to the impacts of eutrophication caused by elevated nitrogen concentrations. Therefore, if the nitrogen concentration is elevated enough to cause symptoms of eutrophication to occur, eelgrass growth will not be possible even if all other factors are controlled and the eelgrass will not return until the water quality conditions improve.

3. Who is required to develop the CWRMP? Can it be written in-house if there is enough expertise?

MassDEP Response: The CWRMP can be prepared by the town. There are no requirements that it must be written by an outside consultant; however, the community should be very confident that its in-house expertise is sufficient to address the myriad issues involved in the CWRMP process. MassDEP would strongly recommend that any community wishing to undertake this endeavor on its own should meet with MassDEP to develop an appropriate scope of work that will result in a robust and acceptable plan.

4. Have others written regional CWRMPs (i.e. included several neighboring towns)?

MassDEP Response: The Cape Cod Commission prepared a Regional Wastewater Management Plan or RWMP which formed a framework and set of tools for identifying several solutions for restoring water quality for each watershed on the Cape. The Section 208 Plan Update (or 208 Plan) is an area-wide water quality management plan and in general each town then prepared or is preparing it’s own CWRMP. An example of neighboring towns working on a regional plan is the Pleasant Bay Alliance which
consists of Orleans, Brewster, Harwich, and Chatham. Harwich, Dennis and Yarmouth are in discussions regarding a shared wastewater treatment plant.

Joint Comprehensive Wastewater Management Plans (CWMPs) have been developed by multiple Towns particularly where Districts are formed for purposes of wastewater treatment. Some examples include the Upper Blackstone Water Pollution Abatement District that serve all or portions of the towns Holden, Millbury, Rutland West Boylston and the City of Worcester and the Greater Lawrence Sanitary District that serves the greater Lawrence area including portions of Andover, N. Andover, Methuen and Salem NH. There have also been recent cases where Towns have teamed up to develop a joint CWMP where districts have not been formed. The most recent example are the Towns discharging to the Assabet River. They include the Towns of Westboro and Shrewsbury, Marlboro and Northboro, Hudson, and Maynard. The reason these towns joined forces was they received higher priority points in the SRF coming in as a group than they otherwise would have individually.

5. Does nitrogen entering the system close to shore impair water quality more? If we have to sewer, wouldn’t it make sense to sewer homes closer to the shore?

MassDEP Response: Homes closer to the waterbody allow nitrogen to get to that waterbody faster. Those further away may take longer but still get there over time and are dependent upon the underlying geology. However, what is more important is the density of homes. Larger home density means more nitrogen being discharged thus the density typically determines where to sewer to maximize reductions. Also there are many factors that influence water quality such as flushing and morphology of the water body.

6. Do you take into account how long it takes groundwater to travel?

MassDEP Response: Yes, the MEP Technical report has identified long term (greater than 10 years) and short term time of travel boundaries in the ground-watershed.

7. What if a town can’t meet its TMDL?

MassDEP Response: A TMDL is simply a nutrient budget that determines how much nitrogen reduction is necessary to meet water quality goals as defined by state Water Quality Standards. It is unlikely that the TMDL cannot be achieved however in rare occasions it can happen. In those rare cases the Federal Clean Water Act provides an alternative mechanism which is called a Use Attainability Analysis (UAA). The requirements of that analysis are specified in the Clean Water Act but to generalize the process, it requires a demonstration would have to be made that the designated use cannot be achieved. Another way of saying this is that a demonstration would have to be made that the body of water cannot support its designated uses such as fishing, swimming or protection of aquatic biota. This demonstration is very difficult and must be approved by the U.S. Environmental Protection Agency. As long as a plan is developed and actions are being taken at a reasonable pace to achieve the goals of the TMDL, MassDEP will use discretion in taking enforcement steps. However, in the event that reasonable
progress is not being made, MassDEP can take additional regulatory action through the broad authority granted by the Massachusetts Clean Waters Act, the Massachusetts Water Quality Standards, and through point source discharge permits.

8. What is the relationship between the linked model and the CWRMP?

MassDEP Response: The model is a tool that was developed to assist the Town to evaluate potential nitrogen reduction options and determine if they meet the goals of the TMDL at the established sentinel station in each estuary. The CWRMP is the process used by the Town to evaluate your short and long-term needs, define options, and ultimately choose a recommended option and schedule for implementation that meets the goals of the TMDL. The models can be used to assist the Towns during the CWRMP process.

9. Is there a federal mandate to reduce fertilizer use?

MassDEP Response: No, it is up to the states and/or towns to address this issue. However, the Massachusetts Department of Agricultural Resources (MassDAR) passed plant nutrient regulations (330 CMR 31.00) in June 2015, which requires specific restrictions for agricultural and residential fertilizer use, including seasonal restrictions, on nutrient applications and set-backs from sensitive areas (public water supplies and surface water) and Nutrient Management Plans. Compliance with the MassDAR regulations will result in reductions in future N loading from agricultural sources.

10. Will monitoring continue at all stations or just the sentinel stations?

MassDEP Response: At a minimum, MassDEP would like to see monitoring continued at the sentinel stations monthly, May-September in order to determine compliance with the TMDL. However, ideally, it would be good to continue monitoring all of the stations, if possible. The benthic stations can be sampled every 3-5 years since changes are not rapid. The towns may want to sample additional locations if warranted. MassDEP intends to continue its program of eelgrass monitoring.

11. What is the state’s expectation with CWRMPs?

MassDEP Response: The CWRMP is intended to provide the Towns with potential short and long-term options to achieve water quality goals and therefore provides a recommended plan and schedule for sewering/infrastructure improvements and other nitrogen reduction options necessary to achieve the TMDL. The state also provides a low interest loan program called the state revolving fund or SRF to help develop these plans. Towns can combine forces to save money when they develop their CWRMPs.

12. Can we submit parts of the plan as they are completed?
MassDEP Response: Submitting part of a plan is not recommended because absent a comprehensive plan, a demonstration cannot be made that the actions will meet the requirements of the TMDL. With that said however the plan can contain phases using an adaptive approach if determined to be reasonable and consistent with the TMDL.

13. How do we know the source of the bacteria (septic vs. cormorants, etc.)?

MassDEP Response: This was not addressed because this is a nitrogen TMDL and not a bacteria TMDL.

14. Is there a push to look at alternative new technologies?

MassDEP Response: MassDEP recommends communities consider all feasible alternatives to develop the most effective and efficient plans to meet water quality goals. The 208 Plan Update includes an analysis of a wide range of traditional and alternative approaches to nutrient reduction, remediation, and restoration. If a CWRMP relies on such alternative technologies and approaches, the plan must include demonstration protocols, including monitoring, that will confirm that the proposed reduction credits and, when appropriate, removal efficiencies are met. The implementation schedule is in the demonstration protocol for each alternative technology or approach, at which time a determination must be made as to whether the alternative technology/approach meets the intended efficacy goal. MassDEP is also developing a Watershed Permit Pilot program, which includes but is not limited to Under Ground Injection Control (UIC) and groundwater discharge permits and provides a permitting mechanism to approve nontraditional methods of wastewater management and/or impact mitigation that could not otherwise be approved by MassDEP under a typical wastewater management and discharge permit.

The Massachusetts Septic System Test Center, located on Cape Cod and operated by the Barnstable County Department of Health and Environment, tests and tracks advanced innovative and alternative septic system treatment technologies. In addition MassDEP evaluates pilot studies for other alternative technologies; however, absent a CWRMP and Watershed Permit, MassDEP will not approve a system for general use unless it has been thoroughly studied and documented to be successful.

15. How about using shellfish to remediate and reduce nitrogen concentrations?

MassDEP Response: The use of shellfish to remediate and reduce nitrogen concentrations is an alternative approach that has been utilized and is being evaluated in some areas of Long Island Sound (LIS), Wellfleet, and Chesapeake Bays. More recently, some Cape communities have been evaluating this method, including Falmouth, Mashpee and Orleans. While this approach has demonstrated promise for reducing nitrogen concentrations, there remain questions regarding the effectiveness and circumstances where it can be successfully utilized. MassDEP recommends communities considering this option discuss such plans with the Department, and evaluate the results from ongoing efforts on the Cape and on other states.
16. The TMDL is a maximum number, but we can still go lower.

MassDEP Response: The state’s goal is to achieve designated uses and water quality criteria. There is nothing however that prevents a Town from implementing measures that go beyond that goal. It should also be noted that the TMDL is developed conservatively with a factor of safety included.

17. Isn’t it going to take several years to reach the TMDL?

MassDEP Response: It is likely that several years will be necessary to achieve reductions and to see a corresponding response in the estuary. However, the longer it takes to implement solutions, the longer it is going to take to achieve the goals.

18. The TMDL is based on current land use but what about future development?

MassDEP Response: The MEP Study and the TMDL also take buildout into account for each community.